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Gradient theories, as a regularized continuum mechanics approach, have found wide applications for
modeling strain localization failure process. This paper presents a second gradient stress–strain damage
elasticity theory based upon the method of virtual power. The theory considers the strain gradient and its
conjugated double stresses. Instead of introducing an intrinsic material length scale into the constitutive
law in an ad hoc fashion, a microstructural granular mechanics approach is applied to derive the
higher-order constitutive coefficients such that the internal length scale parameter reflects the natural
granularity of the underlying material microstructure. The derivations of the required damage constitu-
tive relationships, the strong form governing equations as well as its weak form for the second gradient
model are described. The recently popularized Element-Free Galerkin (EFG) method is then employed to
discretize the weak form equilibrium equation for accommodating the resultant higher-order continuity
requirements and further handling the mesh sensitivity problem. Numerical examples for shear band
simulations show that the proposed second gradient continuum model can produce stable, accurate as
well as mesh-size independent solutions without a priori assumption of the shear band path.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Deformation localized failure mechanisms in cohesive material
have been intensively studied in field of engineering computa-
tional solid mechanics for several decades due to their frequent
occurrence, significance and considerable challenges. From a
microscopic viewpoint, the cohesive materials in engineering are
generally inhomogeneous because of the inclusion of either impu-
rities or pre-existing micro-cracks and micro-voids. Under exter-
nally applied loads, these imperfections act as the locations that
trigger the formation of shear band in the materials. As the defor-
mation concentrates and the narrow shear band propagates, the
material on either side of the dominant shear band experiences
relative slip leading to the material failure. The shear bands are
regarded as specific instances of the more general phenomenon
of strain localization and material instability (Samaniego and
Belytschko, 2005) and are important for the understanding of
failure mechanisms of both brittle and ductile materials, including
polymers, metals and granular materials (Rice, 1977; Bigoni and
Hueckel, 1991). Upon onset of strain localization, material
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tangential moduli, generally, ceases to be positive-definite result-
ing in a set of ill-posed partial differential equations (PDE) as well
as the loss of uniqueness of the solution. The consequence of such
an anomalous stress–strain relationship is that the traditional
finite element solutions based upon classical continuum descrip-
tion typically suffer from numerical instabilities, severe mesh-size
and mesh-alignment sensitivities as well as zero-energy dissipa-
tion (Pietruszczak and Mroz, 1981; Bažant et al., 1984; Sandler,
1984; Frantziskonis and Desai, 1987; de Borst et al., 1993; Chen
et al., 2000; Bažant, 1976; Nemes and Spéciel, 1996). In addition,
the determination of the shear band propagation path remains a
challenge, although a number of approaches have been advanced
to address this problem.

The existing methods employed to numerically reproduce
experimentally observed shear bands failure patterns generally fall
into two categories based upon whether they model the shear
bands as discontinuities or utilize continuum-based models. The
key idea of the first type is to embed localized zones with weak
or strong discontinuities into pre-determined finite elements.
Examples of the weak discontinuities model include those by
Rudnicki (1977), Ortiz et al. (1987), Belytschko et al. (1988), Fish
and Belytschko (1988). The strong discontinuities model, which
can be described as the limiting case of weak discontinuities with
vanishing width, can be found in the following references (Simo
et al., 1993; Simo and Oliver, 1994; Larsson et al., 1996; Armero
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and Garikipati, 1995, 1996; Oliver et al., 1997, 1998, 1999; Regue-
iro et al., 1998; Regueiro and Borja, 1999; Borja et al., 2000;
Rabczuk et al., 2000; Samaniego and Belytschko, 2005; Callari
et al., 2010). However, these discontinuity-based finite element
strategies are not entirely satisfactory because of their inability
to eliminate the spurious mesh dependency. Besides they add
considerable new computational challenges, such as the difficulty
of synchronizing the requisite ‘‘tracking’’ algorithm with the
progress of multiple, inter-connected or branching discontinuities
and of 3D applications (Cervera et al., 2004; Oliver et al., 2003).

Numerous efforts have also been made in the last three decades
regarding the continuum-based approaches. These efforts essen-
tially enrich the classical continuum theories with internal length
scale parameters in different ways and have exhibited different
efficiencies for simulating shear band failure process. These
so-called regularization techniques consist of various forms of
the following:

(1) The nonlocal theory which is based upon spatial averaging of
tensor or scalar state variables, for example strains, stresses,
or damage measures, in a certain neighborhood of a given
point (Bažant et al., 1984; Belytschko et al., 1986; Bažant
and Pijaudier-Cabot, 1988; Adachi et al., 1991; Valanis,
1991; Murakami et al., 1993; de Vree et al., 1995; Chen
et al., 2000; Di Prisco and Imposimato, 2003; Khoei and
Bakhshiani, 2005). Numerical implementation of these theo-
ries are challenging as the constitutive laws appear as con-
volution-type integrals accounting for the history of
displacements and state variables in a finite neighborhood
about the point in question.

(2) The viscoplastic theory which incorporates rate dependence
or viscous effects within the constitutive models (Sandler,
1984; Wu and Freund, 1984; Needleman, 1988; Sluys and
de Borst, 1992; Nemes and Spéciel, 1996). Although Needle-
man (1988) has suggested that the introduction of rate-
dependence is sufficient to eliminate mesh sensitivity, this
effect has been demonstrated only for a problem in which
the width of the localization band is established a priori. In
addition, when the material is only slightly rate-dependent
problems of numerical instabilities, mesh sensitivity is still
a critical issue that needs to be addressed similar to those
for rate-independent models (Nemes and Spéciel, 1996).

(3) The micropolar theory which considers an additional mate-
rial rotational degree of freedom independent from the dis-
placement field (Chang and Ma, 1990; Fleck and Hutchinson,
1997; Steinmann, 1994; Su, 1994; Chang et al., 2002a,b).
This approach provides an excellent means for considering
scale effects and has been used successfully in the analysis
of shear localization in frictional granular materials (Mohan
et al., 2002) and geotechnical materials (Manzari, 2004). The
theory is applicable to the cases when the rotational degree
of freedom is activated during the deformation as in the case
of shear dominated problems, however, the approach fails in
case of pure tension (Pamin, 1994).

(4) The gradient theories which enhance the constitutive law
either by introducing the strain-gradients or by including
both strain-gradients and their stress conjugates (de Borst
and Mühlhaus, 1992; Pamin, 1994; de Borst et al., 1995;
Peerlings et al., 1996; Altan and Aifantis, 1997; Sluys,
1992; Sluys et al., 1993; Chang and Gao, 1997; Chambon
et al., 1998; Chang et al., 1998; Suiker et al., 2001a,b; Chang
et al., 2002; Zhao et al., 2005). The first type of gradient mod-
els have a peculiar characteristic that the discrete tangent
stiffness does not maintain positive definiteness resulting
in the numerical difficulties associated with strain-softening
(Chang et al., 2002). In contrast, the second type of higher-
order stress–strain theory appears to unconditionally main-
tain the stability. However, it has been rarely employed
mainly because of its numerical complexity as more primary
variables are added and difficulty of specifying constitutive
laws as discussed in our recent paper where we have applied
a similar approach to model fracture in nanoscale intergranu-
lar glassy films (Yang et al., 2011). Moreover, for certain gradi-
ent plasticity approaches there is a need for C2 or C1 continuity
in the formulation of a finite element solution, which has
impeded its application in realistic engineering problems.

Despite the above-mentioned deficiencies, gradient theories,
that incorporate second or higher gradients of displacements,
have emerged as appealing method for modeling strain softening
behavior. The attractions of gradient methods are their simplicity
as neither rotational degree of freedom nor time effects are re-
quired, nor is there any dependence on unknown ‘weak zones’
within the solid, and the difficult to determine influence functions
for the convolution integrals appearing in the classical non-local
models are avoided (Triantafyllidis and Bardenhagen, 1993). From
the viewpoint of shear band modeling, there is no need to locate
the incipient shear band position, or the strong/weak discontinu-
ous line/surface, a priori as those for the discontinuity-based ap-
proaches (Li and Liu, 2004). In addition, this approach follows
strict locality in the mathematical sense (Peerlings et al., 1996)
and incorporates an inherent characteristic length scale that
determines the size of the localization zone. Moreover, the gradi-
ent-enhanced models have shown to be computationally the
most efficient for many materials which have low viscosity to suf-
ficiently restore well-posedness of the boundary value problem
during the strain localization phase, either in a plasticity-based
format, a damage-based format, or a combination of the two
(de Borst et al., 2004).

The present paper further develops the second-gradient theory
(incorporating second gradients of displacements) based upon the
principle of least action or the method of virtual power advanced
by Germain (1973). The second gradient theory derived in this
manner is not a simple generalization of the Cauchy continuum
theory. The systematic application of the method of virtual power,
as presented by Germain, is attractive since it leads to unambigu-
ous formulations and physically meaningful boundary conditions
(dell’Isola and Seppecher, 1995, 1997, dell’Isola et al., 2009,
2011). We apply this approach to develop the governing equations
for cohesive materials undergoing damage. We then address the is-
sues of numerical complexity and material constants associated
with the practical applications of the derived second gradient
theory. To this end, we develop the numerical implementation
using the Element Free Galerkin (EFG) method (Belytschko et al.,
1994a,b; Liu and Gu, 2005) in which approximation functions
can readily satisfy the higher-order of continuity requirements.
Furthermore, we derive the second gradient constitutive
parameters on the basis of a microstructural granular mechanics
approach (Chang and Misra, 1990; Chang and Gao, 1995; Mühl-
haus and Oka, 1996). The resultant damage constitutive models
incorporate the particle radius as the so-called internal length
scale, to reflect the natural granularity of the underlying micro-
structure. Finally, the proposed second gradient continuum model
is applied to simulate the shear band failure process through two
2D plane stress models to evaluate the applicability of the model.

2. Second gradient theory for material undergoing damage

The deformation energy density, W, of a second gradient contin-
uum is assumed to be a function of the first and the second-order
strain measures given as



Fig. 1. Conceptual granular model of a continuum.
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such that the conjugate stress measures are defined as
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where r0
ij is the usual Cauchy stress and rI

ijk is termed as a double or
hyper-stress. Note that all subscripts follow the summation conven-
tion of tensor unless stated otherwise. The virtual deformation en-
ergy, dE, in volume, v, of the body can be written as follows

dE ¼
Z

r0
iq � de0

iq þ r1
ijq � de1

ijq

� �
dv ð3Þ

Making use of Leibnitz rule, written as,
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along with Gauss’s divergence theorem, the virtual deformation en-
ergy can be obtained as follows

dE ¼
Z

v
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duidv �
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To further clarify the second surface integral in Eq. (5), we utilize
the concept of surface divergence and the following differentiation
formula (dell’Isola et al., 2012),

divs r1
ijqnqdui

� �
¼ r1

ijqnqrsðduiÞ þ divs r1
ijqnq

� �
dui ð6Þ

where rs is the surface gradient operator, divs is the surface diver-
gence operator, and the subscript, s, pertaining to surface operators
does not follow the tensor summation convention. The surface gra-
dient of virtual displacement, dui, is expressed as

rsðduiÞ ¼ dui;j � dui;knknj ð7Þ

Combining Eqs. (6) and (7), and applying the surface divergence
theorem, we simplify the second surface integral in Eq. (5) as
followsZ
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where oov represents the edge formed at the common border of two
regular parts of the surface @ v, whose outer normal vectors are nþq
and n�q , and whose tangents (outward normals at the edge) are gi-
ven as mþq and m�q , respectively. Thus, the virtual deformation energy
in Eq. (5) becomes

dE ¼
Z
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To be consistent, the work of external forces must take the form

dLext ¼
Z

v
fiduidv þ

Z
@v
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Z
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Nidui;knkdsþ
Z
@@v
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where we note that fi is the body force density caused by long range
interactions, Ti is the surface contact traction that expends work on
surface virtual displacements, Ni is the surface contact double traction
that expends work on the normal derivative of the surface virtual dis-
placements, and Ri is the edge contact force per unit length that ex-
pends work on edge virtual displacements. We note here that a
general treatment and a complete characterization of contact actions
in Nth gradient continua can be found in dell’Isola et al. (2012). Now
considering the principle of virtual power, we equate the internal vir-
tual deformation energy and the work of external actions and obtain
the following equilibrium equation and boundary conditions:

r0
iq � r1

ijq;j

� �
;q
þ fi ¼ 0 ð11Þ

r0
iq � r1

ijq;j

� �
nq � divs r1
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r1
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ijq

� ��
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To proceed in a damage context, we introduce the following
nonlinear second gradient constitutive damage model in which
the constitutive coefficients are pre-multiplied with the same fac-
tor (1 �x) such that:

r0
iq ¼ ð1�xÞCiqkle0

kl ð15Þ
r1

ijq ¼ ð1�xÞDijqklme1
klm ð16Þ

where x is the so-called damage scalar quantity ranging from 0 for
initial undamaged material to 1 when all material coherence is lost.
More elaborate damage model may be considered, however for sim-
plicity we apply the above model in this paper. For the calculations
in this paper, the damage state is governed by a linear strain soften-
ing damage law through a scalar state variable, k, defined as the
overall effective strain. The effective strain, k, is determined by
the square root of the summation of principle strains considering
damage due to only tensile strains which, in 2D, is given by the fol-
lowing equation

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1Þ2 þ ðe2Þ2

q
for e1; e2 > 0 ð17Þ

where e1 and e2 are the principal strain components of strain

e ¼ e11 e12

e12 e22

� �
. The linear softening damage evolution function

takes the form



Fig. 2. Plate model with an internal imperfection–geometry and loading conditions.
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xðkÞ ¼
0 k < k0
kuðk�k0Þ
kðku�k0Þ

k0 6 k 6 ku

1 k > ku

8><
>: ð18Þ

where k0 is the threshold of strain at which damage is initiated and
ku is the strain level at which all load carrying capacity is exhausted.
We note here that the introduced damage constitutive relationships
for stress and double stress are only suitable for describing a quasi-
static loading process. These expressions simply mimic the dissipa-
tive damage in the absence of unloading. However, a part of energy
is indeed lost during the loading process dissipated in internal dam-
age mechanisms. If one is interested in describing the unloading
and hysteretic phenomena then the introduction of dissipation po-
tential will be necessary (see for example, the approach discussed in
Lemaitre and Chaboche (1990)– section 7.3.2 page 399 and section
7.5 page 435, for thermodynamic formulations of damage and cou-
pled damage-plasticity models of conventional continua). We de-
scribe later in Section 4, a micromechanical derivation of the
constitutive equations of type given in Eqs. (15) and (16) for
cohesive material with granular microstructure whose grains are
irrotational and the contact network is maintained during the
deformation. The micromechanical derivation shows that the over-
all damage behavior is directly related to the inter-granular damage
mechanism that follows the relationship given in Eq. (18).

For our further discussion, we ignore the body force fi and sub-
stitute the damage constitutive relations from Eqs. (15) and (16)
into Eq. (3) to obtain the following nonlinear equilibrium equation
in terms of displacement gradients:

ð1�xÞ½Ciqkluk;ql � Dijqklruk;rjql� �
@x
@e0

mn
um;qn½Ciqkluk;l � Dijqklruk;rjl�

þ @x
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mn
Dijqklr ½um;jqnuk;rl þ um;jnuk;rql� ¼ 0 ð19Þ

Pre-multiplying Eq. (17) by a test function, dui, and integrating over
the domain, v, the weak form governing equation is obtained as
followsZ

v
dui;qð1�xÞCiqkluk;ldv þ

Z
v

dui;qjð1�xÞDijqklruk;rldv

¼
Z
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@@v

Riduidl ð20Þ

where the simplification was performed following the approach
used for deriving Eq. (9) since the weak form and principle of virtual
work are equivalent. Additionally, the boundary integrals were sim-
plified using the notation given in Eqs. (12)–(14). In the weak form,
the terms corresponding to the test function in the boundary inte-
grals are designated as the essential boundary conditions, while
their coefficients form the natural boundary conditions (Reddy,
2005). Thus, the boundary conditions can be stated as
Essential b:c: : surface displacmentui;

and normal derivative of suface displacment ui;knk ð21Þ
Natural b:c: : surface forces Ti; surface double force
Ni; and edge force Ri ð22Þ

For numerical computations, the essential boundary conditions
can be enforced by using penalty method as follows (Liu and Gu,
2005):Z
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dui;qð1�xÞCiqkluk;ldv þ
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where �ui is the prescribed displacement vector on the surface; a is
the penalty coefficient which is often a large positive number. In Eq.
(23), the gradient and edge essential boundary conditions are
ignored for the sake of simplicity, though it can be included in an
obvious and straightforward manner. Considering that

1
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Eq. (23) can be recast asZ
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3. Element-Free Galerkin (EFG) formulation

Meshfree methods, such as the EFG method and reproducing
kernel particle method (RKPM), which require a much looser topo-
logical discretization structure compared to finite element method
(FEM), have been used as an alternative to eliminate the mesh
subjectivity as well as to simplify or avoid the time-consuming
meshing task. The EFG method has been shown to be successful
in solving many challenging problems in solid mechanics, for in-
stance, static and dynamic crack growth modeling (Krysl and Bely-
tschko, 1997, 1999; Belytschko and Tabbara, 1996; Belytschko
et al., 1994a,b, 1995a,b (see also other articles coauthored by Bely-
tschko); Lu et al., 1994; Zhang and Gao, 2010), and plate bending
(Krysl and Belytschko, 1995). The gridless property also appears
ideal for other problems involving moving interfaces such as
solid–solid phase transformation (Cordes and Moran, 1996). The
application to dynamic shear band propagation problem was
conducted by Li et al. (2002) where an explicit mesh-free Galerkin
formulation with RKPM kernel function has been used. Although
the meshfree methods perform satisfactorily in these specific
fields, they have not succeeded in replacing the finite element
method (FEM). The primary reasons for the lack of wide adoption
of the meshfree are (1) they are weak at representing the three-
dimensional complex shapes required in practical engineering,
(2) they are less reliable in terms of analysis accuracy than the
FEM (Yagawa, 2004), and (3) are computationally more costly than
the conventional FEM (Rajesh and Rao, 2010). In addition, the
application of MLS interpolation schemes in meshfree methods
complicates the imposition of essential boundary conditions as
the MLS interpolants lack the delta function property of the usual
FEM shape functions (Mukherjee and Mukherjee, 1997).

There have been only few attempts to apply the EFG method to
gradient-enhanced continua with strain softening (Askes et al.,



Fig. 3. Comparison between results from two different discretization schemes: (a) axial stress versus total strain curve, and (b) damage profile along horizontal axis at failure
stage.
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2000; Chang et al., 2002) or in the context of plasticity (Pamin
et al., 2001, 2003). Jirásek (1998) has investigated the applicability
of EFG method to strain softening problems and confirmed that for
regularized localization problems EFG method behaves in a man-
ner superior to FEM in the description of continuous fields. From
the viewpoint of second gradient continuum theory developed in
this paper, the EFG method has an important advantage over clas-
sical FEM that the approximation functions with high order of con-
tinuity needed for proper representation of the higher-order
derivatives can be readily incorporated into the formulation with-
out increasing the problem size or using projection techniques
(Askes et al., 2000; Pamin et al., 2003; Rabczuk and Belytschko,
2005).

The essential idea for EFG method is that moving least square
(MLS) interpolants are used for the trail and test functions with a
variational principle. The connectivity between field nodes is satis-
fied via the overlapping of the domain of influence of sampling
node in which its shape function is nonzero. The domain of influ-
ence of each field node is controlled by a weight function. A de-
tailed description of EFG method can be found in the references
(Belytschko et al., 1994a; Liu and Gu, 2005). Using MLS approxima-
tion, the trial function and test function are discretized as:

ui ¼ /ipup dui ¼ /ipdup ð26Þ

where /ip is the MLS shape function and up is the nodal parameter
of displacement field for all nodes in the influence domain. Substi-
tuting Eq. (26) into the weak form Eq. (25) and canceling out dup be-
cause of its arbitrariness yields the following global discretized
system equation (Yang and Misra, 2010)

½Kps þ Ka
ps�us ¼ Fp þ Fa

p ð27Þ

where superscript a represents the resultants from penalty terms.
Global stiffness tensors Kps;K

a
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We note for our calculations, the penalty parameter, a, is deter-
mined as 106 times the maximum diagonal element of the global
stiffness matrix K.

In order to obtain the incremental form of system Eq. (27), we de-
fine a residual force Rp as the difference between internal force ðKpsþ
Ka

psÞus and external force Fp þ Fa
p . Taylor series expansion of the

residual force is then utilized to perform the linearization given by

Rp ¼ Rpðuðr�1ÞÞ þ @Rp
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2
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s
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2 � � � ¼ 0

ð32Þ

where Du(r) is the increment and superscripts within parentheses
refer to the iteration step. Thus the solution of Eq. (27) at the rth
iteration can be written in terms of the solution for the (r � 1)th
iteration as follows

uðrÞ ¼ uðr�1Þ þ DuðrÞ ð33Þ

When second-order derivatives and higher in Eq. (32) are neglected,
we obtain
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Defining tangent stiffness as Tps ¼ @Rp
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Inserting Eqs. (28) and (29) into Eq. (35), the resultant tangent stiff-
ness tensor is obtained as

Tps ¼
Z

v

@/T
ip

@xq
ð1�xÞCiqkl

@/ks

@xl
dv þ

Z
v

@2/T
ip

@xq@xj
ð1�xÞDijqklr

� @2/ks

@xr@xl
dv �

Z
@v

/T
ipa/isds�

Z
v

@/T
ip

@xq

@x
@e0

ab

� @/as

@xb
Ciqkle0

kldv �
Z

v

@2/T
ip

@xq@xj

@x
@e0

ab

@/as

@xb
Dijqklr

@e0
kl

@xr
dv ð36Þ

Finally, the incremental system equilibrium equation becomes

Tðr�1Þ
ps DuðrÞs ¼ Fp þ Fa

p � Kðr�1Þ
ps þ Kaðr�1Þ

ps

� �
uðr�1Þ

s ð37Þ
4. Constitutive law for second gradient media using
microstructural granular mechanics

To obtain the constitutive laws for the second gradient media,
macroscopic continuum is postulated to have a granular



Fig. 4. Contours of horizontal and vertical displacements, denoted as u and v respectively, at (a) peak stage and (b) post-peak failure stage.
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microstructure consisting of a set of interacting particles whose
centroids represent material points as depicted in Fig. 1 (Misra
and Yang, 2010). The term ‘granular’ is used here in a broad sense
to describe materials that posses granular microstructures at vari-
ous scales, such as ceramics and geomaterials that have been
formed by particulate precursors undergoing cementation or sin-
tering. Under an applied load on a sample of such a material, the
conceptual grains may undergo translation or rotation. The relative
surface displacement, di, between two nearest neighbor particles n
and p (Chang and Misra, 1989) is given by

di ¼ un
i � up

i þ eijk xn
j rn

k �xp
j rp

k

� �
ð38Þ

where ui = particle displacement; xj = particle rotation; rk = vector
joining the centroid of particle to the contact point; superscripts re-
fer to the interacting particles; eijk = the permutation symbols.
Fig. 5. Horizontal strain e11 and stress r11 contours at (a) peak stage and (b) post-peak failure stage.
The contact force f c
i between two particles may be related to the

relative displacement dc
j through the contact stiffness Kc

ij as

f c
i ¼ Kc

ijd
c
j ð39Þ

with Kc
ij written in terms of the stiffness components in normal

direction Kn and that in tangential direction Kw as

Kc
ij ¼ Kc

nninj þ Kc
wðsisj þ titjÞ ð40Þ

where n, s, t are the unit base vectors of the local coordinate system
constructed at each contact. Vector n is normal to the contact plane
and the other two orthogonal vectors, s and t, are on the contact
plane which are given by



Fig. 6. Vertical strain e22 and stress r22 contours at (a) peak stage and (b) post-peak failure stage.

Fig. 7. Shear strain e12 and stress r12 contours at (a) peak stage and (b) post-peak failure stage.
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n ¼ cos ce1 þ sin c cos /e2 þ sin c sin /e3

s ¼ dn
dc ¼ � sin ce1 þ cos c cos /e2 þ cos c sin /e3

t ¼ n� s ¼ � sin /e2 þ cos /e3

8><
>: ð41Þ

The strain energy density in a representative volume V of this pseu-
do-granular material can be written as

W ¼ 1
2V

XN

c¼1

f c
i dc

i ð42Þ

where N refers to the total number of inter-particle contacts. To de-
velop a continuum model for the behavior of a particle assembly, we
associate the discrete displacement, un

i , of the nth particle with the
displacement of the centroid, xn

i , of the nth particle, ui xn
i

	 

.

Following the approach by Chang and Liao (1990), Taylor series
expansions is used for the displacement field. Thus, the displace-
ment at particle n can be estimated using the gradients at a reference
point, x0, which is taken as the barycenter of the representative vol-
ume as follows:

uiðxnÞ ¼ uiðx0Þ þ ui;jðx0Þxn
j þ

1
2

ui;jkðx0Þxn
j xn

k ð43Þ

where the derivatives of third- and higher-order are neglected.
Ignoring the micro-polar effects caused by particle rotations and
substituting Eq. (43) into Eq. (38) we get

dc
i ¼ uiðxnÞ � uiðxpÞ ¼ ui;jL

c
j þ ui;jkJc

jk ð44Þ

where the geometric quantities



Fig. 8. Effective strain e evolution with loading at (a) along the horizontal central
axis (y = 0), and (b) along the horizontal axis (y = 5 mm) of the plate.
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Lc
j ¼ xn

j � xp
j ð45aÞ

Jc
jk ¼

1
2

xn
j xn

k � xp
j xp

k

� �
ð45bÞ

Assuming that the pseudo-particle radius is uniform denoted by, r,
Eqs. (45a) and (45b) are reduced to
Fig. 9. Higher-order strain e111 and stress r111 contour
Lc
j ¼ 2rnc

j ð46aÞ

Jc
jk ¼

1
2

Lc
j Lc

k ð46bÞ

By combining Eqs. (38), (39), (44), and (46), following constitutive
tensors are obtained for the case of material with central symmetry:

Cijqm ¼
1

2V

XN

c¼1

Lc
j Kc

iqLc
m ð47aÞ

Dijkqmn ¼
1

8V

XN

c¼1

Lc
j Lc

kKc
iqLc

mLc
n ð47bÞ

Considering the symmetry of the stress and strain tensors, the
fourth-rank and sixth-rank constitutive tensors have to satisfy the
following symmetries

Cijkl ¼ Cklij; Cijkl ¼ Cjikl ¼ Cijlk ð48Þ
Dijqklm ¼ Dklmijq; Dijqklm ¼ Djiqklm ¼ Dijqlkm ð49Þ

Since the representative volume consists of a large number of
particles, a summation of any quantity over all particle contacts
within the volume can be expressed in an integral form by intro-
ducing a directional density function, n(c,/) (Chang and Misra,
1990). For a suitably large representative volume with a large
number of contacts, recalling Eq. (46a), the summation in Eqs.
(47a) and (47b) may be recast into integral forms as

Cijkl ¼
2r2N

V

Z
X

nc
j Kc

iknc
l nðc;/ÞdX ð50aÞ

Dijqklm ¼
2r4N

V

Z
X

nc
j nc

qKc
iknc

l nc
mnðc;/ÞdX ð50bÞ

where the integration
R

Xð ÞdX ¼
R 2p

0

R p
0 ð Þ sin cdcd/ ; and Nn(c,)/

dX = the number of contacts in the interval X to X + dX. Since
the representative volume is much larger compared to the particle
radius, r, the higher order constitutive constants, Dijqklm, are gener-
ally order of magnitude smaller than the conventional constitutive
constants, Cijkl. However, in the presence of large strain gradients as
those in the shear bands, these play a significant role. We further
note that the micro–macro identification which is proposed and
used here produces a relevant second gradient effect because of
s at (a) peak stage and (b) post-peak failure stage.



Fig. 10. Higher-order strain e222 and stress r222 contours at (a) peak stage and (b) post-peak failure stage.

Fig. 11. Damage evolution process at selected overall displacement levels of (a) �0.006 mm, pre-peak, (b) �0.0065 mm, peak, (c) �0.0075 mm, post-peak pre-failure, (d)
�0.0255 mm, post-peak failure.
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the presence of strong non-linearities in the interactions at the
microscopic level. Instead the same effect is obtained in systems
in which at microlevel the interaction forces are linear, but strong
space variation of elastic properties are observed (Alibert et al.,
2003; Seppecher et al., 2011).

Now, for an isotropic microstructure, the directional density
function is given as

nðc;/Þ ¼ 1
4p

ð51Þ

and closed form expressions for the constitutive coefficients can be
derived in terms of the Young’s modulus, Poisson’s ratio and the
particle size. Substituting Eqs. (40), (41) and (51) into (50a) and
integrating we arrive at the constitutive constants, Cijkl, as
C1111 ¼
a

15
ð3Kn þ 2KwÞ ð52aÞ

C1122 ¼
a

15
ðKn � KwÞ ð52bÞ

C1212 þ C1221 ¼
a

15
Kn þ

3
2

Kw

� �
ð52cÞ

where a = 2r2 N/V represents the density of the packing structure. In
addition, the following identities for elastic moduli hold:

C1111 ¼ C2222; C1122 ¼ C2211; C1212 ¼ C2121 ð53Þ

The constitutive constants results in the following relations be-
tween material properties and components of pseudo-bond stiff-
ness (Chang and Misra, 1990):



Fig. 12. Plate model with two internal imperfections– geometry and loading
conditions.
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E ¼ a
Knð2Kn þ 3KwÞ

3ð4Kn þ KwÞ

� �
ð54Þ

m ¼ Kn � Kw

4Kn þ Kw
ð55Þ

Eqs. (54) and (55) can be rearranged to give the pseudo-bond
stiffness

Kn ¼
3E

að1� 2mÞ ð56Þ

Kw ¼
3Eð1� 4mÞ

að1� 2mÞð1þ mÞ ð57Þ

By combining Eqs. (40), (41), (50b), (51), (56) and (57) and using a
similar algebra, the components of second gradient constitutive
constants Dijqklm can be obtained as

D111111 ¼
3r2Eð7� 3mÞ

35ð1� 2mÞð1þ mÞ ð58aÞ

D111122 ¼
r2Eð7� 13mÞ

35ð1� 2mÞð1þ mÞ ð58bÞ

D111212 ¼
3r2Em

7ð1� 2mÞð1þ mÞ ð58cÞ

D122122 ¼
3r2Eð7� 23mÞ

35ð1� 2mÞð1þ mÞ ð58dÞ
Fig. 13. Effective strain e and stress r contours at
where the following relations hold

D111111 ¼ D222222 ð59aÞ
D111122 ¼ D112112 ¼ D112121 ¼ D121121 ¼ D211222 ¼ D212212

¼ D212221 ¼ D221221 ð59bÞ
D111212 ¼ D111221 ¼ D112211 ¼ D112222 ¼ D121211 ¼ D121222

¼ D122212 ¼ D122221 ð59cÞ
D122122 ¼ D211211 ð59dÞ

The other elements of Cijkl and Dijqklm are all zero. Note that: (1) Eq.
(58) provides a useful method for estimating the high-order consti-
tutive constants directly from the Young’s modulus and Poisson’s
ratio without explicitly knowing the numerical values of either
the number of contacts N or the representative volume V; and (2)
the derived higher-order constitutive coefficients explicitly depend
upon the particle radius, r, which acts as a internal length scale
parameter. Furthermore, the direct relationship between the pseu-
do-bond stiffness and the overall properties provides a way to relate
the grain-scale damage to the overall material damage as discussed
in Misra and Yang (2010). For example in this paper, we model
damage as a loss of stiffness of the pseudo-bonds by multiplying
the stiffness in Eqs. (56) and (57) with the factor (1 �x) where
the scalar damage parameter, x, is given in Eq. (18). It is straightfor-
ward to show that the resultant coefficients in Eqs. (52) and (58) are
of the same form as the constitutive law assumed in Eqs. (15) and
(16). Thus the overall damage behavior of the material is directly re-
lated to the damage mechanism (and the accompanying dissipa-
tion) at the pseudo-bonds.
5. Application to shear band failure simulation

Shear band simulations have been widely studied as benchmark
problems by many researchers to assess their numerical models.
Cervera et al. (2004) modelled shear band localization for three
2D perforated strip examples with different perforations in order
to evaluate their stabilized isotropic local J2 damage constitutive
model. Li and Liu (2004) used different shear band simulation ap-
proaches to investigate frequently encountered problems includ-
ing mesh-alignment sensitivity, controllability of hour-glass
modes and adaptive analysis. In this paper, the applicability of
(a) peak stage and (b) post-peak failure stage.



Fig. 14. Contours of the overall effective higher-order strain gradient and conjugated stress in x-direction at (a) peak stage and (b) post-peak failure stage.
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the developed second gradient continuum model is illustrated
through two benchmark 2D numerical examples for shear band
simulation.

5.1. Plate with single imperfection

In the first example we simulate shear band formation in a 2D
plate model of dimension 40 mm � 20 mm subjected to a displace-
ment-controlled compressive loading in the x-direction as shown
in Fig. 2, while the boundaries in the y-direction are kept traction
free. To initiate shear localization, a square imperfection with side
length of 1 mm was placed at the central zone of the plate. Fig. 2
depicts the undeformed plate geometry and its boundary
conditions, in which the hatched area represents the imperfection.
The Young’s modulus of plate was taken as E = 20 GPa, the Pois-
son’s ratio m = 0.22, internal length scale parameter r = 0.5 mm
and the damage evolution parameters, k0 = 10�4 and ku = 0.0125.
The imperfection is characterized by 80% reduction of the Young’s
modulus.

Considering the symmetry of both the geometry and the bound-
ary conditions, the top right quarter of the plate was analyzed. Two
cases of model discretizations were considered. In case 1, a total of
861 (41 � 21) regular field nodes with equal nodal spacing of
h = 0.5 mm were used, while in case 2 a total of 3321 (81 � 41) reg-
ular field nodes with nodal spacing of h = 0.25 mm were used. In
addition, 800 rectangular background cells with two-point integra-
tion rule were used to perform the Gauss integrations. The step
sizes of the incremental displacement were taken as
Du0 = 0.002 mm for initial value and Du = 0.0005 mm for subse-
quent loadings until the plate completely looses integrity. New-
ton–Raphson iteration method was used to solve the non-linear
incremental system of governing equations. The convergence of
each step was accepted when Eq. (60) was satisfied (Reddy, 2004)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

I¼1 uðrÞI � uðr�1Þ
I

� �2

PN
I¼1 uðrÞI

� �2

vuuuut < 1:0�6 ð60Þ

The results are shown in Fig. 3 which gives the comparison between
two different discretization schemes for the overall axial stress–
strain behavior and the damage profile at failure stage along the
bottom horizontal boundary of the quarter plate. The results indi-
cate that the two discretization schemes generate nearly identical
results, which illustrates the mesh size objectivity of the proposed
model.

Fig. 4 shows how the horizontal and vertical displacements
evolve at peak and post-peak failure stage corresponding to the im-
posed displacement levels of-0.0065 mm and-0.0255 mm, corre-
sponding to axial strains of 0.00016 and 0.00064, respectively.
Note that, here and in what follows for this example, peak and
post-peak failure stages refer to the aforementioned deformation
values and negative sign denotes the compression. It can be seen
from Fig. 4 that, at peak stress stage, the imperfection has triggered
a primitive deformation concentration within the center of the
plate as indicated by the darker bands of horizontal and vertical
displacements in Fig. 4(a). At the failure post-peak stage, a distinct
‘‘hour-glass’’-shaped localization band is visible in the vicinity of
the small imperfection zone. Note that the ‘‘hour-glass’’ has almost
zero displacement in the x direction and large outward displace-
ment in the y direction. This is expected as the wedges trapped be-
tween the shear bands experience near rigid body motions in the
y-direction as the shear band matures and the plate is compressed
in the x-direction.

Fig. 5 shows the contours of the axial strain e11 and stress r11 at
peak and post-peak failure stages. We also show the vertical strain
e22 and stress r22 contours, and the shear strain e12 and stress r12,
in Figs. 6 and 7, respectively, at the peak and post-peak stages. At
peak stage shown in Fig. 5(a), the plate deforms almost uniformly
except for the visible imperfection zone which shows that the
appearance of shear band lags behind the peak stress stage. Upon
further loading, a shear band can be observed with an inclination
angle of approximately ±45� with respect to the horizontal axis
from strain contours in Fig. 5(b). At the same time, a ‘‘butterfly’’
shaped band forms as seen in the stress contour. To further illus-
trate the evolution of strain as loading progresses, we plot in

Fig. 8, the effective strain, calculated as e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1Þ2 þ ðe2Þ2

q
, where

e1 and e2 are the principal strain components, along two horizontal
axes (y = 0 and y = 5). Fig. 8 shows clearly that strain localization
emerges and grows within a narrow band while the regions out-
side, which are in elastic state, do not attract further deformation



Fig. 15. Contours of the overall effective higher-order strain gradient and conjugated stress in y-direction at (a) peak stage and (b) post-peak failure stage.
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and even undergo unloading. The shear band formation can be re-
garded as an interface between two adjacent continua which may
be in different deformation state. With this view, it may be possible
to use the method presented in this paper to determine the consti-
tutive equations for the two-dimensional nonmaterial interfaces
introduced and studied in the papers (dell’Isola and Romano,
1986,1987a,b; dell’Isola and Kosinski, 1993, dell’Isola and Woź-
niak, 1997a,b).

We also observe that the computed shear band exhibits a ten-
dency to curve in the vicinity of the outer boundaries. This phe-
nomenon may be due to a certain lack of objectivity with respect
to the mesh directional bias (Cervera et al., 2004). This mesh direc-
tional dependency may come from the shadow integration ele-
ments used in the EFG method. Mesh directional bias would be
smeared if some true meshfree method were used, such as the
modified meshfree local Petrov–Galerkin (MLPG) method pre-
sented by Atluri and Zhu (1998). However, it is encouraging that
the shear band formation can be predicted using the relatively sim-
ple continuum model proposed herein, in which no adaptive anal-
ysis is necessary, and therefore, there is no ad hoc propagating path
for the shear band. Furthermore, the predicted thickness of the
shear band is independent of the model discretization and based
upon the strain contours can be estimated to be 8–10 mm. Shear
bans are also predicted.

Fig. 9 gives the contours of higher-order strain e111 and its con-
jugate double stress r111 corresponding to the derivatives of the
axial strain e11 with respect to the x direction at peak and post-
peak failure stages. From Fig. 9(a) we can observe that, at peak
stage, both the higher order strain and stress are negligible. How-
ever as the shear band forms along the ±45� angle centered on the
imperfection zone, strain gradients develop considerably in their
proximity as shown in Fig. 9(b). Similarly, the higher-order strain
e222 and its conjugate double stress r222 corresponding to the
derivatives of the axial strain e22 with respect to the y direction
at peak and post-peak failure stages are plotted in Fig. 10.

Fig. 11 illustrates the damage evolution process at selected pre-
peak, peak, post-peak pre-failure and failure stages corresponding
to the overall displacement levels of (a) �0.006 mm, (b) �0.0065
mm, (c) �0.007 mm, and (d) �0.0255 mm, respectively. The
damage initiates from the proximity of the imperfection zone
and grows rapidly in an ‘‘explosive’’ manner upon reaching the fail-
ure stage. At the same time, the rest of the region experiences zero
damage throughout which leads to the homogeneous strains in the
remainder of the body. Finally, we note that the shear band thick-
ness as determined by the region in which the damage parameter
reaches unity is also 8–10 mm. This thickness is 16 to 20 times the
particle radius of 0.5 mm.
5.2. Plate with double imperfections

In the second example we simulate shear band formation in a
2D plate with two equal size imperfections located on the horizon-
tal central axis of the plate. Fig. 12 depicts its original geometry
and loading conditions, where hatched area represents the imper-
fection zones. All the other parameters, material properties and the
convergence criterion are taken to be consistent with that for the
first example. The step sizes of the incremental displacement were
taken as Du0 = 0.002 mm for initial value and Du = 0.0005 mm for
subsequent loadings until the plate completely fractures.

Fig. 13 shows the contours of the effective strain e and stress r
at peak and post-peak failure stages corresponding to the overall
displacement of �0.007 mm and �0.038 mm. The effective stress
is calculated in the same manner as effective strain from the prin-
cipal stress components r1 and r2. From Fig. 13(a) one can observe
that, at the peak stage, the plate undergoes near homogeneous
straining even though primitive shear bands have been formed
as shown by the stress contour. When reaching the post-peak fail-
ure shown in Fig. 13(b), the two imperfection zones have triggered
multiple mature shear bands. It is noticeable that the peripheral
shears bands have bigger magnitude than those internal shear
bands which could be the result of the interactions between the
shear bands. This is also reflected in the stress contours, which
are characterized by larger unloading in the outer bands coupled
with smaller unloading in the inner bands.

Figs. 14 and 15 give the contours of the overall effective higher-
order strain gradients as well as the conjugated double stresses at
peak and post-peak failure stages. The effective higher-order



Fig. 16. Evolution process of damage at selected overall displacement levels of (a) �0.006 mm, pre-peak (b) �0.007 mm, peak (c) �0.009 mm, post-peak pre-failure (d)
�0.038 mm, post-peak failure.
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strains with respect to x- and y-directions, denoted as @e1
x and @e1

y ,
respectively are evaluated according to

@e1
x ¼

@e
@x
¼
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1Þ2 þ ðe2Þ2

q� �
@x

ð61Þ

@e1
y ¼

@e
@y
¼
@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe1Þ2 þ ðe2Þ2

q� �
@y

ð62Þ

Similarly, the corresponding overall effective higher-order stress
gradients with respect to x- and y-directions, denoted as @r1

x and
@r1

y , respectively are calculated from the principal stress compo-
nents r1 and r2 according to

@r1
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr111Þ2 þ ðr221Þ2 þ 2ðr121Þ2

2

s
ð63Þ

@r1
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr112Þ2 þ ðr222Þ2 þ 2ðr122Þ2

2

s
ð64Þ

The effective higher-order strain gradients are negligible at the peak
stress stage. Upon further loading, as one can see from Figs. 14(b)
and 15(b), two opposite gradient shear bands form along the either
side of the slip line which demonstrates the slope of the strain cor-
responding to Fig. 13(b). From the effective higher-order stress con-
tour we can also observe a similar pattern of concentration bands
which demonstrate the unloading and stress localization respec-
tively. Because of the cross impact, it is expected that inner locali-
zation area experiences smaller gradients than that in the outer
regions.

Fig. 16 shows the evolution process of damage at selected
pre-peak, peak and post-peak pre-failure and post-peak failure
stages corresponding to the overall displacement level of (a)
�0.006 mm, pre-peak (b) �0.007 mm, peak (c) �0.009 mm, post-
peak (d) �0.038 mm, post-peak failure. As seen, the damage pro-
gresses smoothly without any numerical difficulties and spurious
results, until the damage parameter becomes unity all along the
shear band.
6. Concluding remarks

This paper has presented a second gradient stress–strain the-
ory for materials following damage elasticity and successfully
applied it to the simulation of shear band localization induced
failure problems. The theory was derived in the framework of
the method of virtual power which has the advantage of provid-
ing an unambiguous formulation with physically meaningful
boundary conditions. In contrast to various forms of strain gradi-
ent theories, the model proposed herein includes both second
gradient strain and conjugated double stress terms such that sta-
ble and convergent solutions to the nonlinear problem can be
obtained. In addition, the constitutive coefficients for the theory
have been derived through a microstructural granular mechanics
approach such that internal length scale parameter was intro-
duced directly into the constitutive law with a clear physical
foundation.

The derived model can reproduce the shear band propagation
without any ad hoc information which indicates that this method
will be suitable for modeling more complex crack propagation
problems. Although a minor subjectivity with respect to mesh
directional bias have been observed at the outer lateral bound-
aries of the 2D plate examples, the two numerical examples re-
sults are encouraging considering that (a) we adopted the
‘‘shadow mesh’’ necessitated EFG method, and (2) we did not
use any kind of adaptive procedure (neither h-adaptivity nor
p-adaptivity) for which the propagating paths are required a pri-
ori. The comparison of results between two different discretiza-
tion schemes shown in the first example indicate that the
mesh-size dependency has been overcame. In our future work,
we will implement this higher-order continuum theory into
other truly mesh-free methods as well as employ further refine-
ments in our constitutive laws.
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