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Theories of laminated plates have been proposed that, although they lead to different plate equations, are
based as ours on the assumptions that the three-dimensional deformation of each layer is of Reissner–
Mindlin type and that displacement and traction vectors are continuous across layer interfaces. The dis-
tinctive feature of our present theory is that reactive stresses are associated with the internal constraints
implicit in the assumed kinematics, and exploited to obtain an improved evaluation of the stress field in
the three-dimensional layered body for which we propose a two-dimensional model. Application to equi-
librium problems for rectangular and circular plates gives results that are in good agreement with the
exact three-dimensional solutions of Levinson type we derived in a companion paper.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction two-dimensional model we refer to as a laminated plate), where
On dealing with plate theories, it is convenient to distinguish
between a plate-like body and a plate: the latter, which occupies a
flat domain S, is a two-dimensional model of the former, a right
cylinder C of height 2h and cross-section S, subject on the top
and bottom ends to loads that are to be reduced to S, and on the
mantel to loads and boundary conditions that are to be reduced
to the boundary @S of S. When plate theories are induced from
three-dimensional elasticity, the admissible displacement fields
of the plate-like body are often represented a priori as products
of (unknown) functions of coordinates on S times (known) func-
tions of the transverse coordinate. Then, plate equations are ob-
tained by means of a procedure which includes integration over
C’s thickness of the three-dimensional differential or variational
equilibrium equations; as a part of this procedure, the external
loads applied to C are reduced to resultant loads per unit area ap-
plied to S and resultant loads per unit length applied to @S. Once
the solution of the plate problem is found, and hence the functions
that parameterize the representation assumed for the displace-
ment field in the plate-like body are known, the relative three-
dimensional strain and stress fields can be constructed. In general,
such stress fields do not satisfy the three-dimensional equilibrium
equations for C, because one plate problem corresponds to an
equivalence class of problems for plate-like bodies, all those prob-
lems whose data are reducible to the single set of data of the plate
problem in question.

An accurate knowledge of the stresses in C is always desirable,
and especially so when C is a multilayered body (whose
transverse stress concentrations may occur near material and geo-
metric discontinuities and give rise to damages that are often
responsible for service failure. Many theories of laminated plates
aiming to evaluate such critical stresses have been proposed. For
extensive accounts of the literature on the subject, we refer the
reader to a book by Reddy (2004), where many plate theories are
presented and discussed; to the papers by Bert (1984) and by Noor
and Malik (2000), where different methods to evaluate the three-
dimensional stress associated with a laminated-plate solution are
compared; and to the review papers by Noor and Burton (1989),
Carrera (2000) and Carrera (2002), where different approaches to
the modeling of laminated plates and various computational meth-
ods are examined.

The importance of plates in structural applications has led to
a large amount of studies on the subject, whence the need for a
classification of the many proposed theories, a choice of valida-
tion criteria, and a hierarchical assessment of theories in the
same class. In this connection, it is worth-recalling the accounts
by Koiter and Simmonds (1972) and Naghdi (1972), and the
historical survey in Altenbach et al. (1998). The two-
dimensional equations of a plate theory can be deduced from
three-dimensional elasticity, by means of expansions in the
thickness coordinate or of a priori assumptions on the form of
the displacement field; they also can be arrived at by the use
of a direct approach, introduced by Cosserat and Cosserat
(1909), which consists essentially in postulating that certain
two-dimensional principles hold on a surface modeling a
plate-like body. An alternative approach to plate theory, that
originates with Goodier (1938) and has been applied and
extended, e.g., by Gol’denveizer (1962) and Green (1963), is
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based on asymptotic integration of the three-dimensional
equations in an interior region of the plate and in a boundary
layer.

For plate theories deduced from three-dimensional elasticity,
the usual validation criteria are based on error estimates, with
respect to the three-dimensional quantities, for the differential
equations and their solutions. Kienzler (2002) has proposed a
‘‘uniform-approximation technique’’, consisting in taking series
expansions of both equilibrium equations and solutions, that can
be employed to construct ‘consistent’ plate theories of different
order by retaining terms up to different orders in the two
expansions. An interesting result in Kienzler’s analysis of the low-
er-order theories obtained by use of this technique, is that the
Reissner–Mindlin theory, although based on quite complex a priori
assumptions, is a consistent second-order theory with respect to a
plate parameter depending on the ratio between thickness and a
characteristic length of the mid-section.

According to a commonly employed classification (cf. Reddy,
2004), laminated-plate theories based on assumptions concerning
the displacement field can be divided in two groups: the so called
equivalent single-layer theories, that assume for a multilayered
plate-like body a suitable single-layer kinematics; and the layerwise
theories, in which the kinematics is defined layer by layer. Among
equivalent single-layer theories, we recall those of Reissner and
Stavsky (1961), that employs the same displacement field as the
Kirchhoff–Love theory for single-layered plates; of Whitney
(1969), that is based on the kinematics of the Reissner–Mindlin the-
ory; and of Reddy (1984), that assumes in-plane displacement com-
ponents of the third order in the transverse coordinate. Recent
contributions to this group of theories have been given by Mittel-
stedt and Becker (2004), who propose a higher-order single-layer
formulation and apply it to evaluate strains and stresses in ther-
mally-loaded laminated plates, and by Lebée and Sab (2011), who
generalize Reissner derivation of a single-layer shear-deformable
plate theory. Among layerwise theories, besides those by Seide
(1980) and DiSciuva (1984) to be discussed later on in this section,
we cite those by Lee et al. (1990), that is based on a layerwise cubic
variation of the in-plane displacement components, and by Reddy
(1987), that is a full layerwise theory, because it employs a layer-
wise expression also for the transverse displacement component.
Recently, layerwise theories have been advanced by Plagianakos
and Saravanos (2009), who work with in-plane displacement com-
ponents having terms up to the third order in the transverse coor-
dinate, and by Cho and Oh (2004), who treat coupling of
mechanical, thermal, and electric effects in a laminate plate.

The model of multilayered plate-like body we here derive be-
longs to the group of layerwise theories, in that it postulates a dis-
placement field of Reissner–Mindlin type in each layer. Besides
yielding plate equations that are different from those of other the-
ories moving from this kinematical assumption, our model has two
other distinctive characters: the Reissner–Mindlin displacement
field is regarded as induced by a set of internal constraints restrict-
ing the class of admissible strains; moreover, the reactions accom-
panying those internal constraints are exploited to improve the
evaluation of transverse stresses. Our main aim is to show that,
as far as the three-dimensional stress field is concerned, the predic-
tions of a layerwise plate theory based on the Reissner–Mindlin
kinematics can be made very close to those obtained by solving
the corresponding three-dimensional equilibrium problem, pro-
vided all consequences of assuming a restricted kinematics are taken
into account: this expectation is substantiated in the last part of
the paper, where we exemplify how well the stresses resulting
from our model match those obtained from exact three-dimen-
sional solutions.

In Podio-Guidugli (1989), with reference to the Kirchhoff–Love
theory, the idea was advanced of regarding as internal constraints
the kinematical restrictions implicit in the form assumed for the
displacement in a plate-like body. The gained benefit is that the
presence of internal constraints implies that, in addition to the ac-
tive (i.e., constitutively determined) stress, a constitutively unde-
termined reactive stress can be used to restore three-dimensional
equilibrium. In the context of classical linearly elastic plate theo-
ries, in which shear deformations are not allowed, this approach
has been extended in Lembo and Podio-Guidugli (1991) to prob-
lems more general than those dealt with in Podio-Guidugli
(1989), as well as to multilayered plate-like bodies. The same idea
has been exploited for shear-deformable plates, of Reissner–Mind-
lin type in Lembo and Podio-Guidugli (2007) and transversely
extensible in DiCarlo et al. (2001). When trying to extend to those
theories the approach used for Kirchhoff–Love’s, one realizes that
some of the kinematical prescriptions on the displacement field
cannot be expressed as restrictions on the first displacement gradi-
ent, and hence viewed as first-order internal constraints; the non-
conforming prescriptions are formulated in terms of components
of the second displacement gradient, and are therefore to be viewed
as second-order internal constraints. But, such higher-order con-
straints have citizenship in a more complex three-dimensional the-
ory than classic elasticity. It is a theory of this sort that can serve as
the right parent theory to induce a plate theory like Reissner–
Mindlin’s, a parent theory where second-order internal constraints
are accompanied by reactive hyperstresses, that add to the ordin-
ary reactive stresses (Lembo and Podio-Guidugli, 2000). In fact, it
has been shown in Lembo and Podio-Guidugli (2007) that, if the
plate-like body C is regarded as made of a second-grade material
in which the hyperstress is purely reactive, then one can derive a
Reissner–Mindlin approximation for the three-dimensional dis-
placement and strain fields in C and, in addition, one can exploit
the reactive stress and hyperstress fields to obtain an improved
approximation of the three-dimensional stress field in C. In other
words, it is shown in Lembo and Podio-Guidugli (2007) that
assuming that the plate is formed of a second-grade material,
and that the hyperstress is solely reactive, allows for an improve-
ment in the evaluation of the three-dimensional stress field with-
out altering the plate equations deduced in the context of classical
elasticity.

Here we extend this approach to shear-deformable plate-like
bodies formed by several layers of transversely isotropic materials.
The model of laminated plates we propose is based on the assump-
tions that each layer can undergo only deformations of Reissner–
Mindlin type (Reissner, 1945; Mindlin, 1951), and that displace-
ment and transverse traction vectors are continuous across the
interfaces separating adjacent layers: displacement continuity is
assumed to guarantee that, when C deforms, no sliding or detach-
ment of layers occurs; transverse-traction continuity guarantees
that part-wise equilibrium holds also for pillbox-shaped parts of
C whose cross-section is a portion of a layer interface.

The equilibrium equations of the proposed model of laminated
plate are deduced by integration over the thickness of a three-
dimensional principle of virtual work, written for virtual displace-
ments that have a form compatible with the kinematical restric-
tions imposed to the displacement. The model furnishes an
approximation of the stress field in the plate-like body C that con-
sists of an active part, that is deduced from the plate solution, and a
reactive part, that is obtained by solving the three-dimensional
equilibrium equations for a body made of second-grade material.
We term our plate theory ‘improved’ because of the availability
of such reactive addition, a unique feature among theories of the
same type. The accuracy of our model’s predictions is evaluated,
with quite satisfactory results, in the case of laminated plate-like
bodies with rectangular and circular cross-sections, for which we
can count on the exact Levinson-type solutions derived in Formica
et al. (2013).
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Although the main assumptions of our model of a multilayered
plate are not new, the resulting equations for the functions enter-
ing the parameterization of the displacement field are different
from those to be found in papers based on the same assumptions
(these are, we recall, that deformations are of Reissner–Mindlin
type in each layer, and that displacement and traction vectors
are continuous across layer interfaces). To our knowledge, there
are two such papers, the one by Seide (1980), the other by DiSciuva
(1984). In Seide’s paper, the traction-continuity condition is used
in a way different from ours, namely, to combine the equilibrium
equations of adjacent layers so as to eliminate the interface values
of traction components; the equilibrium of a plate-like body con-
sisting of n layers is governed by ð2nþ 3Þ scalar equations for
ð2nþ 3Þ unknowns, that is, two in-plane displacement compo-
nents for each interface and for the end faces and one transverse
displacement component, the same for the whole body; having
determined the displacement components, transverse stresses
are calculated from the three-dimensional equilibrium equations.
In DiSciuva’s paper, the admissible displacements in a multilayered
plate-like body are taken the same as in ours. The difference in the
equilibrium equations of the two models is due to the fact that
they are obtained from principles of virtual work stated for differ-
ent collections of virtual displacements: we chose to satisfy the
displacement continuity condition, but not, as DiSciuva did, the
traction continuity condition.

The paper is organized as follows. Firstly, in Section 2, we
recapitulate how a plate-like body is modeled as a one-layer
Reissner–Mindlin plate; in particular, we discuss what form the
active and reactive stresses have as a consequence of the kinemat-
ical assumptions of the Reissner–Mindlin theory. Section 3, the
bulk of the present work, is where we develop our general theory
of laminated Reissner–Mindlin plates. Those simplifications that
follow from exploiting certain specialties a laminated plate may
have, like mid-plane symmetry, axisymmetry, or a circular
cross-section, are worked out in Section 4. As anticipated, the
accuracy of our predictions of the three-dimensional stress field
in a catalogue of plate-like bodies modeled as laminated plates
according to our theory is tested in our final Section 5.

Throughout the paper, we make use of indicial notation and
summation convention, with the agreement that Latin and Greek
indices have ranges {1, 2, 3} and {1, 2}, respectively; range
quantifications are left tacit.
1 This terminology is meant to suggest that the image under (1) of fiber Fðx1; x2Þ is
a segment of a line whose direction is the same as ðw ðx ; x Þea þ e Þ.
2. Modeling a constrained plate-like body as a Reissner–Mindlin
plate

Let C be a plate-like body, that is, a three-dimensional material
body that in an undeformed reference configuration has the form
of a right cylinder of height 2h and mid-section S, with
2h� diamðSÞ. Moreover, let Sþ and S� denote the end faces of
C; @C the boundary of C, and @S the boundary of S. For ðx1; x2; x3Þ
the Cartesian coordinates of a typical point of C in a Cartesian ref-
erence ðo; e1; e2; e3Þ with origin o 2 S and x3-axis parallel to the
generators of C, let

Fðx1; x2Þ :¼ fðx1; x2; x3Þ j ðx1; x2Þ 2 S; x3 2 ð�h;þhÞg

denote the material fiber through ðx1; x2Þ 2 S that in the reference
configuration is straight and parallel to the x3-direction.

We now summarize an approach to deducing the Reissner–
Mindlin plate theory that is exposed in full detail in Lembo and Po-
dio-Guidugli (2007). The pivotal assumption is that all material fi-
bers Fðx1; x2Þ remain straight and suffer no extension. This is
tantamount as accepting the following a priori representation for
the displacement vector field in C:

uaðx1;x2;x3Þ¼ ûaðx1;x2Þþx3 waðx1;x2Þ; u3ðx1;x2Þ¼wðx1;x2Þ: ð1Þ
This representation is nothing but the general integral of the
following system of PDEs in terms of components of the displace-
ment vector u and the strain tensor E ¼ EðuÞ:

E33 ¼ u3;3 ¼ 0; 2E3a;3 ¼ u3;a3 þ ua;33 ¼ 0: ð2Þ

Of these equations, the first can be seen as the first-order inter-
nal constraint of fiber inextensibility; the second and third together
integrate a second-order internal constraint, fiber rectilinearity.1

Such constraints are maintained by reactive stresses SR and S
R of

first and second order, respectively, which are all required to do no
work in any admissible deformation.

To account for the presence of second-order reactive stress, one
assumes that C is made of a second-grade material (Lembo and Po-
dio-Guidugli, 2000). Moreover, to arrive to plate equations that
coincide formally with Reissner–Mindlin’s, one assumes that the
second-order stress (also called the hyperstress) is purely reactive;
hence, the active stress consists only of a first-order part SA. All in
all (details are found in Lembo and Podio-Guidugli (2001, 2007),
where the cases of shear-deformable beams and plates are trea-
ted), the stress field is decomposed as follows:

S ¼ SA þ TR; ð3Þ

where the total reactive stress associated with the internal con-
straints (2) is:

TR ¼ SR � DivSR: ð4Þ

Here,

SR¼re3�e3; S
R¼ ciei�e3�e3þgae3�ðea�e3þe3�eaÞ; ð5Þ

and the divergence of the third-order tensor SR is

DivS
R ¼ ca;3ea � e3 þ ga;3e3 � ea þ ðc3;3 þ ga;aÞe3 � e3; ð6Þ

hence, according to Eq. (4), the components TR
ij of TR are

½TR
ij� ¼

0 0 �c1;3

0 0 �c2;3

�g1;3 �g2;3 r� c3;3 � ga;a

264
375: ð7Þ

The functions r¼rðx1;x2;x3Þ;ci ¼ ciðx1;x2;x3Þ, and ga¼gaðx1;x2;x3Þ,
are arbitrary in the sense that they are not constitutively deter-
mined; representation (7) shows that the stress TR is not necessarily
symmetric.

Since the hyperstress is purely reactive, the active stress SA can
be constitutively specified as is done in linear elasticity. In that the-
ory, we recall, when a body is internally constrained, the active
stress mapping is subjected to the normalization condition of tak-
ing its values in the orthogonal complement with respect to the
space of all symmetric second-order tensors of the subspace in
which the reactive stress lies. Accordingly, in the presence of the
constraint (2)1, the constitutive equations of a transversely isotro-
pic material are:

SA
11 ¼ C1111E11 þ C1122E22; SA

22 ¼ C2211E11 þ C2222E22;

SA
12 ¼ 2C1212E12; SA

13 ¼ 2C1313E13; SA
23 ¼ 2C2323E23;

ð8Þ

where

C2222 ¼ C1111; C1111 ¼ C1122 þ 2C1212; C2323 ¼ C1313: ð9Þ
Remark. In the examples we consider to illustrate our model of
laminated plates, we shall find it convenient to replace the
transverse-isotropy elasticities Cijkl with a set of material constants
whose definitions are reminiscent of those for the standard
technical moduli E; m, and G, that are used when the material
a 1 2 3



G. Formica et al. / International Journal of Solids and Structures 51 (2014) 1562–1575 1565
response is isotropic and unconstrained. We denote by E the Young
modulus common to directions x1 and x2; by E the Young modulus
for direction x3; by m and m the Poisson ratios relative to direction
pairs x2; x1 and x3; x1, respectively; finally, G denotes the tangential
modulus for directions x1 and x3. The relationships between the
elasticities and these moduli are:

C1111 ¼
EðE�Em2Þ

ð1þmÞðEð1� mÞ�2Em2Þ
; C1122 ¼

EðEmþEm2Þ
ð1þ mÞðEð1�mÞ�2Em2Þ

;

C1212 ¼
E

2ð1þ mÞ ; C1133 ¼
EEm

Eð1�mÞ�2Em2
;

C3333 ¼
EEð1�mÞ

Eð1�mÞ�2Em2
; C1313 ¼G:
3. Laminated Reissner–Mindlin plates

3.1. Basic assumptions

A laminated plate is the two-dimensional model of a plate-like
body C composed of n layers of transversely isotropic materials.
The k-th layer (1 6 k 6 n) has thickness 2hðkÞ and occupies the cylin-
drical subregion CðkÞ of C included between the planes x3 ¼ xðk�1Þ

3 and
x3 ¼ xðkÞ3 ; in particular, xð0Þ3 ¼ �h and xðnÞ3 ¼ h. Hereafter, as we just did
for thickness and subregions, we shall equip all quantities pertaining
to k-th layer by a superscript enclosed in parentheses; moreover, we
shall leave tacit the quantification: ‘‘for all k 2 f1; . . . ;ng’’.

In theories of laminated plates that, like ours, are based on the
assumption that (i) each layer deforms as a Reissner–Mindlin plate,
it is also assumed that (ii) the displacement vector is continuous
across layer interfaces, and that (iii) the traction vector is continu-
ous across layer interfaces. We now discuss these three assump-
tions, in the order. The first has obvious implications in the
writing of the displacement continuity condition. A less immediate
implication is that, since it is interpreted as an internal kinematical
constraint limiting the class of admissible layer motions, a system
of layer reactive stresses must be introduced to maintain that
internal constraint, along the lines of reasoning recapitulated in
the previous section; such reactive stresses enter the writing of
the traction continuity condition.

3.1.1. Layer kinematics
According to assumption (i), in each layer, material fibres that in

the reference configuration are parallel to the x3-direction, remain
straight and suffer no extension. Thus, in view of (2), in layer CðkÞ
we have that

EðkÞ33 ¼ 0; EðkÞ3a;3 ¼ 0; ð10Þ

and that

uðkÞa ðx1; x2; x3Þ ¼ ûðkÞa ðx1; x2Þ þ ðx3 � oðkÞÞwðkÞa ðx1; x2Þ;
uðkÞ3 ðx1; x2Þ ¼ wðkÞðx1; x2Þ: ð11Þ

These equations hold for x3 2 ðxðk�1Þ
3 ; xðkÞ3 Þ; in particular, oðkÞ ¼

ðxðk�1Þ
3 þ xðkÞ3 Þ=2 is the third coordinate of all points in the mid-plane

of CðkÞ, whose displacement components are (ûðkÞ1 ; ûðkÞ2 ;wðkÞÞ. By
putting

euðkÞa ¼ ûðkÞa � oðkÞwðkÞa ; ð12Þ

Eqs. (11)1,2 become

uðkÞa ðx1; x2; x3Þ ¼ euðkÞa ðx1; x2Þ þ x3w
ðkÞ
a ðx1; x2Þ: ð13Þ
3.1.2. Interlayer continuity of displacements
With the use of Eqs. (13) and (11)3, the displacement field in a

n-layer lamitated plate can be expressed in terms of 5n functions of
the coordinates x1 and x2. Importantly, as we are going to show, the
continuity conditions (ii) and (iii) reduce the number of indepen-
dent parameter functions to 5 in all.

To begin with, displacement continuity across layer interfaces
requires thateuðkÞa þ xðkÞ3 wðkÞa ¼ euðkþ1Þ

a þ xðkÞ3 wðkþ1Þ
a ; wðkÞ ¼ wðkþ1Þ: ð14Þ

Thus, by (13) and (14)1,2, the first two components of the displace-
ment in the k-th layer can be written as

uðkÞa ðx1;x2;x3Þ¼ euð1Þa ðx1;x2Þþ
Xk�1

i¼1

xðiÞ3 ðw
ðiÞ
a ðx1;x2Þ�wðiþ1Þ

a ðx1;x2ÞÞþx3w
ðkÞ
a ðx1;x2Þ; ð15Þ

moreover, by (14)3, all functions wðkÞðx1; x2Þ are equal to one and the
same function:

uðkÞ3 ðx1; x2Þ ¼ wðx1; x2Þ: ð16Þ

Relations (15) and (16), which are parameterized by ð3þ 2nÞ func-
tions of ðx1; x2Þ, give the form of all displacement fields compatible
with the kinematical assumptions (i)–(ii). In view of our use to
come of the principle of virtual work, we notice that all variations
fdeuðkÞ1 ; deuðkÞ2 ; dwðkÞ1 ; dwðkÞ2 ; dwðkÞg of functions feuðkÞ1 ; euðkÞ2 ;wðkÞ1 ;wðkÞ2 ;wðkÞg
such that

deuðkÞa ¼ deua; dwðkÞa ¼ dwa; dwðkÞ ¼ dw; ð17Þ

are compatible with the restrictions (14) and, thus, with the current
expression (15) and (16) for the displacement field. We point out
that reactive stresses are workless in the presence of such varia-
tions, and hence the resulting balance equations are ‘pure’, i.e., reac-
tion-free.

3.1.3. Interlayer continuity of traction vector
The condition that the three-dimensional equilibrium equations

in integral form hold also for parts of the bodyC including one or more
interfaces between layers implies (cf, e.g., Truesdell and Toupin, 1960,
Sect. 193) that the traction vector s ¼ Se3 must be continuous across
the interfaces. Now, combination of (3)–(7) and (8)4,5 yields:

s ¼
X2

a¼1

ðCa3a3Ea3 � ca;3Þea þ ðr� c3;3 � ga;aÞe3:

We see that, in the present theory, the third component of s,
namely,

s3 ¼ s � e3 ¼ ðr� c3;3 � ga;aÞ;

is a reactive quantity; therefore, its continuity can only be imposed after
the reaction-free plate equations have been solved, the active stresses
determined, and the three-dimensional equilibrium equations used to
find the reactive stresses. As to the other two components, we request
that their active and reactive parts be both continuous. The continuity
of the latter part,�

P2
a¼1ca;3ea, can only be imposed in the post-process-

ing phase of calculation of stresses, just as for s3. The continuity of active
parts is expressed by the following equations:

SAðkÞ
3a ðx1; x2; x

ðkÞ
3 Þ ¼ SAðkþ1Þ

3a ðx1; x2; x
ðkÞ
3 Þ; ð18Þ

which, in view of (8)4,5, (9)3, (15) and (16), become

C
ðkÞ
1313ðw;aðx1;x2ÞþwðkÞa ðx1;x2ÞÞ¼C

ðkþ1Þ
1313 ðw;aðx1;x2Þþwðkþ1Þ

a ðx1;x2ÞÞ: ð19Þ

It follows that,

wðkÞa ¼ vðkÞðwa þ wð1Þa Þ �wa; a ¼ 1;2; ð20Þ

and

vðkÞ ¼ C
ð1Þ
1313

C
ðkÞ
1313

; ð21Þ

note the role of the shear-moduli ratios vðkÞ. Eqs. (20) imply that, for
a given set of shear-moduli ratios, the 2n parameter functions wðkÞa
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are all determined by two of them, wð1Þa , and by the gradient of the
parameter function w.

We choose to represent the admissible displacement fields in C
in terms of the five parameter functions eu1; eu2;w1;w2, and w, whereeua � euð1Þa ; wa � wð1Þa :

In conclusion, we write the displacement components in the k-th
layer as follows:

uðkÞa ðx1; x2; x3Þ ¼ euaðx1; x2Þ þ ðHðkÞ þ vðkÞx3Þwaðx1; x2Þ
þ ðHðkÞ þ ðvðkÞ � 1Þx3Þw;aðx1; x2Þ;

uðkÞ3 ðx1; x2Þ ¼ wðx1; x2Þ; ð22Þ
where

Hð1Þ :¼ 0; HðkÞ :¼
Xk�1

i¼1

xðiÞ3 ðvðiÞ � vðiþ1ÞÞ; 1 < k 6 n; ð23Þ

3.2. Strain, active stress, and stress resultants

Let us fix our attention on the typical layer CðkÞ. The nonzero
strain components corresponding to expressions (22) for the
displacement components are:

EðkÞab ¼
1
2
ðeua;b þ eub;a þ ðHðkÞ þ vðkÞx3Þðwa;b þ wb;aÞ

þ ðHðkÞ þ ðvðkÞ � 1Þx3Þðw;ab þw;baÞÞ;

EðkÞ3g ¼
1
2

vðkÞðw;g þ wgÞ; ð24Þ

hence, in view of the constitutive equations (8), the nonzero
components of the active stress are:

SAðkÞ
ab ¼C

ðkÞ
abcd

1
2
ðeuc;dþ eud;cþðHðkÞ þvðkÞx3Þðwc;dþwd;cÞ

þðHðkÞ þ ðvðkÞ �1Þx3Þðw;cdþw;dcÞÞ;
SAðkÞ
g3 ¼C

ðkÞ
1313v

ðkÞðw;gþwgÞ; ð25Þ

it is understood that in Eq. (25)1 one takes

either b ¼ a; d ¼ c or b – a; d – c: ð26Þ

The stress resultants are obtained by integrating over the layer
thickness the stresses (25) and the moments of the stresses
(25)1,2 with respect to the midplane of the layer. Precisely, the
membrane forces NðkÞab , the shears Q ðkÞg , and the moments MðkÞ

ab in
the k-th layer are:

NðkÞab ¼
Z xðkÞ3

xðk�1Þ
3

SAðkÞ
ab dx3¼hðkÞCðkÞabcdðeuc;dþ eud;cþðHðkÞ þvðkÞoðkÞÞðwc;dþwd;cÞ

þðHðkÞ þðvðkÞ �1ÞoðkÞÞðw;cdþw;dcÞÞ;

Q ðkÞg ¼
Z xðkÞ3

xðk�1Þ
3

SAðkÞ
3g dx3¼2hðkÞCðkÞ1313v

ðkÞðw;gþwgÞ¼2hðkÞCð1Þ1313ðw;gþwgÞ;

MðkÞ
ab ¼

Z xðkÞ3

xðk�1Þ
3

SAðkÞ
ab ðx3�oðkÞÞdx3¼

2
3
ðhðkÞÞ

3
C
ðkÞ
abcdðvðkÞðwc;dþwd;cÞ

þðvðkÞ �1Þðw;cdþw;dcÞÞ: ð27Þ
The stress resultants in the whole plate are:

Nab¼
Z h

�h
SA
ab dx3¼

Xn

k¼1

NðkÞab ¼A½1�abcdðeuc;dþ eud;cÞþA½2�abcdðwc;dþwd;cÞ

þA½3�abcdðw;cdþw;dcÞ;

Qg¼
Z h

�h
SA

3gdx3¼
Xn

k¼1

Q ðkÞg ¼Bðw;gþwgÞ;

Mab¼
Z h

�h
SA
abx3 dx3¼

Xn

k¼1

ðMðkÞ
ab þoðkÞNðkÞab Þ¼D½1�abcdðeuc;dþ eud;cÞ

þD½2�abcdðwc;dþwd;cÞþD½3�abcdðw;cdþw;dcÞ; ð28Þ
where

A½1�abcd ¼
Xn

k¼1

hðkÞCðkÞabcd;

A½2�abcd ¼
Xn

k¼1

hðkÞðHðkÞ þ vðkÞoðkÞÞCðkÞabcd;

A½3�abcd ¼
Xn

k¼1

hðkÞðHðkÞ þ ðvðkÞ � 1ÞoðkÞÞCðkÞabcd; ð29Þ

B ¼
Xn

k¼1

2hðkÞvðkÞCðkÞ1313 ¼ 2hC
ð1Þ
1313; ð30Þ

D½1�abcd ¼
Xn

k¼1

oðkÞhðkÞCðkÞabcd; D½2�abcd ¼
Xn

k¼1

ðoðkÞhðkÞHðkÞ þ ððhðkÞÞ
3
=3þðoðkÞÞ2hðkÞÞvðkÞÞCðkÞabcd;

D½3�abcd ¼
Xn

k¼1

ðoðkÞhðkÞHðkÞ þ ððhðkÞÞ
3
=3þðoðkÞÞ2hðkÞÞðvðkÞ �1ÞÞCðkÞabcd:

ð31Þ

Eqs. (28) show that, in general, membrane forces and moments
depend on all the five functions eu1; eu2;w1;w2, and w.

3.3. Equilibrium plate equations

The two-dimensional equilibrium plate equations are deduced
from the three-dimensional virtual work equation written for vir-
tual displacements ðduðkÞ1 ; duðkÞ2 ; duðkÞ3 Þ having the form of the kine-
matically admissible displacements (15) and (16), where the
functions deuðkÞ1 ; deuðkÞ2 ; dwðkÞ1 ; dwðkÞ2 ; dwðkÞ are chosen as in Eqs. (17):

duðkÞa ðx1; x2; x3Þ ¼ deuaðx1; x2Þ þ x3dwaðx1; x2Þ;
duðkÞ3 ðx1; x2Þ ¼ dwðx1; x2Þ: ð32Þ

Such three-dimensional virtual work equation reads:Xn

k¼1

Z
S

Z xðkÞ

xðk�1Þ
ðSAðkÞ

ab ðdeua;b þ x3dwa;bÞ þ SAðkÞ
3a ðdwa þ dw;aÞÞdx3da

¼
Z
S

Z h

�h
ðbaðdeua þ x3dwaÞ þ b3dwÞdx3daþ

Z
@S

Z h

�h
ðtaðdeua

þ x3dwaÞ þ t3dwÞdx3dsþ
Z
S
ðt�a ðdeua � hdwaÞ þ t�3 dwÞda; ð33Þ

where bi; ti, and t�i denote the components of, respectively, the force
per unit volume b acting on C, the force per unit area t acting on the
mantel @S 	 ð�h;hÞ of C, and the force per unit area t� acting on the
end face S� of C.2 After thickness integration, one finds, with a use of
the divergence theorem, thatZ
S
ððNab;b þ qaÞdeua þ ðQa;a þ q3Þdwþ ðMab;b � Qa þmaÞdwaÞ

�
Z
@S
ððNabnb � faÞdeua þ ðQana � f3Þdw

þ ðMabnb � caÞdwaÞds ¼ 0; ð34Þ

where qi and ma are loads per unit area of S,

qi ¼
Z h

�h
bidx3 þ tþi þ t�i ; ma ¼

Z h

�h
bax3dx3 þ hðtþa � t�a Þ; ð35Þ

and fi and ca are loads per unit length of @S,

fi ¼
Z h

�h
tidx3; ca ¼

Z h

�h
tax3dx3: ð36Þ
where it appears, one for each of the two signs.
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It follows from Eq. (34) that the equilibrium plate equations are, in
S,

Nab;b þ qa ¼ 0; Qa;a þ q3 ¼ 0; Mab;b � Qa þma ¼ 0; ð37Þ

and that they are accompanied by boundary conditions consisting
in complementing assignments, along @S, of the loads fa; f3, and
ca, and of the displacements and rotations eua;w, and wa.

Since, as observed at the end of SubSection 3.2, membrane
forces and moments depend in general on all the functionseu1; eu2;w1;w2, and w, the equilibrium equations (37)1,2 and
(37)3,4,5 governing, respectively, membranal and flexural deforma-
tions of the plate, are coupled. They are not, as is the case for
homogeneous single-layer plates, for the mid-plane symmetric
laminated plates, whose equilibrium equations we deduce in
SubSection 4.1.

3.4. Improved three-dimensional stress field

The five equilibrium equations (37) form a system for the five
unknowns eu1; eu2;w;w1 and w2. Once these functions are found, a
corresponding set of displacement, strain and active stress fields
in the three-dimensional body C is obtained, with the use of (22),
(24), and (25). In general, such an active stress field does not satisfy
the three-dimensional equilibrium equations for C exactly (as dem-
onstrated, e.g., by the first of boundary conditions (40)3); this may
happen because a plate problem does not correspond to a single
three-dimensional problem but rather to an equivalence class of
equilibrium problems for C. However, as shown in Lembo and Po-
dio-Guidugli (2007) for single-layer plates, one can use the reactive
stresses associated with the internal constraints implicit in the
Reissner–Mindlin kinematics to strongly improve the active-stress
approximation of the three-dimensional stress field.

Consistent with the fact that the reactive stress field we con-
sider maintains also the second-gradient internal constraints (2)2,
we try and determine it by the use of the equilibrium equations
for second-grade material bodies. In our case, the hyperstress S is
purely reactive and the total stress S has the expression (3). Hence,
the balance equations at interior points of C and at its boundary
are:

Div ðSA þ SRÞ � Div ðDivS
RÞ þ b ¼ 0; in C;

� ðSA þ SRÞe3 
 ðDivS
RÞe3 
 sDiv ðSRe3Þ ¼ t�; on S�;

SAn� ðDivSRÞn� sDiv ðSRnÞ ¼ t; on @S 	 ð�h;hÞ;
ðSRnÞn ¼ p; on @C n ð@Sþ [ @S�Þ;
ðSRn�1 Þm�1 þ ðS

Rn�2 Þm�2 ¼ l�; on @S�:

ð38Þ

Here, sDiv denotes the surface divergence operator; curve
@S� � @S 	 f�hg is the common boundary of the end face S� and
the mantle @S 	 f�h;þhg; at a point of such a curve, the unit vec-
tors n�1 and m�1 denote, respectively, the outer normals to S� and
to @S�, while the unit vectors n�2 and m�2 denote, respectively, the
outer normals to @S 	 f�h;þhg and to @S 	 f�hg; thus,
n�1 ¼ �e3 ¼ m�2 ; m�1 ¼ n�2 . Moreover, load p is a couple per unit area,
and load l� a force per unit length.3 We recall that it makes sense to
apply such couples and forces to a material body of second grade or
higher, but not to a first-grade material body (see e.g. Podio-Guidug-
li, 2002; Podio-Guidugli and Vianello, 2010); thus, both for simplicity
and for consistency with the developments in the Remark that closes
this section, we put:

p ¼ 0; l� ¼ 0: ð39Þ
3 In the present section, for simplicity, we take @S smooth; had it corners, vertical
edges would be found in the mantle, along which forces per unit length could be
applied.
Using the expression (7) for the reactive stress, Eqs. (38)
become:

ca;33 ea þ ðc3;3 þ 2ga;a � rÞ
;3

e3 ¼ DivSA þ b; in C;

ðca;3Þ
� ea þ ðc3;3 þ ga;a � rÞ� e3 ¼ ðSAe3Þ

�

 t�; on S�;

0 ¼ SA
bana � tb; 2ga;3na ¼ SA

3ana � t3; on @S 	 ð�h;hÞ;
c�a ¼ c�3 ¼ 0; on S�;
gana ¼ 0; on @S�:

ð40Þ

As anticipated, we cannot expect the active stress SA we have deter-
mined by means of our shearable plate theory to satisfy the first of
(40). However, for given fields SA and t, the rest of system (40) can
be used to evaluate the six parameter functions r; ci, and ga in the
representation (7) of the reactive stress. There is more than one way
to do so; here is how we choose to proceed in this paper.

SinceZ h

�h
ðh� fÞðDivSA þ bÞ3 df ¼ �2hðSAe3 þ tÞ

�
3 ; ð41Þ

by integrating twice the third component of (40)1 on taking (40)2

and (40)4 into account, we obtain:Z h

�h
ðr� 2ga;aÞdf ¼ 0: ð42Þ

We choose:

gaðx1; x2; x3Þ ¼ caðx1; x2; x3Þ; ð43Þ

an assumption that implies symmetry of the reactive stress TR (cf.
(7)) and that, together with (40)4, makes sDiv ðSRe3Þ vanish on the
end sections of C, reducing conditions (40)2,3 to the form Sn ¼ �t�

of classical elasticity; in addition, we satisfy Eq. (42) by taking

rðx1; x2Þ ¼
1
h

Z h

�h
ga;aðx1; x2; x3Þdx3: ð44Þ

All in all, we are left with a representation for TR in terms of the
three parameter functions ci, with the choice of c1 and c2 restricted
by the last of (40), which takes the form:

cana ¼ 0 on @S�;

due to (43). The components of TR are obtained by integrating
Eq. (40)1 with the conditions (40)2 and (40)4. Making use of (43),
we have:

TRð1Þ
a3 ¼�cð1Þa;3¼�ðS

Ae3þ tÞ
�
a �

Z x3

�h
ðDivSAþbÞa df;

cð1Þa ¼ðx3þhÞðSAe3þ tÞ
�
a þ

Z x3

�h
ðx3� fÞðDivSAþbÞadf;

TRð1Þ
33 ¼r�cð1Þ3;3�gð1Þa;a¼ cð1Þa;a�ðS

Ae3þ tÞ
�
3 �

Z x3

�h
ðDivSAþbÞ3 df;

ð45Þ

for the first layer (k ¼ 1), and

TRðkÞ
a3 ¼�cðkÞa;3 ¼�cðk�1Þ

a;3 jx3¼xðk�1Þ
3
�
Z x3

xðk�1Þ
3

ðDivSAþbÞa df;

cðkÞa ¼ cðk�1Þ
a jx3¼xðk�1Þ

3
þðx3�xðk�1Þ

3 Þcðk�1Þ
a;3 jx3¼xðk�1Þ

3
þ
Z x3

xðk�1Þ
3

ðx3�fÞðDivSAþbÞa df;

TRðkÞ
33 ¼ TRðk�1Þ

33 jx3¼xðk�1Þ
3
�cðk�1Þ

a;a jx3¼xðk�1Þ
3
þcðkÞa;a�

Z x3

xðk�1Þ
3

ðDivSAþbÞ3 df; ð46Þ

for all other layers (k > 1). When the reactive stresses TR ðkÞ
i3 are com-

ponent-wise added to the active stresses, an improved approxima-
tion of the stress field solving the three-dimensional balance
equations in the closure of C is arrived at. We substantiate this
assertion by means of the examples we work out in Section 5.
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Remark. One may wonder whether the standard equilibrium
equations for first-grade material bodies would serve to determine
an out-of-plane addition

R ¼ Ra3ðea � e3 þ e3 � eaÞ þ R33e3 � e3

to an in-plane stress field

SP ¼ Sabðea � eb þ eb � eaÞ;

computed by the use of some plate theory, in hope that the stress
field A ¼ SP þ R offer a good approximation of the unknown
three-dimensional stress field.4 For SP chosen equal to our SA, would
such R turn out to be the same as our TR (or better, perhaps)?

This proposition makes sense, because we stipulated (39) and
(43) (applied surface couples p and line forces l can be handled
only within a theory of grade higher than the first; moreover, when
a general second-grade theory is adopted, the reactive stress TR

needs not be symmetric). The additional stress field in question
must solve the following system:

� DivR ¼ DivSA þ b; in C;

� R�e3 ¼ ðSAe3Þ
�

 t�; on S�;

� R3a ¼ SA
3ana � t3; on @S 	 ð�h; hÞ:

ð47Þ

The first two equations in system (47) correspond to the first two in
system (40); for the layered plates we study, they lead to a reactive
field that has the form detailed in (45) and (46). The boundary con-
ditions on @S 	 ð�h;hÞ differ, though. The reason why they do is
that their expression is

Sn ¼ t ð48Þ

within a first-grade theory, and is

Sn� sDiv ðSnÞ ¼ t

within a second-gradient theory, in which a hyperstress S inte-
grates the ‘ordinary’ stress S. If in (48) we approximate S by
A ¼ SA þ TR, the third component of that equation reads:

TR
3ana ¼ ga;3na ¼ SA

3ana � t3;

and differs by a factor 2 from the second of (40)3.
In conclusion, the question posed in the beginning of this Re-

mark can be given a semi-positive answer in rather special circum-
stances and by taking some ad hoc measures. But, we believe that it
would be better not to use the balance equations of a first-grade
theory to approximate the three-dimensional stress field in a
plate-like body, layered or not, when the displacement field is gi-
ven an a priori Reissner–Mindlin representation. We offer two rea-
sons: the one, conceptual, is that such a representation can be
regarded as an internal constraint that can be completely and ex-
actly satisfied only within the framework of a second-grade the-
ory; the other, practical, is that a second-grade approach sets the
stage for an optimal choice of the reactive field, among the many
such fields consistent with the given applied loads; we plan to
tackle such an optimization problem soon.

4. Laminated Reissner–Mindlin plates with special symmetries

4.1. Mid-plane symmetric plates

A multilayered plate-like body C is mid-plane symmetric, and
its two-dimensional model is called a mid-plane symmetric plate,
when C is formed by n pairs of layers having the same thickness,
being symmetrically located with respect to the mid-plane of C,
and being made of the same transversely isotropic material. We
4 We are grateful to an anonymous reviewer of a former version of this paper for
raising this issue.
shall denote by one and the same label k the two layers of a given
pair. The k layers occupy the regions of C between planes
x3 ¼ �xðk�1Þ

3 and x3 ¼ �xðkÞ3 (xðk�1Þ
3 ; xðkÞ3 are non-negative numbers;

in particular, xð0Þ3 ¼ 0 and xðnÞ3 ¼ h); their thickness is 2hðkÞ, and their
mid-planes are x3 ¼ �oðkÞ ¼ �ðxðk�1Þ

3 þ xðkÞ3 Þ=2, with oðkÞ > 0. The
mid-plane of C separates the pair of layers labeled with the number
1, whose displacement components are:

uaðx1; x2; x3Þ ¼ euaðx1; x2Þ þ x3waðx1; x2Þ2;
u3ðx1; x2Þ ¼ wðx1; x2Þ: ð49Þ

With this choice, eu1; eu2, and w are the displacement components of
the mid-section of C, while the displacement components of the k
layers are:

uðkÞa ðx1; x2; x3Þ ¼ euaðx1; x2Þ þ ðsgnðx3ÞHðkÞ þ vðkÞx3Þwaðx1; x2Þ
þ ðsgnðx3ÞHðkÞ þ ðvðkÞ � 1Þx3Þw;aðx1; x2Þ; a ¼ 1;2;uðkÞ3 ðx1; x2Þ
¼ wðx1; x2Þ; ð50Þ

where

Hð1Þ ¼ 0; HðkÞ ¼
Xk�1

i¼1

xðiÞ3 ðvðiÞ � vðiþ1ÞÞ; k > 1: ð51Þ

The strain components are:

EðkÞab ¼
1
2
ðeua;bþ eub;aþðsgnðx3ÞHðkÞ þvðkÞx3Þðwa;bþwb;aÞ

þðsgnðx3ÞHðkÞ þðvðkÞ �1Þx3Þðw;abþw;baÞÞ;

EðkÞ3g ¼
1
2
vðkÞðw;gþwgÞ: ð52Þ

The stress resultants in the whole plate are:

Nab ¼
Z h

�h
SA
abdx3 ¼ A½1�abcdðeuc;d þ eud;cÞ; Qg ¼

Z h

�h
SA

3gdx3 ¼ Bðwg þwgÞ;

Mab ¼
Z h

�h
SA
abx3dx3 ¼ D½2�abcdðwc;d þwd;cÞ þD½3�abcdðwcd þwdcÞ; ð53Þ

where

A½1�abcd ¼ 2
Xn

k¼1

hðkÞCðkÞabcd; B ¼ 4
Xn

k¼1

hðkÞvðkÞCðkÞ1313 ¼ 4hC
ð1Þ
1313;

D½2�abcd ¼ 2
Xn

k¼1

ðoðkÞhðkÞHðkÞ þ ððhðkÞÞ
3
=3þ ðoðkÞÞ2hðkÞÞvðkÞÞCðkÞabcd;

D½3�abcd ¼ 2
Xn

k¼1

ðoðkÞhðkÞHðkÞ þ ððhðkÞÞ
3
=3þ ðoðkÞÞ2hðkÞÞðvðkÞ � 1ÞÞCðkÞabcd:

ð54Þ

Expressions (53) make clear that, for mid-plane symmetric plates,
the membranal equilibrium Eqs. (37)1,2 are uncoupled from the
flexural equilibrium Eqs. (37)3,4,5. We notice that the expressions
of the reactive stresses T ðkÞi3 found in Section 3.4 have to be modified
in an obvious way to account for the different layer numeration.

4.2. Axisymmetric circular plates

In the next section, we shall apply the proposed model of lam-
inated plates to the study of certain equilibrium problems, which
include the case of circular plates subject to axisymmetric defor-
mations. In preparation for these applications, we now specialize
for axisymmetric problems the key equations of the previous sec-
tions, making use of coordinates ðr; h; zÞ in a cylindrical system,
whose origin and z-axis coincide with the origin and the x3-axis
of the Cartesian system introduced in Section 2, and whose basis
vectors are ðer; eh; ezÞ.

Let the cylindrical body C with circular mid-section S be com-
posed of n layers, the k-th one of those occupying the sub-region
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CðkÞ of C between the planes z ¼ zðk�1Þ and z ¼ zðkÞ. In the presence of
axisymmetric deformations, the displacement components in the
k-th layer of C are:

uðkÞr ðr;zÞ¼ euðkÞðrÞþðz�oðkÞÞwðkÞðrÞ; uðkÞh ðr;zÞ¼0; uðkÞz ðrÞ¼wðkÞðrÞ: ð55Þ

In view of the restrictions following from the requested interlayer
continuity of displacement and traction vectors, the nonzero com-
ponents can be written in the form:

uðkÞr ðr; zÞ ¼ uðrÞ þ ðHðkÞ þ vðkÞzÞwðrÞ þ ðHðkÞ þ ðvðkÞ � 1ÞzÞw;rðrÞ;
wðkÞðrÞ ¼ wðrÞ; ð56Þ

where we denoted by u and w, respectively, the functions euð1Þr and
wð1Þ, and where

vðkÞ ¼ Cð1Þrzrz

CðkÞrzrz

; k ¼ 1; . . . ; n; Hð1Þ ¼ 0;

HðkÞ ¼
Xk�1

i¼1

zðiÞðvðiÞ � vðiþ1ÞÞ; k ¼ 2; . . . ; n: ð57Þ

The nonzero strain components in the layer k are:

EðkÞrr ¼ ðuðkÞr þ zwðkÞÞr ¼ u;r þ ðHðkÞ þ vðkÞzÞwr þ ðH
ðkÞ þ ðvðkÞ � 1ÞzÞwrr ;

EðkÞhh ¼
1
r
ðuðkÞr þ zwðkÞÞ ¼ u

r
þ ðHðkÞ þ vðkÞzÞw

r
þ ðHðkÞ þ ðvðkÞ � 1ÞzÞwr

r
;

EðkÞrz ¼
1
2
ðwðkÞr þ wðkÞÞ ¼ 1

2
vðkÞðwþwrÞ: ð58Þ

Under the assumption that layers are made of a transversely isotro-
pic material inextensible in the z-direction, the nonzero compo-
nents of the active stress are:

SAðkÞ
rr ¼ CðkÞrrrrE

ðkÞ
rr þ C

ðkÞ
rrhhEðkÞhh ; SAðkÞ

hh ¼ C
ðkÞ
hhrrE

ðkÞ
rr þ C

ðkÞ
hhhhEðkÞhh ;

SAðkÞ
rz ¼ 2CðkÞrzrzE

ðkÞ
rz ; ð59Þ

with C
ðkÞ
hhhh ¼ CðkÞrrrr . The definitions of stress resultants, both in a layer

and in the whole plate, are completely analogous to those of Sub-
Section 3.2. The nonzero stress resultants in the whole plate can
be written in the form:

Nab ¼
Z h

�h
SA

ab dz¼A½1�abrru;rþA½2�abrrw;rþA½3�abrrw;rrþA½1�abhh

u
r
þA½2�abhh

w
r
þA½3�abhh

w;r

r
;

Qr ¼
Z h

�h
SA

3r dz¼B wþw;rð Þ;

Mab ¼
Z h

�h
SA

abzdz¼D½1�abrrurþD½2�abrrw;rþD½3�abrrw;rrþD½1�abhh

u
r
þD½2�aahh

w
r
þD½3�abhh

w;r

r
;

ð60Þ

in which

A½1�abcd ¼ 2
Xn

k¼1

hðkÞCðkÞabcd; A½2�abcd ¼ 2
Xn

k¼1

hðkÞðHðkÞ þ vðkÞoðkÞÞCðkÞabcd;

A½3�abcd ¼ 2
Xn

k¼1

hðkÞðHðkÞ þ ðvðkÞ � 1ÞoðkÞÞCðkÞabcd; ð61Þ

B ¼
Xn

k¼1

2hðkÞvðkÞCðkÞrzrz ¼ 2hCð1Þrzrz; ð62Þ

D½1�abcd¼2
Xn

k¼1

oðkÞhðkÞCðkÞabcd; D½2�abcd¼2
Xn

k¼1

ðoðkÞhðkÞHðkÞ þððhðkÞÞ
3
=3

þðoðkÞÞ2hðkÞÞvðkÞÞCðkÞabcd;D
½3�
abcd¼2

Xn

k¼1

ðoðkÞhðkÞHðkÞ

þððhðkÞÞ
3
=3þðoðkÞÞ2hðkÞÞðvðkÞ �1ÞÞCðkÞabcd; ð63Þ

indices a; b; c; d can be equal to r and h, and are such that a ¼ b

and c ¼ d. Due to axial symmetry, the equilibrium plate equa-
tions in terms of stress resultants reduce to the following
three:

Nrr;r þ
1
r
ðNrr � NhhÞ þ qr ¼ 0; Q r;r þ

1
r

Q r þ qz ¼ 0;

Mrr;r þ
1
r
ðMrr �MhhÞ � Q r þm ¼ 0; ð64Þ

where the loads per unit area of S are defined as

qr ¼
Z h

�h
brdzþ tþr þ t�r ; qz ¼

Z h

�h
bzdzþ tþz þ t�z ;

m ¼
Z h

�h
qrzdzþ hðtþr � t�r Þ: ð65Þ

Moreover, the first-order reactive stress SR and the reactive hyper-
stress S

R reduce to:

SR ¼ rez � ez; SR ¼ crer � ez � ez þ czez � ez � ez

þ grez � ðer � ez þ ez � erÞ; ð66Þ

the divergence of S
R is:

DivSR ¼ cr;zer � ez þ gr;zez � er þ ðcz;z þ gr;r þ gr=rÞez � ez ð67Þ

and the reactive stress TR has components:

½TR
ij� ¼

0 0 �cr;z

0 0 0
�gr;z 0 r� cz;z � gr;r � gr=r

264
375: ð68Þ

When C is regarded as a three-dimensional body made of a second-
grade material, in which the hyperstress is purely reactive, subject
to null couple per unit area p and to null forces per unit length l, the
governing balance equations and boundary conditions are:

cr;zzerþðcz;zþ2ðgr;rþg=rÞ�rÞ
;z

ez¼DivSAþb; in C;

ðcr;zÞ
�erþðcz;zþgr;rþgr=r�rÞ�ez¼ðSAezÞ

�

t�; onSþ andS�;

2gr;znr¼Szrnr� tz; on @S	ð�h;hÞ;
c�r ¼c�z ¼0; onSþ andS�;
grnr¼0; on @Sþ and @S�: ð69Þ

We assume that gr;zðr; zÞ ¼ cr;zðr; zÞ, which assures the symmetry of
the stress TR, and we take

rðrÞ ¼ 1
h

Z h

�h
gr;rðr; zÞdz: ð70Þ

By integrating Eqs. (69)1 under conditions (69)2 and (69)4, we
obtain

TRð1Þ
rz ¼�cð1Þr;z ¼�ðS

Aezþ tÞ
�
r �

Z z

�h
ðDivSAþbÞr df;

cð1Þr ¼ðzþhÞðSAezþ tÞ
�
r þ

Z z

�h
ðz� fÞðDivSAþbÞr df;

TRð1Þ
zz ¼r�cð1Þz;z �gð1Þr;r �gð1Þr =r¼ cð1Þr;r þcð1Þr =r�ðSAezþ tÞ

�
z

�
Z z

�h
ðDivSAþbÞz df; ð71Þ

for the first layer (k ¼ 1), and

TRðkÞ
rz ¼�cðkÞr;z ¼�cðk�1Þ

r;z jz¼zðk�1Þ �
Z z

zðk�1Þ
ðDivSAþbÞr df;

cðkÞr ¼ cðk�1Þ
r jz¼zðk�1Þ þ ðz� zðk�1ÞÞcðk�1Þ

r;z jz¼zðk�1Þ þ
Z z

zðk�1Þ
ðz� fÞðDivSAþbÞr df;

TRðkÞ
zz ¼ TR ðk�1Þ

zz �gðk�1Þ
r;r �gðk�1Þ

r

r

 !
z¼zðk�1Þ

þgðkÞr;r �
Z z

zðk�1Þ
ðDivSAþbÞzdf;

ð72Þ

for all other layers (k > 1).
As it has been done in Section 4.1 in the case of a generic cross-

section, the layers of axisymmetric circular plates that are also
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mid-plane symmetric are labeled in pairs, with the label k ¼ 1 as-
signed to the pair adjacent to the mid-plane. The additional sym-
metry implies that the expressions (60)1 and (60)3 for membrane
forces and moments become simpler:

Nab ¼
Z h

�h
SA

abdz ¼ 2A½1�abrru;r þ 2A½1�abhh

u
r
;

Mab ¼
Z h

�h
SA

abzdz ¼ D½2�aarrw;r þ D½3�aarrw;rr þ D½2�aahh

w
r
þ D½3�aahh

wr

r
;

ð73Þ

with

A½1�abcd ¼4
Xn

k¼1

hðkÞCðkÞabcd; D½2�abcd ¼4
Xn

k¼1

ðoðkÞhðkÞHðkÞ þððhðkÞÞ
3
=3þðoðkÞÞ2hðkÞÞvðkÞÞCðkÞabcd;

D½3�abcd ¼4
Xn

k¼1

ðoðkÞhðkÞHðkÞ þ ððhðkÞÞ
3
=3þðoðkÞÞ2hðkÞÞðvðkÞ �1ÞÞCðkÞabcd; ð74Þ

indices a; b; c; d can be equal to r and h, and are such that a ¼ b

and c ¼ d. For this class of plate problems, as a glance to the
resultants in (73) makes clear, the membranal and flexural equi-
librium Eqs. (64)2,3 and (64)1 decouple. Once again, it is important
to keep in mind that formulae (71) and (72) for the reactive stres-
ses have to be modified to take account of the different layer
numeration.

5. Examples

In this section, we apply our plate model to study some equilib-
rium problems for a multilayered plate-like body C having rectan-
gular or circular cross-section. For each of these problems, the
plate solution is used to construct the three-dimensional active
stress field in C, which is improved by addition of the reactive
stress field. Then, the total stress is compared with the stress of
the exact three-dimensional Levinson-type solution (the deduction
of the Levinson solutions we exploit has been presented in Formica
et al. (2013)). In all examples, the only external loads acting on C
are surface loads on the end faces. In the case of a circular cross-
section, we also apply those radial tractions on the mantel that
are needed to guarantee the existence of a Levinson-type solution
and, for simplicity, we restrict attention to axisymmetric loadings
and deformations.

5.1. Plate-like bodies with rectangular cross-section

Let the cross-section of C be a rectangle with sides parallel to
the axes x1 and x2, of length l1 and l2, and let C consist of either
two, three, or five layers of equal thickness. In the last two cases,
let the layers symmetrically located with respect to the mid-plane
of C be formed by the same transversely isotropic material; thus,
according to the definitions of Section 4.1, C is a mid-plane sym-
metric multilayered plate-like body made of 2n layers, with n
equal to 2 and 3, respectively. Furthermore, let the boundary con-
ditions on the mantel of C be of the type assumed in the Levinson
problem (Levinson, 1985), namely, such that both transverse and
tangential displacements are prevented and normal tractions are
null: that is to say that, on the sides whose normal is parallel
to e1, the geometric boundary conditions are w ¼ 0 and, in addi-
tion, eu2 ¼ 0 and w2 ¼ 0, while the natural conditions are that both
the membrane force N11 and the bending moment M11 vanish;
and that, on the sides whose normal is parallel to e2, analogous
conditions prevail, modulo the interchange of the index values.
All in all, no matter the layer number, the boundary conditions
are:

for x1¼0 and x1¼ l1 : eu2¼0; w¼0; w2¼0; N11¼0; M11¼0;

for x2¼0 and x2¼ l2 : eu1¼0; w¼0; w1¼0; N22¼0; M22¼0:

ð75Þ
The external loads consist in normal tractions applied to S�, having
the following expressions:

tþ3pqðx1; x2Þ ¼ rþpq sin
ppx1

l1
sin

qpx2

l2
;

t�3pqðx1; x2Þ ¼ r�pq sin
ppx1

l1
sin

qpx2

l2
; ð76Þ

in which rþpq and r�pq are constants. These tractions can be thought
of as terms of series expansions of loads acting on the end faces of C;
the corresponding plate loads are:

q3pqðx1; x2Þ ¼ qpq sin
ppx1

l1
sin

qpx2

l2

¼ ðrþpq þ r�pqÞ sin
ppx1

l1
sin

qpx2

l2
: ð77Þ

The unknown functions eu1; eu2;w;w1, and w2 are assumed to have
the representations:

eu1ðx1; x2Þ ¼ eu1pq cos
ppx1

l1
sin

qpx2

l2
; eu2ðx1; x2Þ ¼ eu2pq sin

ppx1

l1
cos

qpx2

l2
;

wðx1; x2Þ ¼ wpq sin
ppx1

l1
sin

qpx2

l2
;

w1ðx1; x2Þ ¼ w1pq cos
ppx1

l1
sin

qpx2

l2
; w2ðx1; x2Þ ¼ w2pq sin

ppx1

l1
cos

qpx2

l2
;

ð78Þ

where eu1pq; eu2pq;wpq;w1pq, and w2pq are coefficients to be deter-
mined. Introduction of (78) into (37) produces a linear algebraic
system for the unknown coefficients in (78), that can be given the
form:

A11 A12 A13 A14 A15

A21 A22 A23 A24 A25

A31 A32 A33 A34 A35

A41 A42 A43 A44 A45

A51 A52 A53 A54 A55

26666664

37777775

eu1pqeu2pq

wpq

w1pq

w2pq

26666664

37777775 ¼
0
0
�qpq

0
0

26666664

37777775: ð79Þ

Then, the total stresses are evaluated and compared with those fur-
nished by the exact three-dimensional Levinson-type solution of
the same problem, as given in Formica et al. (2013).

In the three examples we consider, the thickness of C is
2h ¼ 100 mm, the lengths of the sides of S are l1 ¼ 1500 mm and
l2 ¼ 2000 mm, and the values of the elastic moduli of a layer are al-
ways taken such that

E ¼ 0:75	 E; m ¼ m ¼ 0:25; G ¼ 0:25	 E: ð80Þ

With this choice, specification of the Young modulus E for in-plane
directions suffices to define all the moduli of a layer. In Figs. 1–5, ex-
act solutions are plotted with continuous lines, our model with dot-
ted lines; dashed lines represent the constant active shear stresses
corresponding to the plate solutions.

5.1.1. Two-layer rectangular plate
Layers are assumed to have the same thickness, and are num-

bered from the bottom to top. The Young moduli of the layers for
the in-plane directions are Eð1Þ ¼ 1:7	 105 N/mm2 and
Eð2Þ ¼ Eð1Þ=25. The loads applied to C are those of Eqs. (76) with
p ¼ q ¼ 1 and rþpq ¼ r�pq ¼ 10 N/mm2. Plots in Fig. 1 give the stres-
ses along the fiber parallel to x3 intersecting S at
ðx1; x2Þ ¼ ðl1=3; l2=3Þ; they show a fairly good agreement between
the predictions of our model and the exact solution.

5.1.2. Three-layer, mid-plane symmetric rectangular plate
The mid-plane symmetric body C is formed by two layers la-

beled by the number 1 and located between the planes x3 ¼ 0
and x3 ¼ �h=3, and two layers labeled by the number 2 and located
between the planes x3 ¼ �h=3 and x3 ¼ �h (thus, C can also be re-
garded as formed by three layers of equal thickness 2h=3). The
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Young moduli of the layers for the in-plane directions are
Eð1Þ ¼ 1:7	 105 N/mm2 and Eð2Þ ¼ Eð1Þ=25. The external load are
those of Eqs. (76), with p ¼ q ¼ 1 and rþpq ¼ r�pq ¼ 10 N/mm2. Re-
sults are presented in Fig. 2, where stresses on the fiber parallel
to x3 intersecting S at ðx1; x2Þ ¼ ðl1=3; l2=3Þ are plotted; again, our
model’s predictions turn out to be fairly accurate.
5.1.3. Five-layer, mid-plane symmetric rectangular plate
This example considers a mid-plane symmetric body C that is

formed by two layers labeled by the number 1 and located be-
tween the planes x3 ¼ 0 and x3 ¼ �h=5, two layers labeled by the
number 2 and located between the planes x3 ¼ �h=5 and
x3 ¼ �3h=5, and two layers labeled by the number 3 located be-
tween the planes x3 ¼ �3h=5 and x3 ¼ �h (thus, C can also be re-
garded as formed by five layers of equal thickness 2h=5). The
Young moduli of the layers for the in-plane directions are
Eð1Þ ¼ 1:7	 105 N/mm2, Eð2Þ ¼ Eð1Þ=25, and Eð3Þ ¼ Eð1Þ. The loads ap-
plied to C have the expressions of Eqs. (76), with p ¼ q ¼ 1 and
rþpq ¼ r�pq ¼ 10 N/mm2. In Fig. 3, the stresses on the fiber parallel
Fig. 1. (Two-layer rectangular plate) Non-dimensional stress
to x3 and intersecting S at ðx1; x2Þ ¼ ðl1=3; l2=3Þ are plotted; they
show the good accuracy achieved by the model. Some small differ-
ences appear on the external layers for the in-plane stresses, which
are all active in nature and arise from to the plate solution, because
there are no corresponding reactive stresses.

5.2. Plate-like bodies with circular cross-section

We consider two examples of axisymmetric deformations of
mid-plane symmetric plate-like bodies C with circular cross-sec-
tion. As observed at the end of Section 3.3, in such cases the equa-
tions describing membranal and flexural deformations decouple.
We assume that the external loads applied to the plate-like body
at S� are:

tþz ðrÞ ¼ rþmJ0ðjmr=RÞ; t�z ðrÞ ¼ r�mJ0ðjmr=RÞ; ð81Þ

where rþm and r�m are constant, J0 is the Bessel function of the first
kind and order 0, and jm are the positive zeros of J0. The loads (81)
represent terms of series expansions of loads acting on the end faces
es along the transverse fiber at x1=l1 ¼ 1=3; x2=l2 ¼ 1=3.



Fig. 2. (Three-layers rectangular plate) Non-dimensional stresses along the transverse fiber at ðx1=l1 ¼ 1=3; x2=l2 ¼ 1=3Þ.
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of C; they are accompanied, on the mantel of C, by those normal
tractions that are necessary for the equilibrium problem of plate-
like bodies with circular cross-section to have a solution of Levinson
type (cf. Nicotra et al., 1999; Formica et al., 2013); we recall that
such normal tractions have null resultant and non-null resultant
momentMm along each segment parallel to the axis of C. The loads
(81) produce the plate load qz per unit area,

qz ¼ qmJ0ðjmr=RÞ ¼ ðrþm þ r�mÞJ0ðjmr=RÞ: ð82Þ

The solution of the plate problem can be determined as follows
(cf. Formica et al., 2011). Equilibrium is governed by equations
(64)2,3, that, making use of Eqs. (60), can be written in terms of
the functions w and w:

Br�1ðrðwr þ wÞÞr þ qz ¼ 0; D½2�rrrrðr�1ðrðwr þ wÞÞrÞr
þ ðD½3�rrrr � D½2�rrrrÞðr�1ðrwrÞrÞr � Bðwr þ wÞ ¼ 0: ð83Þ
It follows from Eq. (83)1 that

w;r þ w ¼ 1
Br

Z r

0
qzqdq; ð84Þ

substitution of this in Eq. (83)1 yields

ðr�1ðrwrÞrÞr ¼
1

ðD½3�rrrr � D½2�rrrrÞr

Z r

0
qzqdqþ D½2�rrrr

bðD½3�rrrr � D½2�rrrrÞ
qz;r: ð85Þ

The general solution of the homogeneous equation associated with
(85) is

wðrÞ ¼ c1 þ c2r2 þ c3 ln r; ð86Þ

where c3 must be zero to have a finite displacement at r ¼ 0. When
the load per unit area qz has the expression (82), Eq. (85) has the
particular solution



Fig. 3. (Five-layer rectangular plate) Non-dimensional stresses along the transverse fiber at ðx1=l1 ¼ 1=3; x2=l2 ¼ 1=3Þ.
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wðrÞ ¼ qm

ðD½3�rrrr � D½2�rrrrÞ
D½2�rrrrjm

BR
þ R

jm

 !
R
jm

� �3

J0ðjmr=RÞ: ð87Þ

Thus, the general solution of (85) is known, and it follows from
(83)1 that

wðrÞ¼�2c2r�qm
R2

ðD½3�rrrr�D½2�rrrrÞj2
m

D½2�rrrrjm

BR
þ R

jm

 !
� R

Bjm

 !
J1ðjmr=RÞ;

ð88Þ

with J1 the Bessel function of the first kind and order 1, and where
the integration constants c1 and c2 are determined from the condi-
tions wðRÞ ¼ 0 e MrrðRÞ ¼ Mm.

In both examples we present, the cross-section of C has radius
R ¼ 1000 mm and the thickness is 2h ¼ 100 mm.
5.2.1. Three-layer, mid-plane symmetric circular plate
Here C consists of two layers labeled by the number 1 and

located between the planes z ¼ 0 and z ¼ �h=3, and two layers
labeled by the number 2 and located between the planes
z ¼ �h=3 and z ¼ �h (so that C can be regarded as formed by three
layers of equal thickness 2h=3). The Young moduli of the layers for
the in-plane directions are Eð1Þ ¼ 1:7	 105 N/mm2 and
Eð2Þ ¼ Eð1Þ=25. The external loads on C are those of Eqs. (81) with
m ¼ 1 and rþm ¼ r�m ¼ 10 N/mm2; the external loads on the plate
are: the surface load qz, given by Eq. (82) and acting on S, and
the bending moment Mm, acting on @S and due to the tractions
necessary on the mantel of C to have a Levinson-type exact
solution. In Fig. 4 a comparison of the stresses on a fiber parallel
to z and intersecting S at r ¼ R=2 is given; it shows that the results
of our model are in very good agreement with those of the exact
solution.



Fig. 4. (Three-layer circular plate) Non-dimensional stresses along the transverse fiber at r=R ¼ 1=2.

Fig. 5. (Five-layer circular plate) Non-dimensional stresses along the transverse fiber at r=R ¼ 1=2.

1574 G. Formica et al. / International Journal of Solids and Structures 51 (2014) 1562–1575



G. Formica et al. / International Journal of Solids and Structures 51 (2014) 1562–1575 1575
5.2.2. Five-layer, mid-plane symmetric circular plate
In this example, C is composed of two layers labeled by the

number 1 and located between the planes z ¼ 0 and z ¼ �h=5;
two layers, labeled by the number 2 and located between the
planes z ¼ �h=5 and z ¼ �3h=5, and two layers labeled by the
number 3 and located between the planes z ¼ �3h=5 and z ¼ �h
(so that C can be regarded as formed by five layers of equal thick-
ness 2h=5). The Young moduli of the layers for the in-plane direc-
tions are Eð1Þ ¼ 1:7	 105 N/mm2, Eð2Þ ¼ Eð1Þ=25, and Eð3Þ ¼ Eð1Þ. The
external loads on C are those of Eq. (81), with m ¼ 1 and
rþm ¼ r�m ¼ 10 N/mm2; the external loads on the plate are: the sur-
face load qz, given by Eq. (82) and acting on S, and the bending mo-
mentMm, acting on @S and due to the tractions on the mantel of C
necessary in a Levinson-type exact solution. Fig. 5 gives a compar-
ison of the stresses on a fiber parallel to z intersecting S at r ¼ R=2,
and shows that the accuracy of the results of our model is again
good.
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