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The expressions for the first two order solutions of the asymptotic near-tip fields for V-shaped notch in
Reissner plate have been given by the eigenfunction expansion method in the open literature. However,
the eigenfunction expansion solutions are incomplete due to the absence of the asymptotic solution cor-
responding to a crucial eigenvalue. In this paper the asymptotic solution has been derived as a supple-
ment to previous work. Moreover, it is found that the asymptotic solution for the displacement
distribution in the plate becomes infinite for some special vertex angles of the notch, this is a paradox.
The cases of the paradox are studied, and the corresponding bounded solutions are found to be explained
by the Jordan form solution according to the methods of mathematical physics. In another case, Jordan
form asymptotic solution also arises where an eigenvalue becomes a double root. By virtue of the meth-
ods of mathematical physics, the Jordan form asymptotic solutions for these special cases are derived
making use of a rational procedure and specified in explicit form. A numerical example is given in order
to prove the validity of the present study and also to discuss the importance of the completeness of the
eigenfunction expansion solutions.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known that V-shaped notches (or termed as
V-notches) frequently occur in elastic plates due to optimization
design, manufacturing process and so on. Analytically determining
the displacement and stress–strain distributions near the tip of a
V-notch is of crucial importance not only for fracture mechanics
but also for numerical analysis of any complex problem involving
V-notches.

Many previous analytical studies on V-notched plates
(or wedges) have been undertaken in the framework of linear
elastic fracture mechanics (Qian and Yan, 1985; Steigemann,
2015; Wang, 2013; Yao et al., 1999). The eigenfunction expansion
method is one of the most powerful techniques for analyzing the
near-tip fields for various types of cracks and notches. It was first
proposed by Williams (1951) to analyze the stress singularity
problem in an elastic wedge under bending, and then further
extended to study stress singularities in angular corners of plates
under extension (Williams, 1952). In this method, the solutions
of near-tip fields are expanded in asymptotic series form, and the
original problem can be simplified into an eigenvalue problem.
Liu (1983) employed the eigenfunction expansion method to study
the crack problem in Reissner plate, and proposed the expressions
for the generalized displacement and internal force fields for the
first several orders. Burton and Sinclair (1986) studied stress
singularity at the vertex of a V-notch in Reissner plate, and they
established the eigenequation in the case of different boundary
conditions on the surface of the V-notch. Qian and Long (1992)
studied the V-notch problem in Reissner plate using the eigenfunc-
tion expansion method while only the first two order terms of the
asymptotic solution are given. And then they extended the same
method to analyze the three-dimensional notch problem (Qian
and Long, 1994).

Through the eigenfunction expansion method, the eigenequa-
tion for the V-notch problem in Reissner plate with free-free
boundary condition on the surfaces of the notch has been
established and a series of eigenvalues with various vertex angles
2a have been determined (Long et al., 2009; Qian and Long,
1992). It is well-known that the smaller the positive real part of
the eigenvalue is, the more important the corresponding eigenso-
lution is to determine the near-tip fields for the V-notch problem.
Unfortunately, the crucial eigenvalue k ¼ 1 was missed in the list
of the roots of the eigenequation in the above mentioned
literatures, which will be able to result in incompleteness of the
eigenfunction expansion solutions and significant error in related
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numerical analysis. As a supplement to their previous work, the
eigenfunction expansion solution corresponding to k ¼ 1 will be
investigated carefully in the present paper.

Furthermore, it is found that there exists cosðkþ iÞa,
(i ¼ 2kþ 1; k ¼ 0;1;2; . . .) in the denominator in the expressions
of the eigen expanding terms for the antisymmetric deformation,
then the asymptotic solution would become infinite when k and
a satisfy the definite relation, i.e. cosðkþ iÞa ¼ 0. For example,
the eigenvalue k ¼ 1 is a root of the eigenequation, and it is found
that cos 2a ¼ 0 when a ¼ 135�, cos 4a ¼ 0 when a ¼ 112:5� or
157:5�. For these special cases, we will research into the patholog-
ical behaviors to obtain the corresponding bounded solutions in
the present study.

In fact, there are many abnormal solutions in some special
cases, and the phenomenon is usually termed as a ‘‘paradox”. A
well known paradox is that the solution for the stress distribution
in an elastic wedge subjected to a concentrated couple at its vertex
becomes infinite for every point when the vertex angle 2a equals
critical angle 2~a, where tanð2~aÞ ¼ 2~a (Inglis, 1922). Similar para-
doxes can be found in wedges subjected to in-plane tractions
(Timoshenko and Goodier, 1970), wedges subjected to tractions
proportional to rn (Ding et al., 1998), and flow injected into a
wedge region (Moffatt and Duffy, 1980). It is not surprising that
these abnormal phenomena attract an extensive discussion and
have been investigated and resolved in the open literatures
(Dempsey, 1981; Dundurs and Markenscoff, 1989; Markenscoff,
1994; Sternberg and Koiter, 1958; Ting, 1984). On the basis of
the symplectic dual approach (Yao et al., 2009), the present author
restudied the paradox in elastic wedge subjected to a concentrated
couple at its vertex under Hamiltonian system in polar coordinate
(Yao and Xu, 2001). It is pointed out that the solution to the para-
dox just corresponds to Jordan form eigenvector for the eigenvalue
k ¼ �1, and a rational derivation for solving this kind of problem
was proposed.

In this paper, the above mentioned paradox in the eigen
expanding term for k ¼ 1 when the vertex angle 2a equals some
special vertex angles will be solved by a procedure similar to the
one employed in Yao and Xu (2001). The expanding terms corre-
sponding to k ¼ 1 where paradox arises should be supposed in
the Jordan form instead of the original ones. As a result, the explicit
Fig. 1. Coordinate systems defined for a V-shaped notch in Reissner plate.
expressions of the Jordan form asymptotic solutions for the special
cases are specified. In addition, Jordan form asymptotic solution
may also arise where an eigenvalue is a double root of the
eigenequation. When a ¼ ~a (tanð2~aÞ ¼ 2~a, ~a � 128:7�), the eigen-
value k ¼ 1 just becomes a double root. In this case, there must
exist an extra Jordan form asymptotic solution corresponding to
k ¼ 1, otherwise, the eigenfunction expansion solutions of the
notch-tip fields are incomplete. Again, the first two order terms
of the Jordan form asymptotic solution are derived and specified
in explicit form.

This paper is organized as follows. After this introduction, the
fundamental equations of Reissner plate theory are summarized
for the completeness of this paper in Section 2. A restudy of the
V-notch problem in Reissner plate is conducted and the eigen
expanding terms of the asymptotic solution for general cases are
specified in Section 3. Section 4 discusses the asymptotic solutions
corresponding to k ¼ 1 for some special vertex angles of the notch.
The solutions to the paradoxes are explained by the Jordan form
asymptotic solution and specified in explicit form. The Jordan form
asymptotic solution of k ¼ 1 caused by double root is specified in
Section 5. Section 6 provides a numerical example to validate the
correctness of the formulas. The last section is about summaries.

2. Fundamental equations

Considering a bending plate with a V-notch (90� < a < 180�), as
shown in Fig. 1, the notch tip is taken as the origin of both the rect-
angular Cartesian coordinate system and the polar coordinate
system.

The fundamental equations, in the absence of body forces and
inertia effects, can be expressed in terms of three generalized dis-
placements wr , wh and w as
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ð1Þ

where wr and wh denote rotating angles with respect to straight
lines which are perpendicular to the middle plane before deforma-
tion in the rOz and hOz plane, respectively. w denotes the deflection
of the plate in the z-direction (normal to the middle plane of the
plate). D and C are bending and shearing stiffness

D ¼ Eh3

12ð1� m2Þ ; C ¼ 5
6
Gh ð2Þ

in which E, G and m are Young’s modulus, shear modulus and Pois-
son’s ratio, and h is plate thickness.

The relations between internal forces and generalized displace-
ments are specified by
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ð3Þ

The boundary conditions alone the notch surfaces are assumed
to be stress-free and expressed as

Mh ¼ Mrh ¼ Q h ¼ 0; at h ¼ �a ð4Þ
Substituting Eq. (3) into Eq. (4), the above boundary conditions

can be rewritten as
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3. Asymptotic analysis

By adopting the classical eigenfunction expansion method
pioneered by Williams (1951), as r approaches zero on R, the
above-mentioned three generalized displacements wr , wh and w
are assumed to be expanded in the asymptotic form (Liu, 1983;
Qian and Long, 1992) as
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ð6Þ

where k denotes eigenvalue, kn denotes the nth eigenvalue which
could be a real or complex number, and the superscript i denotes
the ith order term. It is known that the real part of kn must be
greater than or equal to zero to satisfy the principle that strain
energy must be finite as r approaches zero.

After a number of derivation steps, the original problem can be
simplified into an eigenvalue problem and the eigenequation for
the V-notch problem in Reissner plate is specified by

ðsin 2kaþ k sin 2aÞðsin 2ka� k sin 2aÞ sin ka cos ka ¼ 0 ð7Þ
More detailed derivation steps are referred to Qian and Long

(1992). Obviously, above eigenequation, without loss of any root,
can be factorized into four separate equations as follows:

D1ðk;aÞ � sin 2kaþ k sin 2a ¼ 0 ð8aÞ

D2ðk;aÞ � sin 2ka� k sin 2a ¼ 0 ð8bÞ

D3ðk;aÞ � sin ka ¼ 0 ð8cÞ

D4ðk;aÞ � cos ka ¼ 0 ð8dÞ
Regarding the transcendental equations (8a) and (8b), the roots

with various vertex angles of the V-notch are given in Long et al.
(2009), Yao et al.(2009). Once the root k is determined, the eigen
expanding term of the asymptotic solution corresponding to the
nth eigenvalue can be obtained straightforwardly by back
substituting the root kn into the boundary equations. The deriva-
tion procedure is omitted here, and the explicit expressions of
the expanding terms are specified directly for a more detailed
discussion.

(1) The expanding expressions corresponding to eigenvalues kn
satisfying eigenvalue equation (8a) are specified by
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ð10Þ

(2) The expanding expressions corresponding to eigenvalues kn
satisfying eigenvalue equation (8b) are specified by
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ð12Þ

(3) The expanding expressions corresponding to eigenvalues kn
satisfying eigenvalue equation (8c) are specified by

AðknÞ
0 ¼ bðknÞaðknÞ0 ¼ 0

BðknÞ
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(4) The expanding expressions corresponding to eigenvalues kn
satisfying eigenvalue equation (8d) are specified by
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where

Ar41 ¼ � kn
ðknþ1Þðknþ2Þð1�m2Þ
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The symbols bðknÞ denote unknown constants and can be deter-
mined by the boundary condition at the periphery of structure. The
higher order terms of the eigensolutions can be derived using the
same procedure. It is clear that Eqs. (9) and (13) represent symmet-
ric deformation with respect to coordinate axis h ¼ 0, while
Eqs. (11) and (15) represent antisymmetric deformation. The com-
plete asymptotic solution of the displacement field can be obtained
by substituting all the expanding expressions given above into
Eq. (6) and superimposing three rigid-body displacements.

Obviously, it can be found that k ¼ 1 is a root of Eq. (8b) for an
arbitrary a. Hence, the eigenfunction expansion solution corre-
sponding to k ¼ 1 always exists for antisymmetric deformation.
Generally, the first two order terms of the asymptotic solution
can be specified just by substituting kn ¼ 1 into Eqs. (11) and (12):

Að1Þ
0 ¼ bð1Það1Þ0 ¼ 0

Bð1Þ
0 ¼ bð1Þbð1Þ

0 ¼ bð1Þ

Cð1Þ
0 ¼ bð1Þcð1Þ0 ¼ 0

8>><
>>:

ð17Þ
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1 ¼ bð1Það1Þ1 ¼ 0
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1 ¼ bð1Þbð1Þ

1 ¼ 0

Cð1Þ
1 ¼ bð1Þcð1Þ1 ¼ bð1Þ

2 cos 2a sin 2h

8>><
>>:

ð18Þ

Then the asymptotic expression of the generalized displace-
ments is specified by

wð1Þ
r ðr; hÞ ¼ 0þ Oðr3Þ

wð1Þ
h ðr; hÞ ¼ bð1Þr þ Oðr3Þ
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2 cos 2a r

2 sin 2h
� �þ Oðr3Þ

8>><
>>:

ð19Þ

where the symbol Oðr3Þ represents the truncation error of the
asymptotic expansion (similarly hereinafter).

According to a similar derivation procedure, the higher order
terms of the eigensolution can be derived. For the sake of the fol-
lowing discussion, the expressions of the third and fourth order
terms are also given directly as follows:
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6ð1�m2Þ cos 2a
C
D sin 2h

h i
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12ð1�m2Þ cos 2a

C
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4ð1�mÞ
C
D

h i
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8>>><
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ð20Þ

Að1Þ
3 ¼ bð1Það1Þ3 ðhÞ ¼ 0

Bð1Þ
3 ¼ bð1Þbð1Þ

3 ðhÞ ¼ 0

Cð1Þ
3 ¼ bð1Þcð1Þ3 ðhÞ ¼ bð1Þ � 1

24ð1þmÞcos2a
C
D sin2hþ 3�m

48ð1�m2Þcos4a
C
D sin4h

h i

8>>><
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ð21Þ
It is well-known that the smaller the positive real part of the

eigenvalue is, the more important the corresponding eigensolution
is to determine the near-tip fields for the V-notch problem. Thus,
the asymptotic solution corresponding to k ¼ 1 plays an important
role in determining the stress and strain fields near the V-notch tip,
especially for antisymmetric deformation. However, it should be
pointed out that this asymptotic solution was not considered in
Long et al. (2009), Qian and Long (1992), which could result in sig-
nificant error in theoretical and numerical study of such a problem.
Unfortunately, all of the numerical examples in Long et al. (2009)
are related to the plate under symmetric bending deformation,
while the asymptotic solution corresponding to k ¼ 1 represents
antisymmetric deformation. As a supplement to their previous
work, the eigenfunction expansion solution corresponding to
k ¼ 1 will be investigated carefully in the present paper.

4. Solutions to the paradox of k ¼ 1

During derivation of the asymptotic solution corresponding to
k ¼ 1, an interesting phenomenon is found and recognized as a
paradox for certain special cases. From Eqs. (18), (20) and (21) it
is found that the trigonometric functions cos 2a and cos4a exist
in the denominator in the expressions of the eigen expanding
terms, and therefore the asymptotic solution may become infinite
when the trigonometric functions are equal to zero. For example,
cos 2a ¼ 0 when a ¼ 135�, cos 4a ¼ 0 when a ¼ 112:5� or 157:5�,
a 2 ð90�;180�Þ. For these special vertex angles, the original expres-
sions of the asymptotic solution corresponding to k ¼ 1 display
pathological behavior (termed as paradox) and should be reexam-
ined carefully. According to the author’s previous study (Yao and
Xu, 2001), it is found that the paradox can be explained by Jordan
form solution. By employing the similar procedure, the corre-
sponding Jordan form solutions will be derived in detail in the fol-
lowing sections.

4.1. Jordan form asymptotic solution for a ¼ 135�

From Eq. (18) it can be seen that the second order term of the
asymptotic solution becomes infinite when a ¼ 135�, the original
expression of which is obviously invalid at this moment. However,
it should be noted that k ¼ 2 is also a single root of Eq. (8d) for
antisymmetric deformation when a ¼ 135�. Considering the
asymptotic form of the generalized displacements in Eq. (6), it is
found that the asymptotic expansion solutions corresponding to
k ¼ 1 and k ¼ 2 have overlapping terms. For example, the order
of r in the second term for k ¼ 1 is coincident with that in the first
term for k ¼ 2, the order of r in the third term for k ¼ 1 is coinci-
dent with that in the second term for k ¼ 2, and the others are in
the same manner. Because of the delicate relations, the eigenfunc-
tion expansion solution corresponding to k ¼ 1 is superseded by
the one corresponding to k ¼ 2. According to the author’s previous
study, it is also found that the solution to the paradox of k ¼ 1 just
corresponds to a special Jordan form solution.

Firstly, according to Eqs. (15) and (16), the first two order terms
of the asymptotic eigensolution corresponding to k ¼ 2 when
a ¼ 135� can be specified by

Að2Þ
0 ¼ bð2Það2Þ0 ðhÞ ¼ 0

Bð2Þ
0 ¼ bð2Þbð2Þ

0 ðhÞ ¼ 0

Cð2Þ
0 ¼ bð2Þcð2Þ0 ðhÞ ¼ bð2Þ sin 2h

8>><
>>:

ð22Þ

Að2Þ
1 ¼ bð2Það2Þ1 ðhÞ ¼ bð2Þ � 1

3ð1�m2Þ
C
D sin 2h

h i

Bð2Þ
1 ¼ bð2Þbð2Þ

1 ðhÞ ¼ bð2Þ � 1þ3m
6ð1�m2Þ

C
D cos 2h

h i

Cð2Þ
1 ¼ bð2Þcð2Þ1 ðhÞ ¼ 0

8>>><
>>>:

ð23Þ

Then by virtue of the methods of mathematical physics, the sec-
ond order term of the asymptotic solution corresponding to k ¼ 1
should be supposed in the Jordan form instead of Eq. (18), i.e.

~Að1Þ
1p ¼ bð1Þ ~að1Þ1 ðhÞ þ k0 ln rað2Þ0 ðhÞ

h i
~Bð1Þ
1p ¼ bð1Þ ~bð1Þ

1 ðhÞ þ k0 ln rbð2Þ
0 ðhÞ

h i
~Cð1Þ
1p ¼ bð1Þ ~cð1Þ1 ðhÞ þ k0 ln rcð2Þ0 ðhÞ

h i

8>>>><
>>>>:

ð24Þ

Thus, the corresponding formulas of the generalized displace-
ments are given by
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~wð1Þ
r ¼ bð1Þ rað1Þ0 ðhÞ þ r2 ~að1Þ1 ðhÞ þ k0 ln rað2Þ0 ðhÞ

h in o
þ Oðr3Þ

~wð1Þ
h ¼ bð1Þ rbð1Þ

0 ðhÞ þ r2 ~bð1Þ
1 ðhÞ þ k0 ln rbð2Þ

0 ðhÞ
h in o

þ Oðr3Þ
~wð1Þ ¼ bð1Þ rcð1Þ0 ðhÞ þ r2 ~cð1Þ1 ðhÞ þ k0 ln rcð2Þ0 ðhÞ

h in o
þ Oðr3Þ

8>>>><
>>>>:

ð25Þ

Substituting above expressions into governing Eqs. (1) and (5),
and letting the sum of the coefficients of the first two low orders
of r be zero, a set of ordinary linear non-homogeneous differential

equations of ~að1Þ
1 ðhÞ, ~bð1Þ

1 ðhÞ and ~cð1Þ1 ðhÞ can be obtained as follows:

6~að1Þ1 þ ð1� mÞ€~að1Þ1 � ð1� 3mÞ _~bð1Þ
1 ¼ 0

ð5þ mÞ _~að1Þ1 þ 3ð1� mÞ~bð1Þ
1 þ 2€~bð1Þ

1 ¼ 0
€~cð1Þ1 þ 4~cð1Þ1 ¼ �4k0 sin 2h

8>>><
>>>:

ð26Þ

The corresponding boundary conditions are:

ð1þ 2mÞ~að1Þ1 þ _~bð1Þ
1 ¼ 0

_~að1Þ1 þ ~bð1Þ
1 ¼ 0

_~cð1Þ1 ¼ ~bð1Þ
0

8>><
>>:

; at h ¼ �a ð27Þ

in which ð�Þ ¼ @=@h, ð��Þ ¼ @2=@h2. Solving Eq. (26) with boundary
conditions Eq. (27), the solutions can be obtained as follows:

k0 ¼ 2
3p

ð28Þ

and

~að1Þ1 ðhÞ ¼ 0
~bð1Þ
1 ðhÞ ¼ 0

~cð1Þ1 ðhÞ ¼ k sin 2hþ 2
3p h cos 2h

8>><
>>:

ð29Þ

In the above equations, the term containing constant k is equiv-
alent to superposing the first order term of the asymptotic eigenso-
lution corresponding to k ¼ 2, i.e. Eq. (22), hence the constant k can
be chosen as k ¼ 0 for the sake of simplicity.

It is found from Eq. (20) that the paradox still arises in the third
order term. For this case, the corresponding Jordan form solution
should be in the form of

~Að1Þ
2p ¼ bð1Þ ~að1Þ2 ðhÞ þ k0 ln rað2Þ

1 ðhÞ
h i

~Bð1Þ
2p ¼ bð1Þ ~bð1Þ

2 ðhÞ þ k0 ln rbð2Þ
1 ðhÞ

h i
~Cð1Þ
2p ¼ bð1Þ ~cð1Þ2 ðhÞ þ k0 ln rcð2Þ1 ðhÞ

h i

8>>>><
>>>>:

ð30Þ

After a few derivation steps, the solutions of ~að1Þ2 ðhÞ, ~bð1Þ
2 ðhÞ and

~cð1Þ2 ðhÞ are given by

~að1Þ2 ðhÞ ¼ 1
36ð1�m2Þ

C
D k0 sin 2h� 1

3ð1�m2Þ
C
D k0h cos 2h

~bð1Þ
2 ðhÞ ¼ 7þ9m

72ð1�m2Þ
C
D k0 cos 2hþ 1þ3m

6ð1�m2Þ
C
D k0h sin 2hþ 1

4ð1�mÞ
C
D

~cð1Þ2 ðhÞ ¼ 0

8>><
>>:

ð31Þ

Similarly, the higher order terms can be derived in turn. For

instance, the solutions of ~að1Þ3 ðhÞ, ~bð1Þ
3 ðhÞ and ~cð1Þ3 ðhÞ for the fourth

order term are specified by

~að1Þ3 ðhÞ ¼ 0
~bð1Þ
3 ðhÞ ¼ 0

~cð1Þ3 ðhÞ ¼ 1
144ð1þmÞ

C
D k0 sin 2h� 1

12ð1þmÞ
C
D k0h cos 2h� 3�m

48ð1�m2Þ
C
D sin 4h

8>><
>>:

ð32Þ
Finally, for the case a ¼ 135�, the asymptotic expressions of the

generalized displacements corresponding to k ¼ 1 for the first four
orders are specified by
~wð1Þ
r ðr; hÞ ¼ bð1Þ r3 Ar1 sin 2hþ ln rðAr2 sin 2hÞ þ Ar3h cos 2h½ �� �þ Oðr5Þ

~wð1Þ
h ðr; hÞ ¼ bð1Þ rAh1 þ r3 Ah2 cos 2hþ ln rðAh3 cos 2hÞ þ Ah4h sin 2hþ Ah5½ �� �

þOðr5Þ
~wð1Þðr; hÞ ¼ bð1Þ r2 ln rðAw1 sin 2hÞ þ Aw2h cos 2h½ ��

þr4 Aw3 sin 2hþ ln rðAw4 sin 2hÞ½
þAw5h cos 2hþ Aw6 sin 4h�g þ Oðr5Þ

8>>>>>>>>><
>>>>>>>>>:

ð33Þ
where

Aw1 ¼ 2
3p

Aw2 ¼ 2
3p

Aw3 ¼ 1
216pð1þmÞ

C
D

Aw4 ¼ � 1
18pð1þmÞ

C
D

Aw5 ¼ � 1
18pð1þmÞ

C
D

Aw6 ¼ � 3�m
48ð1�m2Þ

C
D

8>>>>>>>>>>><
>>>>>>>>>>>:

;

Ar1 ¼ 1
54pð1�m2Þ

C
D

Ar2 ¼ � 2
9pð1�m2Þ

C
D

Ar3 ¼ � 2
9pð1�m2Þ

C
D

8>><
>>:

;

Ah1 ¼ 1

Ah2 ¼ 7þ9m
108pð1�m2Þ

C
D

Ah3 ¼ � 1þ3m
9pð1�m2Þ

C
D

Ah4 ¼ 1þ3m
9pð1�m2Þ

C
D

Ah5 ¼ 1
4ð1�mÞ

C
D

8>>>>>>>><
>>>>>>>>:

ð34Þ
4.2. Jordan form asymptotic solution for a ¼ 112:5� or 157:5�

From Eq. (21) it can be seen that the fourth order term of the
asymptotic solution becomes infinite when a ¼ 112:5� or 157:5�,
the original expression of which is obviously invalid at this
moment. But it is particularly noted that this time k ¼ 2 is not a
root of Eq. (8d) anymore, while k ¼ 4 is a single root at this
moment. Considering the asymptotic form of the generalized dis-
placements in Eq. (6), the asymptotic expansion solutions corre-
sponding to k ¼ 1 and k ¼ 4 have overlapping terms. According
to a similar discussion on the paradox for a ¼ 135�, the fourth
order term of the asymptotic solution should be also supposed in
the Jordan form.

According to Eqs. (15) and (16), the first two order terms of the
asymptotic eigensolution corresponding to k ¼ 4 when a ¼ 112:5�

or 157:5� can be specified by

Að4Þ
0 ¼ bð4Það4Þ0 ðhÞ ¼ 0

Bð4Þ
0 ¼ bð4Þbð4Þ

0 ðhÞ ¼ 0

Cð4Þ
0 ¼ bð4Þcð4Þ0 ðhÞ ¼ bð4Þ sin 4h

8>><
>>:

ð35Þ

Að4Þ
1 ¼ bð4Það4Þ1 ¼ bð4Þ � 4

15ð1�m2Þ
C
D sin 4h

h i

Bð4Þ
1 ¼ bð4Þbð4Þ

1 ¼ bð4Þ � 1þ5m
15ð1�m2Þ

C
D cos 4h

h i

Cð4Þ
1 ¼ bð4Þcð4Þ1 ¼ 0

8>>><
>>>:

ð36Þ

Then the fourth order term of the asymptotic eigensolution cor-
responding to k ¼ 1 is expanded in the Jordan form instead of Eq.
(21), i.e.

A
_ð1Þ
3p ¼ bð1Þ a

_ð1Þ
3 ðhÞ þ k1 ln rað4Þ

0 ðhÞ
h i

B
_ð1Þ
3p ¼ bð1Þ b

_ð1Þ
3 ðhÞ þ k1 ln rbð4Þ

0 ðhÞ
� 	

C
_ð1Þ
3p ¼ bð1Þ c

_ð1Þ
3 ðhÞ þ k1 ln rcð4Þ0 ðhÞ

h i

8>>>>>>><
>>>>>>>:

ð37Þ

And the corresponding formulas of the generalized displace-
ments are given by

w
_ð1Þ

r ðr;hÞ¼ bð1Þ rað1Þ
0 ðhÞþ r2að1Þ1 ðhÞþ r3að1Þ

2 ðhÞþ r4 a
_ð1Þ

3 ðhÞþk1 lnra
ð4Þ
0 ðhÞ

h in o
þOðr5Þ

w
_ð1Þ

h ðr;hÞ¼ bð1Þ rbð1Þ
0 ðhÞþ r2bð1Þ

1 ðhÞþ r3bð1Þ
2 ðhÞþ r4 b

_ð1Þ
3 ðhÞþk1 lnrb

ð4Þ
0 ðhÞ

� 	
 �
þOðr5Þ

w
_ ð1Þðr;hÞ¼ bð1Þ rcð1Þ0 ðhÞþ r2cð1Þ1 ðhÞþ r3cð1Þ2 ðhÞþ r4 c

_ð1Þ
3 ðhÞþk1 lnrc

ð4Þ
0 ðhÞ

h in o
þOðr5Þ

8>>>>>><
>>>>>>:

ð38Þ
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By following a procedure similar to that described for a ¼ 135�,

the solutions of a
_ð1Þ

3 ðhÞ, b
_ð1Þ

3 ðhÞ and c
_ð1Þ

3 ðhÞ can be obtained and spec-
ified by

k1 ¼ 3� m
48ð1� m2Þa

C
D

ð39Þ

and

a
_ð1Þ

3 ðhÞ ¼ 0

b
_ð1Þ

3 ðhÞ ¼ 0

c
_ð1Þ

3 ðhÞ ¼ k sin 4h� 1
24ð1þmÞ cos 2a

C
D sin 2h

þ 3�m
48ð1�m2Þa

C
D h cos 4h

8>>>>>><
>>>>>>:

ð40Þ

In the above equation, the term containing constant k is equiv-
alent to superposing the first order term of the asymptotic eigenso-
lution corresponding to k ¼ 4, i.e. Eq. (35), hence the constant k can
be taken as k ¼ 0 for the sake of simplicity.

Finally, for the cases a ¼ 112:5� and 157:5�, the expressions of
the generalized displacements corresponding to k ¼ 1 for the first
four orders are specified by

w
_ð1Þ

r ðr; hÞ ¼ bð1Þ r3ðBr1 sin 2hÞ� �þ Oðr5Þ
w
_ð1Þ

h ðr; hÞ ¼ bð1Þ rBh1 þ r3ðBh2 cos 2hþ Bh3Þ
� �þ Oðr5Þ

w
_ð1Þðr; hÞ ¼ bð1Þ r2Bw1 sin 2hþ r4ðBw2 sin 2hþ Bw3 ln r sin 4hþ Bw4h cos 4hÞ

� �þ Oðr5Þ

8>>><
>>>:

ð41Þ

where

Br1 ¼ � 1
6ð1�m2Þ cos 2a

C
D

Bh1 ¼ 1
Bh2 ¼ � 1þ3m

12ð1�m2Þ cos 2a
C
D

Bh3 ¼ 1
4ð1�mÞ

C
D

;

Bw1 ¼ 1
2 cos 2a

Bw2 ¼ � 1
24ð1þmÞ cos 2a

C
D

Bw3 ¼ 3�m
48ð1�m2Þa

C
D

Bw4 ¼ 3�m
48ð1�m2Þa

C
D

ð42Þ

The higher order terms of the asymptotic eigensolution can be
derived according to the similar procedure, and one can solve them
where necessary.

Theoretically, the paradox may be found when the difference
between two eigenvalues is an integer according to the asymptotic
form of the generalized displacements in Eq. (6), while this is only
a necessary condition. According to the expressions of the
expanding terms of the eigensolution corresponding to k ¼ 1, it is
found that the trigonometric function cosð1þ iÞa, (i ¼ 2kþ 1;
k ¼ 0;1;2; . . .) exists in the denominator, then the eigensolution
would become infinite when cosð1þ iÞa ¼ 0. In addition to
cos 2a ¼ 0 and cos4a ¼ 0 that are studied in the present paper,
many other cases can also result in the existence of the paradox,
such as cos 6a ¼ 0, cos 8a ¼ 0, and so on. In other words, it is found
that paradox arises when the wedge angle satisfies cosð1þ iÞa ¼ 0
and a 2 ð90�;180�Þ. For example, it is found that cos 6a ¼ 0 when
a ¼ 105�, 135� or 165�, at this moment the expanding terms of
the eigensolution become infinite from the beginning of the sixth
order term, and the solutions to the paradoxes should be supposed
in the Jordan form based on the expanding terms of the eigensolu-
tion corresponding to k ¼ 6. For the sake of simplicity, more dis-
cussion will not be given here, and one can solve the related
Jordan form solution where necessary.

5. Jordan form asymptotic solution for the double eigenvalue
k ¼ 1

When a ¼ ~a (tanð2~aÞ ¼ 2~a, ~a � 128:7�), it is found that the
eigenvalue k ¼ 1 becomes a double root of Eq. (8b) by reason that
k ¼ 1 is also a root of @D2ðk;aÞ=@k ¼ 0. In accordance with the
derivation above there is only one unknown constant bð1Þ to be
determined for k ¼ 1, in other word, there is only one basic asymp-
totic solution for k ¼ 1. Hence, for the case ~a � 128:7�, there must
exist an extra Jordan form asymptotic solution in addition to the
basic asymptotic solution Eq. (19), otherwise, the eigenfunction
expansion solutions of the notch-tip fields are incomplete.

By virtue of the methods of mathematical physics, the first two
order terms of the Jordan form asymptotic eigensolution should be
supposed, respectively, in the form of

Að1Þ
0J ¼ bð1Þ

J að1Þ0J þ ln rað1Þ0

h i

Bð1Þ
0J ¼ bð1Þ

J bð1Þ
0J þ ln rbð1Þ

0

h i

Cð1Þ
0J ¼ bð1Þ

J cð1Þ0J þ ln rcð1Þ0

h i

8>>>><
>>>>:

ð43Þ

Að1Þ
1J ¼ bð1Þ

J að1Þ1J þ ln rað1Þ1

h i

Bð1Þ
1J ¼ bð1Þ

J bð1Þ
1J þ ln rbð1Þ

1

h i

Cð1Þ
1J ¼ bð1Þ

J cð1Þ1J þ ln rcð1Þ1

h i

8>>>><
>>>>:

ð44Þ

And the corresponding formulas of the generalized displace-
ments are given by

wð1Þ
rJ ðr; hÞ ¼ bð1Þ

J r að1Þ
0J ðhÞ þ ln rað1Þ

0 ðhÞ
h i

þ r2 að1Þ
1J ðhÞ þ ln rað1Þ

1 ðhÞ
h in o

þ Oðr3Þ

wð1Þ
hJ ðr; hÞ ¼ bð1Þ

J r bð1Þ
0J ðhÞ þ ln rbð1Þ

0 ðhÞ
h i

þ r2 bð1Þ
1J ðhÞ þ ln rbð1Þ

1 ðhÞ
h in o

þ Oðr3Þ

wð1Þ
J ðr; hÞ ¼ bð1Þ

J r cð1Þ0J ðhÞ þ ln rcð1Þ0 ðhÞ
h i

þ r2 cð1Þ1J ðhÞ þ ln rcð1Þ1 ðhÞ
h in o

þ Oðr3Þ

8>>>><
>>>>:

ð45Þ
Substituting above expressions into governing Eq. (1) and Eq.

(5), and letting the sum of the coefficients of r with the same power

order be zero, the equation sets about að1Þ
iJ ðhÞ, bð1Þ

iJ ðhÞ and cð1ÞiJ ðhÞ
(i ¼ 0;1) for each order can be obtained, and the corresponding
boundary conditions can also be obtained. For instance, a set of

ordinary linear differential equations of að1Þ
0J ðhÞ, bð1Þ

0J ðhÞ and cð1Þ0J ðhÞ
is formed by letting the sum of the coefficients of r�1 term be zero,
i.e.

1�m
2
€að1Þ0J þ ð�1þ mÞ _bð1Þ

0J ¼ 0

2 _að1Þ0J þ €bð1Þ
0J þ ð1� mÞ ¼ 0

€c0J þ c0J ¼ 0

8>><
>>:

ð46Þ

The corresponding boundary conditions are

ð1þ mÞað1Þ0J þ _bð1Þ
0J ¼ 0

_að1Þ0J þ 1 ¼ 0

_cð1Þ0J ¼ 0

8>><
>>:

; at h ¼ �~a ð47Þ

Solving Eq. (46) with boundary conditions Eq. (47), the solu-

tions of að1Þ0J ðhÞ, bð1Þ
0J ðhÞ and cð1Þ0J ðhÞ can be obtained:

að1Þ0J ¼ � 1þm
4 cos 2~a sin 2h� 1�m

2 h

bð1Þ
0J ¼ � 1þm

4 cos 2~a cos 2hþ k

cð1Þ0J ¼ 0

8>><
>>:

ð48Þ

In the above equation, the term containing constant k is equiv-
alent to superposing the first order term of the basic eigensolution
corresponding to k ¼ 1, i.e. Eq. (17), hence the constant k can be
taken as k ¼ 0 for the sake of simplicity.

In the same way the solutions of að1Þ1J ðhÞ, bð1Þ
1J ðhÞ and cð1Þ1J ðhÞ for the

second order term of the Jordan form eigensolution can be speci-
fied by



Fig. 2. A square plate with a center rhombic hole subjected to uniform twisting
moment.
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að1Þ1J ¼ 0

bð1Þ
1J ¼ 0

cð1Þ1J ¼ � 1þm�4~a2
4 cos 2~a sin 2hþ 1

2 cos 2~a h cos 2h� 1�m
4 h

8>><
>>:

ð49Þ

Finally, for the case a ¼ ~a (tanð2~aÞ ¼ 2~a, ~a � 128:7�), the Jordan
form asymptotic expressions of the generalized displacements cor-
responding to k ¼ 1 for the first two orders are specified by

wð1Þ
rJ ðr; hÞ ¼ bð1Þ

J r � 1þm
4 cos 2~a sin 2h� 1�m

2 h
� �þ Oðr3Þ

wð1Þ
hJ ðr; hÞ ¼ bð1Þ

J r � 1þm
4 cos 2~a cos 2hþ ln r

� �þ Oðr3Þ
wð1Þ

J ðr; hÞ ¼ bð1Þ
J r2 � 1þm�4~a2

4 cos 2~a sin 2hþ 1
2 cos 2~a h cos 2h

�
� 1�m

4 hþ ln r 1
2 cos 2~a sin 2h

�þ Oðr3Þ

8>>>>>><
>>>>>>:

ð50Þ

The higher order terms of the Jordan form eigensolution can be
derived according to the similar procedure, and one can solve them
where necessary.

After the Jordan form asymptotic solutions are obtained, the
complete expressions of the generalized displacements for a ¼ ~a
can be given by superimposing the basic and the Jordan form
asymptotic solutions corresponding to k ¼ 1 on all other asymp-
totic solutions corresponding to kn (unequal to 1) and three
rigid-body displacements, i.e.

wrðr; hÞ ¼
X1
n¼1

ðkn–1Þ

wðknÞ
r ðr; hÞ þ wð1Þ

r ðr; hÞ þ wð1Þ
rJ ðr; hÞ þ a0 cos hþ b0 sin h

whðr; hÞ ¼
X1
n¼1

ðkn–1Þ

wðknÞ
h ðr; hÞ þ wð1Þ

h ðr; hÞ þ wð1Þ
hJ ðr; hÞ � a0 sin hþ b0 cos h

wðr; hÞ ¼
X1
n¼1

ðkn–1Þ

wðknÞðr; hÞ þwð1Þðr; hÞ þwð1Þ
J ðr; hÞ þ a0r cos hþ b0r sin hþw0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð51Þ

in which wð1Þ
r , wð1Þ

h and wð1Þ given in Eq. (19) represent the basic form

asymptotic eigensolutions corresponding to k ¼ 1; wð1Þ
rJ , w

ð1Þ
hJ and wð1Þ

J

given in Eq. (50) represent the Jordan form asymptotic eigensolu-
tions corresponding to k ¼ 1.
Fig. 3. Half of the plate with a singular element installed on the notch-tip.
6. Numerical example

The asymptotic expansion solutions are very important to many
numerical methods, while incomplete eigenfunction expansion
will result in significant error. In order to prove this, the following
numerical example is given, and numerical results obtained with
and without the asymptotic eigensolution corresponding to k ¼ 1
are compared with benchmark results, respectively. In the numer-
ical example, a kind of singular element method for solving crack
or V-shaped notch problems in Reissner plate proposed by the
authors is employed (Yao et al., 2014). The singular element
method employs the asymptotic expansion solutions to describe
the displacement fields near the tip of a V-notch, so the eigenfunc-
tion expansion plays a crucial role in the performance of this
numerical method. Finite element method (FEM) results with
dense meshes are given as reference solutions.

As shown in Fig. 2, a square plate containing a center rhombic
hole is considered. The plate is subjected to a twist moment m0

uniformly distributed at its all sides, which leads to an antisym-
metric deformation state. The geometric parameters are: l is half
of the length of left–right diagonal line of the rhombic hole, a is
half of the left–right vertex angles, h is plate thickness. In this
example, let the length of the plate side 2L ¼ 20l, the plate thick-
ness h ¼ 2:0l and Poisson’s ratio m ¼ 0:3. Because of structural sym-
metry, only the right half of the plate is used for computation. And
a singular element with radius R is installed on the notch-tip (see



Fig. 4. Angular variations of the internal forces near the tip of a V-shaped notch in Reissner plate for a ¼ 135� .
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Fig. 3). During all calculations, we keep the radius of the singular
element R ¼ 0:3l, and the number of export nodes n ¼ 17.

Based on the asymptotic expansion solutions where the first
four order expansion terms for each eigenvalue are employed, a
singular element is constructed. In this example, two sets of results
obtained by using the singular element method are presented, in
which one is denoted by ‘‘result I” calculated by employing the
asymptotic solution of k ¼ 1, whereas the other one is denoted
by ‘‘result II” calculated by neglecting the eigenfunction expansion
of k ¼ 1.

In order to facilitate comparison, the dimensionless quantities
~Mr ¼ Mr=m0, ~Mh ¼ Mh=m0, ~Mrh ¼ Mrh=m0, ~Qr ¼ Qrl=m0 and
~Q h ¼ Q hl=m0 are introduced. When a ¼ 135�, numerical results of
the dimensionless bending moments ~Mr , ~Mh and ~Mrh, and the

dimensionless shear forces ~Qr and ~Q h distributed along the circum-
ference r=R ¼ 0:5 are plotted in Fig. 4(a)–(e), respectively. Actually,
the results indicate the distribution of the bending moments and
the shear forces near the notch-tip in the angular direction. Subse-
quently, results along a radius line at h ¼ 0� are chosen when
a ¼ 157:5�. Because of symmetry, only bending moment Mrh and
shear force Q h are nonzero along this direction. The numerical
results of the dimensionless bending moment ~Mrh and the dimen-

sionless shear force ~Q h are plotted in Fig. 5(a) and (b), respectively.
Results calculated by conventional FEM using dense finite meshes
with 6480 elements are provided as reference solutions. It can be
seen that ‘‘result I” is in excellent agreement with the reference
solutions, while ‘‘result II” has a significant difference with them,
especially for the bending moments. The great deviation is mainly
caused by neglecting the eigenfunction expansion solution
corresponding to k ¼ 1 in the asymptotic expressions for the
displacement field near the tip of a notch. On the other hand, it
is shown that the Jordan form asymptotic solutions presented in
the previous sections are correct and the present study is proven
to be valid.

For general vertex angles of the notch, numerical results of the
dimensionless bending moment ~Mrh and the dimensionless shear

force ~Q h at r=R ¼ 0:5, h ¼ 0� for different half opening angles of
the notch are plotted in Fig. 6(a) and (b), respectively. It can be
seen that ‘‘result I” is in excellent agreement with reference results
while ‘‘result II” has great difference. Again, it illustrates that the
asymptotic eigensolution corresponding to k ¼ 1 can make a sig-
nificant impact on the numerical results not only for the special
cases, but also for the general case. In other words, the eigensolu-
tion corresponding to k ¼ 1 plays an important role in determining
the near-tip fields for the V-notch, especially for antisymmetric
deformation.
7. Discussions and conclusions

In the present paper the asymptotic expansion solutions for the
notch-tip field in Reissner plate have been reexamined and derived
systematically using the eigenfunction expansion method. For an



Fig. 5. Variations of the internal forces along h ¼ 0� in front of the V-notch tip for
a ¼ 157:5� .

Fig. 6. Variations of the internal forces Mrh and Q h at r=R ¼ 0:5, h ¼ 0� for different
half opening angles of the notch.
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arbitrary vertex angle of the notch, the eigenvalue k ¼ 1 is always a
root of the eigenequation for the V-notch problem in Reissner
plate, and the corresponding eigenfunction expansion solution
plays an important role in determining the stress and strain fields
near the notch-tip, especially for antisymmetric deformation. As a
supplement to previous work, the crucial asymptotic solution is
derived in the present study. Moreover, a paradox is found to arise
in the expansion terms of the asymptotic solution for some special
vertex angles (e.g. a ¼ 135�, 112:5� or 157:5�). The cases of the
paradox are studied, and the corresponding bounded solutions
are found to be explained by the Jordan form solution. Theoreti-
cally, the paradox may be found when the difference between
two eigenvalues is an integer, while this is only a necessary condi-
tion. After a rational derivation procedure, the Jordan form asymp-
totic solutions are obtained and specified in explicit form, and the
higher order terms are suggested to be solved through a similar
procedure. Furthermore, Jordan form solution is also found to arise
in another special case where tanð2aÞ ¼ 2a, a � 128:7�, because
k ¼ 1 becomes a double root of the eigenequation in this case.
Again, the Jordan form asymptotic solution is specified in explicit
form. A numerical example is given to illustrate the validity of
the present study. Two kinds of numerical results calculated based
on the asymptotic expansion solutions, respectively, with and
without the eigensolution corresponding to k ¼ 1, together with
the FEM results with dense meshes are given. It is observed that
the asymptotic expansion solution corresponding to k ¼ 1 is
important for the distribution of the displacement and stress fields
near the notch tip, and a significant error could be resulted in when
the solution is neglected in related numerical studies. On the other
hand, it is shown that the Jordan form asymptotic solutions pre-
sented in the present paper are correct.

The present study intends to contribute to the completeness of
the eigenfunction expansion solutions of the asymptotic near-tip
fields for V-shaped notch in Reissner plate, especially for the spe-
cial cases, and propose a rational method to derive the Jordan form
solutions of similar problems.
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