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In the first part of this work (Bleyer and de Buhan, 2014), the determination of the macroscopic strength
criterion of periodic thin plates has been addressed by means of the yield design homogenization theory
and its associated numerical procedures. The present paper aims at using such numerically computed
homogenized strength criteria in order to evaluate limit load estimates of global plate structures. The
yield line method being a common kinematic approach for the yield design of plates, which enables to
obtain upper bound estimates quite efficiently, it is first shown that its extension to the case of complex
strength criteria as those calculated from the homogenization method, necessitates the computation of a
function depending on one single parameter. A simple analytical example on a reinforced rectangular
plate illustrates the simplicity of the method. The case of numerical yield line method being also rapidly
mentioned, a more refined finite element-based upper bound approach is also proposed, taking dissipa-
tion through curvature as well as angular jumps into account. In this case, an approximation procedure is
proposed to treat the curvature term, based upon an algorithm approximating the original macroscopic
strength criterion by a convex hull of ellipsoids. Numerical examples are presented to assess the effi-
ciency of the different methods.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction material when preferential reinforcing directions are involved.
In this joint work, the yield design of periodic thin plate struc-
tures is investigated. The first part of this work has been dedicated
to the determination of the homogenized strength properties of
different periodic plates through the numerical computation of a
macroscopic strength criterion by means of finite elements and
mathematical programming.

Homogenization theory in the framework of yield design (or
limit analysis) of periodic structures has first been proposed in
the work of Suquet (1985) and de Buhan (1986), where a proper
definition of the macroscopic strength criterion involving the reso-
lution of an auxiliary yield design problem formulated on the unit
cell has been given. An analytical determination of the macroscopic
strength criterion is very rare (e.g., the case of the multilayered soil
under plane strain (de Buhan, 1986)) and often restricted to
symmetric unit cell geometries and simple macroscopic loading
(Maghous, 1991). Therefore, numerical methods are required, nota-
bly to conveniently capture the anisotropy of the homogenized
The numerical resolution of the auxiliary problem can be tackled
using incremental elasto-plastic approaches (Marigo et al., 1987)
but a more natural method is to perform numerical limit analysis
computations directly. This method, in conjunction with a finite
element discretization, has been widely applied to different type
of structures like porous media (Pastor and Turgeman, 1983; Turg-
eman and Pastor, 1987), periodic plates solicited in their own plane
(Maghous, 1991; Francescato and Pastor, 1998), masonry walls
(Sab, 2003), stone columns reinforced soils (Hassen et al., 2013)
whereas the first part of this work (Bleyer and de Buhan, 2014)
deals with thin periodic plates in bending.

Different numerical techniques have also been used to solve the
corresponding optimization problem. In particular, linear program-
ming (LP) associated to a piecewise linearization of the original
local strength criterion has been very attractive due to the effi-
ciency of interior point algorithms to solve LP problems. The exten-
sion of these algorithms to a wider class of convex programming
problems, namely second-order cone programming (SOCP) enables
today to solve limit analysis problems with their original nonlinear
criterion very efficiently. SOCP has been notably used in the first
part of this work to solve the static as well as the kinematic
approach of the auxiliary problem.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2014.03.019&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.019
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http://dx.doi.org/10.1016/j.ijsolstr.2014.03.019
http://www.sciencedirect.com/science/journal/00207683
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Although an important amount of work has been dedicated to
the numerical determination of macroscopic strength criteria of
heterogeneous media, only a few papers, to the authors’ knowl-
edge, have been aimed at estimating the ultimate load of global
structures made of such macroscopic strength criteria derived from
the homogenization procedure. One can mention the work of
Milani et al. (2006) concerning brick masonry or the following pa-
pers (Maghous et al., 1998; Hassen et al., 2013) on geotechnical
problems. The small amount of work dedicated to this specific as-
pect is certainly due to the absence of closed-form expressions for
the homogenized yield surfaces, which restrains their use to simple
failure mechanisms for analytical applications. As regards numeri-
cal approaches, the homogenized yield surface has to be approxi-
mated, usually by piecewise linearization, to be dealt with.
However, the number of hyperplanes describing the surface with
a sufficient accuracy can be quite important, which is not desirable
for efficient computations.

As regards the specific case of thin plates in bending, which is
the scope of the present work, the strength criterion depends on
the bending moment only. The yield line method, originally pro-
posed by Johansen (1962), is an efficient upper bound kinematic
method which considers only rigid mechanisms separated by yield
lines where angular rotation discontinuities occur. Analytical
upper bound estimates are, therefore, easily available and a
numerical implementation using linear triangular finite element
is also possible (Munro and Da Fonseca, 1978), although there
are some inherent difficulties due to mesh dependency (Johnson,
1994; Jennings, 1996). However, to obtain tight upper bound esti-
mates of plates in bending, dissipation through curvature has also
to be taken into account. This requires to use a quadratic interpo-
lation, at least, of the plate velocity field. Some authors proposed to
use C1-continuous high order finite elements to perform the upper
bound approach (Capsoni and Corradi, 1999; Le et al., 2010) but
better estimates have been obtained by the present authors using
only C0� continuous element (Bleyer and de Buhan, 2013a), dissi-
pation being produced by curvature as well as angular rotation dis-
continuities. The aim of this work is, thus, to perform yield design
computations of plate structures by adapting these numerical
methods to the case of complex anisotropic strength criteria com-
puted from homogenization. It will be shown that the yield line
method can easily be extended to these criteria without much dif-
ficulties, whereas a specific approximation procedure will be re-
quired for a complete finite element upper bound approach. It
should be noticed that the proposed methods aim at taking advan-
tage of the efficiency of SOCP solvers, which enable to manipulate
nonlinear strength criteria, so that a more efficient approximation
procedure than piecewise linearization is possible.

Section 2 will first be devoted to the extension of the yield line
method to complex strength criteria and an analytical example on
a simply supported rectangular plate made of a reinforced material
will be presented. Section 3 will present a procedure to approxi-
mate a numerically computed three-dimensional yield surface by
a convex hull of ellipsoids so that a finite element kinematic ap-
proach can be formulated and treated by SOCP solvers. Finally,
numerical examples making use of some macroscopic strength cri-
teria previously computed in Part I (Bleyer and de Buhan, 2014)
will be investigated.
Fig. 1. Function P0ðaÞ for the reinforced plate example (Bleyer and de Buhan,
2014). The circles correspond to numerically computed values obtained from the
resolution of auxiliary yield design problems on the unit cell. The horizontal dotted
line corresponds to the value of P0ðaÞ in the case of an unreinforced von Mises plate
with ultimate bending moment mp1 ¼ 1.
2. A first attempt at evaluating the bearing capacity of
heterogeneous thin plates by the yield line method

2.1. Yield line method for a numerically computed strength criterion

The yield line method is a simple upper bound approach for the
yield design of plates in bending which considers only rigid
mechanisms separated by yield lines, where jumps of angular
velocity have to be taken into account in the expression of the
maximum resisting work. The formulation of the corresponding
upper bound yield design problem reads as:

Q 2 K) 8buK:A: with q; PextðbuÞ 6 PrmðbuÞ
where PextðbuÞ is the work of external loads in the kinematically
admissible velocity field bu and

PrmðbuÞ ¼ Z
C
Pðshnt; nÞdl

is the maximum resisting work associated with a set of yield lines C
of unit normal n and angular velocity jumps shnt across C following
the normal n. Hence, Pðshnt; nÞ, which corresponds to a particular
value of the support function of the strength criterion associated
with rotation discontinuities, is defined as:

Pðshnt; nÞ ¼ sup
M2G

Mnnshnt ¼ Pðv ¼ shntn� nÞ

We now consider that the local strength criterion of the plate is
a macroscopic strength criterion Ghom obtained from a homogeni-
zation procedure, as described in the first part of this work. In par-
ticular, it is described by its support function PhomðvÞ. Using the
previous remarks, we have:

Pðshnt; nÞ ¼ Phomðshntn� nÞ ¼ jshntjPhomðn� nÞ

since support functions are positively 1-homogeneous. Let ðex; eyÞ
be the orthonormal frame attached to the periodic unit cell, then,

Pðshnt; nÞ ¼ jshntjPhomðcos2 aðex � exÞ þ sin2 aðey � eyÞ

þ sin 2aðex�
s

eyÞÞ ¼ jshntjP0ðaÞ

where a is such that n ¼ cosaex þ sinaey. Therefore, the support
function of rotation discontinuities is entirely described by function
P0ðaÞ depending on the sole normal orientation angle a. This func-
tion can be determined by solving a series of auxiliary yield design
problems attached to the unit cell with a macroscopic curvature of
the form: vxx ¼ cos2 a;vyy ¼ sin2 a and vxy ¼ sin 2a=2 for different
values of a. Fig. 1 represents such a function P0ðaÞ corresponding
to the reinforced plate example presented in the first part of this
work is represented. The dependance of this function with respect
to a is characteristic of the reinforced plate anisotropy.

Finally, once the geometry of the yield line mechanism has been
fixed, P0ðaÞ can be computed for all yield line normal orientations



Fig. 2. Homogenization procedure for a rectangular reinforced plate under uniform
loading.

Fig. 3. Mechanism 1 for the rectangular plate under uniform loading.

Fig. 4. Mechanism 2 for the rectangular plate under uniform loading.
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a by interpolating the numerically computed discrete values, de-
duced from the auxiliary problem.

2.2. Application to a reinforced rectangular plate under uniform
loading

Consider a rectangular plate of length b in the eX direction and a
in the eY direction. The plate strength criterion corresponds to the
macroscopic criterion Ghom of the reinforced plate example consid-
ered in Part I. The reinforcements, oriented along the unit cell
q� 6 q2 ¼ min
b02½0;arctanða=bÞ�

4
sin 2b0 ðP0ðp=2� b0 � hÞ þP0ðp=2þ b0 � hÞÞ þ 4ða=b� tan b0ÞP0ðp� hÞ

ab 1
2� b

6a tan b0
� �
direction ey, form an angle h with the eY direction of the plate
(see Fig. 2). The plate is simply supported and loaded by a uniform
transversal load �qeZ . The objective of this subsection is to deter-
mine an upper bound of the ultimate load q� of such a reinforced
plate by considering two different simple yield line mechanisms.
For more details on the yield line method, the reader may refer
to Save et al. (1997).

2.2.1. Mechanism 1
The first mechanism (Fig. 3) consists of two triangles BFC and

AED (numbered 2 and 4, respectively) parametrized by the same
angle b and two trapezes CDEF and ABFE (numbered 1 and 3).
The central yield line EF is animated by a uniform vertical velocity
�bf eZ with bf > 0. The following upper bound estimate is obtained
for the reinforced plate limit load (cf. A):
q� 6 q1 ¼ min
b2½0;arctanðb=aÞ�

4
sin 2b ðP0ðb� hÞ þP0ðp� b� hÞÞ þ 4ðb=a� tan bÞP

ab 1
2� a

6b tan b
� �
2.2.2. Mechanism 2
The second mechanism (Fig. 4) is similar to the first one, but

with the triangles along the plate length and the trapezes along
its width. The expression of the upper bound is very similar to
the expression obtained for the first mechanism if one exchanges
the role of a and b and replaces b by p=2� b0 (with a special care
for the contribution of the yield line E0F 0 in the expression of
Prm). The following upper bound is then obtained:
The best upper bound is given by the minimum of q1 and q2:

q� 6 qu ¼ minðq1; q2Þ

Both minimization problems are numerically solved for differ-
ent values of the reinforcement orientation h for a square plate
a ¼ b ¼ 1 as well as for a rectangular plate with a ¼ 1 and
b ¼ 1:5. The obtained upper bounds are normalized by a numerical
estimate of the corresponding unreinforced plate problem limit
load, namely q0 ¼ 25:02 for the square plate and q0 ¼ 17:69 for
the rectangular plate.

Results for the reinforced square plate are presented in Fig. 5.
These results clearly illustrate the anisotropy effect on the ultimate
load, induced by the privileged direction of the reinforcement. Con-
trary to a isotropic homogeneous square plate for which the opti-
mal mechanism correspond to yield lines along both diagonals,
0ðp=2� hÞ



Fig. 5. Yield line upper bound for the reinforced square plate as a function of the
reinforcement orientation h. Optimal yield line mechanisms are represented for
h ¼ 10

�
; h ¼ 45

�
and h ¼ 80

�
.

Fig. 6. Yield line upper bound for the reinforced rectangular plate as a function of
the reinforcement orientation h. Optimal yield line mechanisms are represented for
h ¼ 45

�
; h ¼ 60

�
and h ¼ 90

�
.
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optimal yield line layouts and associated upper bound estimates
vary with respect to the orientation angle. For instance, the upper
bound estimate between the case h ¼ 0

�
and h ¼ 45

�
is decreased

by 18%. It is also to be noted that, for angles comprised in the range
0
�
6 h 6 45

�
, optimal mechanisms are of type 1, whereas for

45
�
6 h 6 90

�
, optimal mechanisms are of type 2, such that the

curve of ultimate load estimates is symmetric with respect to
h ¼ 45

�
.

As regards the rectangular plate problem (Fig. 6), the anisotropy
effect is still more pronounced, since the upper bound estimate is
decreased by 31% between h ¼ 0

�
and h ¼ 56

�
for which the rein-

forcement orientation yields the minimum limit load estimate.
On this example, the competition between mechanisms 1 and 2
is more complex since optimal mechanisms of type 2 are obtained
for values in the range 56

�
6 h 6 74

�
.

2.3. Finite element formulation of the yield line method

Yield line method for complex strength criteria can be also eas-
ily implemented in a finite element framework. Consider, indeed, a
triangular mesh and a linear interpolation of the velocity in each
element. These elements are pure yield line elements since dissipa-
tion can be only produced by rotation discontinuities through ele-
ment edges. Let fUg denote the global vector of nodal velocities
and fFg the global loading vector. The normalization of the work
of external loads reads as: PextðUÞ ¼ hFifUg ¼ 1. Let ND denote the
number of active edges i.e., all external and internal edges except
free edges and simply supported edges (which do not contribute
to the maximum resisting work). For a given active edge j, its
length lj and its normal of orientation angle aj are computed. The
value P0j ¼ P0ðajÞ is computed for all edges and the rotation dis-
continuity is given by shnjt ¼ hDHjifUg such that the maximum
resisting work is given by:

PrmðUÞ ¼
XND

j¼1

ljP0jjhDHjifUgj

Finally, the associated linear programming problem reads as:

qYL ¼min
U;tj

XND

j¼1

ljP0jtj

s:t:
hFifUg ¼ 1
jhDHjifUgj 6 tj j ¼ 1; . . . ;ND

ð1Þ

Although the yield line approach may be very attractive due to
its simplicity of implementation, it suffers from many drawbacks.
The first one is that it is highly dependent on the mesh orientation
because rotation discontinuities can occur along the element edges
only. Limit load upper bounds produced by a pure yield line finite
element computation can be, therefore, highly dependent on the
mesh orientation. Different approaches have been proposed in
the literature to overcome this drawback (Johnson, 1994; Jennings,
1996; Askes et al., 1999).

Unfortunately, it has been pointed out by Braestrup (1971) that,
even if exact solutions can be obtained for some problems, yield
line theory fails, in general, to predict the exact limit load even
when assuming a very complex mechanism or with an infinitely
refined mesh. Indeed, for the simply supported square plate under
uniform pressure with a von Mises strength criterion, the yield line
theory cannot do better than predict an upper bound which is 10%
higher than the exact limit load. This is due to the fact that the ex-
act solution exhibits areas where dissipation is produced by curva-
ture instead of rotation discontinuities only.

3. Upper bound yield design approach with a complex strength
criterion

3.1. Numerical challenges

In the previous section, it has been highlighted that the yield
line method can be easily extended to the case when the plate
strength criterion is complex, provided that function P0ðaÞ can
be computed for all potential yield lines orientations. However,
dissipation through curvature has also to be taken into account
to obtain better upper bound estimates. Even if a preferred orien-
tation for the rotation discontinuities will still be present due to
the fixed positions of the finite element edges, it will be compen-
sated by a localized zone of curvature field so that a finite element
approach combining curvature and rotation discontinuities, be-
sides being much more accurate, is also much less sensitive to
the mesh layout than a pure yield line approach.

Unfortunately, the yield design problem may become very diffi-
cult when dealing with strength criteria of general shape such as
those obtained from a homogenization procedure. For example, if
the numerical value of the support function is known only on a fi-
nite set of curvature directions, the maximum resisting power can-
not be analytically expressed in terms of the unknowns of the
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problem. The main challenge is, thus, to obtain easy to handle
semi-analytical expressions for the support function, tractable by
a numerical solver.

Piecewise linear approximation of the strength criterion is one
possible approach. Although it was mainly used to approximate
classical non-linear strength criterion in the early developments
of numerical yield design, one can imagine using this technique
to approximate a complex strength criterion obtained from a
homogenization procedure and solve the associated linear pro-
gramming (LP) problem. However, the number of planes required
to approximate the strength criterion with a sufficient accuracy
may become rapidly large.

The approximation procedure proposed in this work is a further
step in this direction, which combines two important ingredients:
first, a natural idea is to use primitives of higher order than planes
so that a smaller number of these will be required in the approxi-
mation process; the second ingredient is to obtain an approximate
criterion which can be expressed using conic constraints, in order
to take maximum advantage of the efficiency of SOCP optimization
solvers.

Based on these two arguments, our goal is to approximate a
convex strength criterion using a convex hull of ellipsoids, since
the support function of an ellipsoid Ei can, indeed, be written as:

pEi
ðvÞ ¼ kJi � vk þ li � v

where v ¼ fvxx vyy 2vxyg
T ; Ji is a 3� 3 positive semi-definite upper

triangular matrix (defined by the ellipsoid axes length and orienta-
tion) and li is the coordinate vector of the ellipsoid center.

It is to be recalled that the support function of the convex hull of
two sets A and B is equal to the maximum between the support
function of A and that of B. Hence, the support function of the con-
vex hull CHðEiÞ of r ellipsoids Ei for i ¼ 1; . . . ; r parametrized by Ji

and li is given by:

pCHðEiÞðvÞ ¼ max
i¼1;...;r

fkJi � vk þ li � vg

which shows that the support function of the convex hull of r ellip-
soids can be easily expressed by means of conic constraints.

3.2. Approximation procedure of the strength criterion

In a recent work, the authors proposed a relatively simple algo-
rithm to approximate numerically computed strength criteria
using a convex hull of ellipsoids. The general principle of the algo-
rithm will be briefly recalled here, more details may be found in
Bleyer and de Buhan (2013b).

Assuming that the support function of the strength criterion is
known for M directions, uniformly distributed on the unit sphere
in the space of curvature, the following iterative algorithm con-
structs, at each iteration, an ellipsoid which is a local approxima-
tion of the original convex set.

1. Let v0 be the direction whose tangent plane is the furthest away
from the current approximation Gapp;r;

2. a second-order Taylor expansion of PðvÞ is performed around
v0;

3. the local radii of curvature of G at v0 are computed from the
Taylor expansion;

4. a series of ellipsoid with the same curvature and tangent to G at
v0 are considered;

5. the best ellipsoid is the one which minimizes the root mean
squared error between the support function of G and the one
of the ellipsoid in the region around v0;

6. the optimal ellipsoid En is added to the convex hull of the
current approximation Gapp;rþ1 ¼ CUðGapp;r; ErÞ;

7. go to step 1.
This approximation procedure has been applied to the macro-
scopic strength criterion of the reinforced plate problem. In
Fig. 7, the original strength criterion and approximate strength cri-
teria obtained with different number of ellipsoids are represented
to assess the performance of the proposed procedure. More pre-
cisely, Fig. 8 represents the evolution of the root mean square
(RMS) and maximal error made by the approximation procedure
as a function of the number r of ellipsoids. It can be observed that
the error is rapidly decreasing. Maximum error is of 17% for 10
ellipsoids, 5% for 30 ellipsoids and 2.8% for 50 ellipsoids. The deter-
mination of the 50 optimal ellipsoids took less than 2 min.

Finally, it is worth noting that, although inner approximations
are initially produced by the algorithm, it is always possible to ex-
pand them by an appropriate scaling factor so as to obtain outer
approximations of the initial convex set. This was done for the
approximating criterion involving 50 ellipsoids.

3.3. Finite element and SOCP formulation

In this subsection, the discrete upper bound kinematic approach
on a plate structure, the strength criterion of which has been pre-
viously approximated by a convex hull of r ellipsoids, will be pre-
sented. The plate is discretized into NE cubic Hermite triangles (H3)
which were introduced in Bleyer and de Buhan (2013a) and suc-
cessfully used to solve the kinematic approach of the auxiliary
problem in Part I.

The curvature at a given Gauss point g in a given element e can
be expressed as fvg ¼ ½Be;g �fUg. The support function at this point
is then:

pe;g
CHðEiÞ ¼ max

i¼1;...;r
fk½Ji�½Be;g �fUgk þ hlii½Be;g �fUgg

The contribution of the curvature term to the maximum resisting
work is then obtained after integration over all Gauss points of
the structure:

Pcurv
rm ¼

XNE

e¼1

Xn

g¼1

ce;g max
i¼1;...;r

fk½Ji�½Be;g �fUgk þ hlii½Be;g �fUgg

where ce;g are constant terms coming from the n-Gauss points
quadrature.

As regards the contribution of inter-element rotation disconti-
nuities to the maximum resisting work, the quantities P0j are di-
rectly evaluated as a function of the approximating ellipsoids
parameters. Indeed, introducing vdisc;j ¼ fcos2 aj sin2 aj sin 2ajg

T
:

P0j ¼ pCHðEiÞðvdisc;jÞ ¼ max
i¼1;...;r

kJi � vdisc;jk þ li � vdisc;j

n o
so that

Pdisc
rm ¼

XND

j¼1

P0j

Xm

g0¼1

c0j;g0 DHj
� �

fUg
�� ��

where c0j;g0 are constant terms coming from the m-Gauss points
quadrature on edges.

Finally, introducing different auxiliary variables, the upper
bound kinematic problem can be formulated as:

qu ¼min
XNE �n

k¼1

cktk;0 þ
XND �m

k0¼1

P0jc0k0 sk0

s:t: hFifUg ¼ 1
frk;ig ¼ ½Ji�½Be;g �fUg
tk;i P kfrk;igk i ¼ 1; . . . ; r

tk;i þ hlii½Be;g �fUg 6 tk;0 k ¼ 1; . . . ;n � NE

uk0 ¼ DHj
� �

fUg
sk0 P juk0 j k0 ¼ 1; . . . ;m � ND

ð2Þ
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Fig. 7. Approximation procedure of the macroscopic strength domain Ghom for the reinforced plate.
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Fig. 8. Evolution of the relative error with the number of ellipsoids. Errors are
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which is a standard SOCP problem involving r � n � NE conic con-
straints, r � n � NE þm � ND linear inequality constraints and
1þ 3r � n � NE þm � ND equality constraints. It is worth noting that,
even with a relatively simple mesh of NE ¼ 500 elements, a n ¼ 3
Gauss points rule and r ¼ 50 ellipsoids, r � n � NE ¼ 75;000 so that
(2) already constitutes a large scale SOCP problem.
4. Numerical examples

In this section, numerical examples are presented to assess the
performance of the different proposed methods.
In the first example, problem (2) associated to the reinforced
plate problem is solved using the MOSEK software package and
the influence of the number r of approximating ellipsoids is inves-
tigated. The value of r is, indeed, the main factor which determines
the difficulty of the optimization problem. It is to be noted that
approximations with r ¼ 10 and r ¼ 30 are not outer approxima-
tions of the macroscopic criterion Ghom so that a global computa-
tion with such domains will not produce an upper bound of the
limit load. Therefore, problem (2) has been solved for these values
of r, then, in a second step, the so-obtained optimal velocity field
fUg has been used to evaluate the maximum resisting work with
r ¼ 50 ellipsoids, the convex hull of which has been considered
to be sufficiently close to the original strength criterion. Such a
post-processing procedure has been applied to all SOCP upper
bounds presented in this section. The numerical yield line problem
(1) has also been solved using MOSEK for the reinforced plate
problem.

The second example will treat the case of a perforated circular
plate and compare the influence of the hole sizes and shapes on
the limit load.
4.1. Reinforced plate under uniform loading

Finite element meshes used for the SOCP computations are rep-
resented in Fig. 9(a) for the square plate problem and in Fig. 9(b)
for the rectangular plate problem. As regards numerical yield line
computations, the same type of structured mesh has been used



Fig. 9. Finite element meshes for SOCP computations.

Fig. 10. Comparison of the upper bound estimates for the reinforced rectangular
plate obtained with various methods: analytical yield line (YL) method, numerical
yield line method, SOCP with a convex hull of r ¼ 10;30 and 50 ellipsoids.

Fig. 11. Comparison of the upper bound estimates for the reinforced rectangular
plate obtained with various methods: analytical yield line (YL) method, numerical
yield line method, SOCP with a convex hull of r ¼ 10;30 and 50 ellipsoids.

Table 1
Typical optimization times for the SOCP problems on the square and rectangular plate
problem. (performed on a Intel-P4 2.4 GHz running Linux 32-bits with MOSEK v7.0).

Number of ellipsoids Square plate (s) Rectangular plate (s)

r ¼ 10 2.5 4
r ¼ 30 6.5 13
r ¼ 50 12 24
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with 1568 elements for the square plate and 3248 elements for the
rectangular plate.

In Fig. 10 for the square plate and in Fig. 11 for the rectangular
plate, the SOCP upper bounds obtained with r ¼ 10;30 and r ¼ 50
ellipsoids have been compared to the upper bound obtained with
the analytical yield line method of subSection 2.2 as well as to
the upper bound obtained with a numerical implementation of
the yield line method presented in subSection 2.3. It is first to be
noted that numerical yield line upper bound does not necessarily
improve the analytical yield line upper bound. This is mainly due
to the considered finite element mesh which restrains the poten-
tial set of yield lines. In this case too, the numerical yield line meth-
od also proved to be highly sensitive to the mesh layout.

Secondly, SOCP computations yield better estimates, by almost
10% in some cases. One can also observe that upper bounds ob-
tained with r ¼ 30 or 50 ellipsoids are very close to those obtained
with r ¼ 10 ellipsoids, differing by less than 2%. Therefore, despite
the fact that the original strength criterion is not particularly well
approximated with r ¼ 10 ellipsoids, it seems that, due to the post-
processing procedure, it is sufficient to obtain a good optimal
velocity field and related upper bound estimate.

Besides, typical computation times for the optimization proce-
dure have been reported in Table 1. It can be observed that the
computational cost on a standard desktop computer is very rea-
sonable even for the highest number of ellipsoids used to describe
the yield surface.

Finally, failure mechanisms of the square plate problem have
also been represented in Fig. 12 for the homogeneous plate and
the reinforced plate with h ¼ 0

�
and h ¼ 45

�
. The anisotropy in-

duced by the presence of the reinforcements can be clearly ob-
served for these two cases by comparison to the homogeneous
case. For example, with h ¼ 45

�
, the optimal mechanism seems ex-

hibit a kind of yield line along the diagonal parallel to the rein-
forcement direction and a region with a distributed curvature
along the other diagonal.
4.2. Perforated circular plate under uniform loading

In this last example, the case of a simply supported circular
plate of radius R subject to a uniform loading of intensity q is con-
sidered. The plate is made of a von Mises material of ultimate
bending moment mp perforated by a series of circular or square



Fig. 12. Comparison of different failure mechanisms for the simply supported
square plate.

Fig. 13. Circular plate perforated by a series of circular or square holes.

Fig. 14. 413 elements mesh used for the global computation.

Fig. 15. Evolution of the obtained upper bounds with respect to the plate porosity.
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holes arranged as depicted in Fig. 13. Different square unit cells are
considered by varying the non-dimensional hole size parameter k
which was respectively taken as k ¼ 0:1;0:2;0:3;0:4;0:5;0:6;0:8
for the circular hole as well as for the square hole.

Obviously, for k ¼ 0, the solution relative to the homogeneous
circular plate problem obeying a von Mises criterion is recovered.
For simple supports, the limit load is known to be q0 ¼ 6:52mp=R2

Save et al., 1997. Besides, for k ¼ 1, all holes are connected and the
plate bearing capacity vanishes which gives then q ¼ 0 as the limit
load.

The macroscopic strength criterion Ghom has been determined
by solving the kinematic upper bound auxiliary problem for the
2� 7 different unit cell geometries. For one unit cell geometry,
10,000 values of Phom have been computed in around 1 h. Simulta-
neous computations have been made to reduce the computational
cost. Then, the approximation procedure has been performed to
approximate the strength criterion by 50 ellipsoids. This also took



Fig. A.16. Hodograph of angular velocity jumps across yield lines and normal
orientations.
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around 2 min for each yield surface. Finally, computations on the
homogenized problem have been performed on a quarter of circu-
lar plate (see Fig. 14) with 10 ellipsoids and the previously men-
tioned post-processing step. Each optimization procedure was
performed by MOSEK in 5–10 s.

In Fig. 15, the ratio between the upper bounds of each homog-
enized problems and the solution for the homogeneous plate have
been represented with respect to the plate porosity defined by
g ¼ pk2=4 in the case of circular holes and g ¼ k2 in the case of
square holes. The black dotted line represents the Voigt upper
bound which is obtained by considering that the exact macroscopic
strength criterion is contained in the von Mises criterion with a re-
duced moment capacity mp;red ¼ ð1� gÞmp, which leads to an
upper bound equal to qVoigt ¼ ð1� gÞq0. One can observe that the
Voigt upper bound gives a very poor estimate of the limit load
for all types of hole shape. Moreover, for a given value in the small
porosity range, the limit load does not seem to depend on the hole
shape. Finally, considering the evolution of the limit load estimates
with respect to the hole size k, a maximum discrepancy of 6.3% can
be observed for k ¼ 0:5 between the circular and the square shape.
5. Conclusions and perspectives

In the second part of this work on yield design homogenization
method applied to periodic thin plates, the computation of limit
load estimates of homogenized plate structure problems derived
from upper bound kinematic approaches has been addressed, and
associated numerical tools have been proposed. It has been shown,
in particular, that the yield line method, which is commonly used
in civil engineering computations, can be easily extended to the
case of complex strength criteria obtained from homogenization
procedures. Indeed, taking advantage of the 1-homogeneity prop-
erty of support functions and provided that the function P0ðaÞ
depending on the sole normal orientation angle a is determined
from the homogenization procedure, the yield line method can
be applied, in a straightforward manner, analytically as well as
numerically, as shown on the example of the simply supported
reinforced rectangular plate.

A more sophisticated and performing upper bound kinematic
approach has also been proposed based on the use of finite ele-
ments taking into account dissipation through curvature as well
as angular jumps. For the curvature term, the support function
has no simple expression and an approximation procedure is, thus,
required to implement a semi-analytical expression of the support
function in the optimization solver. An approximation algorithm
based on the construction of a convex hull of ellipsoids is proposed
leading to a simple description of the macroscopic strength crite-
rion support function which is compatible with a SOCP formula-
tion. Despite a large number of resulting conic constraints in the
global optimization problem, accurate solutions can be obtained
in extremely reasonable computing times on a standard desktop.
Results indicate that good optimal velocity fields and accurate
upper bounds can still be found with a small number (e.g., 10)
ellipsoids, a post-processing procedure with a more accurate
description of the strength criterion allowing to obtain a more pre-
cise upper bound estimate.

Finally, the numerical results indicate that refined kinematic
approaches with approximate criteria and SOCP provide better
upper bound by at most 15% compared to the yield line method.
Therefore, as regards civil engineering applications, the yield line
method seems to be a good compromise between implementation
simplicity and predictability, although mesh dependency can be an
important drawback.
Possible extensions of this work are multiple. A first direction of
research may consist in applying the general idea of approximating
complex strength criteria obtained from homogenization proce-
dures to other mechanical models (plane strain, soils,. . .). The
development of more performing approximation procedures
which would require even less primitives to describe the yield sur-
face is also possible. As regards periodic plates, a current work aims
at treating the case of the plate thickness being of the same order
as the unit cell characteristic length, by solving the auxiliary prob-
lems defined on a three-dimensional unit cell with the same
numerical tools. Finally, further work can also deal with the case
of plates having a finite resistance to shear forces or the more com-
plicated case of shells.

Appendix A. Analytical yield line computations

The work of external loads developed in mechanism 1 is given
by:

PextðbuÞ ¼ qabbf 1
2
� a

6b
tan b

� �

The angular velocity of regions 1 and 3 are given by

h01 ¼ h03 ¼ 2bf
a , whereas the angular velocity of regions 2 and 4 are

given by h02 ¼ h04 ¼ 2bf
a tan b. The hodograph of angular velocities rep-

resented in Fig. A.16 is used to compute the discontinuity of angu-
lar velocity hij between regions i and j. We have:

h12 ¼ h23 ¼ h34 ¼ h41 ¼
2bf

a sin b
and h13 ¼

4bf
a

The orientation angles aij of the yield line normals nij are given by:

a12 ¼ 2p� b� h

a23 ¼ pþ b� h

a34 ¼ p� b� h

a41 ¼ b� h

a13 ¼ p=2� h

We also have jAEj ¼ jBFj ¼ jCFj ¼ jDEj ¼ a=ð2 cos bÞ and
jEFj ¼ b� a tan b. Obviously, all expressions are valid only if
b 6 arctanðb=aÞ. Therefore, the maximum resisting work associated
with this mechanism is given by:

Prm¼
Z

C
jshntjP0ðaÞdl

¼4jCFjjh12j P0ðpþb�hÞþP0ðp�b�hÞþP0ðb�hÞþP0ðb�hÞð Þ
þjEFjjh13jP0ðp=2�hÞ

Finally, observing that P0ðaÞ is p� periodic and symmetric with re-
spect to p=2 due to the unit cell symmetry, the following upper
bound estimate is obtained for the reinforced plate limit load:



q� 6 q1 ¼ min
b2½0;arctanðb=aÞ�

4
sin 2b ðP0ðb� hÞ þP0ðp� b� hÞÞ þ 4ðb=a� tan bÞP0ðp=2� hÞ

ab 1
2� a

6b tan b
� �
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