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Abstract

This paper serves as an introduction to the variational formulation of Cosserat beams. It
provides a detailed derivation and treatment of reduced balance laws of Cosserat beams from
the Lagrangian differential equation of motion and Hamilton’s principle. Emphasis is given
to the details of the derivation, maintaining Bernoulli’s assumption of the rigid cross-section.
Both the strong form and the weak form of the equilibrium equation for Cosserat beams are
derived independently from the infinitesimal stress equilibrium equation. The weak form is then
validated by obtaining it from the strong form of the reduced law in a purely mathematical sense.
Finally, the strong form is obtained using Hamilton’s principle. Once the equations are obtained
considering an initially straight reference beam configuration, the balance equation for the beam
with initial curved (but unstrained) reference configuration is obtained. The D’Alembert forces
are interpreted from the non-inertial director frame of reference and conclusions drawn. The
energy conservation law and the conditions associated with it are obtained, establishing the
relation between the Lagrangian and Hamiltonian functional for Cosserat beams.

Keywords: Cosserat beam theory, directors, material frame, stress resultant, strong form,
weak form, balance laws, virtual work, non-inertial director frame.
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1. Introduction

The mechanics of Cosserat continuum has been a topic of interest since its discovery by Cosserat
and Cosserat [1] in 1909. Cosserat beam theory is a single manifold problem. The position vector
of the midcurve and the directors are the physical parameters that are used to define the state of
the beam. This description of the rod falls under the idea of Duhem [2], where any point in the
body is not only described by the position vector, but also by an attached set of vector triad called
directors. The Cosserat brothers [1] harnessed this idea to develop the finite strain theory of rods
and shells assuming a fixed rectangular Cartesian system. The work by Ericksen and Truesdell [3]
was a mathematical generalization of the work of Cosserat brothers to develop a nonlinear theory
of rods and shells. They first considered general differential geometry tools that deal with the
transformation from one space to other and then used them to obtain a general description of the
undeformed and deformed configuration of the rods. They limited the space to a three-dimensional
Euclidean space, thereby developing a complete differential description of the finite strain of the rod.
Their work [3] also serves as a concise introduction to the history of theory of beams and rods. The
work on the finite displacement theory of the rods attributed to Kirchhoff was improvised by Hay
[4], which is in fact a special case of the formulation in [3] obtained by choosing special coordinates.
Cohen [5] developed a comprehensive nonlinear theory of elastic curves for the static case. This work
was extended to the dynamic case by Whitman and Desilva [6]. Eric Reissner [7]-[9] developed the
static finite strain beam theory for the plane case by incorporating the shear deformation using a
classical approach. He arrived at non-linear strain displacement relations consistent with equilibrium
equations for the static case. Simo [10] extended the work of Reissner for three-dimensional dynamic
case using a director type of approach. Further work by Simo and Vu-Quoc [11] incorporated the
effect of Warping for initially straight beam, maintaining the single manifold nature of the problem.
Simo [10] discussed the balance law considering the uniform straight initial beam configuration, and
Iura and Atluri [12] obtained the governing equations for the initially curved beam configuration
using the principle of virtual work. The work by Green and Naghdi is among the first exposition to
the theory of elastic rods, developing the mechanics using a classical three-dimensional equations
[13] and also using Cosserat curves [14]. Naghdi and Rubin [15] presented various constraint theories
of rods where various classes of deformations were restraints. A relatively recent publication by
Brand and Rubin [16] dealt with one of such constraint theories of a Cosserat point for numerical
solutions of non-linear elastic rods. Significant research on the finite element formulation of the
Cosserat beam element is done by Cao et al. [17]-[18], Kapania and Li [19] and Rubin [20]-[23]. The
ability of Cosserat beam theory to capture all kinds of deformations including torsion and shear
has been exploited by Todd et al. [24], Chadha and Todd [25] to develop a theory of global shape
reconstruction using finite surface strain measurements.

Interested readers are also recommended to refer to the detailed work and references therein
by Love [26], Antman [27]-[28], Svetlitsky [29]-[30], Maugin [31] and Vetyukov [32]. The Cosserat
rod is a special case of problems that fall in the domain of micropolar continua, which in turn
is a special restraint case of micromorphic continua. An excellent compilation of explanation on
micropolar continua (by H. Altenbach and V. A. Eremeyev), micromorphic continua (by Samuel
Forest), Electromagnetism and generalized Continua (by G.A. Maugin) is found in [33].

It is evident that the problem of Cosserat rods has been well treated in the past. While the
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aforementioned references are seminal contributions to this field of mechanics, they do not tend to
elaborate the details of the inherent physical relationships or the connections particularly appreciative
to the engineers. We focus on illustrating various ideas by means of rigorous mathematical derivations
and illustrative schematic diagrams wherever possible, attempting to deliver the matter in a simplified
yet complete manner. The detail with which the derivations are performed and the results explained
in the defined domain of the discussion sets this work apart from the references mentioned above.
We believe that the primary novelty of our work is that the mathematical details and interpretations
it encompasses would help the reader get acquainted with a method of rational reasoning of the
description of finite strains and the governing differential equation of three dimensional, geometrically
exact Cosserat beams.

Unlike the general work of Ericksen and Truesdell [3], we limit our discussion to the classical
Cosserat beam formulation with orthonormal director triad and fixed Cartesian reference system.
We outline the tensor algebra and variational principles required to derive the strong and weak form.
We discuss about a method to uniquely define the shear angles and obtain the curvature terms as a
function of pitch and yaw angles. A careful interpretation of the finite strain vector obtained as a
result of superimposition of strain due to curvature, elongation, shear, and torsion is presented. We
also present a detailed discussion on the variation of the director triad and parametrization of the
orthogonal rotation tensor using Rodrigues method with an explanatory example. The pioneering
work of Ibrahimbegovic [34] on vector like parametrization of three-dimensional finite rotations
details the kind of parametrization described in this paper. Another approach on parametrization
of rotation tensor is the quaternion method, which is explained in the work of Argyris [35]. We
carefully develop the deformation gradient tensor of the beam assuming the undeformed state of
the rod to be naturally curved. We culminate the section on the deformation gradient tensor by
presenting a clear exposition of the finite strain vector of the rod referenced to the curved reference
configuration (section 3.1.3).

Since the balance laws in both weak and strong forms are at the heart of finite element analysis,
we firmly believe that it is beneficial to obtain these equations in more elucidated and detailed
fashion, using both an infinitesimal equilibrium equation and the Hamilton-Lagrange principle. The
results obtained here will be directly used to generalize the theory of shape reconstruction developed
by the authors and to investigate the conservation laws of Cosserat beams. In this paper, we do
not specifically assume that the midcurve passes either through the geometric centroid or the mass
centroid of the beam but rather leave its location general. We obtain the equations for the initially
straight configuration and finally achieve the same for an initially curved (but strain-free) reference
configuration. To clearly demonstrate the importance of the terms involved in the equation of
motion, we interpret the motion as viewed from the director frame of reference. We also obtain
the energy conservation law from Hamilton’s principle, thereby establishing a transformational link
between the total energy and Lagrangian functional for Cosserat beams. This sets a foundation for
our further work on conservation laws of Cosserat rods as a problem of symmetries in the Noether
Theorem sense.

The remainder of the paper is arranged as follows: section 2 details the geometric formulation,
defines the deformation parameters (subsection 2.1), and finally outlines the required mathematical
tools (subsection 2.2). Section 3 derives the deformation gradient tensor (subsection 3.1) and the
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variation of deformation parameters (subsection 3.3), defines the stresses, and presents the reduced
force and moment in the classical sense (subsection 3.4). Section 4 presents the derivation of the
Strong form of the reduced balance law. Section 5 deals with the derivation and interpretation of
the weak form of equation from the infinitesimal Lagrangian equation (subsection 5.1), validating
the weak form by obtaining it from the strong form (subsection 5.2). Section 6 comprehends the
derivation of strong form from the Hamilton’s equation of motion. Section 7 presents a linear
constitutive law relating the reduced forces with the reduced strain parameters. Section 8 deals
with the energy conservation for the Cosserat beam. Finally, Section 9 draws some conclusions and
describes the scope of future research in the field.

University of California, San Diego 4
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2. Kinematic Model and mathematical tools

2.1. Geometry and deformation parameters

The beam configuration is defined by a midcurve and the family of cross-sections. The beam
can possess different cross-sections varying smoothly. The cross-sections are assumed to be rigid,
and as such, the Poisson and warping effects are ignored (refer Appendix 10.5 for more details on
this assumption). The initial shape of the structure may be curved or straight and is assumed to
be unstrained. We begin by assuming that the initially curved reference beam Ωc deforms to some
current configuration Ω. Consider a fixed orthogonal Cartesian triad {Ei}. Any configuration of the
structure is described by the locus of the geometric centroids of the family of cross-sections called
the mid-curve, defined by the position vector ϕ(ξ1) parametrized by the undeformed arc-length
ξ1 ∈ [0, L0], where L0 is the total length of the mid-curve in the undeformed configuration, or

ϕ(ξ1) = ϕiEi. (1)

The parameter �(ξ1) represents the cross-section of the beam at an arc length ξ1 and is
independent of deformation because cross-sections are assumed rigid. The orientation of any cross-
section in the deformed configuration is quantified by the set of orthogonal Cosserat triad called
directors {di(ξ1)} such that

di = dijEj . (2)

Any point on the beam is defined by the material coordinates (ξ1, ξ2, ξ3) that are independent
of the configuration of the beam. The position vector ϕ(ξ1) is sufficient to define the mid-curve but
not the orientation of the cross-section that is affected by shear and torsion. The directors take care
of this. The director d1(ξ1) is perpendicular to the cross-section and the directors d2(ξ1) and d3(ξ1)
span the cross-section �(ξ1). Any point P on the cross-section is defined with respect to the point
G on the midcurve at �(ξ1) by the position vector rPG = ξ2d2(ξ1) + ξ3d3(ξ1), as shown in Fig. 1.
Therefore, any point P in the structure is given by the position vector

R(ξ1, ξ2, ξ3) = ϕ(ξ1) + ξ2d2(ξ1) + ξ3d3(ξ1) = ϕ(ξ1) + rPG(ξ2, ξ3). (3)

The initially curved reference beam configuration is defined by dci(ξ1) = dcij(ξ1)Ej , ϕ
c(ξ1) =

ϕi
c(ξ1)Ei and any point on the cross-section is given by the vector Rc(ξ1) = ϕc(ξ1) + ξ2d

c
2(ξ1) +

ξ3d
c
3(ξ1). It is convenient to mathematically define a straight beam configuration Ωs such that the

directors are defined by {Ei}, the position vector of the midcurve is given by ϕs(ξ1) = ξ1E1 and
any point in the beam is defined by Rs(ξ1) = ϕs(ξ1) + ξ2E2(ξ1) + ξ3E3(ξ1). The triads {Ei}, {dci}
and {di} are related to each other by means of orthogonal directional cosine tensors as shown in
Fig. 1, such that

di = QEi; d
c
i = QcEi; di = Qrdi

c. (4)

Therefore, any general vector g(ξ1) can be expressed in the fixed frame {Ei} or the local frame {di}

5 University of California, San Diego
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such that g = giEi = gidi. It can be established from Eq.(4) that

Q = QrQc, (5)

Q = di ⊗Ei; Qr = di ⊗ dci; Qc = dci ⊗Ei. (6)

In general, a Cosserat beam can capture the effect of elongation, shear, and multiple curvatures.

Figure 1: : Deformed and undeformed configurations of Cosserat rod, material adapted frames and
deformation gradient tensors

Defining the deformed arc length as s, axial strain as e(ξ1) the three shear angles as γ11(ξ1), π
2
−γ12(ξ1)

and π
2
− γ13(ξ1) subtended by the directors d1, d2 and d3 with the tangent vector ∂ϕ

∂s
as in Chadha

and Todd [25], the following relations may be established:

dξ1

ds
=

1

1 + e
; (7)

∂ϕ

∂s
.d1 = cos γ11;

∂ϕ

∂s
.d2 = sin γ12;

∂ϕ

∂s
.d3 = sin γ13. (8)

Therefore,
ϕ,ξ1 = (1 + e){cos γ11d1 + sin γ12d2 + sin γ13d3} (9)

The above equation is not enough to uniquely define the shear angles. Section 3.2 addresses a way
to uniquely define them.

University of California, San Diego 6
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2.2. Mathematical tools

2.2.1. Derivative of the moving frame

The derivative of the director di with respect to a general parameter x is obtained using Eq.
(4) as

di,x = Q,xEi = Q,xQ
Tdi = qx × di. (10)

It may be proven that Q,xQ
T is antisymmetric from the fact that Q is orthogonal. Therefore, there

exists a corresponding axial vector qx such that Eq. (10) holds. For a deforming beam, the director
frame {di(t, ξ1)} is function of time t and arc-length ξ1. The axial vector corresponding to the time
derivative di,t and the derivative with respect to arc length di,ξ1 is given by the angular velocity
vector ω = ωiEi = ωidi and the Darboux vector κ = κiEi = κidi respectively, as shown in Eq.
(11) and (12). The component of the Darboux vector gives the curvature about the corresponding
director. The first component κ1 represents torsional deformation, whereas κ2 and κ3 represent
bending curvature about d2 and d3, respectively.

di,t = Q,tQ
Tdi = Wdi = ω × di, (11)

di,ξ1 = Q,ξ1Q
Tdi = Kdi = κ× di. (12)

Consider the orthogonal rotation tensor, for example Q(ξ1). It represents the family of orthogonal
tensors that belong to the SO(3) rotational group. Therefore, they satisfy Q(ξ1)QT (ξ1) = I3 and
det [Q] = 1. The rotation tensor Q(ξ1), being a curve in the manifold SO(3), Q,ξ1 represents
the tangent vector to this curve in SO(3). Therefore, Qξ1Q

T = K(ξ1) is the linear space of skew
symmetric matrices that has κ(ξ1) as the corresponding axial vector.

2.2.2. Parametrization of the rotation tensor

Argyris [35] describes various methods to describe large vector rotations. We choose Rodrigues
formula to describe the rotation of director frame.

Consider a general vector ga that is rotated to gb by an orthogonal tensor R such that,
gb = Rga. The orthogonal tensor has 3 independent entries because of the restriction RTR = I3.
Therefore, R can be parametrized by three parameters. The rotation described by R can be thought
of as the rotation of the vector ga about the unit vector nθ by an angle θ. Therefore the vector
θ = θnθ completely describes the rotation. If Θ represent anti-symmetric tensor for the axial vector
θ, then by Rodrigues formula

gb = [ga + nθ × nθ × ga] + [nθ × ga] sin θ − [nθ × nθ × ga] cos θ = R(θ)ga, (13)

where

R(θ) = I3 +
sin θ

θ
Θ +

(1− cos θ)

θ2
Θ2 = eΘ. (14)

From Eq.(4), the orthogonal tensor Q(ξ1) can be parametrized by the rotation vector θ(ξ1) such
that the vector triad {Ei} is rotated to the director triad {di} by an angle θ about the unit vector

7 University of California, San Diego
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nθ.

Solution of the director triad {di} for a beam with a fixed left end serves as a good example to
appreciate above discussion. Equation (12) represents set of three differential equations that can be
written in the matrix form as



d1,ξ1

d2,ξ1

d3,ξ1


 =




0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0




︸ ︷︷ ︸
KT



d1

d2

d3


 . (15)

Assume that the left end of the beam is fixed, implying di(0) = Ei and θ(ξ1) = 0. These also
serve as the three vector boundary conditions to solve Eq. (15). The Darboux vector, κ = κidi,
may be interpreted as the rotation of the director frame per unit arc length at ξ1 by an angle
‖κ‖ =

√
κ2

1 + κ2
2 + κ2

3. Since the left end of the beam is fixed, the director frame {di(ξ1)} can

be obtained by rotating the vectors Ei by an angle θ(ξ1) =
∫ ξ1

0
‖κ(ξ1)‖dξ1 about the unit vector

nθ(ξ1) = κ(ξ1)
‖κ(ξ1)‖ .

Figure 2: : Geometric interpretation of solution to Eq. (15) for a 2D plane beam with curvature about
director d3

University of California, San Diego 8
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Figure (2) geometrically explains the concept described above using a simplified 2D beam fixed
at left end. The director d3(ξ1) = E3 remains same throughout the midcurve for the problem
being planar in nature. Since the torsion is assumed to be zero, κ(ξ1) = κ3d3. This scenario
simplifies the unit vector about which rotation occurs at any arc-length as nθ(ξ1) = d3(ξ1) = E3

and the angle of rotation of directors d1(ξ1) and d2(ξ1) with respect to the directors (in a straight

configuration) E1 and E2 respectively as, θ(ξ1) =
∫ ξ1

0
κ3(ξ1)dξ1. Note that this is a special case

where the vector nθ(ξ1) = E3 is constant for all ξ1. Therefore, a general rotation tensor Q, such
that di(ξ1) = Q(ξ1)Ei, for a beam fixed at left end, is then expressed in terms of the curvatures as

Q(ξ1) = e

{∫ ξ1
0
‖κ(ξ1)‖dξ1

‖κ(ξ1)‖

}
K(ξ1)

, (16)

where, K(ξ1) is the anti-symmetric tensor corresponding to Darboux vector κ(ξ1). From the above
discussion, the result of Eq. (13) and (14) is not surprising because the solution of the first order
differential equation is an exponential.

2.2.3. The material form and co-rotated derivatives of the vector

Consider a general vector g = gidi. The material form of the vector g is defined using Eq. (4)
as,

g = gidi = gi(QEi) = Qg,

g = QTg = giEi.
(17)

We obtain the material vector g by expressing the components of the vector g in the director frame
{di}, in the fixed frame {Ei}. The total derivative of the vector g, using Eq. (4), comprises of two
components– first being change in the magnitude and second representing the change due to the
rotation of the frame of reference (i.e., rotation of the director frame)

g,x = gi,xdi + gidi,x = gi,xdi +Q,xQ
T (gidi) = g̃,x + qx × g. (18)

The co-rotational derivative g̃,x = gi,xdi gives the contribution due to the change in the magnitude
of the vector g due to change dx in the parameter x. It may also be interpreted as the derivative of
the vector g as observed in the director frame. Physically the co-rotated derivatives can be obtained
by taking the total derivative of the vector g (by the observer in the fixed frame {Ei} followed by
subtracting the rotational component qx × g. From Eq. (17)–(18)

g̃,x = Qg,x (19)

2.2.4. The material form and co-rotated derivatives of a tensor

Consider any two deformed state of the beam Ωa and Ωb. Consider two vectors ga(ξ1) and gb(ξ1)
(in states Ωa and Ωb respectively) spanned by the director triads {dai } and {dbi} respectively, such
that dai (ξ1) = Qa(ξ1)Ei and dbi (ξ1) = Qb(ξ1)Ei. Therefore, ga = gaid

a
i and gb = gbid

b
i . Now assume

9 University of California, San Diego



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An Introductory Treatise on Reduced Balance Laws of Cosserat Beams–Chadha. M and Todd. M. D

that these vectors are related by the tensor G such that gb = Gga. The material form of tensor G
is defined such that gb = Gga. The relation between G and G can be arrived using Eq. (17) as,

gb = Gga ⇒ QbTgb = GQaTga ⇒ gb = [QbGQaT ]ga.

Hence,
G = QbGQaT ,

G = QbTGQa.
(20)

Therefore, the derivative of the tensor G can be obtained from Eq. (20) as

G,ξ1 =
[
QbGQaT

]
,ξ1

=

Contribution due to change
in the orientation of frame︷ ︸︸ ︷

Qb
,ξ1
GQaT +QbGQaT

,ξ1 +

Change in the
magnitude of components︷ ︸︸ ︷
QbG,ξ1Q

aT

G,ξ1 = (Qb
,ξ1
QbT )G−G(Qa

,ξ1
QaT ) + G̃,ξ1 = KbG−GKa + G̃,ξ1

(21)

Hence,
G̃,ξ1 = G,ξ1 −KbG+GKa = QbG,ξ1Q

aT (22)

3. Kinematic and kinetic relations

We approach along the lines of Simo [10] and Li [36], in an exhaustive way, to define the
kinematics of the beam such that the results can be used readily to obtain both the weak and strong
forms in detail.

3.1. Deformation gradient tensor and strain vector

The initially curved configuration Ωc is assumed to be unstrained. This is because the stresses
in the current configuration Ω are defined with reference to Ωc. The straight beam configuration
Ωs is defined for mathematical convenience. If the beam in consideration is initially straight, then
Ωc ≡ Ωs. The deformation gradient tensor of current state (F ) and the curved reference state (F c)
is obtained referenced to Ωs. The deformation gradient tensors F and F c are then used to define
the deformation gradient tensor F r of the current configuration referred to Ωc.

3.1.1. Deformation gradient tensor and strain vector referenced to ini-
tially straight configuration

Consider an infinitesimal vector dRs = dξiEi in Ωs, that deforms to dR in configuration Ω.
The deformation gradient tensor F maps the vector dRs from the straight configuration Ωs to dR

University of California, San Diego 10
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in the current configuration Ω such that

dR = F dRs ⇒ dR

dξi
= FEi,

F =
dR

dRs
= R,ξi ⊗Ei.

(23)

Using Eq. (3), R,ξi = ϕ,ξi + ξ2d2,ξi + ξ3d3,ξi . Substituting for R,ξi in Eq. (23) yields

F =

strain vector ε︷ ︸︸ ︷
( axial strain ε︷ ︸︸ ︷

(ϕ,ξi − d1) +ξ2d2,ξi + ξ3d3,ξi

)
⊗E1 +

Q︷ ︸︸ ︷
di ⊗Ei = ε⊗E1 +Q. (24)

The material form of deformation gradient tensor can be arrived using Eq. (20) and (24) as

F = ε⊗E1 + I3 = QTFI3. (25)

It is worth noting that the deformation gradient tensor F that describes the motion bears two
parts. The motion consists of pure rotation Q and a component associated with strain ε ⊗ E1.
It’s clear that the first component of the vector dRs strains whereas the other two components
just experience rigid body rotation. This is because, the cross-section is assumed rigid. The vector
ε represents the strain vector referenced to the configuration Ωs that includes the axial strain
ε = ϕ,ξ1 − d1, and strain due to shear and curvatures. The strain vector can also be evaluated by
finding the derivative of the position vector of any point subtracted by the director d1 as in Chadha
and Todd [25]. We subtract the director d1 to eliminate the contribution of pure rotation on the
deformation. Therefore, using Eq. (12)

ε = εidi =
∂R

∂ξ1

− d1 = ε+ ξ2d2,ξ1 + ξ3d3,ξ1 = ε+ κ× (ξ2d2 + ξ3d3). (26)

Substituting for the Darboux vector κ = κidi and using Eq. (9) in Eq. (26), the complete expression
for the strain is obtained as

ε = {((1 + e) cos γ11 − 1)− ξ2κ3 + ξ3κ2}d1 + {(1 + e) sin γ12 − κ2ξ3}d2 + {(1 + e) sin γ13 + κ1ξ2}d3.
(27)

The material form of strain vector comes in handy to evaluate internal strain energy of the reduced
beam. It is obtained using Eq. (17) and (26) as

ε = εiEi = QT [(ϕ,ξ1 − d1) +K(ξ2d2 + ξ3d3)]

= (QTϕ,ξ1 −E1)︸ ︷︷ ︸
ε

+QTKQ︸ ︷︷ ︸
K

(ξ2E2 + ξ3E3)

= ε+K(ξ2E2 + ξ3E3) = ε+ κ× (ξ2E2 + ξ3E3). (28)

It is clear from the discussion above that only the first component (along E1) of an infinitesimal

11 University of California, San Diego
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vector dRs is strained, with the cross-section being rigid. Therefore, it is insightful to observe the
deformation of the vector E1. The flowchart (Fig. 3) demonstrates the straining of the unit vector
E1 (not necessarily along the midcurve) with each deformation effect taken care separately followed
by superimposition.

Figure 3: : Flowchart showing deformation of the unit vector E1 in the configuration Ω s

3.1.2. Deformation gradient tensor and strain vector of curved refer-
ence configuration referenced to initially straight configuration

Consider that the configuration Ωc is obtained by straining the initially straight configuration Ωs

such that the total length of the midcurve remains the same and the cross-sections are perpendicular
to the tangent vector at the midcurve. This deformation is mapped by the deformation gradient
tensor F c such that

F c =
dRc

dRs
= (ξ2d

c
2,ξ1

+ ξ3d
c
3,ξ1

)⊗E1 + dci ⊗Ei = εc ⊗E1 +Qc. (29)

Like Eq. (25), the material form of F c is

F
c

= εc ⊗E1 + I3 = QcTF cI3 (30)

The strain vector εc comprises of strain due to curvatures only because there is no shear γ1i = 0
and elongation e(ξ1) = 0 in the curved reference configuration Ωc. This ensures the director dc1
to be the tangent vector of the midcurve such that ϕ,ξ1 = dc1. Therefore, the axial strain vector

University of California, San Diego 12
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εc = ϕ,ξ1 − dc1 = 0. From Eq. (29) and (30), it is observed that

F cEi =

{
εc + d1 = εcidi + d1, for i = 1
di, for i = 2, 3

}
; F

c
Ei =

{
εc +E1 = εciEi +E1, for i = 1
Ei, for i = 2, 3

}
.

(31)
From the above equation, the determinant of F c is obtained as

|F c| = |QcT ||F c||I3| = |F c| = 1 + εc1. (32)

Using equation (31), the first component of the vector dRs in the straight configuration dξ1E1 gets
strained to F

c
(dξ1E1) = (1 + εc1)dξ1d

c
1. This means that a fiber of unit length parallel to E1 in

the configuration Ωs has length of |F c| in the configuration Ωc along the director dc1. In terms of
classical continuum mechanics, |F c| is associated with volumetric strain

|F c| = dΩc

dΩs
=
ρs

ρc
, (33)

where ρs and ρc represents the density field in the configuration Ωs and Ωc, respectively.

3.1.3. Deformation gradient tensor and strain vector of current config-
uration referenced to curved reference configuration

The deformation gradient tensor F r is defined such that dR = F rdRc. Therefore, from Eq.

(23) and (29), F r = FF c−1
and from Eq. (30), F c−1

= F
c−1

QcT . The tensor F
c−1

can be found by
using the theorem for inverse of sum of matrices (refer Miller [37]) as

F
c−1

= [εc ⊗E1 + I3]−1 = I−1
3 −

I−1
3 (εc ⊗E1)I−1

3

1 + trace[εc ⊗E1]
= I3 −

(εc ⊗E1)

1 + εc1

= − 1

|F c|(ε
c ⊗E1) + I3.

(34)

Therefore, the tensor F c−1
can be found as

F c
−1

=

[
− 1

|F c|(ε
c ⊗E1) + I3

]
QcT =

[
− 1

|F c|
(
(QcT εc)⊗ (QcTdc1)

)
+ I3

]
QcT

= QcT
[
I3 −

1

|F c|(ε
c ⊗ dc1)

]
.

(35)

This brings us to the point of evaluating the deformation gradient tensor F r as follows

F r =
[
ε⊗E1 +Q

]
QcT

[
I3 −

1

|F c|(ε
c ⊗ dc1)

]

= Qr − 1

|F c|
(
(Qrεc)⊗ dc1

)
+

{
1− ε

c.dc1
|F c|

}
(ε⊗ dc1).

(36)
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Noting that εc.dc1 = εc1 = |F c| − 1, Eq. (36) can be simplified as

F r =
1

|F c|
( εr︷ ︸︸ ︷

(ε−Qrεc)⊗dc1
)

+Qr =
1

|F c|
(
εr ⊗ dc1

)
+Qr. (37)

There are three important points to infer from Eq. (37):

1. The strain εr represents the relative strain in the current configuration Ω with respect to the
strained curved reference configuration Ωc (strained with respect to mathematically straight
configuration Ω s).

2. The strain εr is obtained as (ε−Qrεc) and not as (ε− εc)because the strain εc is represented
in the Ωc configuration, whereas the strain ε is represented in Ω configuration. The rotation
tensor Qr transforms the strain εc in the current configuration space.

3. The curved configuration is strained referenced to the mathematically straight configuration.
To obtain the strain vector in the current state Ω with respect to the unstrained curved
configuration, the strain εr must be normalized by |F c|.

3.2. Closed-form expression for the orthogonal rotational tensor

and defining a unique set of shear angles

The position vector of the midcurve may be defined in terms of the pitch angle φp(ξ1) and the
yaw angle φy(ξi). We define the tangent vector using Eq. (7) as

T (ξ1) =
∂ϕ

∂s
=

1

1 + e

∂ϕ

∂ξi
= cosφp(ξ1) cosφy(ξ1)E1 + sinφp(ξ1)E2 + cosφp(ξ1) sinφy(ξ1)E3. (38)

Therefore, using the above equation, the position vector can be obtained as

ϕ(ξ1) =

(∫ ξ1

0

cosφp cosφy(1 + e)dξ1

)
E1 +

(∫ ξ1

0

sinφp(1 + e)dξ1

)
E2

+

(∫ ξ1

0

cosφp sinφy(1 + e)dξ1

)
E3.

(39)

To define the three shear angles uniquely in Eq. (8), we define another local orthonormal
vector triad {T (ξ1),V (ξ1),H(ξ1)} that originate at the midcurve as shown in Fig. 4 (same origin
as the director triad {di(ξ1)}). The vector T (ξ1) and V (ξ1) spans the pitch angle plane. Therefore,
H(ξ1) = T (ξ1)× V (ξ1). Hence,



T
V
H


 =




cosφp cosφy sinφp cosφp sinφy
− sinφp cosφy cosφp − sinφp sinφy
− sinφy 0 cosφy





E1

E2

E3


 . (40)
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We define three angles α1(ξ1), α2(ξ1) and α3(ξ1) subtended by the directors {d1,d2,d3} with
the vector V (ξ1). This definition serves for two purposes: firstly, it helps us to define a relationship
between the triad {T ,V ,H} and {di(ξ1)}, secondly, it uniquely defines the shear angles. Hence,



T
V
H


 =




cos γ11 sin γ12 sin γ13

cosα1 cosα2 cosα3

cosα3 sin γ12 − cosα2 sin γ13 cosα3 cos γ11 − cosα1 sin γ13 cosα2 sin γ11 − cosα1 sin γ12





d1

d2

d3


 .

(41)

Consider an orthogonal rotation matrix Λ that relates the director triad {di} to the fixed
orthogonal Cartesian triad {Ei}, such that {d1,d2,d3} = Λ.{E1,E2,E3}. The matrix Λ is related to
the components of the orthogonal rotation tensor Q such that ΛT = [Q]di⊗Ei

. These components can
be obtained using Eq. (40) and (41). The components of the rotation matrix are shown in Appendix
10.1. Note that the matrix Λ is orthogonal if the following constraints on {α1, α2, α3, γ11, γ12, γ13}
in the above equation hold:

|T | = |V | = |H| = 1; |T |,ξ1 = |V |,ξ1 = |H|,ξ1 = 0. (42)

Figure 4: : Pitch angle plane and the body centered vector triad {T (ξ1),V (ξ1),H(ξ1)}

The components of the Darboux vector κ = κidi as in Eq. (15) using Eq. (40) and (41) can

15 University of California, San Diego



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An Introductory Treatise on Reduced Balance Laws of Cosserat Beams–Chadha. M and Todd. M. D

be obtained and are shown in Appendix 10.2. This is a useful result in shape reconstruction as
presented in [25] and will be used in further extension and generalization of the work in [24], [25], and
experimental validation of the theory of shape reconstruction. Appendix 10.3 presents an example
of a deformed shape of a Cosserat rod using the description given in this section.

3.3. Variation of kinematic parameters and rotation tensor

3.3.1. Variation of the rotation tensor and directors

We need to impart an admissible variational displacement field δu to obtain the weak form
of reduced equilibrium equation (Principle of Virtual Work). The variational displacement field
δu = δ(R −Rs) = δR comprises of variational translation of the midcurve and rotation of the
director frame. It is necessary to arrive at the variation of the rotation tensor to proceed further.

To obtain the variation in rotation tensor, assume that the tensor Q = R(θ) rotates the vector
Ei to di by an angle θ. As a result of the virtual displacement field δu, the vector di transforms to
d∗i . The variational rotation is parametrized by the vector δα = (δα)nα such that d∗i = R(δα)di.
The vector d∗i can be obtained by direct rotation of Ei parametrized by the rotation vector θ + δθ
as shown in Fig. 5. Therefore, for the variational rotation of εδα (ε is a small number), the following
relations hold

d∗i = R(θ + εδθ)Ei = Q(θ + εδθ)Ei

d∗i = R(εδα)R(θ)Ei = eεδAQ(θ)Ei.
(43)

Note that δA represents the skew-symmetric tensor corresponding to axial vector δα. Variation of

Figure 5: Variation of the director di
the rotation tensor Q can then be obtained by the usual process as,

δQ(θ) =

[
∂Q(θ + εδθ)

∂ε

]

ε=0

=

[
eεδAQ(θ)

∂ε

]

ε=0

= δA.Q(θ). (44)

The admissible variation in the directors can be obtained from above as

δdi = δ[QEi] = δQ.Ei = δA.Q.Ei = δAdi, (45)
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ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An Introductory Treatise on Reduced Balance Laws of Cosserat Beams–Chadha. M and Todd. M. D

implying
δA = δQ.QT .

The variation of the displacement field can now be obtained using Eqs. (3) and (45) as,

δu = δϕ+ δα× rPG. (46)

3.3.2. Variation and co-rotated variation of any general vector and ten-
sor

The variation of any general vector g = gidi consists of two parts, the first being the variation
in the magnitude of components and second being the contribution due to the variation in the
director frame as shown below

δg =

δ̃g︷ ︸︸ ︷
δgidi +giδdi = δ̃g + δA.g = δ̃g + δα× g (47)

The relationship between variation of material vector δg and the co-rotated variation δ̃g can be
obtained from Eq. (4), (17) and (47) as

δ̃g = δgidi = Q(δgiEi) = Qδg. (48)

Using the description of the tensor G in subsection (2.2.4), the co-rotated variation of the tensor
can be written as

δ̃G = QbδGQaT . (49)

3.3.3. Variation of the strain vector and deformation gradient tensor

The variation in the strain vector ε can be readily obtained if the variation in axial strain vector
ε and curvature tensor K are known. From Eq. (24), (28) and (45),

δε = δϕ,ξ1 − δd1 = δϕ,ξ1 − δA.d1. (50)

Similarly, recalling the relation δA = δQ.QT the variation of the curvature tensor is obtained as

δK = δ[Q,ξ1Q
T ] = (δQ),ξ1Q

T +Q,ξ1δQ
T = δA,ξ1 + δA.K −K.δA. (51)

Recognizing that K and δA are skew symmetric with κ and δα as the respective axial vectors, it
may be readily obtained that

δκ = δα,ξ1 + δα× κ. (52)

Using the result (47) on Eq. (50)–(52), the co-rotated variation δ̃ε and δ̃κ are obtained as

δ̃ε = δε− δAε = δϕ,ξ1 − δα×ϕ,ξ1 ,
δ̃κ = δκ− δAκ = δα,ξ1 .

(53)
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Similarly, using the result (48) on (53), the variation of the material form δε and δκ may be found
as

δε = QT δ̃ε = QT δα,ξ1 ,

δκ = QT δ̃κ = QT (δϕ,ξ1 − δα×ϕ,ξ1).
(54)

From Eq. (25), (45) and (49), the variation of deformation gradient tensor is

δF = δ(QFIT3 ) = δA.F + δ̃F ,

δ̃F = QδFIT3 = Q
[
δ(ε⊗E1)

]
IT3 = δ̃ε⊗E1,

(55)

where
δε = QT δε+QT δKQ

[
ξ2E2 + ξ3E3

]
= δε+ δK

[
ξ2E2 + ξ3E3

]
,

δ̃ε = Qδε = δ̃ε+ δ̃K
[
ξ2d2 + ξ3d3

]
.

(56)

3.4. Stress tensor, the reduced force and moment

Consider the Cauchy stress tensor σ referenced to the current configuration Ω and the first
Piola Kirchhoff stress tensor Sc and Ss referenced to the configuration Ωc and Ωs respectively such
that the associated stress vectors are given by

σi = σdi = σjidi; (57)

Si = Scdci = SsEi = Sjidi.

Therefore, the stress tensor can be written in the index form as

σ = σi ⊗ dj = σjidi ⊗ dj ,
Sc = Si ⊗ dcj = Sjidi ⊗ dcj ,
Ss = Si ⊗Ei = Sjidi ⊗Ej .

(58)

It is expedient to define the reduced force and moment at the midcurve of the current configuration
in the classical sense as

η(ξ1) =

∫

�(ξ1)

σ1dξ2dξ3 =

∫

�(ξ1)

S1dξ2dξ3 = ηidi, (59)

m(ξ1) =

∫

�(ξ1)

rPG × σ1dξ2dξ3 =

∫

�(ξ1)

rPG × S1dξ2dξ3 = midi. (60)

The first component of the force vector η1 represents the axial force along d1, whereas the components
η2 and η3 represent the shear forces along the directors d2 and d3, respectively. Similarly, the
component m1 of the moment vector represents the torque about the vector d1 whereas the
components m2 and m3 represents the moments about the directors d2 and d3. Figure6 gives a
geometric interpretation of the reduced force and couple.
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Figure 6: Reduced force η and moment m

4. Strong form of the reduced balance law of Cosserat beam using

Lagrangian differential equation of motion

We derive the reduced governing differential equations (strong form) by considering initially
straight configuration Ωs, finally obtaining the equations for initially curved (but unstrained) reference
configuration Ωc using the relations defined in the previous sections. The infinitesimal equilibrium
equation for a general continuum problem referenced to the configuration Ωs is given as in Lai et al.
[38] by

∇Ωs .Ss + ρsb = ρsR̈ (61)

for the material point defined by the position vector R(ξ1, ξ2, ξ3). The operator ∇Ωs represents
the gradient operator with respect to the configuration Ωs. Therefore, (∇Ωs .Ss) represents the
divergence of the tensor Ss referenced to Ωs. The quantity b(ξ1, ξ2, ξ3) is the body force per unit
mass of the body and is independent of the reference configuration. Integrating above equation over
the entire undeformed domain Ωs followed by the application of greens theorem to get the boundary
terms gives the balance of linear momentum equation. Similarly, taking the cross product of the
lever arm (R− v) with all the terms in Eq. (61), followed by the integration over the entire domain
gives the angular momentum balance equation with respect to any fixed point p defined by the fixed
vector v (Fig. 7), such that

∫

Γs

SsN sdΓs +

∫

Ωs

ρsbdΩs =

∫

Ωs

ρsR̈dΩs, (62)
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∫

Γs

(R− v)× (SsN s)dΓs +

∫

Ωs

ρs(R− v)× bdΩs =

∫

Ωs

ρs(R− v)× R̈dΩs. (63)

Here, Γs and N s represents the boundary and the normal vector respectively in the configuration Ωs.
Figure 7 gives physical interpretation of terms in Eq. (62) and (63). It also shows reduced element

Figure 7: :Reduced element of unit arc-length of initially straight beam and incremental moment about an
arbitrary fixed point-p

with dξ1 = 1 in Ωs configuration, from which, the stress vectors at the cross-sectional boundaries
�1 = �(ξ1) and �2 = �(ξ1 + dξ1) are

[SsN s]�1 = SsN s(ξ1) = −SsE1 = −S1,

[SsN s]�2 = SsN s(ξ1 + dξ1) = SsE1 = S1.
(64)

4.1. Strong form referenced to initially straight configuration

To obtain the reduced governing differential equation that holds at every point ξ1 on the
midcurve, we exploit the fact that the conservation equations (62) and (63) obtained for the entire
beam are also valid for the reduced element of the beam (Fig. 7), since equilibrium of the structure
as a whole implies the equilibrium of a reduced element in Ωs.
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4.1.1. Conservation of linear momentum of the reduced beam

Like Eq. (62), the linear momentum conservation equation for the reduced unit arc-length
element (Fig. 7) is obtained as

Term F1:
The reduced internal force at the cross-sectional boundary
�1 and �2 referred to unit arc-length reduced element.︷ ︸︸ ︷∫

�1

SsN s(ξ1)dξ2dξ3 +

∫

�2

SsN s(ξ1 + dξ1)dξ2dξ3 +

Term F2:
The reduced external force due to
body force and surface traction.︷ ︸︸ ︷∫

Γs
3

SsN sdΓs +

∫

Ωs

ρsbdΩs =

Term F3:
Inertial force term.︷ ︸︸ ︷∫

Ωs

ρsR̈dΩs.

(65)
For the domain of unit arc-length reduced element, the volume integral of any function Ψ(ξ1, ξ2, ξ3)
would become integral over the cross section �(ξ1) as

lim
dξ1→1

∫

Ωs

Ψ(ξ1, ξ2, ξ3)dΩs =

∫

�(ξ1)

Ψ(ξ1, ξ2, ξ3)dξ2dξ3. (66)

Term F1 may be simplified using Eq. (57), (59) and (64) and Term F2 may be simplified using Eq.
(66) as

Term F1 = lim
dξ1→1

[
η(ξ + dξ1)− η(ξ1)

]
= η,ξ1 ; (67)

Term F2 =

∫

Γs
3

SsN sdΓs +

∫

�
ρsb dξ2dξ3 = ℵ(ξ1). (68)

Term F3 involves total time derivative R̈ = D2R
Dt2

that may be obtained using Eq. (3) and (11) as

Ṙ(ξ1, ξ2, ξ3) = u̇ =
DR

Dt
= ϕ̇(ξ1) + ω(ξ1)× rPG,

R̈(ξ1, ξ2, ξ3) =
D2R

Dt2
= ϕ̈(ξ1) + ω̇(ξ1)× rPG + ω(ξ1)× ω(ξ1)× rPG.

(69)

Here the vector ω(ξ1) represent the axial vector corresponding to the anti symmetric tensor W (ξ1)
that deals with change of director with time (Eq. 11). In other words, ω(ξ1) and ω̇(ξ1) represents
the rotational velocity and rotational acceleration of the beam cross-section respectively. Therefore,
Term F3 can be obtained using the result (66) and (69) as,

Term F3 = µsϕ̈+ ω̇ ×Υs + ω × ω ×Υs, (70)

where

µs(ξ1) =

∫

�
ρsdξ2dξ3, (71)

Υs(ξ1) =

∫

�
ρsrPGdξ2dξ3 =

[∫

�
ρsξ2dξ2dξ3

]
d2

︸ ︷︷ ︸
Υs

3

+

[∫

�
ρsξ3dξ2dξ3

]
d3

︸ ︷︷ ︸
Υs

2

. (72)
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It is clear that the first term (µsϕ̈) of Eq. (70) represents the inertial force acting at the midcurve
point G (Fig. 1) on �(ξ1). The term µs represents the mass density per unit arc length in the
initially straight configuration Ωs. The occurrence of second term is because of the fact that, in
general the midcurve may not coincide with the mass centroid. The terms Υs

2 and Υs
3 represent the

first mass moment of inertia per unit arc length of the straight beam configuration Ωs about the
director d2 (or E2) and d3 (or E3) respectively. These terms would vanish for the untwisted straight
beam Ωs of homogeneous material if the beam midcurve is chosen as the loci of mass centroids, which
in this case would coincide with the geometric centroids. If the initial configuration of the beam
were curved Ωc, these terms would vanish only if the mass centroid were chosen as the midcurve, as
in this case the loci of geometric centroids may not coincide with the mass centroids.

Combining Eqs. (65)–(72) gives the reduced linear momentum conservation equation of the
moving beam at section �(ξ1) referred to the initially straight configuration Ωs as

η,ξ1 + ℵ(ξ1) = Fs(ξ1); (73)

where
Fs(ξ1) = µsϕ̈+ ω × (ω ×Υs) + ω̇ ×Υs

represents reduced inertial force per unit arc length referenced to the straight configuration Ωs.

4.1.2. Conservation of angular momentum of the reduced beam

Like Eq. (63), the angular momentum conservation for the unit arc-length reduced element
(figure 7) can be written as

Term M1:
The reduced internal moment at the cross-sectional boundary �1 and �2
referred to unit arc-length reduced element about a fixed arbitrary pointp.︷ ︸︸ ︷∫

�1

(R− v)×
(
SsN s

)
dξ2dξ3 +

∫

�2

(R− v)×
(
SsN s

)
dξ2dξ3 +

∫

Γs
3

(R− v)×
(
SsN s

)
dΓs +

∫

Ωs

ρs(R− v)× bdΩs

︸ ︷︷ ︸
Term M2:

The reduced external moment about a fixed arbitrary
point p due to the body force and surface traction.

=

∫

Ωs

ρs(R− v)× R̈dΩs

︸ ︷︷ ︸
Term M3:

Inertial term corresponding to
moment about point p.

.
(74)

It is sensible to define the moment about the midcurve such that the lever arm is rPG = (R−ϕ),
for an arbitrary fixed point p in space. Therefore, from the definition of reduced force and moment
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as in Eqs. (59)–(60), and using the result in Eq. (64), Term M1 may be simplified as

Term M1 =
2∑

k=1

[ ∫

�k

(R−ϕ)× (SsN s)dξ2dξ3 +

∫

�k

(ϕ− v)× (SsN s)dξ2dξ3

]

= lim
dξ1→1

[
m(ξ1 + dξ1)−m(ξ1)

]
+ lim

dξ1→1

[ ∫

�2

(ϕ− v)× S1dξ2dξ3 −
∫

�1

(ϕ− v)× S1dξ2dξ3

]

= m,ξ1 +ϕ,ξ1 × η + (ϕ− v)× η,ξ1 .
(75)

For a unit arc-length reduced element, Term M2 and Term M3 may be simplified using Eq. (66) as

Term M2 =

∫

Γs
3

(R− v)× (SsN s)dΓs +

∫

�
ρs(R− v)× bdξ2dξ3

= M(ξ1) +

∫

Γs
3

(ϕ− v)× (SsN s)dΓs +

∫

�
ρs(ϕ− v)× bdξ2dξ3,

(76)

where

M(ξ1) =

∫

Γs
3

(R−ϕ)× (SsN s)dΓs +

∫

�
ρs(R−ϕ)× bdξ2dξ3

represents the reduced moment due to surface traction on peripheral boundary Γs3 and body force
about the midcurve point G on �(ξ1). Similarly,

Term M3 =

Term M3a︷ ︸︸ ︷∫

�
ρs(R−ϕ)× R̈dξ2dξ3 +

∫

�
ρs(ϕ− v)× R̈dξ2dξ3.

(77)

Term M3a represents the reduced moment due to the inertial force about point G on �(ξ1). To
simplify Term M3, consider that the vector rPG to be the axial vector corresponding to the anti
symmetric tensor R̃PG, such that for any vector g = gidi, R̃PGg = rPG × g. Noting the expression
for R̈ and Υs as in Eq. (69) and (72), Term M3a becomes

Term M3a =

∫

�
ρs(rPG × R̈)dξ2dξ3

= Υs × ϕ̈−
∫

�
ρsrPG × (rPG × ω̇)dξ2dξ3 +

∫

�
ρsrPG × ω × (ω × rPG)dξ2dξ3

= Υs × ϕ̈−
∫

�
ρsR̃PGR̃PGω̇dξ2dξ3 −

∫

�
ρsω × (R̃PGR̃PGω)dξ2dξ3

= Υs × ϕ̈+

{∫

�
ρsR̃T

PGR̃PGdξ2dξ3

}
ω̇ + ω ×

{∫

�
ρsR̃T

PGR̃PGdξ2dξ3

}
ω

= Υs × ϕ̈+ IsM ω̇ + ω × IsMω,

(78)
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where

IsM (ξ1) =

∫

�
ρs(R̃T

PGR̃PG)dξ2dξ3 =

∫

�
ρs



ξ2

2 + ξ2
3 0 0

0 ξ2
3 −ξ2ξ3

0 −ξ2ξ3 ξ2
2


 dξ2dξ3; (79)

R̃PG =




0 −ξ3 ξ2

ξ3 0 0
−ξ2 0 0


 . (80)

The quantity IsM is the second mass moment of inertia tensor per unit arc length of the straight
configuration Ωs; it is associated with the distribution of mass across the cross section. The vector
(ϕ− v) is independent of the parameters ξ2 and ξ3. Therefore, combining Eqs. (74)–(80) we get

Equation M1︷ ︸︸ ︷
m,ξ1 +ϕ,ξ1 × η + M− (Υs × ϕ̈+ IsM ω̇ + ω × IsMω) +

(ϕ− v)×
[
η,ξ1 +

∫

Γs
3

SsN sdΓs +

∫

�
ρsbdξ2dξ3 −

∫

�
ρsR̈dξ2dξ3

]

︸ ︷︷ ︸
Equation M2

= 0.
(81)

It is clear that term Equation M2 contains terms consisting of ϕ− v, which must vanish in order
to obtain angular momentum balance law with respect to moment taken about the point G on
�(ξ1). It is clear from the linear momentum conservation equation (73) that the term Equation M2
vanishes. Therefore, the reduced strong form of angular momentum conservation of the Cosserat
beam, referenced to Ωs is given as

m,ξ1 +ϕ,ξ1 × η + M = λs, (82)

where
λs(ξ1) = Υs × ϕ̈+ IsM ω̇ + ω × IsMω

represents reduced moment about point G on cross-section �(ξ1) due to inertial force per unit arc
length referenced to the straight configuration Ωs.

4.2. Conservation laws of the reduced beam referenced to initially

curved configuration

To derive the balance law referenced to Ωc we need to transform the limits of the integrals in the
strong form obtained in previous section to the configuration Ωc. Consider that the unit arc-length
reduced curved beam element is defined by the boundary Γc3 ∪�1 ∪�2 in Ωc configuration similar
to the element defined in figure 7. To proceed further, it is required to establish a relation between
the stress tensors Ss and Sc. The relationship between σ, Ss and Sc as referred from any standard
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continuum mechanics text like, Lai et al. [38] leads to

σ =
1

|F r|S
cF rT =

1

|F |S
sF sT , (83)

Ss = |F c|ScF c−T . (84)

The area vector on the surface boundary N sdΓs and N cdΓc in the configurations Ωs and Ωc,
respectively, is related by Nanson’s relation as

N sdΓs =
1

|F c|F
cTN cdΓc. (85)

Using Eq. (84) and (85) and the result in Eq. (33), the reduced linear momentum conservation
equation referenced to the curved configuration Ωc are obtained as,

η,ξ1 + ℵ(ξ1) = Fc(ξ1), (86)

where,

ℵ =

∫

Γc
3

ScN cdΓc +

∫

�
|F c|ρcbdξ2dξ3; (87)

Fc(ξ1) = µcϕ̈+ ω × (ω ×Υc) + ω̇ ×Υc; (88)

µc =

∫

�
|F c|ρcdξ2dξ3; (89)

Υc =

{∫

�
|F c|ρcξ2dξ2dξ3

}
d2 +

{∫

�
|F c|ρcξ3dξ2dξ3

}
d3. (90)

Similarly, the reduced angular momentum conservation equation referenced to Ωc has similar form
as Eq.(82), such that,

m,ξ1 +ϕ,ξ1 × η + M = λc(ξ1), (91)

where,

M =

∫

Γc
3

rPG × (ScN c)dΓc +

∫

�
|F c|ρc(rPG × b)dξ2dξ3; (92)

λc(ξ1) = Υc × ϕ̈+ IcM ω̇ + ω × (IcMω); (93)

IcM =

∫

�
ρc(R̃T

PGR̃PG)dξ2dξ3. (94)

The parameter Υc defines the first mass moment vector and IcM defines the second mass moment of
inertia tensor per unit arc length of the curved reference configuration Ωc.

5. Weak form of reduced balance law for Cosserat beam
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5.1. Weak form from Lagrangian differential equation of motion

To obtain the weak form of equilibrium equation, we imparted the object in the current state Ω
with an admissible but arbitrary virtual displacement field δu given by Eq. (46). It is clear that
δu comprises of the virtual displacement of the midcurve (translation) δϕ and a component due to
virtual rotation of the frame of reference, parametrized by δα as explained in section 3.3. From the
definition of F and u following results hold,

F = I3 +∇Ωsu;

δF =∇Ωsδu.
(95)

The point-wise equilibrium equation Eq. (61) can be written in an integral (weak or scalar or
residual) form as ∫

Ωs

δu.
(∇Ωs .Ss + ρsb− ρsR̈

)
dΩs = 0. (96)

Using divergence theorem on the equation above, followed by substitution of Eq.(95) yields,

−

Term A︷ ︸︸ ︷∫

Ωs

δF : SsdΩs +

Term B︷ ︸︸ ︷∫

Γs

δu.(SsN s)dΓs +

Term C︷ ︸︸ ︷∫

Ωs

δu.bdΓs−

Term D︷ ︸︸ ︷∫

Ωs

ρsδu.R̈dΓs = 0;
(97)

Note that unlike the strong form, the weak form considers the equilibrium of the structure as a whole
(in integral sense). Therefore, for any function Ψ(ξ1, ξ2, ξ3) the volume integrals can be written as,

∫

Ωs

Ψ(ξ1, ξ2, ξ3)dΩs =

∫ L

0

[∫

�
Ψdξ2dξ3

]
dξ1. (98)

5.1.1. Term A: Virtual strain energy

Term A represents the virtual strain energy stored in the beam. The result of the virtual strain
energy in Eq. (97) is not surprising as the stress conjugate to the first PK stress tensor is the
deformation gradient tensor. Using the expression for δF and δ̃F obtained in Eq. (55), Term A can
be simplified as,

Term A =

∫

Ωs

δF : SsdΩs =

Term A1︷ ︸︸ ︷∫

Ωs

(δA.F ) : SsdΩs +

Term A2︷ ︸︸ ︷∫

Ωs

(δ̃ε⊗E1) : SsdΩs .
(99)

Note that Term A1, represents the virtual strain energy stored due to variation in the director frame,
which is purely due to virtual rigid body rotation (not strain!). Hence, using Eq. (83) and (84), and
noting that the scalar product between symmetric and antisymmetric tensor is zero (σ : δA = 0), it
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can be shown that Term A1 vanishes as,

Term A1 =

∫

Ωs

(δA.F ) : SsdΩs =

∫

Ωs

trace[Ss(δA.F )T ]dΩs =

∫

Ωs

trace[|F |σF−T (δA.F )T ]dΩs

= |F |
∫

Ωs

trace[σF−TF .δA]dΩs = |F |
∫

Ωs

σ : δAdΩs = 0.

(100)
Therefore, the virtual strain energy of the beam reduces to Term A2. It can be simplified using the
definition of δ̃ε as in Eq. (56) and the result in Eq. (98) as,

Term A2 =

∫

Ωs

(
δ̃ε⊗E1

)
ij
SsijdΩs =

∫

Ωs

δ̃εiS
s
ijE1jdΩs =

∫

Ωs

δ̃ε.Ss1dΩs

=

∫ L

0

[∫

�
S1.δ̃ε dξ2dξ3

]
dξ1 +

∫ L

0

[∫

�
S1.[δ̃κ× rPG] dξ2dξ3

]
dξ1.

(101)

Noticing that δ̃ε and δ̃κ are independent of ξ2 and ξ3 and using the property in Eq. (48), Term A2
simplifies as,

Term A2 =

∫ L

0

(
η.δ̃ε+m.δ̃κ

)
dξ1 =

∫ L

0

(
η.(Qδε) +m.(Qδκ)

)
dξ1 =

∫ L

0

(
η.δε+m.δκ

)
dξ1.

(102)
It is noteworthy that the strain energy density

(
δF : Ss = S1.δ̃ε

)
, is contributed solely by the stress

vector S1. This is because the cross-sections are assumed to be rigid. Secondly, the strain conjugate
of reduced force vector η and reduced couple m is the co-rotated variance of the virtual midcurve
strain δ̃ε and the co-rotated variance of the virtual rotation of the director frame δ̃κ. Thus, we infer
that the virtual strain energy is only contributed because of the variation in the components of the
strain vector (related to co-rotated virtual quantities).

5.1.2. Term B and Term C: Virtual external work due to surface trac-
tions and body forces

Term B represents the total external virtual work due to traction on the boundary of the beam.
The boundary of the entire beam in Ωs consists of two cross-sectional boundaries �(0) and �(L)
and the lateral surface of the beam. External virtual work due to traction in the reduced element of
unit arc length in figure 7 can be summed over the entire length to give Term B. Referring Eq. (64),

Term B =

Term B1︷ ︸︸ ︷∫ L

0

[∫

�2

δu.Ss1dξ2dξ3 −
∫

�1

δu.Ss1dξ2dξ3

]
dξ1 +

Term B2︷ ︸︸ ︷∫ L

0

[∫

Γs
3

δu.(SsN s)dξ2dξ3

]
dξ1

(103)
Term B1 represents the virtual work at the end boundary of beams. All the reduced element of
unit arc length (dξ1 → 1) club together to give the entire beam, such that the external work due to
traction at the cross-sectional boundary is only because of end boundaries (�(0) and �(L)) of the
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beam. Substituting for δu as in Eq. (46) into Term B1, we get

Term B1 =

∫ L

0

[
δϕ(ξ1 + dξ1).

∫

�2

Ss1dξ2dξ3 − δϕ(ξ1).

∫

�1

Ss1dξ2dξ3

]
dξ1

+

∫ L

0

[
δα(ξ1 + dξ1)×

∫

�2

rPG × Ss1dξ2dξ3 − δα(ξ1).

∫

�1

rPG × Ss1dξ2dξ3

]
dξ1

=

∫ L

0

[
δϕ(ξ1 + dξ1).η(ξ1 + dξ1)− δϕ(ξ1 + dξ1).η(ξ1 + dξ1)

]
dξ1

+

∫ L

0

[
δα(ξ1 + dξ1).m(ξ1 + dξ1)− δα(ξ1 + dξ1).m(ξ1 + dξ1)

]
dξ1

=

∫ L

0

(
δϕ.η + δα.m

)
,ξ1
dξ1 =

[
δϕ.η

]ξ1=L

ξ1=0
+
[
δα.m

]ξ1=L

ξ1=0
.

(104)

Term B2 represents the virtual work due to traction on the lateral surface of the beam. This is
simplified as,

Term B2 =

∫ L

0

∫

Γs
3

(δϕ+ δα× rPG).(SsN s) dΓs3dξ1

=

∫ L

0

{
δϕ.

∫

Γs
3

SsN sdΓs3

}
dξ1 +

∫ L

0

{
δα.

∫

Γs
3

(rPG × SsN s)dΓs3

}
dξ1.

(105)

The total external virtual work due to body force can be simplified as,

Term C =

∫ L

0

∫

�
ρs(δu.b) dξ2dξ3dξ1

=

∫ L

0

δϕ.

[ ∫

�
ρsb dξ2dξ3

]
dξ1 +

∫ L

0

δα.

[ ∫

�
ρs(rPG × b) dξ2dξ3

]
dξ1.

(106)

Term B and Term C combined together gives the virtual work due to the external force (body force
and surface traction). Therefore, using the definition of ℵ and M as defined in Eq. (68) and (76),
Term B and Term C can be clubbed as,

Term B + Term C =
[
δϕ.η

]ξ1=L

ξ1=0
+
[
δα.m

]ξ1=L

ξ1=0
+

∫ L

0

(δϕ.ℵ+ δα.M) dξ1. (107)

5.1.3. Term D: Inertial work due to virtual displacement

Term D gives the virtual work done due to the inertial forces. This can be simplified by making
substitution for R̈ and δu as in Eq. (69) and (46) and realizing the fact that δϕ, δα, ϕ̈, ω and ω̇
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are functions of ξ1 only. Thus,

Term D =

∫ L

0

δϕ.

[∫

�
ρs
(
ϕ̈+ ω̇ × rPG + ω × (ω × rPG)

)
dξ2dξ3

]
dξ1

+

∫ L

0

δα.

[∫

�
ρsrPG ×

(
ϕ̈+ ω̇ × rPG + ω × (ω × rPG)

)
dξ2dξ3

]
dξ1

=

∫ L

0

δϕ.

Fs

︷ ︸︸ ︷
[ µs︷ ︸︸ ︷(∫

�
ρsd�

)
ϕ̈+ ω̇ ×

Υs

︷ ︸︸ ︷(∫

�
ρsrPGd�

)
+ω × ω ×

Υs

︷ ︸︸ ︷(∫

�
ρsrPGd�

)]
dξ1

+

∫ L

0

δα.

λs

︷ ︸︸ ︷
[ Υs

︷ ︸︸ ︷(∫

�
ρsrPGd�

)
×ϕ̈+

IsM︷ ︸︸ ︷(∫

�
ρsR̃T

PGR̃PGd�
)

+ω ×

IsM︷ ︸︸ ︷(∫

�
ρsR̃T

PGR̃PGd�
)
ω

]
dξ1

=

∫ L

0

(δϕ.Fs + δα.λs)dξ1 (108)

5.1.4. Virtual work principle for Cosserat beam

The final virtual work equation for the reduced Cosserat beam referenced to the initially straight
beam configuration Ωs can be obtained by combining equations (97)– (108) as,

δU s
strain + δW s

inertial = δWexternal; (109)

where,

δU s
strain =

∫ L

0

(
η.δ̃ε+m.δ̃κ

)
dξ1 =

∫ L

0

(
η.δε+m.δκ

)
dξ1, (110)

δW s
inertial =

∫ L

0

(δϕ.Fs + δα.λs)dξ1, (111)

δWexternal =
[
δϕ.η

]ξ1=L

ξ1=0
+
[
δα.m

]ξ1=L

ξ1=0
+

∫ L

0

(δϕ.ℵ+ δα.M) dξ1. (112)

The equation (109) bears a recognizable form of virtual work principle which states that if the body
in dynamic equilibrium is subjected to a virtual displacement at a given instant of time, the virtual
work done due to the real external forces δWexternal (Traction and body force) is stored as virtual
strain energy δU s

strain and virtual work due to the inertial forces on the body δW s
inertial. The virtual

work principle, when the deformation of the beam is referenced to the curved configuration would
then become,

δU c
strain + δW c

inertial = δWexternal; (113)
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where,

δU c
strain =

∫ L

0

(
η.δ̃εr +m.δ̃κr

)
dξ1 =

∫ L

0

(
η.δεr +m.δκr

)
dξ1, (114)

δW c
inertial =

∫ L

0

(δϕ.Fc + δα.λc)dξ1. (115)

The terms above have usual meaning as defined in previous sections. It’s worth noting that the
virtual external work δWexternal remains the same for both the reference configuration Ωs and Ωc.
The expression for the strain energy and the inertial work changes because the strain and the inertial
effect depends on the initial configuration of the beam considered.

5.2. Equivalence of weak and strong form of equilibrium equation

The linear and angular momentum conservation principle for the reduced beam is obtained
in Eq. (73) and (82) of section 4. The weak form of equation as derived in section 5.1 can be
obtained in pure mathematical sense from the strong form. This shows the equivalence of strong
and weak form and also validate the results obtained in section 5.1. We take the similar approach
as delineated in Hughes [39]. The linear momentum equation (73) is associated with the midcurve
deformation. Therefore, the weight function used to obtain residual form of reduced equilibrium
equation is the virtual displacement of the midcurve δϕ. Similarly, the angular momentum equation
(82) is associated with the curvatures of the cross-section, thus making virtual rotation δα as the
natural choice for the weight function. Note that δϕ and δα are admissible and are related to δu as
shown in Eq. (46). The residual form of equilibrium equation referenced to the straight configuration
Ωs can be written as,

∫ L

0

[
δϕ.
(
η,ξ1 + ℵ− Fs

)
+ δα.

(
m,ξ1 +ϕ,ξ1 × η + M− λs

)]
dξ1 = 0. (116)

Using Green’s theorem and the property of the triple product of vectors, following results hold,

∫ L

0

(δϕ.η,ξ1)dξ1 =
[
δϕ.η

]ξ1=L

ξ1=0
−
∫ L

0

(δϕ,ξ1 .η)dξ1,

∫ L

0

(δϕ.m,ξ1)dξ1 =
[
δα.m

]ξ1=L

ξ1=0
−
∫ L

0

(δα,ξ1 .m)dξ1,

∫ L

0

δκ.(ϕ,ξ1 × η)dξ1 =

∫ L

0

η.(δα×ϕ,ξ1)dξ1.

(117)
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Therefore, using the results in Eq. (117) with Eq. (116), the residual form of equilibrium equation
simplifies as,

∫ L

0

[(
δϕ,ξ1 − δα×ϕ,ξ1

)
.η + δα,ξ1 .m

]
dξ1 +

∫ L

0

(δϕ.Fs + δα.λs)dξ1

=
[
δϕ.η

]ξ1=L

ξ1=0
+
[
δα.m

]ξ1=L

ξ1=0
+

∫ L

0

(δϕ.ℵ+ δα.M) dξ1.

(118)

Noticing the expression for δ̃ε and δ̃κ in Eq. (53), the above equation becomes,

∫ L

0

[
δ̃ε.η + δ̃κ.m

]
dξ1 +

∫ L

0

(δϕ.Fs + δα.λs)dξ1

=
[
δϕ.η

]ξ1=L

ξ1=0
+
[
δα.m

]ξ1=L

ξ1=0
+

∫ L

0

(δϕ.ℵ+ δα.M) dξ1.

(119)

which is exactly same as the weak form (Eq. (109)) derived from the infinitesimal Lagrangian
equation of motion thereby validating the former approach.

6. Strong form of equations derived from Hamilton’s equation

Hamilton’s Principle (refer [40]) can be used to evaluate the dynamic equation of motion.
The principle assumes that the configuration of the deformed beam is exactly known at time t1
and t2. Therefore, the variational field δu(t1, ξ1, ξ2, ξ3) = 0 and δu(t2, ξ1, ξ2, ξ3) = 0. There are
infinitesimal configurations that the beam can have at any time t (t 6= t1and t2), each configuration
deviating from the correct one by an arbitrary but admissible displacement field δu(t, , ξ1, ξ2, ξ3) =
δϕ(t, ξ1) + δα(t, ξ1)× rPG(ξ1, ξ2, ξ3), where δϕ defines the admissible variation in the midcurve and
the vector δα parametrizes the variation in the director frame. The exact deformed configuration at
any time t1 < t < t2 is determined by making the action A stationary, defined as,

A =

∫ t2

t1

Ldt =

∫ t2

t1

(T − U s
strain +Wexternal)dt. (120)

where, the functional L is called the Lagrangian of the problem. The Principle states that,

δ

∫ t2

t1

(T − Ustrain +Wexternal) dt =

Term 1︷ ︸︸ ︷∫ t2

t1

δT dt−

Term 2︷ ︸︸ ︷∫ t2

t1

δUstrain dt+

Term 3︷ ︸︸ ︷∫ t2

t1

δWexternal dt = 0.
(121)

6.1. Term 1: Simplification of kinetic energy term

The total kinetic energy of the beam referenced to Ωs can be written using Eq. (69) as,

T =
1

2

∫

Ωs

ρsu̇.u̇ dΩs =
1

2

∫

Ωs

ρsṘ.Ṙ dΩs =
1

2

∫

Ωs

ρs(ϕ̇+ ṙPG).(ϕ̇+ ṙPG) dΩs. (122)
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Therefore,

δ

∫ t2

t1

T dt =

∫ t2

t1

∫

Ωs

ρs
[
δϕ̇.ϕ̇+ δϕ̇.ṙPG + ϕ̇.δṙPG + δṙPG.ṙPG

]
dΩs dt. (123)

We subject Eq. (123) to integration by parts with respect to time and note that δϕ(t1) = δϕ(t2) =
δα(t1) = δα(t2) = 0, therefore δrPG(t1) = δα(t1)× rPG = 0 and δrPG(t2) = 0. This leads to,

δ

∫ t2

t1

T dt = −
∫ t2

t1

∫

Ωs

[
δϕ.ϕ̈+ δϕ.r̈PG + ϕ̈.δrPG + δrPG.r̈PG.

]
dΩs dt. (124)

We notice the following relations,

ϕ̈.δrPG = ϕ̈.[δα× rPG] = δα.[rPG × ϕ̈]; (125)

δrPG.r̈PG = δα.[rPG × r̈PG]. (126)

Substituting (125) and (126) in Eq. (124), and realizing that δϕ, δα, ϕ, δω and δω̇ are function of
(ξ1, t) only, we obtain,

δ

∫ t2

t1

T dt = −
∫ t2

t1

∫ L

0

δϕ.

Fs

︷ ︸︸ ︷
[
ϕ̈.

µs︷ ︸︸ ︷{∫

�
ρsdξ2dξ3

}
+

ω̇×Υs+ω×ω×Υs

︷ ︸︸ ︷{∫

�
ρsr̈PGdξ2dξ3

}]
dξ1 dt

−
∫ t2

t1

∫ L

0

δα.

λs

︷ ︸︸ ︷
[ Υs

︷ ︸︸ ︷{∫

�
ρsrPGdξ2dξ3

}
×ϕ̈+

IsM ω̇+ω×IsMω︷ ︸︸ ︷{∫

�
ρs(rPG × r̈PG)dξ2dξ3

}]
dξ1 dt.

Therefore,

δ

∫ t2

t1

T dt = −
∫ t2

t1

∫ L

0

[
δϕ.Fs + δα.λs

]
dξ1 dt. (127)

6.2. Term 2: Simplification of potential energy term

The virtual strain energy term in Hamilton’s equation can be obtained from Eq.(102) and using
the results from Eq. (53) and (56) as,

∫ t2

t1

δUstrain dt =

∫ t2

t1

∫ L

0

[(
δϕ,ξ1 − δα×ϕ,ξ1

)
.η + δα,ξ1 .m

]
dξ1 dt. (128)

Rearranging the terms and carrying out integration by parts with respect to ξ1, we obtain,

∫ t2

t1

δUstrain dt = −
∫ t2

t1

∫ L

0

δϕ.η,ξ1+δα.(ϕ,ξ1×η+m,ξ1)dξ1 dt+

[∫ t2

t1

[
δϕ.η+δα.m

]
dt

]ξ1=L

ξ1=0

(129)
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6.3. Term 3: Simplification of external work term

The body force field b and the surface traction are the external forces in the body. The external
force term in Hamilton’s equation can be written as,

∫ t2

t1

δWexternal dt =

Term 3.1︷ ︸︸ ︷∫ t2

t1

∫

Ωs

ρs(δu.b)dΩs dt+

Term 3.2︷ ︸︸ ︷∫ t2

t1

∫ L

0

∫

Γs
3

(
δu.(SsN s)

)
dΓs3 dξ1 dt (130)

where Γs3 represents the surface boundary for an element of unit arc length in Ωs configuration (refer
figure 7). Term 3.1 and Term 3.2 can be simplified using the expression for δu Eq. (46) as,

∫ t2

t1

∫

Ωs

ρs(δu.b)dξ1 dt =

∫ t2

t1

∫ L

0

δϕ.

[ ∫

�
ρsbdξ2dξ3

]
+ δα.

[ ∫

�
ρs(rPG × b)dξ2dξ3

]
dξ1 dt; (131)

∫ t2

t1

∫ L

0

∫

Γs
3

(
δu.(SsN s)

)
dΓs3 dξ1 dt =

∫ t2

t1

∫ L

0

δϕ.

[ ∫

Γs
3

SsN sdΓs3

]
+ δα.

[ ∫

Γs
3

rPG × (SsN s)dΓs3

]
dξ1 dt.

(132)

Combing Eq.(130)–(132) and noting the definition of reduced external force ℵ and moment M in
Eq. (68) and (76) respectively, we get,

∫ t2

t1

δWexternal dt =

∫ t2

t1

∫ L

0

[
δϕ.ℵ+ δα.M

]
dξ1 dt. (133)

6.4. Governing equations of motion and boundary terms

The Hamilton’s equation for the Cosserat beam can be realized by combining Eq. (121), (127),
(129) and (133) as,

∫ t2

t1

∫ L

0

[
δϕ.

{
η,ξ1+ℵ−Fs

}
+δα.

{
m,ξ1+ϕ,ξ1×η+M−λs

}]
dξ1 dt+

[∫ t2

t1

[
δϕ.η+δα.m

]
dt

]ξ1=L

ξ1=0

= 0.

(134)
Realizing that δϕ and δα are arbitrary virtual quantities at time t, for Eq. (134) to hold good for
all δϕ and δα, following must be true,

η,ξ1 + ℵ− Fs = 0, (135)

m,ξ1 +ϕ,ξ1 × η + M− λs = 0, (136)
[
δϕ.η

]ξ1=L

ξ1=0
= 0, (137)

[
δα.m

]ξ1=L

ξ1=0
= 0. (138)

The Eq. (135) and (136) represent linear momentum conservation and angular momentum conser-
vation law referenced to straight configuration Ωs respectively. It is not surprising that the result
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is same as obtained from infinitesimal equilibrium equation in section 4 as in Eq. (73) and (82).
Secondly, the Eq. (137) and (138) represent the general boundary condition at ξ1 = 0 and ξ1 = L.
For instance, if the left boundary is fixed and the right boundary is free, ϕ(0) = θ(0) = 0 and
η(L) = m(L) = 0. Note that δα parametrizes the variational rotation of director frame that has
rotation of Q(θ) in equilibrium state. Therefore, for the fixed end, δα(0) = 0 implies θ(0) = 0 at
all time t.

6.5. Interpretation of equation of motion from D’Alembert’s Principle-
Motion viewed from the director frame

To interpret motion from the non-inertial frame in general, we define the impressed forces as
the forces that are imposed on the system due to external effects and due to the configuration of the
system. In the case of Cosserat beam, the body force, traction (external forces), and the internal
stresses (due to deformed configuration) are the sources of the impressed forces. We define the forces
of inertia referenced to a frame in consideration as the resisting forces by the structure, as observed
from the frame considered. Lastly the Einstein forces or the apparent forces are defined as the forces
experienced by the object due to non-inertial nature of the frame of reference. The object satisfies
the state of equilibrium if the effect of impressed forces, Einstein forces, and the forces of inertia
referenced to a frame in consideration are considered simultaneously. This law is referred to as the
D’Alembert’s Principle.

Owing to the single manifold nature of the problem, the motion of the Cosserat beam is
simplified to motion of the midcurve. Each point of the midcurve has a rigid section attached to it.
Therefore, the equation of motions developed in section 4.1 can be thought of as the equilibrium
equation of a unit arc length element with the mass µs idealized as a rigid section �(ξ1), with the
mass µs distributed homogeneously throughout the section.

We have assumed that the midcurve may not necessarily be the locus of the center of mass. For
the section �(ξ1), the point G represents the intersection of the midcurve at the section and the
point M represents the mass centroid. The director frame {di(ξ1)} is attached to the section �(ξ1)
with origin at G. The point M is located by the vector rMG = Υs

µs
. The figure below describe the

details.

The conservation of linear momentum equation (73) represents the translational equilibrium of
the mass µs. The mass µs is static with respect to the frame {di} because the section is rigid. The
frame {di} is translating with the translational acceleration of ϕ̈ and is rotating with the angular
acceleration ω̇ referenced to the inertial frame of reference Ei. The mass µs experiences the following
forces,

1. The impressed force = η,ξ1 + ℵ(ξ1).

2. The force of inertia w.r.t the frame {di} = −µs ˜̈rMG = 0.

3. The Einstein force due to translation = −µsϕ̈.

4. The centrifugal force = −ω × ω × (µsrMG) = −ω × ω × (Υs).
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Figure 8: :Reduced element of unit arc-length idealized as a rigid section with mass µs

5. The Euler force = −ω̇ × (µsrMG) = −ω̇ × (Υs).

6. The Coriolis force = −2ω̇ × (µsṙMG) = 0.

The conservation of angular momentum Eq. (82) represents the moment balance of the section
�(ξ1). If the force on the elemental mass ρsdξ2dξ3 located at point P of the section, positioned by
the vector rPG, is dF , then the total reduced moment of the section is

∫
�(ξ1)

rPG × dF . Therefore,

1. The reduced moment due to the impressed forces = m,ξ1 +ϕ,ξ1 × η + M.

2. The reduced moment due to force of inertia w.r.t the frame {di} = −
∫
�(ξ1)

ρsrPG ×
˜̈rPGdξ2dξ3 = 0. Note that the parameter ˜̈rPG represents the acceleration of the point P
w.r.t the frame {di}; it vanishes since the section is assumed rigid.

3. The reduced moment due to the translational Einstein force = −
∫
�(ξ1)

ρsrPG × ϕ̈dξ2dξ3 =

−Υs × ϕ̈.

4. The reduced moment due to the centrifugal force = −
∫
�(ξ1)

rPG × (ω × ω × (rPGρ
sdξ2dξ3))

= −ω × IMω.

5. The reduced moment due to the Euler force = −
∫
�(ξ1)

rPG × (ω̇ × (rPGρ
sdξ2dξ3)) = IM ω̇.

6. The moment due to the Coriolis force is 0 because ˜̇rPG = 0.

35 University of California, San Diego



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

An Introductory Treatise on Reduced Balance Laws of Cosserat Beams–Chadha. M and Todd. M. D

It is noteworthy that the Coriolis force and the force of inertia w.r.t {di} (and the respective
moments) vanishes because we have ignored the Poisson’s and the warping effect. If the section
is not assumed to be rigid, we will have these two forces (and the respective moments) and an
additional force term in the impressed force on account of addition stresses developed. Secondly, if
the mass centroid was considered as the midcurve, the mass µs would not experience centrifugal
force and Euler force.

7. Comments on constitutive relations

The equations of motion derived in the previous sections are completely general. The internal
forces η and the moment m are related to the finite strain vectors εr and κr through constitutive
relations of the modeler’s choice. As a matter of example, we demonstrate a hyperelastic linear
constitutive model (as in [12]), considering the Ωc as initial configuration. As is observed in Eq. (59)
and (60), the reduced force and the moment depends on the stress vector S1. Therefore, we linearly
relate the stress vector S1 to the strain vector εr as,

S1 = C
εr

|F c| (139)

From the definition of εr = ε−Qrεc = εridi, we can write

εr = εr + κr × (ξ2d2 + ξ3d3)

where,
εr = ε−Qrεc = εridi; κr = κ−Qrκc = κridi.

Note that the the curved reference configuration has same length as the mathematically straight
configuration and zero shear angles. Therefore, εc = 0. Using all these results and plugging equation
(139) into Eq. (59) and (60), we obtain a constitutive law of the form shown below.

[
η
m

]
= C

[
εr

κr

]
. (140)

The coefficients C and C are detailed for the homogeneous and isotropic case in the Appendix 10.4.

8. Conservation of energy and time invariance

We know that the Hamilton’s formulation of least action holds if the impressed forces are
monogenic in nature (refer Lanczos [41]). Therefore, work functions for the forces can be defined.
The work function need not necessarily be conservative for the applicability of Hamilton’s principle.
Table 1 lists the work function for all the forces considering the straight beam as the undeformed
state. In table 1, U s represents the strain energy density. Secondly, the work function for external
force used in Eq. (121) can be written as Wexternal = Wb +Wt.
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We may arrive at the Energy conservation laws and the conditions associated with it by
considering the real infinitesimal displacement du = u̇dt as the variational field in the Hamilton’s
equation (121). This unique consideration no longer guarantees the virtual displacement at time t1
and t2 to vanish. Therefore, for δu→ du, the Hamilton’s principle modifies to,

δ

∫ t2

t1

L dt =

∫

Ωs

ρs
[
u̇δu

]t=t2

t=t1

dΩs. (141)

Using table 1, the left hand side of the above equation can be simplified for δu→ du as,

δ

∫ t2

t1

L dt =

∫ t2

t1

{∫

Ωs

(
ρsu̇.δu̇− δU s + ρsδu.b

)
dΩs +

∫ L

0

∫

Γs
3

(
δu.(SsN s)

)
dΓs3 dξ1

}
dt

=

[∫ t2

t1

{∫

Ωs

(
ρsu̇.ü− dU s + ρsu̇.b

)
dΩs +

∫ L

0

∫

Γs
3

(
u̇.(SsN s)

)
dΓs3 dξ1

}
dt

]
dt

=

[∫ t2

t1

(
dT

dt
− dUstrain

dt
+
dWb

dt
+
dWt

dt

)
dt

]
dt =

[
T − Ustrain +Wexternal

]t2
t1
dt.

(142)
It was possible to simplify Eq. (142) by assuming the traction and body forces to be constant with
time. This was done to obtain a particular and simplified form of energy as (T − Ustrain +Wexternal).
The second step of (142) shows the general energy conservation law. We can evaluate the right hand
side of Eq. (141) for δu→ du as,

∫

Ωs

ρs
[
u̇δu

]t=t2

t=t1

dΩs =

[ ∫

Ωs

ρsu̇.u̇dΩs

]t=t2

t=t1

dt =

[
2T

]t=t2

t=t1

dt. (143)

Therefore, from Eqs. (141)–(143), we have

[ ∫

Ωs

ρsu̇.u̇dΩs − L

]t=t2

t=t1

=

[
T −Wexternal + Ustrain

]t=t2

t=t1

= 0. (144)

This implies that the quantity (T −Wexternal + Ustrain) is conserved. This quantity is energy H (or
Hamiltonian). It is clear that the external work Wexternal adds energy to the system. This energy

FORCES WORK FUNCTION

Body force b Wb =
∫

Ωs ρ
s(u.b)dΩs

Surface traction Wt =
∫ L

0

∫
Γs
3

(
u.(SsN s)

)
dΓs3 dξ1

Internal stress U s
strain =

∫
Ωs F

s
ijS

s
ijdΩs =

∫
Ωs U

sdΩs

Inertial force T = 1
2

∫
Ωs ρ

sṘ.ṘdΩs = 1
2

∫
Ωs ρ

su̇.u̇dΩs

Table 1: Forces and their respective work functions
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is used to deform the beam (stored as strain energy Ustrain) and to bring the motion in the beam
(stored as kinetic energy T ), implying Wexternal = Ustrain + T . Therefore, a relationship between the
Lagrangian and the Hamilton can be established for Continuum problem as,

∫

Ωs

ρsu̇.u̇dΩs − L = H. (145)

The above equation establishes a relationship between the Lagrangian and Hamiltonian functional.
It is well known from the classical mechanics of discrete bodies that both the functionals are related
by Legendre transformation [41]. The continuum is an infinite degree of freedom system. If we
assume the beam to be composed of infinite particle each of mass mi = ρs∆Ωs

i , located by ui, the
Lagrangian takes the form,

L =
∞∑

i=1

1

2
miu̇i.u̇i − Ustrain +Wexternal. (146)

Note that only the kinetic energy is function of velocity. We define the generalized momentum of
the ith particle as pi = (ρs∆Ωs

i )u̇i = ∂L
∂u̇i

. The Legendre transformation applied to the Lagrangian is
therefore, written as,

∞∑

i=1

∂L

∂u̇i
.u̇i − L =

∞∑

i=1

pi.u̇i − L = H. (147)

For the continuum case,

∞∑

i=1

pi.u̇i = lim
n→∞

∆Ωs
i→dΩs

i

n∑

i=1

ρsu̇i.u̇i∆Ωs
i =

∫

Ωs

ρsu̇.u̇dΩs. (148)

Therefore, for continuum case, Eq. (147) is same as Eq. 145.

We were able to obtain the Energy conservation law from the Hamilton’s Principle by considering
the differential displacement as the virtual displacement. We can choose this special case of variation
only if the Lagrangian does not have explicit time dependence. If the Lagrangian has explicit time
dependence, then the variation in Lagrangian occurs at a specific time t, whereas the differential
change in Lagrangian occurs in a duration of dt. Therefore, for the Energy of the system to be
conserved, the system must be scleronomic and the forces must be conservative in addition to
monogenic. If the external forces are time dependent, it would imply the presence of external source
of energy which is not taken into account, leading to the addition of unaccounted energy in the
system. In fact, the Energy conservation law arises from the time invariance symmetry of the nature.
Therefore, our understanding are in accordance with Noether’s theorem.

9. Conclusion and Summary

This paper presents the reduced balance laws of a Cosserat beam in an exhaustive fashion focusing
on all relevant details and the interpretation of results. The Cosserat theory of rods defines the
configuration of the beam by the midcurve and the cross-section attached to the midcurve. Therefore,
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the technical discussion begins with the description of the geometry, deformation parameters, and
mathematical tools. This sets the ground to define the deformation gradient tensor and strain vector
of the Cosserat beam referenced to initially straight or curved configurations of the beam.

The deformation gradient tensor for the curved reference configuration and the current con-
figuration is developed from the mathematically straight reference beam. The result is then used
to obtain the deformation gradient tensor of the current configuration referenced to the curved
referenced configuration. A complete derivation to obtain the inverse of deformation gradient tensor
is shown. It is observed that, for the cross-section being rigid, only the first component of any
infinitesimal vector is strained whereas, the second and the third component of the vector merely
rotates. This fact is clearly reflected in the expression for the deformation gradient tensor. We also
define the arbitrary but admissible variational displacement field δu and obtain the expression for
the co-rotated variation of the axial strain and curvature vector that is used to obtain the weak
form of the equilibrium equation (Virtual work principle). The virtual displacement comprises of
the virtual translation given by δϕ and the virtual rotation of the director frame parametrized by
the rotation vector δα. A detailed description of the parametrization of the rotation tensor Q using
Rodrigues’ formula is presented drawing physical interpretation of virtual rotation of director di.

The discussion in section 2 and 3 provides the reader with a concrete platform to obtain the
strong and weak forms of reduced balance laws. The strong form in general incorporates the linear
momentum and angular momentum conservation laws. The single manifold nature (defined by ξ1)
of the problem allows us to arrive at the reduced strong form (from the infinitesimal equilibrium
equation that is valid at every point of the body). The reduced strong form of the Cosserat beam is
the set of differential equations that governs the mechanics of the beam.

We obtained the reduced linear and angular momentum balance equation using infinitesimal
equilibrium equation and Lagrangian-Hamilton’s equation independently. It may be inferred that the
inertial term in the strong form of equations has the terms associated with both, the first moment
of inertia and the second moment of inertia. This is because we did not assume that the midcurve
passes through the mass centroid of the beam. The interpretation of forces from the director frame
points out that the absence of a Coriolis force (and respective moment) is due to assumption of
Bernoulli’s rigid cross-section. Hence, we anticipate the presence of a Coriolis force, force of inertia
referenced to the director frame and additional impressed forces due to additional stresses developed
when we consider the Poisson’s and warping effects.

The integral or weak form of the equation represents the principle of virtual work for the
Cosserat beam. The integral form of equilibrium equations is also obtained in two ways. In the first
approach, we obtain the weak form using the infinitesimal equilibrium equation. Mathematically,
strong and the weak form of the equilibrium equations are equivalent. Therefore, the second approach
involves obtaining the weak form from the strong form in a complete mathematical sense.

It is also observed that the conservation of energy principle holds if the forces are monogenic
and conservative and the Lagrangian functional is scleronomic as expected. The Lagrangian and
Hamilton functionals are linked by Legendre transformation, in an integral sense.

Each of the derivations is performed rigorously to fully describe the mechanics of the beam.
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The understanding presented in this paper sets the framework to develop/understand finite element
formulation of the Cosserat beam. An interesting study on the application of the Noether’s Theorem
for the Cosserat beam, and an extension to the formulation including Poisson’s and warping effects
(by developing deformation adaptive optimized warping functions) is something Authors are looking
forward to.
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10. Appendix

10.1. The component of rotation matrix

Λ11 = cosφy
(

cos γ11 cosφp − cosα1 sinφp
)

+ sinφy
(

cosα2 sin γ13 − cosα3 sin γ12

)

Λ12 = cosα1 cosφp + cos γ11 sinφp

Λ13 = cosφy
(

sin γ12 cosα3 − cosα2 sin γ13

)
+ sinφy

(
cos γ11 cosφp − cosα1 sinφy

)

Λ21 = cosφy
(

sin γ12 cosφp − cosα2 sinφp
)

+ sinφy
(

cosα3 cos γ11 − cosα1 sin γ13

)

Λ22 = cosα2 cosφp + sin γ12 sinφp

Λ23 = cosφy
(

sin γ13 cosα1 − cosα3 cos γ11

)
+ sinφy

(
cosφp sin γ12 − cosα2 sinφp

)

Λ31 = cosφy
(

sin γ13 cosφp − cosα3 sinφp
)

+ sinφy
(

cosα1 sinφp − cosα2 sin γ11

)

Λ32 = cosα3 cosφp + sin γ13 sinφp

Λ33 = cosφy
(

cosα2 cos γ11 − cosα1 sin γ12

)
+ sinφy

(
cosφp sin γ13 − cosα3 sinφp

)

10.2. The component of Darboux vector-the curvature terms

κ1 = −α2,ξ1 cosα3 sinα2 + α3,ξ1 cosα2 sinα3 + γ11,ξ1 cosα1 sin γ11(− cosα3 sin γ12 + cosα2 sin γ13)

− γ12,ξ1 cosα2
2 cos γ12 sin γ13 − γ13,ξ1 cos γ13 sin γ13 + γ13,ξ1 cosα2

3 cos γ13 sin γ12

− γ13,ξ1 cosα2 cosα3 cos γ13 sin γ13 + φy,ξ1(cosα2 sin γ12 − cosα2 sin γ13)

− φy,ξ1(cosα1 cosφp + cos γ11 sinφp)

κ2 =
1

2

(
2α1,ξ1 cosα3 sinα1 − 2α3,ξ1 cosα1 sinα3 + γ11,ξ1(2 + cos 2α2 + cos 2α3) sin γ13

+ γ12,ξ1

(
cosα1 cosα3 sin 2γ13 + 2 cosα2 cos γ12(−cosα3 cos γ11 + cosα1 sin γ13)

)

+ 2
(

cos γ11 cos γ13 sinα2
3 + cosα1 cosα3 sin 2γ13

)
+ 2φp,ξ1(− cosα3 cos γ11 + cosα1 sin γ13)

− 2φy,ξ1
(

cosα2 cosφp + sin γ12 sinφp
))

κ3 = −α1,ξ1 cosα2 sinα1 + α2,ξ1 cosα1 sinα2 + γ12,ξ1(cosα1 cosα3 cos γ12 sin γ13 − cosα2
3 cos γ11 cosγ12)

+ γ13,ξ1(cosα2 cosα3 cos γ11 cos γ13 − cosα1 cosα3 cos γ13 sin γ12) + φp,ξ1(cosα2 cos γ11 − cosα1 sin γ12)

+ γ11,ξ1 cosα3 sin γ11(cosα2 sin γ13 − cosα3 sin γ12)− φy,ξ1(cosα3 cosφp + sin γ13 sinφp)

10.3. Illustration of a deformed shape of the beam

We present an example of geometric description of the deformed shape of a slender rod obtained
by using the methodology detailed in the section 3.2. The components of the directors and the
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Darboux vector can be obtained using the results in Appendix 10.1 and 10.2 respectively. The rod
has an undeformed length Lo = 500m and a circular cross-section with radius 0.15m. The initial
configuration of the rod is assumed to be straight along x-axis and the rod is fixed at x = 0. We
ignore the shear deformation (γ1i = 0) in this example. The beam is subjected to elongation and
curvatures (including torsion). Therefore, the director triad {di} is same as the triad {T ,V ,H}.
The red, blue and green vectors represents the directors d1, d2 and d3 respectively. The black curve
shows the midcurve of the rod. Note that the directors are scaled up for clear representation. This
deformation assumes following parameters satisfying the boundary conditions,

φp(ξ1) =

(
π

2
sin

πξ1

Lo

)(
1− 0.5 sin

3.5πξ1

Lo

)
; φy(ξ1) = π sin

πξ1

Lo
;

e(ξ1) =
5π

Lo
sin

πξ1

2Lo
; α1(ξ1) =

π

2
; α2(ξ1) = 10π

(
ξ1

Lo

)
; α3(ξ1) =

π

2
+ α2(ξ1);

Figure 9: Illustration of geometric description of finite deformation of the beam

10.4. The coefficients of the constitutive law
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C =




E 0 0

0 G 0

0 0 G


 ; C =




EA1 0 0 0 EA2 −EA3

0 GksA1 0 −GA2 0 0

0 0 GksA1 GA3 0 0

0 −GA2 GA3 GktA4 0 0

EA2 0 0 0 EA5 −EA7

−EA3 0 0 0 −EA7 EA6




Note that here ks and kt are the standard shape factor for shear and torsion and the geometric
constants Ai are given below.

A1 =

∫

�

1

|F c|dξ2dξ3

A2 =

∫

�

1

|F c|ξ3dξ2dξ3

A3 =

∫

�

1

|F c|ξ2dξ2dξ3

A4 =

∫

�

1

|F c|(ξ
2
2 + ξ2

3)dξ2dξ3

A5 =

∫

�

1

|F c|ξ
2
3dξ2dξ3

A6 =

∫

�

1

|F c|ξ
2
2dξ2dξ3

A7 =

∫

�

1

|F c|ξ3ξ2dξ2dξ3

10.5. Comments on the cross section rigidity assumption and the
validity of the theory

We made an assumption of a rigid cross-section in 2.1 and all the results obtained incorporated
this assumption. The absence of Coriolis forces and the absence of Poisson’s effect in the constitutive
laws are direct consequences of this assumption, for example. Therefore, it is beneficial to look into
the limitations of the results presented. Let us momentarily consider warping and Poisson’s effect.
If we had these effects, the position vector of any point in Eq. (3) would take the form

R∗ = ϕ(ξ1) + (ξ2 − νeξ2)d2 + (ξ3 − νeξ3)d3 + Ξ(ξ2, ξ3)κ1d1.
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Note that here, Ξ(ξ2, ξ3) represents the warping function of the problem obtained from St. Venant’s
theory, and ν is Poisson’s ratio. To ignore warping, we must assume the section is circular (or
”sufficiently” circular that warping is negligible) such that Ξ(ξ2, ξ3)→0. Now we are left with
Poisson’s effect. The expression for R∗ can be rearranged as

R∗ = R− νeξ2d2 − νeξ3d3.

Using R∗ to develop the kinematics of the Cosserat beam would change the strain vector and the
deformation gradient tensor. The strain vector would then become

ε =
3∑

i=1

(
∂R∗

∂ξi
− di

)
.

For slender structures, the lateral cross-sectional strain vector components are negligible. Thus, it is

acceptable to write

(
∂R∗
∂ξi
− di

)
≈ 0 for i = 2, 3. The direct implication of this approximation is

that the strain vector reduces to that in Eq. (26) as

ε ≈ ∂R∗

∂ξ1

− d1 =
∂R

∂ξ1

− d1.

Thus, Bernoulli’s rigid cross-section assumption makes this theory acceptable for slender structure
where the total length of beam is sufficiently long compared to the lateral dimensions of the beam,
and for the structure with cross-sectional shapes such that the effect of warping is negligible.
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