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A parallel fiber-reinforced periodic elastic composite is considered with transversely iso-tropic constitu-
ents. Fibers with circular cross section are distributed with the same periodicity along the two perpen-
dicular directions to the fiber orientation, i.e., the periodic cell of the composite is square. The
composite exhibits imperfect contact, in particular, spring type at the interface between the fiber and
matrix is modeled. Effective properties of this composite for in-plane and anti-plane local problems
are calculated by means of a semi-analytic method, i.e. the differential equations that described the local
problems obtained by asymptotic homogenization method are solved using the finite element method.
Numerical computations are implemented and comparisons with exact solutions are presented.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In most composites, the fiber-matrix adhesion is imperfect, i.e.,
the continuity conditions for stresses and displacements are not
satisfied. Thus, various approaches have been used, where the
bond between the reinforcement and the matrix is modeled
by an interphase with specified thickness (Hashin, 2002;
Guinovart-Diaz et al., 2005). Other assumptions suppose that the
contrast or jump of the displacements in the interface is propor-
tional to the corresponding component of the traction in the inter-
face in terms of a parameter given by the spring constant
(imperfect parameters). This type of imperfect contact (spring
type) in the interphases of the composites was investigated by
Jasiuk and Tong (1989), Hashin (1990), Achenbach and Zhu
(1990), Hashin (1991a,b) and Lopez-Realpozo et al. (2011). Hashin
has derived the connection between the parameters of sprint type
interface and the properties of an isotropic interphase modeled by
it (Hashin, 1990, 1991a,b). Benveniste and Miloh has considered a
thin curved isotropic layer of constant thickness between two
elastic isotropic media in a two-dimensional plane strain problem.
They show seven different conditions of contact interface: vacuous
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contact type interface; spring type interface; ideal contact
interface; membrane type interface; inextensible membrane type
interface; inextensible shell type interface and rigid contact
type interface; rigid contact type interface (see, Benveniste and
Miloh, 2001).

The novelty of this contribution is based on overcoming the
challenge of simulating mechanical behavior of composites with
spring imperfect adherence between the matrix and the rein-
forcements, i.e. the discontinuity of displacements is linearly
proportional to the traction vector. It is assumed that the imper-
fect parameters are inversely proportional to the radius of the
fibers. The model presented include as limit cases: vacuous con-
tact type interface and ideal contact interface. In this sense, the
formulation of the local problems for two phase linear elastic
composites with spring imperfect contact conditions is given
and the solution of each local problems is found using the
semi-analytic method where the differential equations derived
from the local problems by asymptotic homogenization method
(AHM) are solved using the finite element method with quadri-
lateral of eight nodes, implemented via Fortran code. Besides, the
expressions for the effective elastic coefficients of a fiber rein-
forced composite with circular cylindrical shape periodically
distributed in the matrix under linear spring imperfect contact
conditions are obtained via AHM.
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2. Statement of the problem for heterogeneous media

Consider an heterogeneous media occupying a volume Q € %3
with boundary 0Q = 9;Q U 9,Q and consisting of two-phase uniax-
ial reinforced material, where fibers and matrix have transversely
isotropic elastic properties; the axis of transverse symmetry coin-
cides with the fiber direction, which is taken as the Oxs; axis. The
fibers with circular cross section are periodically distributed along
the Ox; and Ox, axis directions (see, Fig. 1). The governing equa-
tions for the static elasticity heterogeneous problems are

90y _

=0 0 2.1)
i =0, 01Q,

Hi= e O aiEs 2.2)

oijnj=0, on 0,Q,

where i,j = 1,2,3 and oy, u;, n; are the stress tensor components,
the displacement vector components and normal unit vector com-
ponents on 9,Q, respectively. The constitutive equations and the
strain tensor components & are given by

Gij = Cijia(¥) €, (2.3)
- 1 ou, oy
&k = i <8_X[+6_Xk> (24)

Here the elastic coefficients Cy(y) (i,j,k,I=1,2,3) are Y-periodic
functions and y = x/« is called the local variable that are defined
on the unit cell. o is a small parameter, which expresses the ratio
between the periodic cell length and the characteristic length of
the composite. The periodic unit cell S is taken as a regular square
in the y,y,-plane so that S = S; US, with S; NS, = ), where the do-
main S, is occupied by the matrix and its complement S; (fiber) is
considered by a circle of radius R and center at the origin O
(Fig. 1). The common interface between the fiber and the matrix
is denoted by TI'. The fiber and matrix associated quantities are also
referred below by means of super-indices in brackets (1) and (2),
respectively.

The usually adopted ideal contact conditions consists in
demanding the continuity of displacements and traction across
the interface between the two solids. Considerer that the compos-
ite exhibits imperfect contact at the interface between the fiber
and matrix, that is, the discontinuity of displacements is linearly
proportional to the traction vector. This is called a “spring type”
interface (Hashin, 1990). Using the vector notation, the elastic
imperfect condition can be expressed as

b

X; X

Fig. 1. The cross-section of a periodic composite array of circular fibers.

™ +T® =0, TV = (-1)""VK|ju, onT, (2.5)

where Y = 1,2 and || e || is the jump in the quantity at the common
interface between the fiber and matrix. The elastic displacement
vector u, the traction vector T and spring stiffness matrix K are gi-
ven by

Un T, K. 0 0O
u=|u|, T=|T.|, K=|0 K 0], (2.6)
Uq T, 0 0 K,

where u,, u, and u, are normal, tangential and axial components of
displacement vector u, respectively; T,, T, and T, are normal, tan-
gential and axial components of traction vector T (T; = on;),
respectively; n is the outward unit normal vector on I'; K,, K;
and K, are normal, tangential and axial sprint constant material
parameters (imperfect parameters), which have the physical
dimension [pascal/meter]. It is assumed that the imperfect param-
eters are: K, = K,C\3,5/R, K: = 1.C3;5/R and K, = k,C\3,;/R. Here
Kn, K:and K, are normal, tangential and axial dimensionless imper-
fect parameters, respectively. The normal and tangential compo-
nents of the displacement and traction vectors found in the x;x,-
plane, while the axial component of the displacement and traction
vectors coincides with the fiber direction (Oxz-axis). Perfect contact
is revealed when the spring imperfect parameters approaches to
infinity, while the debonding contact takes place as these imperfect
parameters approach to zero.

3. Asymptotic homogenization method. Homogeneous
problem, local problems and effective coefficients

The overall properties of the above periodic medium are sought
using the well-known asymptotic homogenization method (Bak-
hvalov and Panasenko, 1989; Sanchez-Palencia, 1980; Pobedrya,
1984). Now it is assumed that the elastic displacement vector com-
ponents are given by the following expansion

u = u?(x) + ou(x,y) + 2 uP (X, y) + - (3.1)

Here i = 1,2, 3. Substituting (3.1) into (2.3) and (2.4) we obtain

gj =05 (Xy) + o0 (XY) +--, (3:2)
& = & (X.Y) + e (X y) +- ) (33)
where
au (x) o (x,y)
0" (%,Y) = Couy) =5, =+ Cul¥) =5 == (34)
o (x,y) ou’ (x.y)
(1) — Cs ’ N ’
o' (X,¥) = Cijua(y) k(T + Gija(¥) k&T’ 3.5)
1 ou®x) ou®x)
(0) _ - i J
) ouV (x,
+1 aul (X7Y) J ( y) , (36)
2 0y; y;
1 (P xy) ouxy)
(1) _ 2 i i J ’
FU (X7 y) -2 ( 8Xj + axi
1 (o (x,y) GU;Z)(X, y)
+5 < o o) (3.7)

Using (3.1) and (3.2) in (2.1) and rearranging the terms of equal
exponent of o« we have for o' and o
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o0 (X, )

=0, 3.8
%, (38)

o0y (x.y) . a0y (x.y)

o " 0. (3.9)

Substituting (3.4) in (3.8) we obtain

(1) (0) .
DGty 2 YY) O 00 ICuly) (3.10)
ayj 8y, 0X; 8yj
The function u;”(x, y) is given according to
ol (x
u) (x,y) = poNe(y) 222 %) (3.11)

0Xq

where ,Ni(y) (k.p,q=1,2,3) are Y-periodic local displacement
vector components.

The pq local problems on the periodic cell may arise replacing
(3.11) into (3.10) and the following expression is obtained

8Pq‘[fj(y) — _ E)CUPCI(Y) , (3—12)
where the Y-periodic local stress tensor components are

OpgN
wT¥) = Cpaly) L), (3.13)

oy
The imperfect contact conditions given in (2.5) are transformed by
TV 45 T? =0, TV = (=1)""VK||,N||, onT. (3.14)

The local elastic displacement vector ,qN and the local traction vec-
tor ,,T are

palNn paln
qu = Pth ) qu = qur (3.15)
palNa pala

and pgNy, pgNe, pgNq are normal, tangential and axial components of
local displacement vector N, respectively; pgTn, pgTt, pgTa are nor-
mal, tangential and axial components of local traction vector p T
(paTi = paTij(¥) 1 + Cijpg (¥) 1), Tespectively.

Now, substituting (3.11) into (3.4) and (3.6) we obtain

oul? (x
gg)) %,¥) = (Cijpg(¥) + quij(y)) gxs )7 (3.16)
1 (ou®x) ou®(x)
(0) — 1 i

1 (0Nily) | 0paNs(y) | Oty (%) (317)
2 B.VJ Oy, 6Xq

Let us define the average over the periodic cell

<o /(-)dy, (3.18)

Yl Jy

where |Y] is the volume of the cell. Taking the average of expression

(3.9) and using the periodicity of 0'5,”, the homogeneous static prob-

lem is obtained as follows

96 (X)
an

=0, (3.19)
where the homogeneous constitutive equations are

' (x)
_ 50 _
(x) - O-ij (X<, y) - Ciqu 5Xq ’

(3.20)

and
Ciipg = Ciipa(¥) + pqTii(¥),

are the effective elastic coefficients. Applying the average operator
on the expression (3.17) and using the periodicity of ,N(y), the
homogeneous strain tensor is

(3.21)

~ 1 (ou®x) ou®(x)

(0) _ /00 _ - i J
5(x) = (&) (xy)) =5 ( ox% o ) (3-22)
The boundary conditions given in (2.2) are transformed by

u”(x) =0, ondQ,

_0) (3.23)
o; (X)n;=0, on Q.

The main problem to obtain effective coefficients is to find the peri-
odic solutions of six ,4L local problems on S in terms of the local var-
iable y, where p,q =1,2,3. Each local problem decouples into
independent sets of equations, i.e. plane-strain and antiplane-strain
systems. In the following Table 1, the correspondence between the
effective properties and the local problems is shown.

The local problems for circular fibrous elastic composite with
perfect contact at the interface and periodic conditions over the
unit cell are analytically solved in Rodriguez-Ramos et al. (2001).
However, analytic solutions for the local problems of composites
with other type of reinforcement geometric shape are difficult to
find (for instance, square fibers). In this case, suitable numerical
methods are the necessary tools to be applied. This numerical pro-
cedure is simplified when some symmetry elements occur in the
geometry of the unit cell and/or in the constituent properties, be-
cause a local problem for the entire unit cell may be reduced to
boundary value problem for only a part of the cell.

In our problem, the elastic coefficients Ci(y) = Cijiu(y1,Yy,) are
even functions with respect to y, and y,, then satisfy the following
conditions (see, Bakhvalov and Panasenko, 1989)

Pqu‘yh:O.l/z =0, for op+ Opp + Jng odd, (3.24)
PCIThi‘yh:O.l/Z =0, for Opi + (Shp + 5hq +1 Odd, (325)
where h=1,2; i,p,q=1,2,3 and
1 forh=i
Opi = ’ 3.26
i {O for h # i. (3-26)

Using the condition (3.24) and (3.25) the ,4L local problems over the
periodic unit cell can be transformed to boundary value problems
over 1/4 unit cell. Passing now the ,,L local problems to the new
variable p;M; as follows

quk = quk _yp 6lq7 (3-27)
where p,q,l=1,2,3. Eq. (3.13) can be written as

paTii(¥) = pa0ii(¥) — Ciipq(¥)- (3.28)
Here we have denoted

Table 1

Effective properties related to the local problems.

1l 2L 33l 23L 1L 12L
qu]] C;]ZZ C;133 0 0 0
C;le C;ZZZ C£233 0 0 0
C;B]l C;BZZ C§333 0 0 0

0 0 0 Cyaas 0 0

0 0 0 0 Ciss 0

0 0 0 0 0 Cioiz
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aquk (y)

pa0ii(¥) = Cijua(y) Y (3.29)
and Egs. (3.12) and (3.21) are transformed by

9pq03(y)

—====0, 3.30
Ciipg = 4paT5(¥))- (3.31)

Finally, the 4L local problems can be written in the following form
using the abbreviate notation for the elastic coefficients Cyj.

3.1. The antiplane problem ;3L
The local antiplane problem over 1/4 of the cell is expressed by

(Y) (Y)
03013 | 013053 -0

3.32
9y, 9y, ( )
where
9 3M5"
(Y) (Y) Y23V
303 =C , 3.33
3913 55 Y, ( )
. a0
1305y :C;L>8"3M3 , (3.34)

9y,

Greek, upper and lower, indices runs from 1 to 2.
The imperfect contact conditions for the ;3L local problems are
written in the following form

;caC
R

where ;3T{" is the component of traction force in the y,-direction
given by ;3T3 = ;3053 1, ,»,3M(3T) is the component in the y;-direction
of displacement vector.

The boundary conditions are given as,

ATV = — 5T (/31\/1 ,«,3M§2’> onT, (3.35)

sMy) =0, fory,=0, y,eSr, (3.36)
1 1
;,3M§,Y> =3 fory, = 3 Yy € Sv, (3.37)
50y =0, fory, €Sy, y,=0, (3.38)
) 1
303 = 0, fory, e Sy, V= 3 (3.39)

where 1 =1 and B =2 for the (5L local problem, whilst 4 =2 and
p =1 for the 3L local problem.

The effective coefficients can be calculated using the following
expressions (see, Eq. (3.31))

. 913M; . _ 923M;
o =t{eagyy ) Cumtentiyy)

(3.40)

3.2. The plane problem gL

Again for the sake of clarity, in this section let
MY = (MY ,MEV) and the fp pre-subscripts are 11, 22, then
the statement of the problems is

9011 | 001y
A L R i v § | 3.41
0y, 0y, ' ( )
00 00y
o | ImTm _ 3.42
oy 0y, ( )
where

. 9 eMY 9 M)
o = € S ) S (343)
: a MY MY
) _ o 9y (1) 9 pplVly
0y =C +C , 3.44
BBY 22 12 oY, 22 0y, ( )
: M 95MS"
) M _ ) [ 9 sy
g\l = g\l =C . 3.45
012 = 0 ss( 9y, + oy, (3.45)

The imperfect contact conditions for the 4L local problems are writ-
ten in the following form

M _ o _ K CE ) @
ple = —pTe === (WM’ — M), (3.46)
@
1 2 KnC 1 2
T = =T = =225 (/ﬂiM;) *ﬁﬁMﬁ))7 (3.47)

where 4T (5T") is the tangentlal (normal) component of trac-
tion force gT; = ppoyny; ssM" (5sM.") is the tangential (normal)
component of displacement vector ;M

The boundary conditions associated to this problem are given

das,
) _ ) _ — :
My’ =0, gop =0, fory, =0, y, €Sy, (3.48)
51
/f/iM(]]) = 50617 /;/jO'%O =0, fory, = 27 ¥, €5y, (3.49)
MY =0, o) =0, fory, €Sy, y,=0 (3.50)
ppivly s 921 ) Y1 Y, V2 y .
o1
wMy =50, oy =0, fory, €Sr, y, =5, (3.51)

2

where o; = 1 and o, = 0 for the ;L local problem whereas o; =0
and o, = 1 for the 5L local problem. Notice that the 33L local prob-
lem has not been mentioned since, as it was previously stated, it can
be connected with the ;L and ,,L problems by the formula (3.2),
(Rodriguez-Ramos et al., 2001).

The formulae for computing the effective coefficients are
listed as follows (see, Eq. (3.31) and Rodriguez-Ramos et al.,
2001)

€ -a(en e, ), e, ),
s BT oy 5,2
s 8 e 5 2 o
Cia 4000~ 2, e O+ )+ T O+ G |
CB74<C13>7%<Cn+C12>+%(C;+C;Z),

Gy =4(C) ~ T (Co b 2 (G ).

The double bar notation denotes the jump of the function f(y)
across the interface, i.e.,

(3.53)

3.3. The plane problem ;L

Again, in this section let ;,M" = ;M7 ;,M"), then the
statement of the problem is
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01205, 9120%)
0120y | 01201 _ 3.54
oy, 9y, ( )
0120y | 01204
_o, 3.55
oy Y, ( )
where
N © 91, MY 91, M
M _ cn Z12¥4 ¢ty Y1277 3.56
1207, gy, +0 oy, ( )
) 912M" 91My"
(Y) _ (1) Y121V (Y) Y120V
1205, =Cjp Y, 2 gy (3.57)

) )
W_ )~ (0My 91M,
1201 =120, =C + .
12 21 66 ( 8y2 8y1

The imperfect contact conditions for the ;L local problem are writ-
ten in the following form

(3.58)

Mo kG o
2l = -l = M’ — oM7), (3.59)
R
(2)
Ty = - = Lnlgss <12M§,1) - 121\/1512))7 (3.60)

where ;T (;,T\") is the tangential (normal) component of trac-
tion force 1,T; = 1203n; and ;M (;,M(7) is the tangential (normal)
component of displacement vector ;M.

The boundary conditions are given as,

MV =0, 0% =0, fory, €Sy, y, =0, (3.61)
MY = %a;“, 120 =0, fory, €Sy, y, = % (3.62)
MYV =0, oY =0, fory,=0,y, €Sy, (3.63)
MY = %ocf), 120\ =0, fory, = %, ¥y, € Sy, (3.64)

where o3 and o4 are constants which satisfy the relation
o3 + 0ot = 1.

The effective coefficient can be calculated using the following
expression (see, Eq. (3.31))

. 01My | 912M>
C6674<C66< 9y, " % >>

4. Implementation of finite element method for the local
problems

(3.65)

Sometimes, the systems of equations that described the afore-
mentioned local problems can not be solved analytically. There-
fore, exact solutions only can be found for certain geometry of
the fibers, for instance, circular fibers. For some other cases, it is
very difficult to obtain exact solutions. One alternative method
for solving the local problems is an approximate method, such as
the formulation of the potential energy which require less condi-
tions for the unknown functions. This is one of the reasons for
using the principle of minimum potential energy combined with
the finite element method in the present work. The potential en-
ergy of an elastic solid body is

1
H:—/ngdv—/uT dv—/uTTds— u'P. 41
2/, 5 f . Z: (4.1)

This expression involves the following energies: the strain energy
per unit volume in the body, the potential energy associated to body
force (f), traction force (T) and point load force (P;) respectively. In

this work, f = P; = 0 and for sake of brevity only the finite element
implementation of the antiplane local problem 5L and the plane lo-
cal problem ;L will be shown. The remaining local problems are
implemented in a similar form.

4.1The antiplane problem 3L

The relations (3.33) and (3.34) for & = 1 can be written in ma-
trix form as

130 = D3¢, (4.2)

where

130 = [13013 130'23]T7 (4.3)

T

136 = [13813 13823]T = [% % u = 13Ms, (44)
Cs O

D= . 4.5
5 9

The two-dimensional region is divided into a finite number of quad-
rilateral elements (see, Fig. 2). The element consists of eight nodes,
all of which are located on the element boundary. The displace-
ments inside the element are now written using the shape function
and the nodal values of the unknown displacement field. Therefore,
we have

13M3 =¥q, (4.6)

here q = [d3; G32 q33 34 G35 G36 G537 ‘bs]T where ¢s; are the displace-
ment components in y,-direction of a local node i=1,...,8 and
W = [y Yy W3 W4 s Yg W7 g, ¥; are the shape functions of the ele-
ment given in natural coordinates by Zienkiewicz and Taylor (2000)

" . @=90-nA+<+n) " _(1=-&a-n
1= 4 ’ 5— 2 ’
" _ @490 -nA-<+n) v _(1+90-n)
2 — ’ 6 —
4 2 (4.7)
4 ani-c-np . _(1-&)1+n
l//3 4 i l//7 2 ;
" _ (A=90+mA+<-n) " _(1-90-n*)
4 — 4 ) 8 — 2 .

The strain-displacement relation (4.4) in natural coordinates can be
written in the form

7 7 7 7

[ T[]/
.
X

Fig. 2. Geometric mesh for 1/4 periodic cell.
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9 13M3 913M3
e | M| _ 1 [ J2 —]12} B (4.8)
LRELLY (‘9;2/'3 detd) [ )5y Jn 21My ’(f,;w 2
where ] is the Jacobian of the transformation,
I ] %
=l e]= s ) 49)
21 22 077 W

Using (4.6) and (4.8) the strain can be written in matrix form as

¢=Bq, (4.10)

where B is a 2 x 8 element strain-displacement matrix

TV VA VA P T
1 |:]22 _.112:| |:55 o ¢ ¢ 9¢ ES ¢ 05:|

= _ Wy Wy K3 Mg Ws Ne Ny Ng
dEt(J) 112 J 1 g on oy aq  am oy o on

(4.11)

Now, the stress values need to be calculated for each element. Using
the stress-strain relations (4.2) and the element strain-displace-
ment matrix (4.10) we have

o =DBq. (4.12)

4.1.1. Element stiffness matrix
The strain energy associated with one plane element is obtained
by

1
=t. | =0TedA,
/3

taking the element thickness t. as constant over the element and
replacing (4.10), (4.12) into (4.13) we obtain the strain energy in
the form

(4.13)

1 rye
IT§ = iqT K:q, (4.14)
where K¢ is the element stiffness matrix
1 1
K =t, / / B'DB det(J)dédn (4.15)
-1.J41

Considering the contribution of all the elements to strain potential
energy we obtain

1 1.7
Hszze:l'lezzeziq l(ngjQ KsQ, (4.16)

where Ks (Q) is the global stiffness matrix (global displacement
vector).

4.1.2. Effective coefficient
The substitution of 913M3/3dy,, (4.6) and (4.8) into (3.40a) gives
the contribution by the element (e) in the effective coefficient as

1 1
°Ci—4 / / DBq det(J)ded, (4.17)
-1 J-1

where D = ¢Css and

Ay Ay s N Ns Ne Ny g
= 1 [ag o¢ ¢ ot ot or o oe

B’clet(J)U22 Fello o on o ows we on ow
o o on on on on on on

(4.18)

Taking into consideration the contribution of all elements, the effec-
tive coefficient is given in the form

C§5 = Zngs.
e

(4.19)

4.1.3. Imperfect matrix
The contribution to the energy of the traction force appearing in
the total potential energy Eq. (4.1) is

HT:/uTTdS.
s

Now, let us consider an edge I{";_, of an element, acted on by a trac-
tion T = 13T{" in the Y phase (see, Fig. 3), and taking the element
thickness t, as constant over the element, we have

(4.20)

Y =t / , 1M 5TV dl. (4.21)
I

Y h-5-2

Using the interpolation relations involving the shape functions

MY =y a5+ a5 + v ay (4.22)

TS =y TS + 0 TS + 4 TS, (4.23)

where ¢, g, q0 (T, T TD) are the displacements (trac-
tions) in the Y phase of the nodes 1, 2, 5 and ¢, ¥,, 5 are the
shape functions given in Eq. (4.7) for n = —1 which coincide with
one-dimensional quadratic shape functions

¥ =-0.5¢(1 -9,
W, =0.5&(1 +¢),
¥s=(1-9(+¢).

The imperfect contact condition given in Eq. (3.35) for the nodes
1, 2, 5 can be written

T?{) = Ka ( 3{ _Q32>
Ka (q32 - q31>

Ka C (q35 - q35>

where ¢ =1 (g =2) for Y =2 (Y = 1). Now, the total potential en-
ergy associated to the traction force is written by the following
expression,

= % (m ).

(4.24)

T — (4.25)

) _
T35 -

(4.26)

Fig. 3. Representation of two elements in the interface.
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Using (4.21) for Y = 1,2 and (4.26) then the total potential energy
associated to traction force in matrix form is

I = %qTK’Tq, (4.27)

where q" = [qa)

2 1 1 1 1 .
. P ¢ 4P qi) q qgs)] and K; is the imper-
fect matrix

_IH _112 _115 112 IH 115

I s In In s

K CHt, —Iss I Isiy  Iss
K. = Kabss le 4.28
T R —Ly Ly -Ixp ( )

Symm I —Iis

—Iss

Here
=Li= [, wdl =125 (429)
’17]572

Considering all the contributions of the interface to traction poten-
tial energy, we have

Iy = Zn’ = %QTKTQ, (4.30)
where K;(Q) is the global imperfect matrix (global interface dis-
placement vector).

The contribution to total potential energy is obtained adding
strain potential energy and traction energy. Algebraic system of
equations is obtained deriving the total potential energy with re-
spect to the global displacement vector, equating them to zero
and applying the boundary conditions. Using the solution of the
algebraic system of equations the associated effective coefficient
(4.19) for the antiplane problem 3L is obtained. Similarly the anti-
plane problem ,3;L can be solved.

4.2. The plane problem ;L

In a similar way we deal with the ;1L local problem. The rela-
tions ((3.43)-(3.45)) for g8 = 11 can be written in matrix form as

1My

duM; ES

M 1 Jo o 0 0 duMy

911 M on

1né= 1M =m 0 0 —Jn Jn oM, |- (4.35)

oMy | oM — — b

uly | ot S Jn Jn ooty

an

Using (4.31) and (4.33) the strain can be written in matrix form as

1né=Bq, (4.36)
where
1 [J2 =Jz 0O O
B=—+-| 0 0o - Ji
det 2
L [ P S
o o o, o, s g vy vy
A A A ol Al S Sl (M
N 9 w é 9 oy il W,
LB 0 G0 G0 G0 G0 G0 G0 Gh o0
g - N3 N, N N, N N,
Ay 0 O . Y N AP é
o 0 % 0 5 0% 0 5 0 5 05 0%

Consequently, from (4.31) and (4.36) we obtain the stress matrix
110 = DBq (437)

4.2.1. Element stiffness matrix
Replacing (4.37) and (4.36) into (4.13) the strain energy associ-
ated to one plane element is obtained

s =2 q'ksq, (4.38)
where K¢ is the element stiffness matrix given by
1 1
K =t, / / B'DB det(J)déd (4.39)
-1 J-1

Considering the contribution of all the elements to strain potential
energy we obtain

—2QKQ. (4.40)

where Ks (Q) is the global stiffness matrix (global displacement
vector).

4.2.2. Effective coefficient
Now, replacing the derivatives 911M; /0y, 911M/dy, which are

110 = D8, (4.31) involved in (4.35) and the relation (4.33) into the expressions
Ci,, Gy, C5, givenin (3.52), we obtain the contribution of element
Wh I 11 21 31
ere (e) in the effective coefficients
110 =[11011 1102 110'12}T7 u=[uM 1My], 1 01
4 4 r :4/ /DBqdetU)dédn, (4.41)
né=/[1én néx 11812}T: [% % 05}%"‘”3}?] ) -1J-1
Chy Cp O where
D=1C Cn 0 EC*:[qu “Cy eC;]]T7
0 0 Ce
(4.32) S 2 o
) ) ) B= det(_l) 0 0 —121 Jn
Using the shape function (4.7) and nodal values of the unknown dis- —Jiz2 ]11
placement field, the displacements within the quadrilateral element % 0 Ypog Mg W W9 W g W W
are now written as y {7#’71 0 oawnz ‘0 dav,f 0 %,0 % 0 vaw_’f 0 0(7_:17 0 % 0
1M =¥q (4.33) 0 %% 0 %2 0 %2 0% 0 %2 0 e 0 52 0 Gl
’ 0 % 0 %0 fo%o0 %0 %0 g0
where i i i " i T T T
M= [uM; M,
G_[¥ 0 ¥ 0 Y5 0wy 0 w5 0 Yg O Yy O Yy O 434)
0 1 0 ¢ 0 w3 0 Yy, O Y5 0 yYg 0 yY; 0 Y5l

A=[d1 G G912 92 G135 Q3 Gia Ga Gis G5 Gis Gos

7 qis %s]rv
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EC]] eClZ 0
ii = e(:]z e(j]] 0
0 0 °Cy3

The effective coefficients taking into account the contribution of all
elements can be given in the form

qu = Zeqlv C;l = Zeqlv C§1 = ZQC;-
e e e

4.2.3. Imperfect matrix

Consider an edge I\"_, (see, Fig. 3) acted on by a traction
T= [nTgY) 11T(2T>] and taking the element thickness t, as constant
over the element, the potential energy I1\" of the traction for the
Y phase is

Hg'r) = te/

i
1-5-2
The displacements (;;M{", 1;M{") and the tractions (;;T}", 11 T5")
in the Y phase are related to the shape functions by means of

(4.42)

(HMW TO MY T;’">)d1. (4.43)

nM = g a0 s a3, (4.44)
MY = g o) 2 05+ s 435, (4.45)
nT = T+, T + 0 Ti (4.46)
0Ty =0 Ty + 0o T + 05 T, (4.47)

where gy, qi;), g5 and TV, Ty Thy (4). ) g and
T T TLD) are the displacements and tractions in the y, (y,)-
direction for the phase Y of the nodes 1, 2 and 5, respectively.
The shape functions v, y,, 5 are given in (4.24). The tractions
in the nodes 1, 2 and 5 can be calculated by

T =sin(0) T\ + cos(0) T}, (4.48)
T = —cos(0) T\ + sin(0) T\, (4.49)

here 0 is the angle between the unit normal vector with y,-direc-
tion; T'" (T'}) is the tangential (normal) traction in the Y phase
for the 1 = 1,2,5 nodes given by

; kC2 o e KCY .

= R (g gg), - M (g ge) aso
! e C2 . ! KnC2 /o

- S g gg), - MR (g q). @sy
Y KnCS [ ¢ T KnCSo [ (x 5

T = =S (g —q)), T =R (0 - a), @52

where ¢ =1 (¢ =2) for Y =2 (Y = 1) and the tangential (normal)
displacement in the 1=1,2,5 nodes is gq\’ =sin(8)q\)—
cos(0)qi" (qg) = cos(0)q\} +sin(0) qg)> for each phase Y =1,2.

Now, we can write the total potential energy associated to the
traction force by the following expression,

1

= (m + ). (4.53)

Using (4.43) for Y = 1,2 and (4.53) then the total potential energy
associated to traction force in matrix form is

S
FELORR PR RN R R
R R R R
FTOEE R R
RS RR
b R R
_Gl122
2212

Symm

2211 2211 2221 2221 2251 2251 2121
—F —F —F —F —F —-F F

1112 1212 1112 1212 1112 2112 1121
-Fou —Fon -Fan -Fon -Fon B
-Fi; -Fon -Fis -Fobh o P
—Fo —Fiot —Fan B
-Fii% -Fon  Fig
Q- -Fn B
-Gt
Symm

Il = %(]TK’TQ, (4.54)
where a” = (a7} 57 077 3} ¢ iy aiy @5} ai2 @) a1y @],
K, -G p G g (4.55)
R R
and
B P —Foai P —Fii
Fim  -Fr Fin —Flai Fi
“Fat Fon P Faa o P
Fioi  -Fon Pl -Fo P
B Fon -Fin Fan o R
Fior  —Fon F —Fon Fig
Gi, oz Gan —Gui Gt
“Gi; G G Gan G
Gz G ~Gany Gz
Gz Gan —Gms
~Giz Gns
~Giits

2121 2111 2111 2151 2151
F F F F F

1221 1121 1221 1121 2121
Fon B Fon B B
Foo  Fin Fon Figl Fioal
Fon B Fon Bl By
Fon P B Fiol Foi
Fon  Fan P Fogl Pl
~Giis Gz Gy —Giz —Goid
~Cniy Gz —CGnip —Gupy —Cxi
~Giz —Gin —Giiy —Ging
~Cui; Gty —Gois

~Giit; —Gin

_gliss

2212
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nmof __ appn) (m) (M) (M) (M) (m)

Fija *“/Hmzyjk +“/Hi212yjl +“/Hi512yj5 ) (4.56)

nmof _ apyp(n) (m) pry(n) H(m) BT H(m)

Gijia _a/ni221yjk jLO(/Hilzlyjl jLO(/Hiszﬂ’js ) (4.57)

LT3 (ONET) i yINNNET) SRS vICOR7.) S vIL) 4.58
wep = LYy + T IpYp + 7 sYis' (4.58)

D, — t, /’m Yoy by dl, (4.59)

1-5-2

where y; =y;/R, i, j, k, , n, m=1,2,and ¢, y, o, f=1,2,5. In
the expression (4.55) we have considered the following relations
cos(0) =y,/R, sin(0) =y,/R,  y1=1Y11 +¥s¥1s + ¥y, and
Y2 = ¥nYa1 +WsYas + VoY

The contribution of the interface to traction potential energy is
given by the expression

Iy = Zn’ = %QTKTQ, (4.60)

where Kr(Q) is the global imperfect matrix (global interface
displacement vector).

Table 2
Effective coefficients C;(GPa) for K, = K, =K, =0.

The contribution to total potential energy is obtained by addi-
tion of the strain potential energy and traction energy. An algebraic
system of equations is obtained deriving the total potential energy
with respect to the global displacement vector Q, equating them to
zero and applying the boundary conditions. Using the solution of
the algebraic system of equations, the associated effective coeffi-
cient (4.42) to plane problem ;L is obtained. Analogously, the
plane problems L, 1L can be solved.

5. Numerical results

The following elastic constants have been used throughout in
the numerical calculations: E® = 70 GPa (Young’s modulus) and
v@ = 0.3 (Poisson’s ratio) for the matrix, and E" = 450 GPa and
v(D = 0.17 for the fiber.

Some limit cases are studied in order to validate our approach.
For example, in Table 2 the set of all effective elastic coefficients
are presented for different values of the fiber volume fraction 7,.
A comparison between the present model for x, =x; =K, =0
and the analytical expressions of the effective coefficients for
empty fibers obtained by asymptotic homogenization approach
(Sabina et al.,, 2002) is given. It can be noticed a very good

b2 Cj,-Present model C}-Analytical Cj,-Present model Cj,-Analytical
0.05 80.525367267475 80.525340039910 33.149806825864 33.149802552080
0.20 53.390014041054 53.390011091840 18.365994181923 18.365993438240
0.35 36.536035848067 36.536034852230 9.781059283943 9.781059178809
0.55 20.498584257763 20.498583869870 3.378678373826 3.378679162697
0.75 5.849941587920 5.849968639273 0.289122177387 0.289123725301

Ci;-Present model Ci3-Analytical C35-Present model C33-Analytical
0.05 34.102552228002 34.102542777600 86.961531878495 86.961525666560
0.20 21.526802466893 21.526801359020 68.916081923221 68.916080815410
0.35 13.895128539603 13.895128209310 53.837077459125 53.837076925590
0.55 7.163178789477 7.163178909770 35.797907446184 35.797907345860
0.75 1.841719129592 1.841727709372 18.605034667715 18.605036625620

Cy4-Present model Cy4-Analytical Cge-Present model Cge-Analytical
0.05 24.358970441296 24.358969691260 23.209442250086 23.209425304530
0.20 17.945057074195 17.945056708350 13.422077906961 13.422075628730
0.35 12.915297272467 12.915297045270 6.616326760747 6.616325536051
0.55 7.459089293901 7.459089118081 1.808770619416 1.808766466272
0.75 2111431016424 2.111428077125 0.078900908542 0.078817876229

Table 3

Normalized effective coefficients Cj for K, = k¢ = Ky = oc.

71

Cy1-Present model

Ci1-Analytical

C-Present model

Ciz-Analytical

1.040485293402
1.156459827399
1.259934265506
1.395770805810
1.785169589159

C53-Present model

1.040483818823
1.156485577346
1.259936217747
1.395764597872
1.785150605411

C33-Analytical

1.200995351432
1.805212872676
2411916019504
3.227463196494
4.061863498663

Cgs-Present model

1.200995459529
1.805213569382
2.411915003437
3.227463338156
4.061863103712

Ces-Analytical

0.05 1.055613195746 1.055613441112
0.20 1.260696273098 1.260704666692
0.35 1.543615667429 1.543584712192
0.55 2.114481246274 2.114487722074
0.75 3.126404413003 3.126400805895
Cy3-Present model C3-Analytical
0.05 1.022294039366 1.022293921242
0.20 1.100143613682 1.100149550268
0.35 1.200139066138 1.200129863461
0.55 1.392353788874 1.392354954620
0.75 1.752536715912 1.752533127859
C44-Present model Cy4-Analytical
0.05 1.078377140607 1.078395713051
0.20 1.355509551192 1.355488493290
0.35 1.720073829280 1.720078399086
0.55 2.458415214418 2.458433864300
0.75 4.044105820407 4.044095981454

1.062477573412
1.261921629590
1.504115686223
2.005299536116
3.335487513251

1.062476469054
1.261942999424
1.504107158517
2.005303251731
3.335494113348
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Table 4

Normalized effective coefficient Cyy
Ka 5 5 10 10
71 C44-Present model Caq-Analytical C44-Present model Cy4-Analytical
0.05 1.050497283000 1.050497329395 1.063227927489 1.063227983128
0.20 1.218551766000 1.218551776258 1.279448900256 1.279448911100
0.35 1.416761447000 1.416761454190 1.546963064155 1.546963086275
0.55 1.745183922000 1.745184682879 2.027389195300 2.027397880582
0.75 2.184697494000 2.184743450944 2.778602364788 2.779576843989
Ka 50 50 0 0
71 Cq4q-Present model Cay-Analytical Cyq-Present model Casq-Analytical
0.05 1.075134177545 1.075134240093 1.078377140607 1.078395713051
0.20 1.338803259987 1.338803271256 1.355509551192 1.355488493290
0.35 1.681006228453 1.681006257241 1.720073829280 1.720078399086
0.55 2.354450215382 2.354464076114 2.458415214418 2.458433863448
0.75 3.675314446315 3.677499910115 4.044105820407 4.043962317514

coincidence between the two approaches. The three imperfect
parameters (K,, K, K,) involved in the semi-analytic method for
analyzing the non-perfect adherence of the composite can be con-
sidered as an alternative computing form for describing the behav-
ior of porous composite materials. Besides, all normalized effective
elastic coefficients (Ci; = C;,/C?,Cia = C},/CY, Ci3 = C}5/CY,
Ca3 = (33 /CP? Caq = C, /CE), Cos = Ciy/CE)) for perfect contact be-
tween the matrix and fibers are calculated using the present model
for Kk, = K; = K, = oo and Table 3 reports the results. A comparison
between the present model and the analytical results obtained by
asymptotic homogenization technique (Guinovart-Diaz et al,,
2002) is presented. Both methods reproduce almost the same val-
ues in the whole range of volume fractions.

Table 4 shows the normalized effective coefficient C44 = Cua/ Cﬁ)
computed by the present model for different values of the fiber

11

11

c /c?

1.00 b= - - -
000 015 030 045 060 075
2.75 .
L k=0
250 f---c=1
[=mmemee k=5
205} ‘
| - K‘:IO
200 | =20
T [k=50
=17t
Q k=Inf
150 -
125
100 =", - - -
000 0.5 030 045 060 075

Vi

volume fraction p; and axial imperfect parameter (k,=
5,10,50,00). Good match between the present model and the
analytical formulae derived by asymptotic homogenization tech-
nique (Lopez-Realpozo et al., 2011) is obtained.

Fig. 4 exhibits the normalized effective coefficient C;,/C\% with
respect to the fiber volume fraction for different values of the tan-
gential imperfect parameter x; = 0;1;5;10;20;50;00 and some
fixed normal imperfect parameters x, = 10;20; 50; co. The behav-
ior of this coefficient increases monotonically as k, increases in
all the range of the fiber volume fraction. Notice that, for bigger
values of the normal tangential parameter x,, this property in
the composite gets stronger and, near to percolation limit, the
property becomes more compact, i.e. the curves are less spaced
(Fig. 4(d)). The curvature of the curves for x, = 10 are not as pro-
nounced as for k;, = oo. On the other hand, the effective properties
converge to the property for tangential perfect contact as the
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Fig. 4. Normalized effective coefficient C;, /C{% versus fiber volume fraction y, for different values of the imperfect parameters.



Fig. 5. Normalized effective coefficient C},/C{3 versus fiber volume fraction 7, for different values of the imperfect parameters.
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imperfection parameter k; approaches to oo. Numerical results
have shown that the imperfect parameters (x, k,) have a signifi-
cant effect on the coefficient C;,/C.

Fig. 5 displays the normalized effective coefficient C;,/C3 with
respect to the fiber volume fraction for different values of the

)
12

.

cc

Fig. 6. Normalized effective coefficient C;,/C{3 versus fiber volume fraction 7, for different values of the imperfect parameters.

Y
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tangential imperfect parameter x; = 0;1;5;10; 20; 50; co and some
fixed normal imperfect parameters x, = 10;20; 50; co. The behav-
ior of this coefficient is different in comparison with the previous
case. The contribution of k, = 10;20 induces a decreasing behavior
with the exception of some small values of the tangential imperfect
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Fig. 7. Normalized effective coefficient Cj,/C% versus fiber volume fraction y, for different values of the imperfect parameters.

parameter. Meanwhile, the curves for K, = co are increasing mono-
tonic functions. Furthermore, the effective property gets softer as
the tangential imperfect parameter x; increases and converges to
the tangential perfect contact. Besides, the effective properties

35 e B —
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7

converge to the property for perfect contact as the imperfection
parameter k; approaches to co. Numerical results has shown that
the imperfection parameters (k:, x,) have a significant effect on

the coefficient C;,/C'? as well.
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Fig. 8. Normalized effective coefficient Cy;/C versus fiber volume fraction y, for different values of the imperfect parameters.
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Fig. 9. Normalized effective coefficient Cj,/C{3 versus fiber volume fraction y, for
different values of the axial imperfect parameter.

Figs. 6 and 7 report, the behavior of the normalized effective
coefficients Cj,/C'% and Cj;/C}?) with respect to the fiber volume
fraction for different values of the tangential imperfect parameter
K: = 0;1;5;10;20;50; 0o and some fixed normal imperfect param-
eters K, = 10;20;50;cc. The curves apparently coincide but they
are different for diverse choices of tangential imperfect values as
can be seen in each figure. A linear behavior of the effective coeffi-
cient C;;/C? is remarkable where small influence of the normal

R E|
1.7 1
1.6 £
I G 1
L4k .
L3 bl 210, i =18, e i 220, e =35, 1
124 K =50, 1 =100, K =500, « =1000 ,
L1t . . . . ]
0 200 400 600 800 1000
K(
1.4 : - - T
12F .
o oLop 4
’U“ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ol T K =10, K =15, === =20, k=35, |
K =50, k=100, K, =500, K =1000
06 1 1 1 1
0 200 400 600 800 1000
K
18 : : '. :
T K =10, K =15, ===k =20, K =35,
1.3 K =50, K, =100, K,=500, 1 =1000 ]
1.2} ]
L1F ]
1.0} 4
0 200 400 600 800 1000

N
t

621

and tangential imperfect parameters are observed. In contrast,
slight curvature is perceived for Cj, /C%) where a significative
(small) influence of the normal (tangential) imperfect parameter
is noticed. In addition, the monotonic behavior of the curve in
Fig. 6(a) (k, = 10) is different with respect to the remaining curves.

The behavior of the normalized effective coefficients Cgy/C'%
with respect to the fiber volume fraction for different values of
the tangential imperfect parameter x; = 0;1;5;10;20;50;00 and
some fixed normal imperfect parameters x, = 10; 20; 50; oo is pre-
sented in Fig. 8. In the whole range of the fiber volume fraction the
curves are increasing and a moderate (significative) influence of
the normal (tangential) imperfect parameter is reported. On the
other hand, similar trend of the curves for the normalized effective
coefficient C},/C; can be observed in Fig. 9, for different values of
the axial imperfect parameter k, = 0;1;5;10;20;50; co. It can be
noticed in the model that this coefficient does not depend on the
normal imperfection parameter. Percolation limit for porous com-
posites makes the shear effective property very small in compari-
son with the remaining curves at the same percolation regime.
Numerical results have shown that the tangential imperfect
parameter have a significant effect on the coefficient C},/C%.

The effective coefficients C;,/C'?, C;,/CY, Ci3/CY), C33/C%,
CEG/CE@ (Cfm/Cﬁf) are analyzed in Fig. 10 with respect to the
tangential (axial) imperfect parameter for different values of the
normal imperfect parameter x, = 10;15;20;35;50;100; 500; 1000
and for fiber volume fraction 0.45. The behavior of the effective
coefficients depends on the imperfect parameters. For instance,
the influence of the normal imperfect parameter is more evident
for the effective coefficients Cj,/CY),C;,/C'Y. Both coefficients
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-k =10, =m0 Kk =15, ===k =20, k=35,
Kk =100, Kk =500, Kk =1000

K“:3 5,
K =1000

KHZIOO, K“:SOO,

2.74 L

400 600 800

22 T T T T
2.0F B

1.6 g
1.4 g
1.2 g
1O} g
0.8} g
0.6 B
0.4} g
0.2

2)
a4

c

0 200 400 600 800 1000

K
a

Fig. 10. Normalized effective coefficients C;,/C, C;,/C), C;5/CY, C33/CY), Cis/CH (C34/CE3) versus tangential (axial) imperfect parameter for different values of the

normal imperfect parameter and fiber volume fraction 0.45.
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show the same trend for each value of the normal imperfect
coefficient in the whole range of the tangential imperfect parame-
ter. The overall coefficients C},/C'Y, Ci;/C? do not qualitatively
exhibit significant change with respect to the variation of the nor-
mal and tangential imperfect parameters. The normal imperfect
parameters have a more reinforcement effect on the coefficient

33/C'? than on the coefficient Cj,;/C3. In addition, the curves of

=/C4) are sketched and they are closer to the other ones in the
whole range of k, variation.

6. Conclusion

This work dealt with the determination of the effective moduli
of a periodic elastic composite material reinforced by straight par-
allel circular fibres, made of transversely isotropic material with
axial, tangential and normal imperfect contacts at the interface.
The investigation was carried out by adopting the semi-analytical
method which is based on the finite element method and asymp-
totic homogenization approach. The present result was validated
by means of comparison with limit cases and analytical expres-
sions using the asymptotic homogenization method where the
maximum error is very low. The results of the present work indi-
cates the influence of imperfect adhesion on the effective moduli
of composites with periodic elastic fibrous reinforcements.
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