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The present paper analytically investigates the adhesive behavior of power-law graded elastic solids
under a combined action of external normal loading and a substrate stretch-induced mismatch strain
with the effect of mode-mixity taken into account. A plane strain non-slipping model, a plane strain
non-coupling model and an axisymmetric non-coupling model have been analyzed, respectively. Our
results show that under a finite normal force, the equilibrium of the adhesive system may lost its stability
at a critical value of mismatch strain, which significantly depends on both the graded material constants
and the degree of mode-mixity. This indicates that the strongest or weakest adhesion strength under sub-
strate stretching can be achieved by designing the physical constants of the adhesive system appropri-
ately. These results provide a theoretical foundation for novel applications of functional graded
materials in adhesion systems.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The adhesive contact theories represented by JKR (Johnson et al.,
1971), DMT (Derjaguin et al., 1975) and MD (Maugis, 1992) models
have stimulated an explosion of theoretical development in the
adhesion mechanics. These basic theories have been extended to
a wider range including planar cases (Barquins, 1998; Chaudhury
et al., 1996; Baney and Hui, 1997; Sundaram et al., 2012), various
adhesive forces/potentials (Greenwood, 1997; Johnson and
Greenwood, 1997; Barthel, 1998; Greenwood and Johnson, 1998),
coupled normal and shear loads (Kim et al., 1998), periodic contact
asperities (Johnson, 1995; Hui et al., 2001; Carbone and
Mangialardi, 2004), rough surface contact (Fuller and Tabor,
1975; Persson, 2002; Guduru, 2007; Kesari and Lew, 2011) and
viscoelastic materials (Greenwood and Johnson, 1981; Hui et al.,
1998; Haiat et al., 2003). In recent years, the advancement in stud-
ies of adhesion is accelerated by growing interest in biology and
biomimetics (Bhushan, 2009; Jagota and Hui, 2011). At the same
time, various adhesion theories provide a powerful tool to reveal
the physical mechanism behind the bio-adhesion phenomena.
Various adhesion theories have been developed to understand
adhesive behavior in bio-systems such as cell adhesion (Freund
and Lin, 2004; Chu et al., 2005; Chen and Gao, 2006a,b,c, 2007b;
Tsang et al., 2006; De et al., 2007; Walcott and Sun, 2010; Gao
et al., 2011) and reversible adhesion systems of biological organ-
isms (Artz et al., 2003; Glassmaker et al., 2004; Hui et al., 2004;
ll rights reserved.
Gao et al., 2005; Yao and Gao, 2006; Chen and Gao, 2007a; Autumn
and Gravish, 2008; Chen et al., 2009; Pugno et al., 2011). It is worth
noting that most of the above mentioned works are focused on the
homogeneous materials.

On the other hand, the contact mechanics of functionally graded
materials (FGMs) with controlled spatial variation of properties has
become an important research topic for designing structures with
exceptional resistance to deformation, fracture, fatigue and fiction
induced damage (Suresh and Mortensen, 1998; Suresh, 2001).
Many biological systems such as bones, teeth and conchiolin, have
evolved the optimal surface properties for maximum functionality.
For example, recent experimental observations show that the
foam-like structure of cicada’s pads consists of graded materials
which exhibit robust flaw tolerant adhesion (Sherge and Gorb,
2001). It was also reported that some specific functionally graded
hydroxyapatite coating can enhance the osteoblast adhesion sig-
nificantly (Sandukas et al., 2011). Understanding the adhesive
mechanism for FGMs can also provide us more possible approaches
to achieve desired adhesion behavior by material design and opti-
mization and hence may be helpful for solving many environmen-
tal and biological problems, such as biofouling induced by bacteria
adhesion (Tsang et al., 2006). Thus, it is of great interest to study
the adhesive behavior of materials with functionally graded elastic
properties.

In contrast to the rapid progresses made in understanding the
macro-scale Hertzian contact of elastic graded materials (Booker
et al., 1985a,b; Popov, 1973b; Giannakopoulos and Suresh,
1997a,b; Giannakopoulos and Pallot, 2000), relatively little is
known about the corresponding adhesive contact in micro-and
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nano-scales. Yao and Gao (2010) found that a linearly graded elas-
tic material (Gibson soil) can be designed to achieve flaw tolerant
adhesion by employing an interfacial crack model. Meanwhile, the
frictionless JKR model was successfully extended to power-law
graded elastic solids in the plane strain case (Chen et al., 2009a)
and the axisymmetric case (Chen et al., 2009b). Subsequently,
the non-slipping JKR model was also established for power-law
graded materials in the plane strain case (Jin and Guo, 2010) and
in the axisymmetric case (Guo et al., 2011). The latter study re-
vealed that the traditional frictionless model is exact for homoge-
neous incompressible solids as well as for linearly graded
materials, and it is can be used as a good approximation for regular
materials with positive Poisson’s ratio even though the normal-
tangential coupling effect is neglected. In fact, the exact non-slip-
ping model is more preferable for auxetic materials with negative
Poisson’s ratio. In most of the above studies, an energy approach
was used to establish the contact equilibrium conditions and the
adhesion energy was assumed to be a material constant irrespec-
tive of the local fracture mode, which corresponds to the case of
ideal elasticity with reversible adhesion.

However, the dissipative phenomena are common in most real
processes involving interface interactions. For example, it was
found that under both normal and tangential loadings (mixed-
mode), the corresponding dissipative effect can increase the inter-
face toughness significantly (Hutchinson and Suo, 1992). The same
remains true in adhesive contact mechanics. Guduru and cowork-
ers developed a phenomenological model to account for the effect
of energy dissipation by assuming the effective work of adhesion is
an increasing function of mode-mixity. With use of this model,
they reexamined the contact problems in the presence of tangen-
tial loads or mismatch strains theoretically and experimentally
(Waters and Guduru, 2010, 2011; Waters et al., 2012). More quan-
titatively accurate predictions of behavior were obtained after
accounting for the mode-mixity dependence of work of adhesion.
Chen et al. (2009) also introduced the effect of mode-mixity into
their tape-substrate model to quantify the pre-tension-induced
strongly reversible adhesion of the spatula pad. They found that
the mode-mixity plays a key role in the adhesive response of an
elastic thin pad adhering to a substrate.

On the other hand, recent studies revealed that stretching defor-
mation can significantly influence the adhesion strength of contact
systems. Chen and Gao (2006a,b,c, 2007b) established a series of
adhesive contact models with substrate stretch-induced mismatch
strain and showed that the pull-off force and the associated critical
contact area tend to decrease with increasing substrate strain. Long
and Hui (2012) found that the pre-stretch in membrane may reduce
the energy release rate and increase the critical deflection for
detachment. It is worth nothing that when substrate strain is taken
into account, the failure mode of the adhesion system under normal
loading will inevitably be mixed, and hence the dissipation phe-
nomenon will come into play. Under this circumstance, the adhe-
sive behavior of functionally graded elastic materials seems more
complicated and hence remains elusive up to now.

The objective of the present study is to develop a fundamental
understanding of the mode-mixity-dependent adhesive behavior
of power-law graded elastic solids under substrate stretch-induced
mismatch strain, which has not been addressed in previous re-
search works. Following a general problem formulation in Section
2, a plane strain non-slipping model, a plane strain non-coupling
model, and an axisymmetric non-coupling model have been ana-
lyzed in Section 3, respectively. All these models are established
on the assumption that the work of adhesion is a function of
mode-mixity. The effects of the material properties, the magnitude
of mismatch strain and mode-mixity on adhesive behavior are also
elucidated in this section. Finally, some concluding remarks are gi-
ven in Section 4.
2. Problem formulation and solution procedures

Fig. 1 shows a rigid punch of radius R in adhesive contact with
an elastically graded half-space under both a normal loading P
(negative when tensile) and a substrate stretch-induced mismatch
strain em. In the plane strain case (2D), the punch is a cylinder and
the stretch represents a uniaxial tension; while in the axisymmet-
ric case (3D), the punch is a sphere and the stretch denotes an equ-
ibiaxial tension along the radius direction. The contact half-width
(2D) or contact radius (3D) is measured by a. The graded half-space
has a constant Poisson’s ratio m and a Young’s modulus varied with
depth according to a power-law form as

E ¼ E0ðz=c0Þk; 0 < k < 1; ð2:1Þ

where E0 is a reference modulus, c0 > 0 a characteristic depth and k
the gradient exponent. It is obvious that a homogeneous solid is
recovered as k = 0.

2.1. Non-slipping plane strain contact

For the non-slipping plane strain contact case, the integral
equation which relates the surface displacements of the half-space
(�ux and �uz) to the interfacial tractions within the contact region (rz

and sxz) can be established with use of the surface Green’s function
as follows (Giannakopoulos and Pallot, 2000; Popov, 1973a):Z 1

�1

signðn� gÞ þ icotðkp=2Þ
jn� gjk

vðgÞdg ¼ gðnÞ; ð2:2Þ

where

vðnÞ ¼ j1=2a1�krzðanÞ þ ij�1=2a1�ksxzðanÞ;
gðnÞ ¼ ij�1=2ðh1Þ�1�uzðanÞ � j1=2ðh1Þ�1�uxðanÞ

ð2:3Þ

with i ¼
ffiffiffiffiffiffiffi
�1
p

and

k ¼ b� 1; j ¼ b
1þ k

; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� �s
;
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ck

0Ck cos bp
2

kE�
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2
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pCð2þ kÞ ; ð2:4Þ

where C(�) denotes the Gamma function. According to Popov
(1973a), the exact solution of the integral equation in (2.2) can be
expressed as

vðnÞ ¼
X1
m¼0

gmPq
mðnÞ

i.kmw2D
q ðnÞ

; ð2:5Þ

where Pq
mðnÞ ¼ P�w�iq;�wþiq

m ðnÞ is the Jacobi polynomial of order m
with index (�w � iq, � w + iq) and

w2D
q ðnÞ ¼ ð1� nÞwþiqð1þ nÞw�iq

; q ¼ 1
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m ðnÞ

w2D
�qðnÞ
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:

ð2:6Þ
Additionally, the force applied on the cylindrical punch can be

expressed as

P ¼ g0ak

ij1=2.
: ð2:7Þ

For prescribed surface displacements of the substrate (�ux and
�uz), v can be determined from Eq. (2.3)2, (2.6)5, (2.7) and (2.5),
hence the interfacial tractions (rz and sxz) can be further obtained
from its real and imaginary parts according Eq. (2.3)1, respectively.



Fig. 1. Schematic of a rigid punch (cylinder for 2D; sphere for 3D) in adhesive contact with a power-law graded half-space under a normal loading P (negative when tensile)
and a stretch-induced mismatch strain em.
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2.2. Non-slipping axisymmetric contact

For the non-slipping axisymmetric contact case, as pointed out
by Popov (1973b), the interfacial tractions (rz and srz) within the
contact region can be obtained from the surface displacements of
the half-space (�ur and �uz) as

rzðrÞ ¼ �j�1
2

d
dr

Z a

r

sRe½v̂ðsÞ�
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2
p ds;

srzðrÞ ¼ �j1
2

d
dr

Z a

r

Im½v̂ðsÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � r2
p ds; ð2:8Þ

where Re½v̂ðsÞ� and Im½v̂ðsÞ� denote the real and imaginary parts of
v̂ðsÞ, respectively.

In Eq. (2.8),
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X1
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w3D
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with H0(x) = dH/dx.
In addition, the force applied on the spherical punch can be

written as

P ¼ sinðkp=2Þ coshðpqÞ
k
ffiffiffiffi
j
p Re½H0�: ð2:10Þ

In the above non-slipping contact models, coupling effect exists
between the normal and tangential deformations, which leads to
the oscillatory singularity of the interfacial stresses near the con-
tact edge. As demonstrated by Guo et al. (2011), the magnitude
of the coupling effect is controlled by a material parameter, q de-
fined in Eq. (2.6)2, which vanishes for homogeneous incompress-
ible as well as for linearly graded materials, and becomes
relatively small for regular materials with positive Poisson’s ratios.
Under this circumstance, the non-coupling contact model with
non-oscillatory interfacial tractions (i.e., ‘frictionless model’ in
the absence of mismatch strain) can be adopted as a good approx-
imation (Chen et al., 2009b). In the following, the effect of mode-
mixity under both the normal load and the mismatch strain will
be discussed in details for different adhesive contact models,
respectively.
3. Analysis results

3.1. Plane strain non-slipping adhesion

Under a mismatch strain em and the parabolic assumption of lo-
cal contact surfaces, the displacements across the contact interface
can be expressed as

�ux ¼ emx; �uz ¼ h� x2

2R
; jxj 6 a; ð3:1Þ

where R is the radius of the rigid cylinder and h denotes the depth of
indentation. Combining Eqs. (3.1), (2.3)2, (2.6)5, (2.7) and (2.5) gives
rise to an oscillatory stress field as
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1
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2
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ð3:2Þ
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ð2aÞk-

P þ 1
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x
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ð3:3Þ
and

- ¼ C
1þ k

2
þ iq

� �
C

1þ k
2
� iq

� �
: ð3:4Þ

The quantity q defined in Eq. (2.6)2 is the so-called normal-tangen-
tial coupling parameter, which leads to an oscillatory stress field.
Since q becomes zero for homogeneous incompressible and linearly
graded materials, the corresponding non-coupling model provides
exact solutions (Guo et al., 2011).

For this plane strain non-slipping model, the corresponding
complex-valued stress intensity factor and the energy release rate
were introduced by Guo et al. (2011) in the absence of mismatch
strain. As the substrate stretch induced- mismatch strain is in-
volved, they are derived as (see Appendix A for details)

K ¼ K I þ iK II ¼
ffiffiffiffiffiffiffi
2p
p

limx!aða� xÞ
1�k

2 þiq rz þ
i
j

sxz

� �
ð3:5Þ

and

G ¼ 1
2

jh1k.-
2pCð1þ kÞ jKj

2
; ð3:6Þ
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respectively.
The P � a � em relation of the considered contact system can be

obtained by setting the energy release rate equal to the effective
work of adhesion xad, which depends on the phase angle of
mode-mixity w defined in the form of

w ¼ tan�1 Im½Kl�iq�
Re½Kl�iq�

: ð3:7Þ

In Eq. (3.7), l denotes a reference length. Different expressions of
mode-mixity-dependent adhesion energy (interfacial fracture
toughness) can be found in Hutchinson and Suo (1992). One of
them, which is adopted in the present study, has the following
expression

xadðwÞ ¼ DcnðwÞ ¼ Dc
1� ð1� k0Þ sin2 w

; 0 6 k0 6 1 ð3:8Þ

where Dc is the work of adhesion under pure mode I loading con-
dition and the parameter k0 determines the influence of mode-mix-
ity. Fig. 2 plots the variation xad/Dc with respect to w for different
values of k0. Especially, when k0 = 1, it yields that xad = Dc, which
coincides with the classical surface energy.

With use of Eqs. (3.2), (3.5) and (3.6), the P � a � em relation can
be established from G = xad(w) as

C 1þ kð ÞbP
2k-âk

� 1
2pjd1k.

ð1þ k� 4q2Þakâ2

ð2þ kÞð1þ kÞbRk
þ qakâbR1�kem

pd1k.ð1þ kÞ

" #2

þ akâbR1�k

2pd1k.
2qâ

ð1þ kÞjbR þ em

" #( )2

� Cð1þ kÞakâ1�knðwÞ
25þkpjd1krk-bRk

¼ 0; ð3:9Þ

where

â ¼ a
a2D0

; bR ¼ R
a2D0

; bP ¼ PR
2pE�a2

2D0

a ¼ R
c0
; d1 ¼ �

Ck cos bp
2

k

ð3:10Þ

are all dimensionless quantities. The quantity a2D0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32R2Dc=ðpE�Þ3

q
in Eq. (3.10) is the classical 2D-JKR contact half-

width corresponding to em = 0 and P = 0, which can also be obtained
from Eq. (3.9) by setting k = 0, q = 0, em = 0 and
k0 = 1 simultaneously.

Fig. 3a-b show the normalized contact half-width a/a2D0 as a
function of the mismatch strain em for a specific graded half-space
(k = 0.5) under different loading cases. In the absence of applied
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Fig. 2. Variation of the work of adhesion with respect to the phase angle of mode-
mixity w, for different values of k0.
force ðbP ¼ 0Þ, as shown in Fig. 3a, â decreases smoothly to zero
with increasing em. Thus it is not easy to break up the adhering sys-
tem by stretch alone. However, the presence of a finite pulling
force bPð< 0Þ can lead to a quite different result. As shown in
Fig. 3b, there always exists a critical mismatch strain ecr beyond
which the adhesion system will lost its stability and hence the
punch is predicted to break apart from the substrate spontane-
ously. The same phenomenon were also observed for homoge-
neous materials even though the normal-tangential coupling are
neglected (Chen and Gao, 2007b; Waters et al., 2012).

3.2. Plane strain non-coupling adhesion

In this contact model, the normal-tangential coupling effect has
been neglected. The corresponding non-oscillatory interfacial
stress distributions within the contact region can be obtained by
letting q = 0 in Eq. (3.2) as

rzðxÞ ¼ d2ða2 � x2Þ
k�1

2 þ E�

pR
cos kp

2

ck
0Ckb sin bp

2

ða2 � x2Þ
kþ1

2 ;

sxzðxÞ ¼
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2
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0Ck sin bp

2

xem
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1�k

2

;

ð3:11Þ
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2
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: ð3:12Þ

Consequently, the stress intensity factors KI and KII are defined
as

K I ¼
ffiffiffiffiffiffiffi
2p
p

lim
x!a�
ða� xÞ

1�k
2 rzðxÞ;

K II ¼
ffiffiffiffiffiffiffi
2p
p

j
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x!a�
ða� xÞ

1�k
2 sxzðxÞ:

ð3:13Þ

With use of KI and KII, the corresponding energy release rate can
be calculated from Eq. (3.6) as

G ¼ K2
I þ K2

II

2M
; ð3:14Þ

where

M ¼ d3
E�

ck
0

; d3 ¼
21þkð1þ kÞ cos kp

2ffiffiffiffi
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p

Ckb sin bp
2

C 1þ k
2
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2

	 
 : ð3:15Þ

Letting G = xad(w), the P � a � em relation can be found as

Cð1þ kÞd5Ck cos bp
2

2kd4âk
bP þ 1

2pj
akâ2
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where

d4 ¼ C2 1þ k
2

� �
; d5 ¼ �

p tanðbp=2Þ
cosðkp=2Þ ð3:17Þ

and

w ¼ tan�1 K II=K Ið Þ: ð3:18Þ

Fig. 4a-b depict the normalized contact half-width a/a2D0 versus
the mismatch strain em for various values of mode-mixity parame-
ter k0 under zero and finite normal loading, respectively. In homo-
geneous case, a/a2D0 depends on em and bR only through the
combined parameter bRem (Chen and Gao, 2007b). For power-law
law graded materials (k – 0), however, bR and em affect the behavior
of a/a2D0 independently. As can be seen from Fig. 4a-b, for a specific
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value of em, the smaller the value of k0, the larger the value of a/
a2D0. This is due to decreasing the mode-mixity will enhance the
energy dissipation on the interface and further make the adhesive
contact system more stable. The reversible adhesion (k0 = 1) may
underpredict the contact half-width for a given value of em.

To investigate behavior of the critical mismatch strain under a
finite normal force, Fig. 5a-c plot the variation of ecr with respect
to the gradient exponent k for various values of bR, a, k0, and bP (neg-
ative when tensile), respectively. As shown in Fig. 5a, ecr increases
monotonically with k when a is relatively large while for small a,
ecr will attain a maximum value at some specific values of k (<1).
Just as seen from Fig. 5b-c, there always exist a maximum ecr at
some specific value of k(<1) for the given parameters. Under this
circumstance, it is possible to achieve the strongest adhesion
strength (maximum ecr) by selecting the material constants (a, k
and bRÞ appropriately.
3.3. Axisymmetric non-coupling adhesion

In this axisymmetric contact model, the punch is a rigid sphere
of radius R, and its profile is approximated as a parabola, i.e.,
f(r) = r2/2R, Under this assumption, the oscillatory interfacial
stress field within the contact region has been derived by Guo
et al. (2011). Again, by letting q = 0, the corresponding non-oscil-
latory interfacial stress field within the contact region can be
recovered as

rzðrÞ ¼ C1 1� r
a

� �2
� �1þk

2

þ C2 1� r
a

� �2
� �k�1

2

;

srzðrÞ ¼
2j cos kp

2

p3=2Ck sin bp
2

C 1þ k
2

	 

C 3þk

2

	 
 E�

ck
0

rða2 � r2Þ
k�1

2 em;

ð3:19Þ

where

C1 ¼
4a1þkE� cosðkp=2Þ

p3=2Rck
0Ckb sinðbp=2Þ

Cð1þ k=2Þ
ð1þ kÞCð1=2þ k=2Þ ;

C2 ¼
Pð1þ kÞ

2pa2 � 4a1þkE� cosðkp=2Þ
p3=2Rck

0Ckb sinðbp=2Þ
Cð1þ k=2Þ

ð3þ kÞCð1=2þ k=2Þ
ð3:20Þ

and the material constants j,b and Ck are defined in Eq. (2.4). The
stress field for homogeneous material (Chen and Gao, 2009b) can
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be recovered in the limit of k ? 0 in Eq. (3.19). Similar to that in the
plane strain non-coupling model, the stress intensity factors KI and
KII are defined as

K I ¼
ffiffiffiffiffiffiffi
2p
p

lim
r!a�
ða� rÞ

1�k
2 rzðrÞ;

K II ¼
ffiffiffiffiffiffiffi
2p
p

j
lim
r!a�
ða� rÞ

1�k
2 srzðrÞ

ð3:21Þ

and the corresponding energy release rate can be written as

G ¼ K2
I þ K2

II

2M
; ð3:22Þ

where

M ¼ d3
E�

ck
0

; d3 ¼
21þkð1þ kÞ cos kp

2ffiffiffiffi
p
p

Ckb sin bp
2

Cð1þ k=2Þ
C 1þk

2

	 
 : ð3:23Þ

Combining Eqs. (3.19)–(3.23) and equating G to the effective
work of adhesion, xad(w), expressed in Eq. (3.8), the P � a � em

relation can be expressed as

9C3ak

2bRk
â3þk � 6C4

bP þ 8C5
bRk

ak

bP2

â3þk
þ 9C6

2
akbR2�kâ1þke2

m � nðwÞ ¼ 0;

ð3:24Þ

where
C3 ¼
22þk

bð3þ kÞC7C8; C4 ¼
1

3þ k
C5 ¼

bCð2þ kÞ
24þkC7

;

C6 ¼
22þkð3þ kÞj

1þ k
C7C8; C7 ¼

C 1þ k
2

	 
� �2
cos kp

2

pCk sinðbp=2Þ ; C8 ¼
2þ k

Cð4þ kÞ ;

â ¼ a
a3D0

; bR ¼ R
a3D0

; bP ¼ 3PR
4E�a3

3D0

; a ¼ R
c0

ð3:25Þ

are all dimensionless quantities, w is the mode-mixity angle defined

in Eq. (3.18) and a3D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9pR2Dc=ð2E�Þ3

q
is the classical JKR contact

radius corresponding to em = 0 and P = 0 simultaneously. Note that

â; bR, and bP defined in Eq. (3.25) are different from that given in
Eq. (3.10) for 2D case. From Eq. (3.22), it can be predicted that
pull-off force can be reduced due to the presence of the mismatch
strain. This can be interpreted from an energy point view such that
since extra elastic energy induced by substrate strain is stored at
the interface, then it needs less work for normal load to initiate
the detachment of the contact system. This result may be of interest
for the designing of thin or multilayered coating systems where the
presence of residual stresses may reduce its adhesive performance.

Fig. 6a-b depict the normalized contact radius a/a3D0 versus the
mismatch strain em for various values of mode-mixity parameter k0

under zero and finite normal loading, respectively. Qualitatively
similar to that in the 2D model, the behavior of a/a3D0 is expected
to exhibit two different variation trends depending on the value of
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P. Detailed discussions can be found in the previous two
subsections.

Fig. 7a-c plot the variation of ecr with respect to the gradient
exponent k for various values of bR, a,k0, and bP (negative when ten-
sile). As observed from Fig. 7a, the behavior of ecr is quite different
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for different values of a. For example, when a = 100, ecr is a mono-
tonically increasing function of k; while for a = 104, ecr will attain
a minimum value at some specific value of k. Different from that in
Fig. 5b-c (2D), the adhesion in Fig. 7b-c shows that weakest
strength can be achieved by selecting the material constants
0.0 0.2 0.4 0.6 0.8 1.0
0.1

0.3

0.5

0.7

0.9

ε

3D non-coupling model

ν α
/ -

λ λ

λ λ

0.6 0.8 1.0

el
-
-
-

b

ent k in the axisymmetric non-coupling model for various values of (a) material



2356 F. Jin, X. Guo / International Journal of Solids and Structures 49 (2012) 2349–2357
appropriately. In addition, it can also be observed that the critical
mismatch strain ecr is predicted to be reduced by increasing the
magnitudes of k0 and bP , that is, both increasing energy dissipation
and decreasing pulling force can substantially stabilize the adhe-
sive system.

4. Conclusions

In traditional adhesive contact models, the work of adhesion is
often assumed to be independent of the mode-mixity, which may
underestimate the energy dissipation under some circumstances.
Although some results about the effect of mode-mixity have been
reported for homogeneous materials, the effect of mode mixity re-
mains elusive for graded elastic materials especially when the sub-
strate stretching-induced mismatch strain is involved. The present
study has analytically examined the effects of mode-mixity and
mismatch strain on adhesive behavior for three different contact
models in details. It has been found that the material constants
of graded materials have significant influence on the contact
behavior of adhesive systems especially in the presence of sub-
strate strain. The results obtained here can provide useful insights
on the design of adhesion systems with use of graded materials.
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Appendix A. Stress intensity factor and energy release rate

Based on the interfacial tractions described in Eq. (3.2), a com-
plex-valued stress intensity factor is introduced as

K ¼
ffiffiffiffiffiffiffi
2p
p

limx!aða� xÞ
1�k

2 þiqðrz þ isxz=jÞ

¼
ffiffiffiffiffiffiffi
2p
p

ð2aÞ
k�1

2 þiqðI10 þ iI20Þ; ðA1Þ

where

I10 ¼
Cð1þ kÞ
ð2aÞkRk

P � 1
jh1R

ð1þ k� 4q2Þa2

ð2þ kÞð1þ kÞk.þ
2qaem

h1kð1þ kÞ. ;

I20 ¼
a

h1ð1þ kÞk.
2qa
jR
þ ð1þ kÞem

� �
: ðA2Þ

The combined interfacial traction at a distance g ahead the rim
of the contact region can be rewritten as

rz þ
i
j

sxz

� �




x¼a�g

¼ Kffiffiffiffiffiffiffi
2p
p gk�1

2 �iq: ðA3Þ

While the complex discontinuity of the displacement (opening/
sliding gap) can be calculated as (Maugis, 1992)

½�uz� þ ij½�ux� ¼ ð�uz þ ij�uxÞ þ
x2

2R
� h� ijemx; jxj > a; ðA4Þ

where the depth of penetration h can be derived as

h ¼ h1.jCð1þ kÞ
ð2aÞk-

P þ a2

2R
1þ k� 4q2

ð1þ kÞð2þ kÞ �
2qjaem

1þ k
: ðA5Þ

Outside the contact region x = a + g, the complex surface dis-
placement of the substrate is
�uz þ ij�ux ¼ �jh1 tan
bp
2
þ i

� �Z a

�a

rzðsÞ þ isxzðsÞ=j
ðaþ g� sÞk

ds: ðA6Þ

Substituting Eqs. (3.2) and (3.3) into Eq. (A6) and using the fact
that as g ? 0+

Z a

�a

snðaþ sÞ
k�1

2 þiqða� sÞ
k�1

2 �iq

ðaþ g� sÞk
ds! Dn

cos½pðk=2þ iqÞ�

� 2k-an

ð1� k� 2iqÞCð1þ kÞ
g

2a

� �1�k
2 �iq

; n ¼ 0;1;2 ðA7Þ

where

D0 ¼ p; D1 ¼ paðkþ 2iqÞ;
D2 ¼ pa2ð1þ k2 � 4q2 þ 4ikqÞ: ðA8Þ

The asymptotic discontinuity of the displacement along the inter-
face ahead of the contact edge behaves as

ð½�uz� þ ij½�ux�Þjx¼aþg ¼
2jh1½tanðbp=2Þ þ i�k-
ð1� k� 2iqÞCð1þ kÞ

Kffiffiffiffiffiffiffi
2p
p g1�k

2 �iq; ðA9Þ

where the identity

rk ¼ �
p½tanðbp=2Þ þ i�
cos½pðk=2þ iqÞ� ðA10Þ

has been used.
The elastic energy dU associated with the contact size increas-

ing da at the contact edge can be calculated as

dU ¼ 1
2

Z da

0
½rz þ isxz=j�f½uz� þ ij½ux�gdg

¼ jh1½tanðbp=2Þ þ i�k-
ð1� k� 2iqÞCð1þ kÞ

jKj2

2p

Z da

0

g
da� g

� �k�1
2 þiq

dg

¼ � jh1k.-
4pCð1þ kÞ jKj

2da; ðA11Þ

where the formulaZ da

0
gk�1

2 þiqðda� gÞ
1�k

2 �iqdg ¼ p½ð1� kÞ � 2iq�
2 cos½pðk=2þ iqÞ�da ðA12Þ

has been employed. Consequently, the energy release rate is

G ¼ �dU
da
¼ 1

2
jh1k.-

2pCð1þ kÞ jKj
2
; ðA13Þ

which is a generalized version of the classical energy release rate for
homogeneous materials (Rice, 1988).
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