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Abstract: 

We investigate the effect of prestrains on swelling-induced buckling patterns in 

polymeric films with a square lattice of holes. To reproduce experiments conducted by 

Zhang et al. (2008), poly(dimethylsiloxane) (PDMS) films are pre-strained in in-plane 

uniaxial tension in a lattice direction, and subsequently swelled by toluene. Finite 

element analysis is performed using an inhomogeneous field theory of polymeric gels in 

equilibrium, and with the aid of artificial damping. Periodic units consisting of 2 2  

and 10 10  unit cells are analyzed under a generalized plane strain assumption. 

Analysis of the 10 10  unit cell shows that the resulting buckling pattern depends on 

the increase in prestrain of = 0, 0.2, 0.4 and 0.6, evolving as a diamond plate pattern 

(= 0), a slightly distorted diamond plate pattern (= 0.2), a binary pattern of circles 

and lines (= 0.4), and a monotonous pattern of ellipses (= 0.6). These predictions are 

in very good agreement with experiments. The 2 2  unit cell reveals that these 

different patterns appear continuously as transitional states during transformation into 

diamond plate patterns; prestrains in uniaxial tension delay the onset of the pattern 

transformation and equilibrium swelling interrupts the progress of the transformation. 

Parametric studies demonstrate that the pattern dependence on prestrains originates 

from intrinsic swelling features, and is a consequence of a particular combination of the 

selected polymer and solvent. 

 

Keywords: Swelling, Gels, Buckling, Prestrains, Periodic structures, Finite element 

method. 
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1. Introduction 

 

Swelling-induced instability creates a variety of complex and periodic wrinkle 

patterns in thin polymeric films (e.g., Tanaka et al., 1987; Guvendiren et al., 2009,2010; 

Breid and Crosby, 2009,2011; Li et al., 2012) and induces more complicated pattern 

transformation in thin polymeric films with periodic arrangements of holes (Zhang et al., 

2008,2009; Singamaneni et al., 2009; Zhu et al., 2012). This instability and the resulting 

pattern transformation are spontaneously induced by in-plane compressive stress 

generated by the solvent swelling of thin polymeric films constrained on a substrate. 

Further, if films are subjected to prestrains prior to swelling, the resulting buckling 

patterns change depending on the type and amount of prestrain (Zhang et al., 

2008,2009; Breid and Crosby, 2011). These complicated periodic patterns have 

wavelengths on the order of 0.1–10 m and can form homogeneously over large regions 

depending on the size of the films. This property has allowed researchers to create 

complex patterns on nano- and microscales, switch photonic and phononic properties, 

tune surface adhesion and wetting, and develop nanoprinting methods (Zhang et al., 

2008;2009; Jang et al., 2009; Yang et al., 2010; Zhu et al., 2012). 

 

When thin polymeric films with a square lattice of circular holes are exposed to a 

solvent, a diamond plate pattern is typically observed in the absence of prestrains 

(Zhang el a., 2008; Singamaneni et al., 2009; Zhu et al., 2012). The square array of 

circular holes buckles and transforms into the diamond plate pattern, in which the 

circular holes are deformed into elliptical slits, and neighboring slits are arranged 

mutually perpendicular to each other. Zhang et al. (2008) observed the diamond plate 

pattern in poly(dimethylsiloxane) (PDMS) films using toluene as a solvent, and further 

investigated the effect of prestrains prior to solvent swelling on pattern transformation. 

In-plane uniaxial tension along a lattice direction was applied as prestrains, and 
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controlled by the nominal strain in that direction,  (see Fig.1). They observed that the 

resulting buckling pattern varies continuously as the amount of prestrain  is increased; 

the pattern evolves as a diamond plate pattern (= 0–0.1), a slightly distorted diamond 

plate pattern (= 0.2), a binary pattern of circles and lines (= 0.3–0.5), and a 

monotonous pattern of ellipses (= 0.5–0.8). Prestrains allow us to create and design a 

richer variety of periodic patterns from one polymeric film with a square lattice of 

circular holes. 

 

The diamond plate pattern in the absence of prestrains has been analyzed in several 

studies. Zhang et al. (2008) and Matsumoto and Kamien (2009) used the linear elasticity 

theory to demonstrate that the diamond plate pattern minimizes the strain energy. They 

assumed that each hole collapses to a slit with an arbitrary orientation, and used the 

theory of cracks to model the slits as dislocation dipoles (Hirth and Lothe, 1982). In 

contrast, Hong et al. (2009) developed an inhomogeneous field theory of polymeric gels 

in equilibrium, and performed a finite element analysis of the diamond plate pattern to 

show the wide applicability of their theory. In their theory, the free-energy function of 

Flory and Rehner (1943) was applied to polymeric gels, and was implemented into the 

finite element software Abaqus using a user-defined subroutine UHYPER. They 

successfully reproduced the diamond plate pattern assuming a particular unit cell 

containing quarters of four neighboring holes (Hong et al., 2009; Ding et al., 2013). 

Okumura et al. (2014) also used this inhomogeneous field theory to analyze larger 

periodic units including random imperfections, and concluded that inhomogeneous 

imperfections play an important role in the homogeneous transformation into the 

diamond plate pattern. This inhomogeneous field theory is thus expected to allow 

analysis of the pattern dependence on prestrains, but such analyses have not yet been 

performed. 
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Zhang et al. (2008) pointed out that the dependence of buckling patterns on an 

amount of prestrain comes from the competition between tensile stress due to prestrains 

and compressive stress due to solvent swelling. Their paper did not describe a detailed 

mechanism, but this competition must disturb the equality of in-plane compressive 

stresses in two lattice directions induced by swelling. Prestrains may play a key role in 

determining the dominant buckling mode among many potential buckling modes, and 

such a change in the dominant buckling mode has been analyzed for hexagonal and 

square honeycombs under in-plane biaxial compression (Ohno et al., 2002,2004; 

Okumura et al., 2002,2004; Erami et al., 2006). However, for this possibility, the 

dominant buckling mode does not vary continuously as the amount of prestrain is 

increased, and it switches discontinuously depending on the ratio of in-plane biaxial 

compression. This possibility is not likely to give a reasonable explanation of the 

dominant buckling mode. A deeper understanding of the effect of prestrains may reveal 

an important factor which originates from mechanical and swelling properties of gels. It 

is thus interesting and worthwhile to investigate the effect of prestrains on 

swelling-induced buckling patterns in polymeric films with a square lattice of holes, and 

to elucidate the mechanism underlying the continuous change in buckling patterns as 

the prestrains increase in magnitude. 

 

The present study investigates the effect of prestrains on the swelling-induced 

buckling patterns in gel films with a square lattice of holes. Finite element analysis is 

performed using the inhomogeneous field theory developed by Hong et al. (2009), 

which is briefly described in Section 2. Section 3 is devoted to numerical modeling. 

Periodic units including geometrical imperfections are analyzed, under a generalized 

plane strain assumption, with the aid of artificial damping. A set of boundary and 

loading conditions and a set of material parameters are determined in accordance with 

experiments (Zhang et al., 2008). Section 4 presents and interprets numerical results. 
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Predictions are shown to be in very good agreement with the experimental results, and 

thus, a reasonable explanation is given for the continuous change in buckling patterns 

with an increase in an amount of prestrain. In addition, in Section 5, parametric studies 

are performed to investigate the sensitivity of the resulting buckling patterns on material 

parameters. Finally, concluding remarks are given in Section 6. 

 

 

2. Inhomogeneous field theory 

 

This section briefly describes the inhomogeneous field theory of polymeric gels in 

equilibrium, which was developed by Hong et al. (2009). This theory considers that a 

polymer network is in contact with a solvent and subjected to mechanical loads and 

geometric constraints at a constant temperature. If the stress-free, dry network is taken 

as a reference state, the deformation gradient of the network is defined as Fij = dxi(X) / 

dXj, where Xj and xi(X) are the network coordinates of a gel system in reference and 

deformed states, respectively. When C(X) is defined as the concentration of solvent 

molecules at a point in the gel system, the gel is in an equilibrium state characterized by 

the two fields xi(X) and C(X). The free-energy density of the gel, W, is assumed to be a 

function of the deformation gradient, F, and the concentration of solvent in the gel, C; 

i.e., W(F,C). The inhomogeneous field theory may be applied to various free-energy 

functions for swelling elastomers, but this study uses the specific free-energy function 

of Flory and Rehner (1943). This is because this form is known to provide a basis for 

the interpretation of the swelling behavior of polymeric gels (Treloar, 1975), and has 

been demonstrated to reproduce the diamond plate pattern, as mentioned in Section 1 

(Hong et al., 2009; Ding et al., 2013; Okumura et al., 2014). 

 

The free-energy function of Flory and Rehner (1943) for a polymeric gel consists of 
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two terms associated with stretching and mixing of the free energies, and is written as 

1 1
( 3 2 log ) log 1

2 1

kT
W NkT I J C

C C




  

  
         

, (1) 

where ij ijI F F  and detJ  F  are invariants of the deformation gradient, N is the 

number of polymeric chains per reference volume, kT is the absolute temperature in the 

unit of energy,  is the volume per solvent molecule, and  is the Flory–Huggins 

interaction parameter that characterizes the enthalpy of mixing. As stated above, Eq. (1) 

takes an explicit form as a function of the deformation gradient, F, and the solvent 

concentration, C. 

 

Considering ix  and C  to be arbitrary variations of xi and C, respectively, from 

a state of equilibrium, the virtual work principle gives an equilibrium equation in which 

the change of the free energy of the gel equals the sum of the work done by the external 

mechanical force and external solvent. That is, 

i i i i
V V A V

WdV B x dV T x dA CdV          ,  (2) 

where V is the reference volume and A is the reference surface. The first and second 

terms on the right-hand side are the mechanical work done by body forces and surface 

forces, respectively, and the third term represents the work done by the external solvent. 

Here,  is the chemical potential of the external solvent, and is equivalent to that in the 

gel; that is, 

W

C






.  (3) 

A Legendre transformation allows the free-energy function W(F,C) to be transformed 

into another form (Hong et al., 2009), 

Ŵ W C  , (4) 

which is defined as a function of F and ; i.e., ˆ ( , )W F . Combination of Eqs. (2) and 

(4) leads to 
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ˆ
i i i i

V V A
WdV B x dV T x dA      . (5) 

When the gel is in a state of equilibrium, the chemical potential of the solvent molecules 

in the gel is homogeneous and equals the chemical potential of the external solvent, . 

Consequently,  is regarded as a state variable, and the equilibrium condition (5) takes 

the same form as that for a hyperelastic solid. 

 

Assuming that the network of polymers and pure liquid solvent are incompressible, 

the volume of the gel can be expressed as the sum of the volume of the dry network and 

that of the swelling solvent. This assumption leads to (Hong et al., 2009) 

1 C J  . (6) 

Using Eqs. (1), (4) and (6), the Flory–Rehner free-energy function can be rewritten as 

1ˆ ( 3 2 log ) ( 1) log ( 1)
2 1

kT J
W NkT I J J J

J J

 

 

 
         

.  (7) 

It is noted that the resulting free-energy function (7) takes an explicit form as a function 

of the deformation gradient, F, and the external chemical potential, . Eq. (7) acts as a 

free-energy function for a compressible hyperelastic material because of the volumetric 

change induced by solvent absorption. For example, the finite element package Abaqus 

offers a user-defined subroutine, UHYPER or UMAT, to implement the constitutive 

behavior of Eq. (7). The external chemical potential, , is passed into UHYPER or 

UMAT using the variable of temperature (Hong et al., 2009; Kang and Huang, 2010a). 

The concentration of the solvent molecules in the gel, C, is calculated from Eq. (6) after 

F is solved. 

 

When the external solvent is subjected to pressure p under constant temperature, the 

solvent can be a gas or a liquid in equilibrium with its own vapor. Assuming the solvent 

to be incompressible in the liquid phase and to be an ideal gas in the gaseous phase, the 

chemical potential of the external solvent is expressed as 
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0 0

0 0

( ) if

log( / ) if

p p p p

kT p p p p




 
 


, (8) 

where 0p  is the vapor pressure of the solvent (e.g., Hong et al., 2009; Kang and Huang, 

2010a,b). The chemical potential is set to zero at the equilibrium vapor pressure 

( 0p p ), and the solvent is in an ideal gas phase if 0p p  and an incompressible 

liquid phase if 0p p . The chemical potential is     in a vacuum and 

atm 0( )p p    at atmospheric pressure atmp  (=101 kPa).  

 

It should be noted that the free-energy function (1) is singular when the network of 

polymers is in the dry state; i.e., when C = 0. The right-hand side of Eq. (3) is also 

singular in the dry state and takes a value of negative infinity; i.e.,    . This 

relation is thus consistent with Eq. (8) in a vacuum, because the network of polymers in 

a vacuum cannot keep molecular solvents within the network and releases them to the 

vacuum. However, this singularity causes problems when numerical calculations 

include the dry state (Hong et al., 2009). Hong et al. (2009) introduced Eq. (7) into a 

user-defined subroutine UHYPER in Abaqus, and proposed a method to avoid this 

singularity. They assumed a free swelling state characterized by the homogeneous 

deformation gradient 
0

0ij ijF   , leading to 3

0 1 0C    , as the reference state in 

numerical calculations (cf. Kang and Huang, 2010a). The stress of the reference state is 

homogeneously zero, and the finite value of the chemical potential of the reference state, 

0 , can be calculated analytically under these conditions. The employment of UHYPER 

can provide a quasi-dry state using a small deviation of 0  from 1, which is referred to 

as the reference state in this study.  

 

In this study, the swelling process is reproduced by increasing the external chemical 

potential from a quasi-dry state ( 0 0   ) to an equilibrium swelling state ( 0  ). 

The quasi-dry state is chosen as the reference state that avoids the above-mentioned 
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singularity, while the equilibrium swelling state is defined as the state in which the 

network of polymers is in contact with the liquid solvent ( 0p p ). The differential 

pressure, atm 0p p , causes a negligible increase in the external chemical potential, 

which is estimated as 4 3

atm 0( ) / 10 10p p kT      using representative values for 

solvents, 0 1 10 kPap    and 29 28 310 10 m    , at room temperature, 

214 10 JkT   . Hence, the effect of the atmospheric pressure can be ignored for the 

solvent (Wu et al., 2013). Further, this effect is expected to be small and negligible for 

the network of polymers, because polymers are generally regarded as stress-free at 

atmospheric pressure. Incidentally, Kang and Huang (2010b) discussed the effect of 

atmospheric pressure on swelling in a film constrained on a rigid substrate. More 

detailed analysis may need to consider atmospheric pressure (Kang and Huang, 2010b). 

 

 

3. Numerical modeling 

 

3.1. Generalized plane strain problem 

 

Fig. 1 shows schematic diagrams in which a polymeric film with a square lattice of 

holes is first subjected to prestrains and then swelled by a solvent. In accord with 

experiments carried out by Zhang et al. (2008), in-plane uniaxial tension along a lattice 

direction is given as prestrains, and a controlled amount of nominal strain  is retained 

during swelling subsequent to application of the prestrains. Swelling is caused by 

applying a liquid solvent on the polymeric film, and this application is assumed to be 

limited to the center region on the film surface, so that the swelling in this region is 

constrained by the surrounding region including lateral and bottom sides. Hence, the 

resulting in-plane compressive stress acts as a driving force to induce buckling and 

pattern transformation. Zhang et al. (2008) experimented with PDMS films using 
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toluene as a solvent, and observed the diamond plate pattern in the absence of prestrains 

under a wide range of conditions; hole diameter 0.35 2 μmd   , pitch 0.8 5μml    

and depth 4 9 μmh   . They reported that this transformation occurs in the case of 

high aspect ratios of / 2 18h d    and / 6l d  . Thus, the problem to be solved is 

3-dimensional in reality (Singamaneni et al., 2009), but can be analyzed as a 

2-dimensional problem using generalized plane strain elements in finite element 

analysis (Hong et al., 2009; Okumura et al., 2014). In this study, a type of generalized 

plane strain element, CPEG4H, is used in the Abaqus analysis. The dimensions of the 

gel film are reduced to d and l, and 0.75μmd   and 1.5 μml   are taken according 

to experiments conducted by Zhang et al. (2008) (see Fig.2). 

 

3.2. Periodic units and imperfections 

 

As reported in Zhang et al. (2008), pattern transformation occurs homogeneously 

over the entire sample with an area of up to 1 cm
2
 with no random defects. In this case, 

a tremendous number of holes (about 44,000,000 holes when l = 1.5 m) are in the 

sample. It is not reasonable to analyze the entire sample with the whole boundary 

conditions mentioned in Section 3.1. Hence, periodic units consisting of 10 10  and 

2 2  unit cells are analyzed in this study. The periodic units were used by Okumura et 

al. (2014) to reproduce the diamond plate pattern in the absence of prestrains and to 

investigate the effect of inhomogeneous imperfections on the homogeneous 

transformation. Fig.2 shows the periodic units and their finite element meshes. The 

numbers of nodes and elements are 67,421 and 64,000, respectively, for the 10 10  

unit cell (Fig. 2a), and are 2749 and 2560, respectively, for the 2 2  unit cell (Fig. 2b). 

Imperfections are introduced by considering each hole as a randomly oriented elliptical 

hole. Elliptical holes are defined using two parameters,   and  . The parameter   

represents the magnitude of imperfection, so that the major and minor diameters of an 
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elliptical hole are expressed as L (1 )d d    and S (1 )d d   , respectively. The 

other parameter   represents the angle between the major diameter and 1x  axis. If 

0  , the hole is a perfect circle regardless of  . 

 

In the 10 10  unit cell (Fig. 2a), the angles ( 1 10, 1 10)ij i j      are assigned to 

individual holes, and determined using random numbers. The set of ij  is not listed to 

avoid redundancy. For simplicity,   is fixed at 0.01 for all holes in this study. 

Scanning electron microscopy images (Zhang et al., 2008) imply that 0.01 0.05    

is a realistic range. Okumura et al. (2014) reported that large unit cells, such as 10 10  

unit cells, are needed to investigate the effect of inhomogeneous imperfections on the 

homogeneous transformation into the diamond plate pattern in the absence of prestrains. 

However, they also showed that smaller unit cells, such as 2 2  unit cells, can 

reproduce the diamond plate pattern if imperfections are selected intentionally. In this 

study, the 2 2  unit cell (Fig. 2b) is used to make a more detailed analysis of results. 

The 2 2  unit cell includes three perfect circular holes and one elliptical hole 

characterized by 0.01   and 0   .  

 

It should be noted that large unit cells, such as 10 10  unit cells, are needed for 

analysis especially in the presence of prestrains, because it is unknown whether 2 2  

unit cells express the dominant buckling patterns or not. However, it will be 

demonstrated in Section 4 that regardless of the presence of prestrains, both periodic 

units successfully reproduce the experimentally observed patterns. 

 

3.3. Material parameters 

 

Free-energy function (1) needs three material parameters, N ,   and  , which are 

determined from experimental data recorded at room temperature and atmospheric 
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pressure. Initial Young’s modulus E for the dry network of polymers is related to N  by 

214 10 JkT    and 3E NkT  (e.g., Treloar, 1975). Experimental data show 

1 2 MPaE    for PDMS made from mixing PDMS prepolymer and its curing agent at 

a weight ratio of 10:1 (Roca-Cusachs et al., 2005; Brown et al., 2005; Gupta et al., 

2007; Degand et al., 2014). The density and molar mass for toluene then provide 

28 31.76 10 m   . Experiments (Chahal et al., 1973; Petri et al., 1995) show 

0.6 0.8    for the system of PDMS and toluene. This value decreases from about 0.8 

to about 0.6 as the volume fraction of toluene increases from 0 to about 0.5;   

decreases as PDMS swells in the presence of toluene. Detailed analyses need to 

consider this dependence (Huggins, 1964; Cai and Suo, 2011; Ding et al., 2013), but in 

this study, averaged values are used to investigate the effect of prestrains on buckling 

and pattern transformation in Section 4; i.e., 1.5 MPaE   and 0.7  . The set of 

these material parameters can be confirmed by comparing the swelling ratio 0/S D D  

with the results of experiments carried out by Lee et al. (2003). Under free, isotropic 

swelling, D  and 0D  are the lengths of PDMS in the solvent and of the dry PDMS, 

respectively. Using the set of selected material parameters, free-energy function (1) 

predicts S  1.30 at equilibrium swelling ( 0  ), which is consistent with an 

experimentally measured value of 1.31 (Lee et al., 2003). Parametric studies are 

performed in Section 5 to investigate the sensitivity of pattern transformation to selected 

material parameters. 

 

3.4. Boundary and loading conditions 

 

Periodic boundary conditions are imposed on the boundary of each periodic unit, and 

are expressed as (e.g., Bertoldi et al., 2008)  

( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )i i ij ij j j ij j ju u F X X H X X           , (9) 
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where ( )

iu   and ( )

iu   are the displacements at a point ( )

jX   on the periodic unit 

boundary and the opposite point ( )

jX  , respectively, and the displacement is defined as 

i i iu x X  . In Eq. (9), ijF  and ij  denote the macroscopic deformation gradient and 

Kronecker delta, respectively, and thus ijH  denotes the macroscopic displacement 

gradient. The out-of-plane component 33H  is determined using the generalized plane 

strain condition; i.e., using 33S =0, where ijS  denotes the macroscopic first 

Piola–Kirchhoff stress. Here, ijF , ijH  and ijS  are the macroscopic variables relative 

to the quasi-dry state, which is introduced using 0 1.01   (see Appendix A), resulting 

in 0 1.90kT    (see Section 2). At this reference state ( 0 1.90kT   ), ijF , ijH  

and ijS  are initialized as ij ijF  , 0ijH   and 0ijS  . The macroscopic deformation 

gradient ijH  caused by one of the prestrains ( = 0, 0.2, 0.4 and 0.6) is obtained 

assuming that in-plane uniaxial tension is expressed as 11H  , 22 0S   and 

0 ( )ijH i j  ; 22H  is solved as an unknown value. Under the constraints of 11( )H   

and 22H , the swelling process is simulated by incrementally increasing   from 0  

to 0. Automatic time incrementation is used in the Abaqus analysis. 

 

3.5. Artificial damping 

 

Hong et al. (2009) and Okumura et al. (2014) reported that the problem to be solved 

here has snap-through instability at an unstable point, at which the iterative calculations 

for the next increment cannot be completed in the Abaqus analysis. The unstable point 

appears immediately after the onset of pattern transformation, and prevents the Abaqus 

analysis from progressing with further swelling. This unstable problem can be solved 

with the aid of artificial damping. The present study employs an automatic stabilization 

scheme with a constant damping factor, which is available in Abaqus using the 

STABILIZE option. Terms for viscos forces, which consist of an artificial mass matrix, 

a damping factor, the vector of nodal velocities and the increment of time, are added to 
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global equilibrium equations. The damping factor is automatically calculated from the 

dissipated energy fraction  . This fraction   should be increased if the iterative 

calculations are unstable and do not converge, while it should be decreased if the 

solution is unrealistic. The value of this fraction needs to be optimized by trial-and-error 

calculations, and is thus taken as 112.5 10    for the 10 10  unit cell and 

1210   for the 2 2  unit cell (see Appendix B). Moreover, further swelling beyond 

unstable points can result in the self-contact of individual surfaces included in periodic 

units. Self-contact is considered in Abaqus analysis using the CONTACT 

INCLUSIONS option. Contacts are idealized as frictionless because the friction 

between contact surfaces is not expected to be a factor contributing to pattern 

transformation. 

 

Incidentally, it may be generally known that eigenvalue buckling analysis (the 

BUCKLE option in Abaqus) and the arc-length method (the RIKS option in Abaqus) are 

helpful to analyze buckling modes and post-buckling behavior, respectively. However, 

in the present study, both options are not available with the inhomogeneous field theory. 

The BUCKLE option is based on a linear perturbation analysis procedure in Abaqus, so 

that temperature changes (i.e., chemical potential changes in the present study) are not 

active during eigenvalue buckling analysis. Similarly, the RIKS option is not 

implemented on the plane of chemical potential and displacement, as stated in Hong et 

al. (2009). Hence, the STABILIZE option, used in the present study, is useful for 

performing swelling-induced buckling analysis using the inhomogeneous field theory. 

 

3.6. Deviation from roundness 

 

To quantify the progress of pattern transformation in a deformed state, a measure of 

deviation from roundness is used for individual holes (Okumura et al., 2014). This 



  

16 

 

scalar value is zero when the hole is a perfect circle, and increases as the hole deviates 

from a perfect circle. The deviation from roundness is defined as  

max minmin( ( ) ( ))
ij

ij ij ijr r


 
x x

x x .  (10) 

Here, maxr  and minr  are the radii of circumscribed and inscribed circles of the hole 

identified by i and j in a periodic unit, respectively. Point ijx  is the center that 

minimizes the value max minr r . To find the point ijx , trial calculations are performed at 

individual points on a square lattice with a 1-nm pitch. An elliptical hole with diameter 

d and imperfection magnitude   has ij d   in the initial undeformed state. For 

the 10 10  unit cell, ij ( 1 10i   , 1 10j   ) is estimated for 100 individual holes. 

Thus,   is calculated as the average of all holes, and is used to interpret numerical 

results in the next section. 

 

 

4. Results and discussion 

 

4.1. Results for a 10 10  unit cell 

 

Fig. 3 shows the macroscopic stress–strain relationships obtained for the 10 10  

unit cell. Swelling due to solvent absorption increases the sum of in-plane compressive 

stress components normalized by NkT  (i.e., 11 22( ) /S S NkT ) and the out-of-plane 

tensile strain 33H , although they are reduced by prestrains in uniaxial tension prior to 

swelling. Fig. 4 plots the macroscopic stress as a function of the deviation from 

roundness normalized by the representative diameter; i.e., / d . The deviation from 

roundness is first increased depending on the amount of prestrain, because uniaxial 

tension deforms individual circular holes into elliptical holes with the major diameter in 

the loading direction. At the beginning of swelling, the deviation from roundness hardly 
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varies, and swelling contributes mainly to increasing the in-plane compressive stress, 

which acts as a driving force to induce buckling and the resulting pattern transformation. 

Figs. 3 and 4 clearly show that in two cases ( 0 and 0.2), pattern transformation starts 

when the in-plane compressive stress reaches the maximum stress, which is thus 

regarded as the initiation stress of pattern transformation. By contrast, the other two 

cases ( 0.4 and 0.6) do not have a maximum stress point. It is however noted that the 

corresponding curves indicate a slight pattern transformation around state (i) in Fig. 4, 

although this does not lead to a dramatic increase in / d . 

 

Figs. 5–8 show the deformed configurations for prestrains  0, 0.2, 0.4 and 0.6, 

respectively. Each configuration is obtained from state (i), (ii), or (iii) represented in Fig. 

4. Here, C  is a non-dimensional value of concentration C  and represents the 

volumetric change due to solvent swelling (Eq. (6)). Fig. 5 shows that the absence of 

prestrain ( 0  ) predicts well the transformation into a diamond plate pattern. The 

pattern formation starts locally (Fig. 5a) and becomes homogeneous as / d  increases 

(Fig. 5b). This increase terminates when all elliptical slits are perfectly closed, and 

subsequently, the compressive stress starts increasing again and continues to increase 

until swelling reaches equilibrium (Fig. 5c). Fig. 6 shows that the case of  0.2 also 

predicts a local initiation of pattern transformation (Fig. 6a). The resulting pattern is not 

a diamond plate pattern but a binary pattern of circles and slits (Fig. 6b). Further 

swelling changes this binary pattern into a distorted diamond plate pattern (Fig. 6c). In 

contrast, although the other two cases ( 0.4 and 0.6) have a slight indication of 

pattern transformation around state (i) represented in Fig. 4, Figs. 7a and 8a show no 

initiation of pattern transformation; all holes are deformed as almost uniform ellipses by 

prestrains prior to swelling. However, further swelling until equilibrium swelling leads 

to different consequences that during the period between states (i) and (ii), the case of 

0.4   predicts transformation into a binary pattern of circles and slits (Fig. 7b), while 
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the case of  0.6 predicts no pattern transformation; i.e., a monotonous pattern of 

ellipses (Fig. 8b). 

 

Results obtained for the 10 10  unit cell agree well with the results of experiments 

carried out by Zhang et al. (2008). Swelling-induced buckling causes the homogeneous 

transformation into a diamond plate pattern ( 0–0.1), a distorted diamond plate 

pattern ( 0.2), a binary pattern of circles and slits ( 0.3–0.5), and a monotonous 

pattern of ellipses ( 0.5–0.8). This agreement supports the validity of the analytical 

conditions described in Section 3. The introduction of artificial damping (see Section 3 

and Appendix B) allows us to analyze further swelling beyond the unstable points that 

appear immediately after the maximum stress point (cf. Okumura et al., 2014). It is 

found from Figs. 4 and 5 that in the absence of prestrains, the diamond plate pattern 

formation starts locally and becomes homogeneous during the period that the 

compressive stress decreases slightly from the maximum point. Figs. 4 and 8 show that 

the monotonous pattern of ellipses appears as a consequence of no pattern 

transformation when there is a large amount of prestrain; i.e.,  0.6. It should then be 

noted that further analysis and discussion are needed to give a reasonable explanation 

for the appearance of the distorted diamond plate pattern subsequent to the binary 

pattern of circles and slits in the case of  0.2, and pattern transformation without the 

maximum stress point in the case of  0.4.  

 

Figs. 5–8 show that the resulting patterns have the periodicity of 2 2  unit cells 

regardless of the presence of prestrains, and long wave-length buckling, which depends 

on the size of periodic units (e.g., Ohno et al., 2004), does not occur. To obtain a 

detailed understanding of a series of pattern transformations, results of the 2 2  unit 

cell are presented in the next subsection. 
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4.2. Results for a 2 2  unit cell 

 

Results obtained for the 2 2  unit cell are shown in Figs. 9 and 10. In Fig. 9, the 

average deviation from roundness is not used and the individual values for four holes, 

namely 11 , 12 , 21  and 22 , are plotted to obtain detailed traces of pattern 

formation. Fig. 10 shows the deformed configurations at states (i)–(iv) in Fig. 9. 

Although the 2 2  unit cell is smaller than the 10 10  unit cell, and includes only the 

imperfection of one hole (see Subsection 3.2), Fig. 10 indicates that this small unit cell 

successfully reproduces the specific formation processes predicted in the analysis of 

10 10  unit cell (Figs. 5–8). 

 

Fig. 10a shows the progress of transformation into a diamond plate pattern in the 

absence of prestrain ( 0). This transformation deforms four circular holes into elliptic 

slits, which are arranged mutually perpendicular to each other (Fig. 10a); holes 11 and 

22 have major diameters in the x1 direction while holes 12 and 21 have major diameters 

in the x2 direction. Four independent curves in Fig. 9a show almost the same profile, and 

hence, this profile is similar to that of the average deviation from roundness obtained for 

the 10 10  unit cell in Fig. 4. It is however found from Fig. 9b–d that the presence of 

prestrains diversifies the individual profiles, which cannot be represented by the average 

deviation from roundness (cf. Fig. 4). 

 

Fig. 10b shows the progress of pattern transformation in the case of  0.2. A 

binary pattern with circles and slits appears at an intermediate state (state (iii)), followed 

by a distorted diamond plate pattern at equilibrium swelling (state (iv)). Fig. 9b clarifies 

the mechanism of this characteristic transformation. First, the prestrain deforms four 

circular holes into ellipses with the major diameter in the x1 direction. When the process 

of sequential swelling induces transformation (state (ii)), holes 11 and 22 become more 
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elliptical in the same direction, thus being perfectly closed before arriving at 

equilibrium swelling, while holes 12 and 21 first revert from ellipses to circles (state 

(iii)) and subsequently deform into elliptical slits with the major diameter in a different 

direction; i.e., the x2 direction. This means that transformation into a diamond plate 

pattern takes place regardless of the presence of the prestrain ( 0.2), and the prestrain 

assists the pattern formation of holes 11 and 22 while hindering that of holes 12 and 21. 

This difference produces a binary pattern with circles and slits, and thus a distorted 

diamond plate pattern. If further swelling is allowed beyond equilibrium swelling, all 

holes will finally close, and a diamond plate pattern will form with different pitches in 

the x1 and x2 directions (see Section 5). 

 

The appearance of the binary pattern with circles and slits in the case of  0.4 is 

explained by the mechanism described in the case of  0.2. Figs. 9c and 10c show 

that there is also transformation into a diamond plate pattern in the case of  0.4. 

Pattern transformation starts when the in-plane compressive stress reaches the 

maximum stress (state (ii)). Holes 11 and 22 become more elliptic while holes 12 and 

21 tend to revert to circles. If further swelling is allowed, the pattern transformation 

progresses, resulting in a distorted diamond plate pattern, as shown in Fig. 10b, and 

finally a diamond plate pattern with different pitches in the x1 and x2 directions. 

However, equilibrium swelling causes this transformation to shut down. Thus, the 

binary pattern appears as a transitional state during transformation into the diamond 

plate pattern. It is thus found that equilibrium swelling plays an important role in 

interrupting the progress of the pattern transformation, and that this interruption 

diversifies the resulting swelling-induced buckling patterns. Incidentally, Fig. 9c clearly 

shows the initiation and progression of the pattern transformation. This progression 

dramatically increases and decreases the deviation from roundness for individual holes 

11, 12, 21 and 22. Consequently, the average deviation from roundness possibly fails to 
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show the pattern transformation and its progress, as in the analysis of 10 10  unit cell 

(Fig. 4). 

 

Fig. 10d shows no pattern transformation in the case of  0.6, resulting in a 

monotonous pattern of ellipses at equilibrium swelling. Hence, the values of the 

deviation from roundness for the four holes do not change dramatically after the 

prestrain is applied (Fig. 9d). Here, one may be interested in the quick increase and 

decrease among states (ii)–(iv). Figs. 9d and 10d show that the first change between 

states (ii) and (iii) is the transformation of elliptical holes 11 and 22 into lipped shapes, 

and subsequently, the other two elliptical holes transform into lipped holes between 

states (iii) and (iv). Consequently, the monotonous pattern of ellipses consists of lipped 

holes at equilibrium swelling. Transformation into the diamond plate pattern, which 

occurs for  0, 0.2 and 0.4, does not occur for  0.6. This transformation of all 

holes into lipped holes is confirmed by the 10 10  unit cell analysis, if careful 

attention is paid to Fig. 8, and the lipped holes can be found in the monotonous pattern 

of ellipses observed in experiments (Zhang et al., 2008).  

 

Fig. 11 plots the in-plane compressive stress as a function of the external chemical 

potential. Fig. 11a shows the curves in the range from the quasi-dry state to the 

equilibrium swelling state, while Fig. 11b shows the curves enlarged around equilibrium 

swelling. It is found that an increase in an amount of prestrain delays the appearance of 

the maximum stress point (i.e., the initiation of pattern transformation) or prevents its 

appearance especially for a much larger amount of prestrain. This is because the 

prestrains decrease the in-plane compressive stress, and additional solvent absorption is 

generally needed to increase the in-plane compressive stress. This delay acts to prevent 

pattern transformation from taking place or to reduce swelling during transformation 

into a diamond plate pattern, leading to the appearance of a distorted diamond plate 
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pattern, a binary pattern with circles and slits, and a monotonous pattern of ellipses.  

 

Incidentally, it is known that the total amount of swelling in equilibrium is increased 

by internal stress in tension but reduced by internal stress in compression (Treloar, 

1975). This effect, which is implicitly introduced in the inhomogeneous field theory 

(Hong et al., 2009), is demonstrated by the concentration distributions in Figs. 5–8 and 

10. The concentration difference in the unit cells becomes more remarkable particularly 

after pattern transformation. It may be worthwhile to discuss the possibility that uniaxial 

tension as prestrains increases the total amount of swelling in equilibrium, and thus 

promotes the progress of pattern transformation. However, in the present study, the 

uniaxial tension decreases the in-plane compressive stress that is a driving force to 

induce pattern transformation. It should be noted that, in general, swelling-induced 

instability phenomena can become a more complex combination of the 

above-mentioned negative and positive effects. 

 

 

5. Parametric studies 

 

Section 4 was devoted to explaining the mechanism by which the resulting 

swelling-induced patterns change continuously depending on an increase in prestrain 

 ; i.e., an increase in uniaxial tension prior to swelling. This mechanism implies that 

the resulting swelling-induced patterns are considerably sensitive to changes in the set 

of material parameters. Hence, this section investigates the pattern sensitivity to 

possible changes in material parameters.  

 

As described in Subsection 3.3, the uncertainty in selected material parameters for 

the system of PDMS and toluene exists in Young’s modulus E and the Flory–Huggins 
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interaction parameter  , although E = 1.5 MPa and  = 0.7 were used as average 

values in Section 4. Considering experimental data, the possibilities of E = 1–2 MPa 

and  = 0.6–0.8 are considered here. It should be noted that these changes contribute 

mainly to the total number of toluene molecules that are absorbed in PDMS at 

equilibrium swelling. An increase in the two parameters has a tendency to decrease the 

total amount of swelling, while a decrease in the two parameters leads to an increase in 

the total amount of swelling (Treloar, 1975). Thus, the two cases are additionally 

analyzed as extreme situations: E = 2 MPa and  = 0.8 as Case 1, and E = 1 MPa and 

 = 0.6 as Case 3. Results of Case 2 (E = 1.5 MPa and  = 0.7) are those presented in 

Section 4. 

 

Fig. 12 shows the deformed configurations at equilibrium swelling in Cases 1, 2 and 

3. In Case 1, a diamond plate pattern is predicted only in the absence of prestrain ( = 0), 

and monotonous patterns of ellipses are predicted in the presence of prestrains ( = 0.2, 

0.4 and 0.6). This means that the set of material parameters cannot provide sufficient 

swelling for the transformation into the diamond plate pattern in the presence of 

prestrains. In Case 3, pattern transformation is predicted regardless of the presence of 

prestrains. This set of material parameters provides additional swelling compared with 

Cases 1 and 2. Diamond plate patterns appear when  = 0.2 and  = 0, while 

transitional patterns, which are similar to the distorted diamond plate pattern and the 

binary pattern with circles and slits, appear when  = 0.4 and even when  = 0.6. The 

results of Cases 1 and 3 show that the predictions are very sensitive to the set of selected 

material parameters.  

 

These results indicate that if there is sufficient swelling, transformation into a 

diamond plate pattern is possible regardless of the amount of prestrain. However, the 

amount of swelling is restricted by equilibrium swelling. It is thus demonstrated that the 
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dependence of the pattern formation on prestrains (Zhang et al., 2008) is a consequence 

of a particular combination of the selected polymer and solvent; i.e., PDMS and toluene. 

Different organic solvents, such as acetone, ethyl alcohol, pentane and chloroform, can 

be used instead of toluene, where acetone and ethyl alcohol are poorer solvents than 

toluene for PDMS and pentane and chloroform are better solvents than toluene (Lee et 

al., 2003). The use of poor solvents is expected to result in no pattern transformation 

even in the absence of prestrain, while that of good solvents is expected to result in the 

diamond plate pattern even for larger prestrains. It is concluded from this discussion that 

the pattern formation due to swelling-induced buckling depends considerably on 

intrinsic swelling properties; i.e., swelling proceeds spontaneously but is interrupted by 

equilibrium swelling. 

 

 

6. Concluding remarks 

 

In this study, we investigated the effect of prestrains on the swelling induced 

buckling patterns in gel films with a square lattice of holes. The inhomogeneous field 

theory for polymeric gels developed by Hong et al. (2009) was used in finite element 

analysis. Periodic units consisting of 2 2  and 10 10  unit cells were analyzed under 

a generalized plane strain assumption. The swelling process was simulated by 

increasing the external chemical potential from a quasi-dry state to an equilibrium 

swelling state. Material parameters were determined from several experimental data for 

PDMS and toluene, and geometrical imperfections were introduced employing the 

approach used by Okumura et al. (2014). In addition, artificial damping was employed 

in further analysis beyond unstable points. The main findings of this study are as 

follows. 
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Analysis results of the 10 10  unit cell were in very good agreement with the 

results of experiments carried out by Zhang et al. (2008). The diamond plate pattern 

appears in the absence of prestrain, while the distorted diamond plate pattern, the binary 

pattern with circles and slits and the monotonous pattern of ellipses appear as the 

amount of prestrain (i.e., uniaxial tension prior to swelling) is increased. Analysis of the 

2 2  unit cell revealed that the resulting different patterns appear continuously as 

transitional states during transformation into diamond plate patterns. Transformation 

into diamond plate patterns occurs regardless of the presence of prestrains, but an 

increase in prestrain delays the onset of this pattern transformation. This delay limits 

swelling during transformation because the total amount of swelling is restricted by 

equilibrium swelling; i.e., a combination of polymer and solvent. As a result, the 

distorted diamond plate pattern and the binary pattern with circles and slits form 

depending sensitively on the amount of prestrain. A sufficiently large amount of 

prestrain prevents pattern transformation, leading to the monotonous pattern of ellipses. 

Thus, parametric studies clarified that the appearance of transitional states in the 

presence of prestrains is a consequence of a particular combination of the selected 

polymer and solvent. 

 

The above-mentioned findings revealed that the key factor in diversifying the 

resulting swelling-induced patterns in gel films with a square lattice of holes originates 

from intrinsic swelling properties; i.e., swelling proceeds spontaneously but is 

interrupted by equilibrium swelling. This mechanism may give a reasonable explanation 

for a variety of complex and periodic wrinkle patterns in gel films (Breid and Crosby, 

2009,2011; Guvendiren et al., 2009,2010; Cai et al., 2011). Hence, inhomogeneous field 

theories for polymeric gels are expected to play an important role in analyzing these 

problems. From an experimental point of view, this approach can be used to predict 

resulting patterns that depend sensitively on material properties, dimensions of films, 
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and the kind of prestrain and its magnitude. Although experiments (Zhang et al., 2008) 

were successfully reproduced by analyzing periodic units with periodic boundary 

conditions, the entire films may be needed to be analyzed with the whole boundary 

conditions if a sufficient number of holes are not in the film (cf. Zhang et al., 2008). 

From a theoretical point of view, it may be interesting to discuss differences in the 

predictions made using more advanced free-energy functions based on 

phenomenological theories (e.g., Treloar, 1975; Boyce and Arruda, 2001; Bitoh et al., 

2010; Drozdov and Christiansen, 2013) and more advanced inhomogeneous field 

theories that account for diffusion and temperature dependency (e.g., Hong et al., 2008; 

Chester and Anand, 2010; Cai and Suo, 2011; Ding et al., 2013). It may be especially 

interesting to investigate whether different buckling paths appear or not, and whether 

creasing occurs prior to buckling (Cai et al., 2010), when transient swelling process is 

considered in analysis. This investigation can be performed by the finite element 

analysis based on the inhomogeneous field theories that introduce the diffusion of 

solvent molecules (Toh et al., 2013, Chester et al., 2015) instead of assuming the 

quasi-static state (cf. Hong et al., 2009). 

 

 

Acknowledgements 

 

This research was supported by the Japan Society for the Promotion of Science 

(JSPS) under a Grant-in-Aid for Scientific Research (C). 



  

27 

 

 

Appendix A. Dependence on swelling ratio at quasi-dry state 

 

   As described in Section 2, the quasi-dry state is introduced to avoid singularity at 

the dry state in Abaqus analysis. In experiments by Zhang et al. (2008), PDMS films do 

not include toluene at the initial state, so that the swelling ratio at the quasi-dry state, 

0 , should be determined by considering a sufficiently small deviation from 1. The 

employment of sufficiently small deviations is expected to give no effect on the results, 

while the employment of larger deviations can produce results different from those 

obtained using the sufficient small deviations.  

 

   Fig. 13 shows the dependence of the resulting patterns at equilibrium swelling on 

the swelling ratio at the quasi-dry state. Two additional cases are used for 2 2  unit 

cell analysis ( 0 =1.01 is the representative value in the present study); 0 =1.001 as a 

smaller case and 0 =1.1 as a larger case. The employments of 0 =1.001 and 1.01 

predict the same pattern transformation depending on the amount of prestrains. 

Although the minimum and maximum values in the concentration distributions are not 

perfectly identical, the agreement is satisfactory for the predicted patterns. This means 

that 0 =1.01, used in the present study, is sufficiently small to reproduce the quasi-dry 

state. In contrast, Fig. 13 also shows that 0 =1.1 is too large to produce the results 

obtained using 0 =1.001 and 1.01. The deviation of 0 =1.1 from 1 may be small, but, 

in fact, is relatively large for the system of PDMS and toluene, because the swelling 

ratio in equilibrium under free, isotropic swelling is 1.31 (see Section 3.3). This 

relatively large deviation underestimates the in-plane compressive stresses due to 

swelling, resulting in no pattern transformation especially in the presence of prestrains 

(Fig. 13). These results indicate the importance to introduce the sufficiently small 

deviation of 0 from 1 to reproduce the quasi-dry state. In the different point of view, 
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the results also imply the importance to consider the swelling ratio at the initial state if a 

considerable amount of solvents is included in films at the initial state. 

 

 

Appendix B. Dependence on artificial damping 

 

As described in Subsection 3.5, the problem to be solved in the present study can 

have snap-though instability at an unstable point (Hong et al., 2009), and unstable 

points appear immediately after the onset of pattern transformation (Okumura et al., 

2014). To continue the Abaqus analysis beyond unstable points, artificial damping is 

introduced using the STABILIZE option. Terms of viscos forces, which consist of an 

artificial mass matrix, a damping factor, the vector of nodal velocities and the increment 

of time, are added to global equilibrium equations. The damping factor is automatically 

calculated from a dissipated energy fraction  . 

 

Fig. 14 shows the maximum stress (i.e., the initiation stress of pattern 

transformation) as a function of prestrain for the analysis of 2 2  unit cell (see. Figs. 9 

and 11). Five different curves are obtained using different values of the dissipated 

energy fraction ( = 10
-10

, 10
-11

, 10
-12

, 10
-13

 and 0). Here,  = 0 means that there is no 

artificial damping. The figure shows that an increase in   has a tendency to 

overestimate the initiation stress, while a decrease in   results in a good prediction of 

the initiation stress obtained without artificial damping. Because of the nature of 

artificial damping, an excess decrease in   prevents the iterative calculations in the 

Abaqus from being stable beyond unstable points. It is hence found from Fig. 14 that a 

value of   should be selected in the range of approximately 10
-11

–10
-12

 to obtain 

reasonable results. The present study employs  = 10
-12

 for the 2 2  unit cell analysis, 

and  = 2.510
-11

 for the 10 10  unit cell analysis. 
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It is noted that a somewhat large value of   is used for the 10 10  unit cell 

analysis. When  = 10
-12

 is used for the analysis, the iterative calculations in Abaqus 

require a long computational time, and the analysis is not expected to be completed in 

reasonable time. This problem becomes serious especially when a number of individual 

holes start to self-contact with the progress of pattern transformation. Although the use 

of  = 2.510
-11

 overestimates the initiation stress slightly (Fig. 14), it should be 

emphasized that this slight overestimation does not affect the findings and conclusions 

of the present study (see Section 6). 
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Legends to Figures 

 

Fig. 1. Schematic diagrams showing a polymeric film with a square lattice of holes 

being pre-strained in uniaxial tension in a lattice direction and subsequently 

swelled by a solvent. 

Fig. 2. Initial configuration and finite element meshes; (a) 10 10  unit cell with 

random imperfections and (b) 2 2  unit cell with a simple imperfection. 

Fig. 3. Macroscopic stress–strain relationships for prestrains of  0, 0.2, 0.4 and 0.6 

(10 10  unit cell). 

Fig. 4. Macroscopic stress as a function of the average deviation from roundness for 

prestrains of  0, 0.2, 0.4 and 0.6 (10 10  unit cell). 

Fig. 5. Deformed configurations and normalized concentration distributions C  for 

prestrain of  0 (10 10  unit cell); (a), (b) and (c) at states (i), (ii) and (iii) in 

Fig. 4. 

Fig. 6. Deformed configurations and normalized concentration distributions C  for 

prestrain of  0.2 (10 10  unit cell); (a), (b) and (c) at states (i), (ii) and (iii) 

in Fig. 4. 

Fig. 7. Deformed configurations and normalized concentration distributions C  for 

prestrain of  0.4 (10 10  unit cell); (a) and (b) at states (i) and (ii) in Fig. 4. 

Fig. 8. Deformed configurations and normalized concentration distributions C  for 

prestrain of  0.6 (10 10  unit cell); (a) and (b) at states (i) and (ii) in Fig. 4. 

Fig. 9. Macroscopic stress as a function of the deviations from roundness of individual 

holes ( 2 2  unit cell); (a)–(d) for prestrains of  0, 0.2, 0.4 and 0.6. 

Fig. 10. Deformed configurations and normalized concentration distributions C  

( 2 2  unit cell); (a)–(d) for prestrains of  0, 0.2, 0.4 and 0.6 at states (i)–(iv) 

in Fig. 9. 

Fig. 11. Macroscopic stress as a function of the external chemical potential   ( 2 2  
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unit cell); (a) from a quasi-dry state to equilibrium swelling and (b) near 

equilibrium swelling. 

Fig. 12. Deformed configurations and normalized concentration distributions C  at 

equilibrium swelling for Cases 1–3 ( 2 2  unit cell). 

Fig. 13. Dependence of the resulting patterns at equilibrium swelling on the swelling 

ratio at quasi-dry state of 0 =1.001, 1.01 and 1.1 ( 2 2  unit cell). 

Fig. 14. Influence of dissipated energy fraction   on the maximum stress for 

prestrains of  0, 0.2, 0.4 and 0.6 ( 2 2  unit cell). 



  

Figure01

http://ees.elsevier.com/ijss/download.aspx?id=477682&guid=2ab4d1aa-ca06-4bef-868d-bfd673270539&scheme=1


  

Figure02

http://ees.elsevier.com/ijss/download.aspx?id=477683&guid=93a32c7f-1461-4694-9753-83f2b2d93b20&scheme=1


  

Figure03

http://ees.elsevier.com/ijss/download.aspx?id=477684&guid=a23d8d17-7a38-4ded-a597-9321cb2c752f&scheme=1


  

Figure04

http://ees.elsevier.com/ijss/download.aspx?id=477685&guid=8832d808-94f0-4a35-8cc6-e09e71a916fd&scheme=1


  

Figure05

http://ees.elsevier.com/ijss/download.aspx?id=477686&guid=ddb032bd-3255-40e7-92c2-570dd82d5ac7&scheme=1


  

Figure06

http://ees.elsevier.com/ijss/download.aspx?id=477687&guid=60e9840e-47b2-4c23-a1e5-17263ef9ae87&scheme=1


  

Figure07

http://ees.elsevier.com/ijss/download.aspx?id=477688&guid=991ec4a1-3fa3-4cd6-87f2-6219ad4db67c&scheme=1


  

Figure08

http://ees.elsevier.com/ijss/download.aspx?id=477689&guid=e862aa9f-a186-4495-9736-6380c3c97f8d&scheme=1


  

Figure09

http://ees.elsevier.com/ijss/download.aspx?id=477690&guid=417c4d6e-3c30-4ef2-8cbb-86e830f18c88&scheme=1


  

Figure10

http://ees.elsevier.com/ijss/download.aspx?id=477691&guid=15889787-e04a-48c7-9d8e-5b689492e7f9&scheme=1


  

Figure11

http://ees.elsevier.com/ijss/download.aspx?id=477692&guid=06548b6d-97b0-49ea-b0c3-c51bc5883f81&scheme=1


  

Figure12

http://ees.elsevier.com/ijss/download.aspx?id=477693&guid=c3708f8c-cb7f-4380-bf85-c1b17457fc9a&scheme=1


  

Figure13

http://ees.elsevier.com/ijss/download.aspx?id=477694&guid=33b18296-38d8-4ca1-8441-82941f567958&scheme=1


  

Figure14

http://ees.elsevier.com/ijss/download.aspx?id=477695&guid=4cc74f59-108a-4226-a2f4-35fd41590a3a&scheme=1

