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We investigate the finite bending of a bilayer gel in response to temperature under plane strain condition.
We demonstrate that our model based on finite elasticity predicts larger bending curvatures of the bilay-
ers compared with the linear model based on the elementary beam theory, and a high swelling ratio in
the bilayer enhances the differences between both models. We also show that the folding shape of the
bilayer can be controlled by tuning the ratio of shear modulus and the length-to-height ratio and that
multiple neutral axes can exist in the bilayer under certain conditions. Our results could provide the basis
for further numerical modeling of a layered gel as well as a spatially patterned gel to create 3D complex
self-folding structures.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Soft materials that undergo a desired three-dimensional (3D)
shape transformation in response to changes in ambient environ-
ment have potential applications in soft robotics (Osada and
Gong, 1998; Calvert, 2009; Hawkes et al., 2010; Majidi, 2014), bio-
medicine (Peppas et al., 2006; Hoare and Kohane, 2008; Annabi
et al., 2013), biomedical devices (Bashir, 2004; Azam et al., 2010;
Randall et al., 2012), optical devices (Dong et al., 2006), micro-
fluidic devices (Richter et al., 2004; Jamal et al., 2011), and respon-
sive surfaces (Stuart et al., 2010). The large reversible deformation
of soft materials in response to a specific external stimulus such as
temperature (Hu et al., 1995; Asoh et al., 2008; Zhang et al., 2012;
Kim et al., 2012; Kim et al., 2012), solvent (Guan et al., 2005; Kelby
et al., 2011; Jeong et al., 2011; Holmes et al., 2011), pH (Luchnikov
et al., 2005; Kumar et al., 2009; Kelby et al., 2011), light (Jamal
et al., 2011; Yu et al., 2003), and electric field (Smela et al., 1995;
Fukunaga et al., 2008) can be utilized to create a self-folding/
self-shaping structure which broadly refers to a class of self-
assembly systems in which the structures curve or fold-up either
spontaneously (Gracias, 2013; Ionov, 2014; Studart and Erb, 2014).

In particular, temperature-responsive hydrogels can exhibit
extremely large deformation due to the volume transition in
response to changes in temperature (Hu et al., 1995; Asoh et al.,
2008; Zhang et al., 2012; Kim et al., 2012; Kim et al., 2012). A prime
example is based on poly(N-isopropylacrylamide) (PNIPA), which
has a lower critical solution temperature (LCST) around room
temperature, 305 K. PNIPA-based temperature-responsive gels
dramatically increase their volume by as much as a factor of 10
when the temperature decreases from above the LCST to below
it. The PNIPA gels have been studied extensively, and a large num-
ber of experiments are available (Schild, 1992). In order to design
structures that fold in response to temperature, one of the strate-
gies is to generate spatially inhomogeneous differential stresses
either along its thickness or lateral directions so that a bending
moment is generated. A straightforward strategy to create a tem-
perature-responsive bending structure is to utilize a layered struc-
ture. Hu et al. (1995) have first fabricated partially interpenetrated
polymer networks composed of PNIPA and poly(acrylamide)
(PAAM), so-called ‘‘bi-gels’’ which bend into circles in response
to variations in acetone concentration or temperature. They dem-
onstrated that a hand-like device gripped the object at 308 K and
released it at room temperature, 295 K. Bending is achieved when
one of the polymer layers swells more than the other, by a
response to temperature. This strategy harnessing inhomogeneous
swelling through the thickness creates one-dimensional structures
that can bend into a shape with mean curvature (Hu et al., 1995;
Asoh et al., 2008; Zhang et al., 2012; Agrawal et al., 2014;
Topham et al., 2007; Swann and Ryan, 2009; Smela et al., 1995).

The design principle of bending actuation using a layered struc-
ture is not new and dates back to a bimetal strip. The British clock-
maker John Harrison has innovated the bimetal strip thermometer
in a seventeenth century, and then Timoshenko (1925) has first
achieved the analysis of the thermoelastic deformation in bimetal
strips as functions of the geometry and mismatch in material prop-
erties. The curvature of the bimetal strip, where the thickness of
each layer is same, is proportional to the difference in elongation
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of the two layers and inversely proportional to the thickness of the
bilayer without external forces. Since hydrogels can cause signifi-
cantly larger volume changes due to swelling, compared with the
actuation by thermal expansion in metals, the bilayer gel can actu-
ate with extremely large deformation and realize the creation of
self-folding structures. Recently, Lucantonio et al. (2014) have
described swelling-induced bending of bilayered gel beams. They
have also proposed two simple formulae for the axial stretching
and bending curvature, depending on the material and geometrical
parameters such as the shear modulus ratio and the thickness
ratio. Chester et al. (2015) have implemented the theory of
Chester and Anand (2011) for fluid diffusion and large deforma-
tions of elastomeric gels in the commercial finite-element code
Abaqus/Standard. As one of illustrative examples to demonstrate
the robustness of the numerical implementation, they have per-
formed a finite element simulation of a thermally responsive
bilayer within the framework of a thermo-chemo-mechanically
coupled theory.

More complex 3D shape transformation of patterned gels has
been achieved by an alternative approach using an in-plane inho-
mogeneous swelling that is based on the concept coined as ‘‘non-
Euclidean target metric’’ (Klein et al., 2007; Sharon and Efrati,
2010; Kim et al., 2012; Byun et al., 2013; Therien-Aubin et al.,
2013; Wu et al., 2013). The in-plane variations in swelling induce
out-of-plane buckling into a 3D shape with both mean and Gauss-
ian curvature. However, at present, the understanding of how pat-
terned gels transform into 3D complex shapes remains far from
understood. Therefore, a detailed analytical study of bilayer gel
which is the simplest and most commonly employed geometry
with mean curvature promises to help understanding for more
complex 3D shape transformation of patterned gels.

Here, we investigate the finite bending of a bilayer gel in
response to temperature under plane strain condition. We first
decompose the deformation gradient into the one-dimensional
homogeneous swelling part and the non-swelling homogeneous
pure bending part. Then, we impose the self-equilibrium condi-
tion that the bending moment through the bilayer gel is mechan-
ically balanced without any external forces and numerically
determine the equilibrium shapes. We demonstrate that our
analysis based on finite elasticity predicts larger curvatures of
the bilayers compared with the linear model based on the ele-
mentary beam theory. Finally, we further examine the influences
of the length-to-height ratio of bilayer and the ratio of shear
modulus between two layers on the shapes and stress distribu-
tions. We show that the folding shape of the bilayer can be
controlled by tuning the ratio of shear modulus and the length-
to-height ratio and that multiple neutral axes can exist in the
bilayer under certain conditions.
1 Here we can find an alternative formulation of swelling-induced large deforma-
tions in polymer gels (Lucantonio et al., 2013) where the nominal concentration o
solvent C is defined as a state variable at the starting point.
2. Finite bending of a bilayer gel in plane strain condition

In Fig. 1, we schematically show a problem setting for finite
bending of a bilayer gel in response to temperature T. A bilayer
gel is stacked with two layers of temperature-responsive gel hav-
ing different swelling ratios, as shown in Fig. 1(A). When the
bilayer gel is immersed in solution with temperature T, each gel
layer can be bent due to swelling without any external forces
according to the relative value of the swelling ratios between
two gels. In order to illustrate finite bending of a bilayer gel due
to swelling in the simplest settings, we shall consider specific
bilayer gel consisting of an incompressible elastomer (non-swella-
ble gel) layer (s ¼ 1) and a gel layer (s ¼ 2), as shown in Fig. 1(B).
This bilayer gel is equivalent to that consisting of two gel layers
if the swelling ratio of the gel layer is regarded as the relative
one instead of those of two gel layers.
In order to describe the equilibrium for finite bending and
swelling phenomena of the hydrogel, we specify the Helmholtz
free energy density. The free energy density function of the ðsÞth
layer per unit dry volume V ðsÞ0 is described by the Flory–Rehner
model (Flory and Rehner, 1943) in terms of principal stretches
kðsÞi ði ¼ 1;2;3Þ, which consists of two terms:
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where the volume ratio JðsÞ ¼ kðsÞ1 kðsÞ2 kðsÞ3 ¼ V ðsÞ=V ðsÞ0 is the scale factor
to represent it in the dry state since /ðsÞ is the volume fraction of
polymer in the current state. The first term is the free energy density
associated with the elastic deformation of the polymer network.
The Gaussian chain network model with the compressibility gives
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in which the last term on right hand side represents contributions
to the entropy change due to volume changes: the compressibility.
For elastomer layer ðs ¼ 1Þ, we set Jð1Þ ¼ 1 to yield the incompress-
ible neo-Hooke model, W ð1Þ

e . GðsÞ ¼ nðsÞkBT is the shear modulus of
elasticity in the dry state, nðsÞ is the crosslink density, T is tempera-
ture, and kB ¼ 1:38� 10�23 J=K is Boltzmann’s constant. The second
term in Eq. (1) is the mixing free energy due to the mixing of the
polymer network and the solvent. A simple model for the mixing
term is taken to be the mixing energy for a polymer solution of
the form (Doi, 2009):
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where vs is the volume per solvent molecule; /ðsÞ is the volume
fraction of polymer in swollen state and that of dry state is set to
unity. Based on the assumption that the polymer network and pure
liquid solvent are incompressible, the volume fraction of polymer,
/ðsÞ, is related to the nominal concentration of solvent, C, by Hong
et al. (2008) and Chester and Anand (2010)1

1þ vsC ¼ 1=/ðsÞ ¼ JðsÞ: ð4Þ

The dimensionless parameter vðsÞð/ðsÞ; TÞ is a function of the volume
fraction of polymer and temperature, which is experimentally mea-
sured in the following form (Afroze et al., 2000; Cai and Suo, 2011):

vðsÞð/ðsÞ; TÞ ¼ v0 þ v1/
ðsÞ; ð5Þ

where v0 ¼ A0 þ B0T and v1 ¼ A1 þ B1T. Eq. (5) represents the dis-
affinity between the polymer and solvent. Therefore, the free energy
density describing the equilibrium of the gel may be represented as
a function of temperature through the vðsÞ-parameter. A Legendre
transform allows us the free energy density function W ðsÞ to be
transformed into another form ~W ðsÞ as a function of chemical poten-
tial l instead of /ðsÞ (Hong et al., 2008),
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The equations of state that describe the mechano-chemical interac-
tion of the hydrogels give the principal true stresses (Cai and Suo,
2011),

rðsÞi ¼
kðsÞi

JðsÞ
@ ~W

@kðsÞi

; ði ¼ 1;2;3Þ: ð7Þ
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Fig. 1. Problem setting. (A) Swelling-induced bending of a bilayer gel from dry state due to the difference of swelling ratios. (B) Coordinate systems and schematic of the
multiplicative decomposition.
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We decompose the deformation gradient, FðsÞ, from the dry state to
the state of swelling-induced bending into two parts as shown in
Fig. 1(B): FðsÞ ¼ FðsÞ1 FðsÞ0 where FðsÞ0 is for the kinematics from the dry
state (reference configuration) to the state of one-dimensional
swelling under plane constraint (intermediate configuration), and
FðsÞ1 is for the kinematics from the virtual configuration to the swell-
ing-induced bending state (current configuration). When the con-
straint is released, the bilayer gel is bent due to the unbalanced
stresses. This multiplicative decomposition for swelling gels has
been adapted widely in the literature (Duda et al., 2010; Chester
and Anand, 2010; Lucantonio et al., 2013), and in the present study
it is useful to capture the role that the swelling under constraint
builds up compressive stress in the strip.

We first consider the one-dimensional swelling of the gel (Kang
and Huang, 2010) from the dry state whereas the elastomer is still
in deformation-free, Fð1Þ0 ¼ I where I is the identity tensor. We
assume that the gel layer can only stretch in the thickness direction
(e1-direction) due to swelling in response to temperature. As a
result, biaxial compressive stresses build up in the gel layer. In this
kinematics, the deformation gradient of the gel layer can be
expressed as
Fð2Þ0 ¼ kð2Þ1 e1 � e1 þ kð2Þ2 e2 � e2 þ kð2Þ3 e3 � e3; ð8Þ

where

kð2Þ1 ¼ kð2Þh ; kð2Þ2 ¼ kð2Þ3 ¼ 1: ð9Þ

Substituting Eqs. (1) and (9) into Eq. (7), we have the equi-biaxial
stresses in the e2e3-plane, rð2Þ0 � rð2Þ2 ¼ rð2Þ3 , and the stress in the
transverse direction e1;rð2Þ1 :
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The external chemical potential of the outer solvent is given by
l̂ ¼ l0 þ vs p̂, where l0 is a reference chemical potential and p̂ is
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the external pressure. We set l0 ¼ 0 for simplicity through this
paper. In equilibrium with an incompressible liquid solvent, we
have l ¼ l̂ ¼ 0 and the corresponding external pressure p̂ is taken
to be zero. Thus, the top surface of gel layer can be assumed to be
traction-free: rð2Þ1 ¼ �p̂ ¼ 0. Solving Eq. (11) under these boundary
conditions, the equilibrium swelling ratio of the gel which is equiv-
alent to the stretch in the thickness direction, kð2Þh , can be deter-
mined by

nð2Þvs

kh
ðk2

h � 1Þ þ ln 1� 1
kh

� �
þ 1

kh

v0 � v1

k2
h

þ 2v1
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h

 !
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This is a compressive biaxial stress induced by swelling of the con-
fined gel due to a layered structure.

Next, we consider the kinematics of bilayer gel from the state of
the one-dimensional swelling to the state of finite pure bending.
This kinematics can be considered as a pure bending of layered
elastomer with no volume change. This problem has already been
solved when we assume that the homogeneous finite deformation
to each layer regarding as a plane strain problem. As shown in
Fig. 1(B), the position vectors in the virtual configuration and the
current configuration are denoted by X ¼ ðX1;X2;X3Þ and
x ¼ ðr; h; zÞ, respectively. The deformation gradient for both layers
(s ¼ 1;2) is given by (Rivlin, 1949; Roccabianca et al., 2010):

FðsÞ1 ¼
L

2�hr
er � e1 þ

2�hr
L

eh � e2 þ ez � e3: ð13Þ

The volume conservation from the one-dimensional swollen state
to the pure bending imposes

2�hhðsÞ rðsÞi þ
hðsÞ

2

 !
¼ LHðsÞkðsÞh ; ð14Þ

where kð1Þh ¼ 1 for an incompressible elastomer and kð2Þh – 1 is deter-
mined by Eq. (12) for gel layer. From Eq. (14), we have
rðsþ1Þ

i ¼ rðsÞi þ hðsÞ where rð1Þi ¼ LHð1Þ

2�hhð1Þ
kð1Þh � hð1Þ

2 . Thus, Eq. (14) also gives
the thickness of gel layer (s ¼ 2),
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Finally, we consider the kinematics from the dry state to the swell-
ing-induced bending state. As shown in Fig. 1(B), in the dry state,
we assume the layers to be stress-free state and introduce a Carte-
sian coordinate system. In the current configuration, we assume
that each layer is isochoricly deformed as a sector of a cylindrical
tube of semi-angle �h and introduce a cylindrical coordinate system
ðr; h; zÞ. The deformation gradients from the dry state to the swell-
ing-induced bending state is obtained by multiplying the deforma-
tion gradients

FðsÞ ¼ FðsÞ1 FðsÞ0 ¼
L

2�hr
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2�hr
L

eh � e2 þ ez � e3; ð16Þ

so that we have the stretches, kðsÞr ¼ L
2�hr k

ðsÞ
h , kðsÞh ¼ 2�hr

L , and kðsÞz ¼ 1. The
balance equations of the sth layer are
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Since the stretches depend only on r, the chain rule of differentia-
tion of the free energy function can be expressed as d ~WðsÞ

dr ¼
drðsÞr

dr kðsÞh .
In addition, rðsÞh only depends on r, the stress in radial direction
yields
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where we have redefined ~W ðsÞ at l̂ ¼ 0 in Eq. (6) as
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Substitution Eq. (19) into (17)1 gives the stress in hoop direction,
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where cðsÞ is an unknown integration constant, which is determined
by imposing the continuity condition of traction at interfaces
between layers and traction-free boundary conditions at the exter-
nal boundaries of the bilayer gel:
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Substituting Eqs. (18) and (20) into Eq. (21), the unknown integra-
tion constants are obtained as

cð1Þ ¼ � �W ð1Þ kð1Þh rð1Þi

� �� �
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No external forces are applied to the bilayer gel in the swollen state.
The resultant force balance requires thatZ hð1Þ

0
rð1Þh dr þ

Z hð2Þ

hð1Þ
rð2Þh dr ¼ 0; ð23Þ
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hð1Þ
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The total thickness of bilayer gel in the current configuration is
given by h ¼ hð1Þ þ hð2Þ. Since we assumed that the surface of the
gel is traction-free, Eq. (23) is automatically satisfied. Thus, we only
require Eq. (24) to be satisfied and numerically solve for the
unknown kinematic parameters ð�h;hð1ÞÞ to determine the self-
equilibrium state.

The closed form expressions of stress components can be
derived by Eqs. (18) and (20) with Eqs. (19) and (22):
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with rð1Þi ¼ LHð1Þ

2�hhð1Þ
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2 for the elastomer layer, and
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with rð3Þi ¼ rð2Þi þ hð2Þ and rð2Þi ¼ rð1Þi þ hð1Þ for the gel layer.

3. Results and discussion

The free energy density function given by Eq. (1) or (19) intro-
duces five parameters: a dimensionless measure of the crosslink
density, nð2Þvs, and the four fitting parameters to the specific PNI-
PA-based gel, ðA0;B0;A1;B1Þ, which are provided by (Afroze et al.,
2000; Cai and Suo, 2011) as

A0 ¼ �12:947; B0 ¼ 0:04496 K�1;

A1 ¼ 17:92; B1 ¼ �0:0569 K�1:

The volume per solvent (water) molecule is usually given as
vs ¼ 3� 10�29 m3. In addition, as a simple setting, we specifically
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choose Hð1Þ ¼ Hð2Þ for the initial thickness of each layer and
Gð1Þ ¼ 1 MPa for the shear modulus of elastomer layer at
T ¼ 300 K. Although we limit ourselves in the case of Hð1Þ ¼ Hð2Þ, it
should be noted that the thickness ratio, Hð2Þ=Hð1Þ, significantly
affects on the swelling-induced bending state (Lucantonio et al.,
2014). In the following part of this Section, we study the equilib-
rium shapes and stress distributions of the bilayer in the state of
swelling-induced bending, focusing on the effects of the length-
to-height (aspect) ratio, L=H, and the shear modulus ratio,
Gð2Þ=Gð1Þ, which is related to the dimensionless crosslink density of
gel, nð2Þvs, through

Gð2Þ

Gð1Þ
¼ nð2ÞkB T

Gð1Þ
¼ ðn

ð2ÞvsÞkB T

Gð1Þvs

¼ 138 � ðnð2ÞvsÞ:
3.1. Swelling-induced biaxial stress

Fig. 2 shows mechanical responses for gel layer under planar
constraint in the kinematics from a dry state to the state of
one-dimensional swelling as shown in Fig. 1(B). In Fig. 2(A),
we plot the swelling ratio, equivalently the volume ratio

Jð2Þ0 ¼ V ð2Þ=V ð2Þ0 ¼ kð2Þh

� �
, as a function of temperature T with three

values of dimensionless crosslink density ðnð2Þvs ¼ 0:001;0:005;
0:01Þ. We observe that the volume transition of the gel layer takes
place at the LCST, T � 305 K, and exhibits the significant increase of
its volume, equally swelling ratio kð2Þh , when the temperature
decreases from above the LCST to below it. The inset in Fig. 2(A)
shows the relation between the ratio of shear modulus of gel layer
to that of elastomer layer, Gð2Þ=Gð1Þ, and the dimensionless crosslink
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Fig. 2. Mechanical responses for gel layer under planar constraint. (A) Swelling
ratio (stretch in the thickness direction) due to one-dimensional swelling. (B)
Swelling-induced equi-biaxial compressive stresses.
density nð2Þvs of gel layer at T ¼ 300 K. The values of
nð2Þvs ¼ ð0:001;0:005Þ imply the gel layer is softer than the elasto-
mer layer according to their shear moduli, whereas the value of
nð2Þvs ¼ 0:01 implies the gel layer is harder than the other. The
lower values of nð2Þvs make the gel layer swell largely, and the
swollen gel becomes softer than the dry state because the crosslink
density nð2Þ is unchanged during swelling process. Fig. 2(B) also
shows the swelling-induced biaxial stress rð2Þ0 given by Eq. (10)
which can induce the bending curvature of the bilayer. For the cre-
ation of self-folding structures in response to temperature, in the
following results, we will focus on two equilibrium states across
the LCST, at 310 K and 300 K, respectively.
3.2. Equilibrium shapes

In order to examine the equilibrium shapes of bilayer gels due
to swelling responding to change in temperature, we first plot
the bending curvature j� ¼ 1=rð1Þi which is defined as the inverse
of the radius of curvature at the inner surface of elastomer layer
as a function of temperature T in Fig. 3. When the temperature
decreases from above the LCST to below it, the curvature j� dra-
matically increases. The decrease of the dimensionless crosslink
density nð2Þvs can induce the relatively large curvatures. The gel
with lower value of nð2Þvs can take place large volume change
due to swelling with its low elastic modulus. In order to capture
the capability of our nonlinear model, we compare with the linear
model calculated using Eq. (A.14), well-known as Timoshenko
model (Timoshenko, 1925) based on elementary beam theory
(see Appendix A). The linear model can provide the closed expres-
sion of the bending curvature due to the swelling-induced stresses
given by Eq. (A.14), while cannot provide the stress distributions or
the accurate geometry of the thickness. The significant quantitative
difference between the nonlinear and linear models is observed at
below the LCST. We suggest that the nonlinear model should be
used accurately to predict the equilibrium shapes of bilayer gel
involving large volume changes instead of the linear model. It is
obvious that these results are valid for any values of the aspect
ratio L=H of bilayer gel since the curvature does not depend on it
in a pure bending problem. This fact is also supported by Eq.
(A.12) in the linear model, which only depends on the ratios of
the elastic modulus and thickness in a thin bilayer, (v; d).

Fig. 4 shows the self-equilibrium shapes at T ¼ 310 K for vari-
ous aspect ratios L=H and dimensionless crosslink densities
nð2Þvs. From Fig. 2(A), we see that the shapes below the LCST have
almost no differences for three values of nð2Þvs ¼ ð0:01;0:005;
Fig. 3. Bending curvatures j� as a function of temperature T for bilayer gels with
nð2Þvs ¼ ð0:1;0:005;0:01Þ. The solid lines and the symbols correspond to the
predictions from the nonlinear and linear model, respectively.
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Fig. 4. Self-equilibrium shapes at T ¼ 310 K, above the LCST. (A) Self-equilibrium shapes for various combinations of the normalized crosslink density nð2Þvs and aspect ratio
L=H. (B) Bending semi-angle �h as a function of the aspect ratio L=H for dry state with three normalized crosslink densities ðnð2Þvs ¼ 0:001;0:005;0:01Þ. (C) Bending semi-angle
�h as a function of the normalized crosslink density nð2Þvs with three aspect ratios ðL=H ¼ 1;5;10Þ.
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0:001Þ, which correspond to the small swelling ratios at T ¼ 310 K
as indicated in Fig. 2(A). Fig. 4(B) indicates the linear response
between the aspect ratio L=H and the bending semi-angle �h. This
semi-angle �h linearly increases with increasing the aspect ratio
L=H. As mentioned above, the bending curvatures j� keep constant
for varying the aspect ratios L=H in a pure bending problem. How-
ever, the bending semi-angles �h are dependent on the aspect ratio
L=H. That is, as the aspect ratio L=H increases, the bilayer gel forms
a rolled shape with increasing bending semi-angle �h while keeping
the constant curvature j�. Fig. 4(C) shows that the normalized
crosslink density nð2Þvs does not simply affect on the bending
semi-angle �h. There exists the peak values of �h at which
nð2Þvs 	 0:006 for any values of L=H. This implies that to obtain a
large bending actuation there may exist the optimized choices
between the aspect ratio and the crosslink density. However, as
for our specific settings at above the LCST, T ¼ 310 K, the depen-
dence of the bending semi-angle �h on nð2Þvs is small enough to
be negligible.

Fig. 5 shows the self-equilibrium shapes at T ¼ 300 K for vari-
ous aspect ratios and dimensionless crosslink densities nð2Þvs. In
Fig. 5(A) we observe that the gel layer is largely swollen and the
self-folding structure is obviously formed depending on the nor-
malized crosslink density v ð2Þvs and the aspect ratio L=H.
Fig. 5(B) shows the linear relation between the bending semi-angle
�h and the aspect ratio L=H. This is the same for the case of
T ¼ 310 K. When the bending semi-angle �h becomes greater than
the value of �h ¼ p at which both sides of bilayer gel are in self-con-
tact, the equilibrium solution does not have the physical meaning
due to the excess bending. We note that the stability analysis is
required to determine the self-equilibrium states which can be
physically realized. The inner surface of the bilayer can cause a
localized buckling (Roccabianca et al., 2010) such as wrinkling,
folding and creasing depending the ratio of shear modulus in the
bilayer. However, as long as we deal with the self-equilibrium of
bilayer gel subjected to pure bending in this paper, the bending
moment in the bilayer at the self-equilibrium state is too small
to pay attention to the stability until the threshold of excess bend-
ing, �h 6 p. This is behind the scope of the present investigation. In
Fig. 5(C), we observe that the bending semi-angle �h monotonically
decreases with increasing the crosslink density nð2Þvs. In contrast
to Fig. 4(C), we found that the bending semi-angles �h for
T ¼ 300 K has no peak values with respect to nð2Þvs.

3.3. Stress distributions

In Fig. 6, we show the stress components ðrðsÞh ;r
ðsÞ
r Þ normalized

by the shear modulus of elastomer layer Gð1Þ for T ¼ 300 K. The
spatial variable ðr � rð1ÞÞ across the thickness of a bilayer is normal-
ized by the total height of the bilayer in the current configuration,
h ¼ hð1Þ þ hð2Þ. Since the stresses given by Eqs. (25) and (26) are
only dependent on the r-direction, the stress profiles are indepen-
dent of the aspect ratios L=H.

Fig. 6(A) shows the results for nð2Þvs ¼ 0:01, which correspond
to the case that the shear modulus of gel layer Gð2Þ is higher than
that of the elastomer layer, Gð2Þ > Gð1Þ. On the other hand,
Fig. 6(B) shows the results for nð2Þvs ¼ 0:001, which correspond
to the case of Gð2Þ < Gð1Þ. From these figures, we can confirm the
position of neutral axis at which the stress components being zero.
This knowledge is valuable for designing the stretchable/flexible
electronics where the active devices are placed on the neutral axis
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Fig. 5. Self-equilibrium shapes at T ¼ 300 K, below the LCST. (A) Self-equilibrium shapes for various combinations of the normalized crosslink density nð2Þvs and aspect ratio
L=H. (B) Bending semi-angle �h as a function of the aspect ratio L=H for dry state with three normalized crosslink densities ðnð2Þvs ¼ 0:001;0:005;0:01Þ. (C) Bending semi-angle
�h as a function of the normalized crosslink density nð2Þvs with three aspect ratios ðL=H ¼ 1;5;10Þ.
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to avoid failures during cyclic bending. In Fig. 6(B) for
nð2Þvs ¼ 0:001, we notably observe there exist multiple neutral
axes as a consequence of large strains in contrast to the case of
nð2Þvs ¼ 0:01 where the single neutral axis exists. This fact that
more than one neutral axis can occur has been known for bending
of elastomeric multilayer with finite strain (Roccabianca et al.,
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2010) and for bending of bilayer subjected to residual stresses with
infinitesimal strain (Freund and Suresh, 2004).

The stress levels across the thickness of gel layer in Fig. 6(B) for
nð2Þvs ¼ 0:001 are lower than those of the case for nð2Þvs ¼ 0:01.
This is because the high swelling ratio makes the stress relax
according to the volume expansion. Comparing the hoop stresses
rðsÞh =Gð1Þ in the case of nð2Þvs ¼ 0:01 and 0:001, the stress level
within the gel layer is relatively low. The maximum stress is
almost not changed because the elastomer layer deforms isochor-
icly without swelling. As is often the case with a layered structure,
the interface maximizes the stress that may develop cracks during
cyclic bending. To avoid stress concentration, we can use a struc-
ture having a large number of layers or a functionally graded struc-
ture since we expect that there is no obvious interface in such the
structures. Actually, a composition-graded copolymer gels, pre-
pared from hydrophobic and hydrophobic substrates, is available
in the literature (Asoh et al., 2008). The procedure outlined in this
paper can be extended to any number of layers and a graded layer
with material properties varying in the thickness direction.

4. Conclusions

We investigated the temperature-responsive finite bending of
bilayer gel under plane-strain condition. The bilayer gel was equiv-
alently treated as specific bilayer consisting of a swellable gel layer
and a non-swellable elastomer layer for brevity. The self-equilib-
rium shapes of the bilayer without any external forces were iden-
tified in terms of the bending curvatures j� and bending semi-
angles �h, depending on the ratio of shear modulus Gð2Þ=Gð1Þ and
the aspect ratio L=H in the bilayer. We demonstrated that the
bilayer model based on finite elasticity predicts larger curvatures
compared with the linear model. The difference between both
models was especially enhanced at below the LCST where the gel
layer can induce large volume changes through the volume transi-
tion. This result suggests that the nonlinear model should be used
accurately to predict the equilibrium shapes of bilayer gel
involving large volume changes instead of the linear model.

We also showed that (i) the aspect ratio L=H influences on the
semi-angle �h while the curvature j� does not, and (ii) the normal-
ized crosslink density nð2Þvs influences on both the bending
semi-angle �h and curvature j�. Furthermore, by quantifying the
stress distributions at T ¼ 300 K, we confirmed that multiple neu-
tral axes can exist in the bilayer under certain conditions. Our anal-
ysis indicated that the folding shape of the bilayer can be
controlled by tuning both the ratio of shear modulus Gð2Þ=Gð1Þ

and the aspect ratio L=H. The theoretical analysis in this paper
could provide the basis for designing novel self-folding structures
and offer opportunities for the development of programmable soft
materials.

Appendix A. Linear model

In order to verify the capability of the nonlinear model pre-
sented in this paper, it is valuable to review the linear model
well-known as Timoshenko model (Timoshenko, 1925) which
can give the closed expression of the radius of bending curvature
due to swelling-induced stresses. We use the coordinate system
as shown in Fig. 1(B) by adapting to Oðe1; e2; e3Þ ¼ Oðx; y; zÞ. Let
us start by reviewing the Hooke’s law:

ex ¼ 1
E ½�mðrz þ rxÞ
;

ey ¼ 1
E ½rx � mrz
 þ e0;

ez ¼ 1
E ½rz � mðrx þ ryÞ
 þ e0;

9>=
>; ðA:1Þ

where e0 is the residual strain due to lattice mismatch during film
growth or due to thermal expansion. In this paper, we regard the
residual strain as growth strain due to swelling. The strain in
z-direction, ez, is independent of the position throughout the thick-
ness of the bilayer, i.e., plane strain condition. The stress component
in the thickness direction can be negligible rx � 0 by assuming that
the thickness of bilayer gel is sufficiently thin. This assumption may
no longer be valid for bilayer gel with large swelling. Instead, a
finite bending theory should be required, which is developed in this
paper. These assumptions yield

ex ¼ � 1
E mrz;

ey ¼ � 1
E mrz þ e0;

ez ¼ 1
E ðrz � mryÞ þ e0:

9>=
>; ðA:2Þ

From Eq. (A.2)3,

rz ¼ �Ee0 þ mrx: ðA:3Þ

Substituting into Eq. (A.2)2 gives

ry ¼ �E½ey � ð1þ mÞe0
; ðA:4Þ

where �E ¼ E=ð1� m2Þ. The neutral axis defined in classical beam the-
ory cannot be used to analyze the bending problem of bilayer sub-
jected to residual stresses. Instead, the neutral axis can be obtained
after the stress distribution in the system is solved (Hsueh, 2002).
The bending strain in the y-direction ey is linear in x, namely,

ey ¼ c þ x� xb

R
; ðA:5Þ

where c is the constant strain and xb defines the position of the
plane where the bending strain is zero. Substituting Eq. (A.5) into
Eq. (A.4),

ry ¼ rb þ rc; ðA:6Þ

where

rb ¼ E0
x� xb

R

� �
; rc ¼ E0½c � ð1þ mÞe0
: ðA:7Þ

Assuming that no external forces are applied, the force balances due
to uniform strain and bending strain and the bending moment with
respect to the bending axis requires that

P2
s¼1r

ðsÞ
c hðsÞ ¼ 0;

X2

s¼1

R xðsþ1Þ
i

xðsÞ
i

rðsÞb dx ¼ 0;

P2
s¼1

R xðsþ1Þ
i

xðsÞ
i

rðsÞy ðx� xbÞdx ¼ 0;

9>>>=
>>>;

ðA:8Þ

By solving the above three linear algebraic equations, we can obtain
the three constants c; xb, and 1=R as follows:

c ¼ �
1þ mð1Þ
	 


eð1Þ0 þ gd 1þ mð2Þ
	 


eð2Þ0

1þ gd
; ðA:9Þ

xb ¼ hð1Þ
1þ gdð2þ dÞ

2ð1þ gdÞ

� �
; ðA:10Þ

1
R
¼

6 1þ mð2Þ
	 


eð2Þ0 � 1þ mð1Þ
	 


eð1Þ0

h i
hð1Þ

�
1� gd2	 
2 þ 4gdð1þ dÞ2

gdð1þ dÞ

" #
; ðA:11Þ

where g ¼ �Eð2Þ=�Eð1Þ and d ¼ hð2Þ=hð1Þ. These expressions have been
obtained by Timoshenko (1925) for a bimetal strip with different
thickness and elastic modulus under plane stress condition and
by Suo et al. (1999) for generalized plane strain condition. The more
generalized expressions have provided by Nikishkov (2003) for a
multilayer with different thickness and elastic modulus and
Freund and Suresh (2004) for a compositionally graded layer.
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In the physical system considered in this paper we have
Eð2Þ=3 ¼ Gð2Þ and mð1Þ ¼ mð2Þ ¼ 0:5 for an isotropic, incompressible
gel. Then, Eq. (A.11) reduces

1
R
¼ hð1Þ

9De0

1� gd2	 
2 þ 4gdð1þ dÞ2

gdð1þ dÞ

" #
; ðA:12Þ

where De0 ¼ eð2Þ0 � eð1Þ0 is the misfit strain, which is calculated by Eq.
(10):

De0 ¼ eð2Þ0 � 0 ¼ rð2Þ0
�Eð2Þ
¼ rð2Þ0

6Gð2Þ
¼ 1

6nð2Þvs

rð2Þ0 vs

kBT
: ðA:13Þ

The coordinate system used here gives negative value of the radius
of curvature R, the position of which is defined on the bending axis
while the radius of curvature rð1Þi in the finite bending analysis is
defined at the bottom surface of the elastomer layer (s ¼ 1). For
comparison between the linear and nonlinear models in the main
text, we define the curvature at the bottom surface in the linear
model to be the same as the nonlinear model:

jlin �
1

rð1Þi

¼ 1
R� xb

: ðA:14Þ
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