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Abstract

We study the inflation of a weakly magnetizable isotropic incompressible cylindrical

membrane and the effects of an external magnetic field generated by a current carrying

wire placed along the axis of cylinder. A variational formulation based on magnetization

is used and the computational results obtained by using four elastic constitutive models

(neo-Hookean, Mooney–Rivlin, Ogden, and Arruda–Boyce) are studied and compared.

Cylinders of various aspect ratios are studied in each case. Our study shows that the

external magnetic field alters the elastic limit point, does not lead to equilibrium solutions

below certain value of internal pressure, and can give rise to multiple equilibrium states

for a given value of pressure. Presence of magnetic limit point, a phenomenon recently

reported in the literature is reconfirmed. Magnetic limit point is a state where a further

strengthening of the applied magnetic field at a given pressure does not yield any static

equilibrium state. In this case it is detected when the cylindrical membrane deflates into

the volume enclosed by itself. We also observe a quadratic relation between the defined

magnetic energy parameter and the internal pressure at the magnetic limit point. Relaxed

form of the strain energy density is used to account for wrinkling in this case of inward

inflation. A finite difference method coupled with an arc-length technique is used for the

computations and the stability of the solution is determined from the second variation.
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1 Introduction

Studying the behaviour of nonlinear elastic membranes is of paramount importance given their

key role in safety, structural and aerospace applications. Several biological materials like tissues,

cell walls and skin also fall under this material category. Presence of material and geometric

nonlinearity in the study of such problems make them both interesting and complex. While

simply connected and axisymmetric geometries can be studied analytically, computational tech-

niques are required to study most other problems. For example, see (Yang and Feng, 1970)

where a direct integration method is used to obtain the governing equations for axi-symmetric

deformations, (Grossman, 1991a,b, 1994) for non-axisymmetric deformations of inflatable re-

flectors for space applications, and (Khayat and Derdouri, 1994a,b) for both axisymmetric and

non-axisymmetric deformations of cylindrical membranes.

Study of nonlinear elastic cylindrical membranes find applications in areas such as bio-

medical equipments (Leone, 1994), in thermoforming, balloons and parachutes, blow moulding

(Khayat and Derdouri, 1994a,b). To quote a few examples of free and confined inflation of

cylindrical membranes: Kydoniefs and Spencer (1969) studied axisymmetric deformations using

Mooney-Rivlin material model; Skala (1970) studied propagation of bulging with neo-Hookean

and Mooney-Rivlin models; Haughton and Ogden (1979) studied bifurcation in pre-stretched

thin tubes using Ogden’s model; Wriggers and Taylor (1990) developed a finite element model

coupled with arc-length and Newton’s methods for axisymmetric deformations; Kyriakides and

Yu-Chung (1991) studied, experimentally and analytically, bulging and bifurcation using Og-

den’s constitutive model; Khayat et al. (1993) worked on both free and confined inflation of

cylindrical membranes of various length to radius ratios using neo-Hookean and Mooney-Rivlin

models; Pamplona et al. (2001) studied analytically, and verified with experiments, fluid-filled,

pre-stretched cylindrical membranes using neo-Hookean model; Pamplona et al. (2006) worked

on neo-Hookean and Mooney-Rivlin material membranes pressured with a gas using a com-

mercial finite element software and experiments; Patil et al. (2014) studied free and adhesive

contact constrained inflation using Mooney-Rivlin hyperelastic material model; Patil et al.

(2015b) studied wrinkling in cylindrical membranes with non-uniform thickness using Mooney-

Rivlin constitutive model; Patil et al. (2015a) studied fluid-loaded, pre-stretched membranes

using neo-Hookean material model. However, none of these researchers studied inward inflation

of a cylindrical membrane caused by higher pressure outside the cylinder. In the current study,

we will try to fill this gap.
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Study of inward inflation requires one to consider the possibility of wrinkling. Wrinkling

is a form of buckling commonly observed in thin shells or membranes undergoing compressive

stresses. In plane loading can lead to out of plane deformations when the structure experiences

a critical state of compressive stresses. Various approaches have been taken to study wrinkling

in structures, notable among them being the tension field theory. Tension field theory assumes

that one of the principal stresses goes to zero in the event of wrinkling and the crests and

troughs of the wrinkles align with the direction of the positive principal stress. In other words,

the infinitesimally small wrinkles are perpendicular to the ‘tension lines’ (Pipkin, 1986). Note

that since membranes are assumed to have zero stiffness, this theory is unable to predict a

physical dimension like amplitude or wavelength of wrinkles. Various authors have extended

this theory to simulate wrinkles analytically, for example, by introducing variable poisson’s

ratio (Stein and Hedgepeth, 1961); by treating the wrinkles as material anisotropy (Mansfield,

1981). Wu (1974) assumed that the membrane is absolutely a no-compression structure with

zero bending stiffness and that the infinitesimal wrinkles are uniformly distributed over a so-

called ‘pseudosurface’. It is worth recalling that it is the bending stiffness of the membrane

that decides the amplitude and wavelength of wrinkles. Any absence of it should give only

infinitesimally small wrinkles.

Only kinematic analyses had been conducted until Pipkin (1986) proposed that the geomet-

ric nonlinearity be interpreted as a nonlinearity in the constitutive relations. He introduced a

‘relaxed energy density’ that automatically considers wrinkling and gives an average solution

over the wrinkled domain or in other words, over Wu (1974)’s pseudo-surface. However, this

method was limited to linear elastic thin sheets until Steigmann (1990) extended it to non-

linear isotropic elastic membranes. Haughton and McKay (1995) present some examples to

further illustrate Pipkin and Steigmann’s tension field theory. Epstein (1999) later showed that

anisotropic membranes can also have unique relaxed energy densities. A few analytical studies

on wrinkling of nonlinear elastic membranes using the concept of relaxed free energy density

have been undertaken by Steigmann and Pipkin (1989); Li and Steigmann (1995a,b), and Patil

et al. (2015b). We use the same concept here in our study of a cylindrical membrane.

An important phenomenon to consider during the inflation of membranes is the elastic limit

point (or the snap-through) instability. Internal pressure required to stretch the membrane

increases until this point and drops afterwards. A rise in the pressure may be seen again in
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the case of strain-hardening. A priori knowledge of this critical point is crucial to maintain

the deformation of membrane within the acceptable limits. Almost every study on membranes

talks about the elastic limit point. For example, see the works by Benedict et al. (1979) on

limit point pressures in nonlinear elastic tubes, by Khayat et al. (1992) on cylindrical mem-

branes with a focus on bulging after the limit point, by Alexander (1971) on such a behaviour

of spherical rubber balloons under inflation, and more recently by Rudykh et al. (2012) on the

snap-through actuation in the case of an electro-active spherical membrane.

Khayat et al. (1992) discuss some difficulties with various numerical techniques while solving

nonlinear differential equations governing the deformation of cylindrical membranes. Accord-

ing to them the shooting method becomes unstable due to the nonlinearity and that a finite

difference discretization followed by Newton-Raphson method is a good choice for studying

deformations of cylindrical membrane. Recently, Patil et al. (2014, 2015a,b) also followed a

finite difference scheme. In addition, a cubic extrapolation arc-length technique is utilized to

evaluate initial guesses for further iterations using the solutions from previous iterations. We

also note an instance of studying fluid-filled membranes using shooting method by Pamplona

et al. (2001). In this study, we follow similar numerical approach as in (Patil et al., 2015a,b).

Magnetoelastic polymers are smart materials that can deform under the influence of an

external magnetic field and perturb the surrounding magnetic field when deformed mechani-

cally. They are usually comprised of micron-sized ferromagnetic particles like iron suspended

in a polymer matrix. See, for example, the works by Jolly et al. (1996); Farshad and Benine

(2004); Gong et al. (2005), and Krautz et al. (2017) for their fabrication and experimental

characterization. The individual magnetization vectors due to the ferromagnetic particles tend

to align with the external applied magnetic field resulting in a change in macroscopic properties

like stiffness and dimensions (Ginder et al., 2002; Böse and Röder, 2009). This phenomenon is

exploited in several practical applications such as sensors, actuators, vibration control, dynamic

stiffness control, waveguides; see, for example, the papers by Ginder et al. (2001); Böse et al.

(2012); Keh et al. (2013); Mayer et al. (2013), and Saxena (2017).

Various theoretical studies on magnetoactive materials have been available in the literature

for over five decades. Among the earliest are the works by Truesdell and Toupin (1960); Tier-

sten (1964); Maugin and Eringen (1972); Pao and Yeh (1973) and Pao (1978) based on the

conservation laws for continua (sometimes referred to as the direct approach) and the varia-
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tional formulations by Tiersten (1965) and Brown (1966) (sometimes referred to as the indirect

approach). Nevertheless, these two approaches give similar governing equations as shown by

Kankanala and Triantafyllidis (2004).

These classical theories were later adopted by the likes of Brigadnov and Dorfmann (2003);

Dorfmann and Ogden (2003, 2005) and Steigmann (2004) to study large nonlinear deformations

of magnetoelastic polymers. The total free energy density in these studies is expressed as a

function of deformation gradient and one variable among magnetic flux density, field intensity,

magnetostatic scalar and vector potentials, and magnetization per unit mass or volume. Mag-

netization vector is claimed by Kankanala and Triantafyllidis (2004) to be a more natural choice

for an independent magnetic variable since it vanishes outside the material. We use the same

choice in the current study. In addition to simple models that treat the magnetoelastic material

as an isotropic conservative continuous solid, several advanced models have been proposed to

account for additional features. For example, Castañeda and Galipeau (2011); Galipeau and

Castañeda (2013) and Chatzigeorgiou et al. (2014) formulated coupled field equations using

micromechanics and homogenization; Saxena et al. (2013); Ethiraj and Miehe (2016) and Hal-

dar et al. (2016) modelled energy dissipation due to viscoelasticity; Bustamante (2010); Danas

et al. (2012) and Saxena et al. (2014) modelled the anisotropic structure of these polymers.

These models have been very useful in various theoretical and computational analysis of in-

stabilities in magnetoelastic bulk media, see for example, the works of Otténio et al. (2008);

Kankanala and Triantafyllidis (2008); Rudykh and Bertoldi (2013); Danas and Triantafyllidis

(2014); Saxena (2017), and Goshkoderia and Rudykh (2017) to name a few. We, however,

restrict ourselves to isotropic and conservative magnetoelastic systems in the current study.

Readers may refer to the books by Ogden and Steigmann (2011), and Dorfmann and Ogden

(2014) for more elaborate literature survey on magneto- and electro-mechanics.

Very few experimental studies on magnetoelastic membranes can be found in the literature.

Raikher et al. (2008) performed experiments on the deformation of a circular magnetoelastic

membrane under a uniform magnetic field. In the parallel field of electroelasticity, Fox and

Goulbourne (2008) studied the displacement of a circular membrane and its dependence on ap-

plied potential difference across the membrane and its frequency; Fox and Goulbourne (2009)

and Tews et al. (2003) presented pressure vs chamber volume characteristics; Keplinger et al.

(2012) and Li et al. (2013) studied the snap-through instability in the inflation process; Bense

et al. (2017) reported buckling of circular dielectric elastomer plates using weakly non-linear
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plate equations; Wang et al. (2017) observed bulging in inflating circular dielectric elastomer

membranes due to the potential difference applied across the thickness.

The theoretical framework for bulk materials was extended to magnetoelastic membranes by

Steigmann (2004) using a formulation based on magnetic field intensity. Barham et al. (2007)

later simplified the formulation based on magnetization for weakly magnetized materials i.e.,

when the magnetic field generated by the material due to its mechanical deformation can be

neglected in comparison to the applied magnetic field. The expression for total free energy

is split into two terms, one solely depending on the elastic deformation–strain energy density

and the other containing both elastic and magnetic terms. Besides simplifying the numerical

computation, this eliminates the necessity to work with tediously long expressions for total free

energy proposed based on experiments by, for example, Bustamante (2010) and Danas et al.

(2012) while allowing us to study the fundamental behaviour of the membranes. Barham et al.

(2008) first reported the occurrence of magnetic limit point where the stable and unstable states

merge in their study of parametric deformation of a weakly magnetized circular membrane in

the presence of a stationary magnetic dipole. We (Reddy and Saxena, 2017) also demonstrated

a similar phenomenon in the inflation of a magnetoelastic toroidal membrane with magnetic

field generated by a current carrying loop inside. We showed that, for a given magnetic energy

parameter, inflation does not start until a certain gas pressure is reached and that for a given

internal pressure, no static equilibrium solutions are possible beyond a certain value of the

magnetic energy parameter. We now aim to observe a similar behaviour in the inflation of a

cylindrical membrane in our current study.

It is important to choose a proper hyperelastic constitutive model since not all models can

predict all kinds of behaviours (Khayat et al., 1992; Kanner and Horgan, 2007). For example,

neo-Hookean model can not predict strain hardening; most Mooney–Rivlin models can not

predict bulging in long cylindrical membranes while neo-Hookean model does (Skala, 1970).

Kyriakides and Yu-Chung (1991) showed that Ogden model can predict bulging as well. Even

in the case of bulk elasticity, it has been shown that no single model is sufficient to predict the

material’s behaviour over all ranges of strains. For example, see the attempts at modelling the

celebrated data of Treloar (1944) by Boyce and Arruda (2000); Seibert and Schoche (2000);

Marckmann and Verron (2006), and Steinmann et al. (2012), among others. A large number of

studies on static inflation of membranes used neo-Hookean, Mooney-Rivlin or Ogden constitu-

tive models while those using other phenomenological models or chain network-based models
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are very few. For instance, Rachik et al. (2001) employed and compared with experiments

neo-Hookean, Mooney-Rivlin, Ogden, Van der Waals, Arruda-Boyce and Yeoh models in case

of a circular membrane; Verron and Marckmann (2003) used chain network-based models in-

cluding Arruda-Boyce model to study inflation of spherical and circular membranes; Kanner

and Horgan (2007) used limiting chain inextensibility models (Gent and power law) for circular

and cylindrical membranes; Gent (1999, 2005) used his model to study inflation of thin and

thick walled spherical and cylindrical membranes. We also note that Arruda-Boyce model is

widely used for modelling biological polymer materials (Bischoff et al., 2000) and we also test

its applicability in predicting various membrane instabilities in the present study.

In this paper, we study the magnetoelastic deformations of a weakly magnetizable cylindrical

membrane with fixed ends and the associated instabilities. We recall that weak magnetization

refers to the case when the magnetization of the magnetoelastic material does not cause changes

in the underlying magnetic field. A stationary current carrying wire is placed along the axis

of symmetry to generate a magnetic field in the surrounding space. Four constitutive models

of elasticity are used to estimate strain energy density and their behaviours are compared.

Relaxed energy density is used to model the material in the case of wrinkling. A finite difference

approach is taken for obtaining numerical solutions of the resulting system of ODEs. In addition

to the usual bulge and wrinkling instabilities associated with elastic membranes, we also show

the occurrence of a magnetic limit point instability as has been predicted in our previous work

(Reddy and Saxena, 2017). We also show that multiple stable equilibrium solutions are possible

in this coupled magneto-mechanical deformation. In the remainder of this article, Section 2

presents the kinematics of deformation, Section 3 presents the derivation of governing equations,

various constitutive models and second variation, Section 4 discusses the relaxed free energy

density, Section 5 explains the numerical procedure used, Section 6 discusses the numerical

results, and Section 7 concludes the study.

2 Kinematics of deformation

2.1 Problem description

Figure 1 shows the incompressible isotropic nonlinear magnetoelastic cylindrical membrane

with initial circular cross-section in its undeformed and deformed configurations. The two ends

of the cylinder are covered with rigid discs and no initial stretch is given to the cylinder. We
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Figure 1: Cylindrical membrane (a) before and (b) after deformation. An azimuthal magnetic
field is generated by a current carrying wire along the axis of cylinder. (c) a portion of the
lateral cross-section at point Q. Radius of the cross-section at both the ends is fixed at R0.

sensibly assume that the deformation is symmetric with respect to the center-line or about

the axis Y 3. Hence studying the deformation of one vertical line (perpendicular to the radius)

between the two rigid ends is sufficient to understand the deformation behaviour of the whole

cylinder. The membrane inflates outward when the gas pressure in the enclosed volume is

greater than that of the surroundings i.e, when the net internal pressure is positive and inflates

inward otherwise. An external magnetic field is generated along the circumferential direction

by a long current carrying wire coinciding with the axis of symmetry Y 3.

We follow similar procedure as in (Reddy and Saxena, 2017) in deriving the theoretical

formulation that follows.

2.2 Reference configuration

The position vector of a point in the flesh of the undeformed cylindrical membrane X is given

as

X1 = [R0 + ξ] cos Θ, X2 = [R0 + ξ] sin Θ, X3 = Z̃, (1)
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where Ei are the orthonormal basis vectors, R0 is the radius of the initial circular cross-section

and ξ is the distance of the point from the mid-surface (given by ξ = 0) of the membrane along

the radius. Now, the bases in the curvilinear system (Z̃,Θ, ξ) at the point X become

Gi =
∂X

∂X i
, where (X1, X2, X3) = (Z̃,Θ, ξ). (2)

Components of the covariant metric tensor Gij = Gi ·Gj can be written as

Gij =




1 0 0

0 [R0 + ξ]2 0

0 0 1


 . (3)

2.3 Deformed configuration

Let p denote the position of a point in the flesh of the membrane, x the position of its projection

on the mid-surface along the outward normal n, ξ the distance of the point from the mid-surface

in reference configuration, with g̃ij denoting the covariant metric tensor. The relation among

these quantities can be written as

pi = xi + ξλ3n
i, (4a)

with x1 = r̃(Z̃) cos θ, x2 = r̃(Z̃) sin θ, x3 = z̃(Z̃). (4b)

where the thickness stretch at the point

λ3 =
t

T
, (5)

with t and T representing membrane thickness at that point in deformed and reference configu-

rations, respectively, r̃ representing the radial distance—from the cylinder axis Y 3—of the point

which was originally at a height Z̃ in the reference state, z̃ representing the vertical distance

(see Figure 1), and the azimuthal coordinate θ = Θ. These deformed coordinates can in turn

be expressed in terms of the radial and axial displacements ũ(Z̃) and w̃(Z̃) respectively as

r̃(Z̃) = R0 + ũ(Z̃), θ = Θ, z̃(Z̃) = Z̃ + w̃(Z̃), (6)
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where all the quantities in the deformed state except the circumferential coordinate θ are

functions of the axial coordinate Z̃. Tangent vectors at the points x and p respectively are

gi =
∂x

∂X i
and g̃i =

∂p

∂X i
, (7)

and the components of the outward normal are

n =
−g1 × g2

|g1 × g2|
= − 1√

g
εijkx

j
,1x

k
,2, (8)

where εijk is the permutation symbol and
√
g = [R0 + ũ]

√
ũ2
,Z̃

+
[
1 + w̃,Z̃

]2
with (·),Z̃ = d(·)/dZ̃

everywhere. The negative sign here is due to the sense of Z̃ and Θ chosen in the problem.

Expanding the above expression, we get

n1 =
1√
g

(x3
,1x

2
,2 − x2

,1x
3
,2) =

1√
g

(R0 + ũ)(1 + w̃,Z̃) cos θ, (9a)

n2 =
1√
g

(x1
,1x

3
,2 − x3

,1x
1
,2) =

1√
g

(R0 + ũ)(1 + w̃,Z̃) sin θ, (9b)

n3 =
1√
g

(x2
,1x

1
,2 − x1

,1x
2
,2) =

−1√
g

(R0 + ũ)ũ,Z̃ . (9c)

Components of the covariant metric tensor in the deformed state become

g̃ij = g̃i · g̃j, i, j ∈ 1, 2, 3. (10)

Using eqns. (4) and (8), we get

g̃ij =




ũ2
,Z̃

+
[
1 + w̃,Z̃

]2
0 0

0 [R0 + ũ]2 0

0 0 λ2
3


 , (11)

where we have neglected the thickness coordinate ξ in comparison with other dimensions.

However, the derivatives with respect to the thickness coordinate ξ are not neglected. Now the
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corresponding left Cauchy-Green tensor is as follows.

B = (Gij)
−1g̃ij =




ũ2
,Z̃

+
[
1 + w̃,Z̃

]2
0 0

0
[R0 + ũ]2

R2
0

0

0 0 λ2
3



. (12)

The in-plane principal stretches λ1 and λ2 at a point become

λ1 =
√
ũ2
,Z̃

+
[
1 + w̃,Z̃

]2
, λ2 =

R0 + ũ

R0

. (13)

Introducing the non-dimensional parameters

r = r̃/R0, u = ũ/R0, w = w̃/R0, Z = Z̃/R0, (14)

the principal stretches become

λ1 =

√
u′2 + [1 + w′]2, λ2 = 1 + u, (15)

where (·)′ = d(·)/dZ everywhere. We also introduce another dimensionless parameter called

the aspect ratio of the cylinder for later use as

La =
L

R0

. (16)

3 Equations of equilibrium

3.1 Energy considerations

We take the variational formulation as presented in, for example, (Brigadnov and Dorfmann,

2003; Dorfmann and Ogden, 2003; Kankanala and Triantafyllidis, 2004) to study the weakly

magnetized isotropic cylindrical membrane. As mentioned earlier, the total free energy is based

on the deformation gradient (or equivalently, the principal stretches λ1, λ2, λ3) and magnetiza-

tion per unit mass. We refer the reader to the papers by Reddy and Saxena (2017) and Barham

et al. (2007, 2008) for detailed derivations.

3.1.1 Total potential energy

The total potential energy (E) of the membrane under consideration can be written as follows.
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E = T

∫

Ω

ρψ dA− Tµ0

∫

Ω

m · ha dA−
∫ V0+∆V

V0

P̃ dV, (17)

where ρ is the mass density, ψ(F,µ) the free energy per unit mass defined in the formulation

based on magnetization, T the thickness of the undeformed membrane, χ the magnetic sus-

ceptibility of the material per unit undeformed volume, µ the material magnetization per unit

mass, m = ρµ the magnetization per unit current volume, µ0 the permeability of free space, ha

the applied external magnetic field, P̃ the net internal pressure (difference of inside and outside

pressures) and the quantity
√
G = R0. Ω denotes the surface of the undeformed membrane, V0

the enclosed initial volume and ∆V the change in this enclosed volume.

Using the following relations for a weakly magnetized membrane (self- generated magnetic

field is negligible) (Barham et al., 2008),

∂ψ

∂µ
= µ0ha, ρψ(F,µ) ≈ W̄ +

1

2
C|µ|2, C =

µ0ρ
2

χ
, m = χha, (18)

and the total energy may be re-written as

E =

∫ 2π

0

∫ L

0

W̄ T
√
G dZ̃ dΘ− χ

2

∫ 2π

0

∫ L

0

µ0|ha|2T
√
G dZ̃ dΘ−

∫ V0+∆V

V0

P̃ dV, (19)

where W̄ is the strain energy per unit undeformed volume. Let the first term, elastic strain

energy be denoted by Eλ, the second term, magnetic field energy by Eh, and the third term,

pressure work by Ep. Note that the strain and magnetic field energies are calculated over the

reference configuration while the pressure work is over the current configuration.

3.1.2 Variation in elastic strain energy

Let the strain energy density function be expressed in terms of the principal stretches as follows

W̄ (λ1, λ2, λ3) = W̃

(
ũ,

dũ

dZ̃
, w̃,

dw̃

dZ̃

)
= W

(
u,

du

dZ
,w,

dw

dZ

)
. (20)

Now a variation in the strain energy density function will become

δW̃ =
∂W̃

∂yi
δyi, where

(
y1, y2, y3, y4

)
=

(
ũ,

dũ

dZ̃
, w̃,

dw̃

dZ̃

)
. (21)
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Note that d(̃·)/dZ̃ = d(·)/dZ due to the non-dimensionalization according to eqn. (14).

Total strain energy of the membrane, Eλ can now be written as

Eλ =

∫ 2π

0

∫ L

0

W̃

(
ũ,

dũ

dZ̃
, w̃,

dw̃

dZ̃

)
T
√
G dZ̃ dΘ =

∫ 2π

0

∫ L

0

W (u, u′, w, w′)T
√
G dZ̃ dΘ ,

(22)

where the prime (·)′ means a derivative with respect to the non-dimensional axial coordinate

Z, and a variation in this energy, δEλ is given by

δEλ =

∫ 2π

0

∫ La

0

(
∂W

∂u′
δu′ +

∂W

∂u
δu+

∂W

∂w′
δw′ +

∂W

∂w
δw

)
R2

0T dZ dΘ, (23)

since Z̃ = R0Z and
√
G = R0. We use integration by parts to convert the terms with δ(·)′ to

those with δ(·) and the boundary conditions corresponding to the fixed ends

u = w = 0, at Z = 0, La, (24)

to arrive at

δEλ =

∫ 2π

0

∫ La

0

[ [
− d

dZ

(
∂W

∂u′

)
+
∂W

∂u

]
δu+

[
− d

dZ

(
∂W

∂w′

)
+
∂W

∂w

]
δw

]
R2

0T dZ dΘ. (25)

3.1.3 Variation in pressure energy

A variation in the potential energy of the inflating gas with net internal pressure P̃ can be

written as (Steigmann, 1990, Tielking, 1975)

δEp =

∫ 2π

0

∫ L

0

[
P̃n da

]
· δx, (26)

where da =
√
g dZ̃ dΘ is the area of a differential element on the deformed mid-surface (ξ = 0)

with unit normal n. If the pressure surrounding the membrane is greater than that inside the

membrane, numerical values of P̃ will be negative. Using the eqns. (4b) and (8),

δEp = R3
0

∫ 2π

0

∫ La

0

P̃

[
[1 + w′] [1 + u] δu− u′ [1 + u] δw

]
dZ dΘ. (27)
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3.1.4 Variation in energy of the magnetic field

An external magnetic field is generated by placing a current carrying wire at the axis of sym-

metry (Y 3 in Figure 1). The resulting magnetic field intensity ha at a point in the deformed

membrane can be approximated (since the thickness coordinate ξ is neglected) as

ha ≈
I

2πR0 [1 + u]
, (28)

where I is the current in the wire and R0 is the radius of the mid-surface of the undeformed

membrane. Since the magnetic energy depends only on the radial displacement u, the variation

in Eh becomes

δEh = R2
0T

∫ 2π

0

∫ La

0

χ

2

[ −2

[1 + u]3
µ0I

2

4π2R2
0

]
δu dZ dΘ. (29)

3.2 Elastic constitutive models

We study four constitutive models namely neo-Hookean, Mooney-Rivlin, Ogden and Aruda-

Boyce for the elastic strain energy density W̄ in eqn. (18)2 and further assume the material to

be incompressible (λ1λ2λ3 = 1). Thus we have

Ŵ (λ1, λ2) = W̄

(
λ1, λ2,

1

λ1λ2

)
. (30)

3.2.1 Ogden model

The strain energy density proposed by Ogden (1972) to model nonlinear elastic solids can be

written as

Ŵ =
K∑

k=1

µk
αk

[
λαk1 + λαk2 +

[
1

λ1λ2

]αk
− 3

]
, (31)

with the conditions
∑

k

µkαk = 2µ and µkαk > 0. Choosing K = 3, we define the following

non-dimensional parameters

µ∗1 = µ1/µ, µ∗2 = µ2/µ, µ∗3 = µ3/µ, (32)

maintaining
∑

k µkαk = 2µ with µ = 0.4145 MPa for our numerical analysis.
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3.2.2 Neo-Hookean

Substituting k = 1, µ1 = µ, and α1 = 2 in the expression for the Ogden strain energy density

(eqn. (31)), we obtain the expression for neo-Hookean energy as

Ŵ =
µ

2

[
λ2

1 + λ2
2 +

[
1

λ1λ2

]2

− 3

]
. (33)

3.2.3 Mooney-Rivlin

Substituting k = {1, 2}, α1 = 2 and α2 = −2 in the expression for the Ogden strain energy

density (eqn. (31)), we obtain the expression for Mooney-Rivlin energy as

Ŵ =
µ1

2

[
λ2

1 + λ2
2 +

[
1

λ1λ2

]2

− 3

]
− µ2

2

[
λ−2

1 + λ−2
2 +

[
1

λ1λ2

]−2

− 3

]
. (34)

We use the following non-dimensional parameters

µ∗1 = µ1/µ, µ∗2 = µ2/µ, (35)

maintaining
∑

k µkαk = 2µ for our numerical analysis.

3.2.4 Arruda-Boyce (eight chain model)

The original constitutive model proposed by Arruda and Boyce (1993) involves an inverse

Langevin function which does not have an explicit form. Hence, many approximations for

this function have been developed. Jedynak (2015) presents a review and comparison of such

approximations available in the literature. Here we use a series expansion mentioned in Treloar

(1954), Arruda and Boyce (1993, eqn. (21)), Boyce and Arruda (2000, eqn. (26)) and

Steinmann et al. (2012),

Ŵ = µ
K∑

k=1

ck
Nk−1

[
Ik1 − 3k

]
, (36)

where

I1 = λ2
1 + λ2

2 +

[
1

λ1λ2

]2

(37)

is the first invariant of the left Cauchy-Green tensor, µ is shear modulus and N stands for the

number of Kuhn segments.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

3.3 Governing Equations

According to the principle of minimum potential energy, equilibrium is obtained when

δE = δEλ − δEh − δEp = 0, (38)

that results in the following equations.

∂W

∂u
− d

dZ

(
∂W

∂u′

)
+

χµ0I
2

4π2R2
0 [1 + u]3

− P̃R0

T
[1 + w′] [1 + u] = 0, (39a)

∂W

∂w
− d

dZ

(
∂W

∂w′

)
+
P̃R0

T
u′ [1 + u] = 0. (39b)

From eqn. (20), the partial derivatives of W can be written as

∂W

∂u′
=
∂Ŵ

∂λ1

∂λ1

∂u′
+
∂Ŵ

∂λ2

∂λ2

∂u′
, (40a)

∂W

∂w′
=
∂Ŵ

∂λ1

∂λ1

∂w′
+
∂Ŵ

∂λ2

∂λ2

∂w′
, (40b)

∂W

∂u
=
∂Ŵ

∂λ1

∂λ1

∂u
+
∂Ŵ

∂λ2

∂λ2

∂u
, (40c)

∂W

∂w
=
∂Ŵ

∂λ1

∂λ1

∂w
+
∂Ŵ

∂λ2

∂λ2

∂w
. (40d)

Using the partial derivatives of the principal stretches evident from eqn. (15),

∂λ1

∂u′
=
u′

λ1

,
∂λ2

∂u′
= 0,

∂λ1

∂w′
=

1 + w′

λ1

,
∂λ2

∂w′
= 0, (41a)

∂2λ1

∂u′∂u′
=

[1 + w′]2

λ3
1

,
∂2λ1

∂w′∂w′
=
u′2

λ3
1

,
∂2λ1

∂w′∂u′
=

∂2λ1

∂u′∂w′
= −u

′[1 + w′]

λ3
1

, (41b)

∂λ1

∂u
= 0,

∂λ2

∂u
= 1,

∂λ1

∂w
= 0,

∂λ2

∂w
= 0, (41c)

λ′1 =
u′u′′ + [1 + w′]w′′

λ1

, λ′2 = u′, (41d)

the relations (40) become

∂W

∂u′
=
∂Ŵ

∂λ1

[
u′

λ1

]
,

∂W

∂w′
=
∂Ŵ

∂λ1

[
1 + w′

λ1

]
,

∂W

∂u
=
∂Ŵ

∂λ2

,
∂W

∂w
= 0. (42)
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The governing equations (39) can then be written from the relations (42) as

∂Ŵ

∂λ2

− u′

λ1

d

dZ

(
∂Ŵ

∂λ1

)
− ∂Ŵ

∂λ1

d

dZ

(
u′

λ1

)
+

χµ0I
2

4π2R2
0[1 + u]3

− P̃R0

T
[1 + u] [1 + w′] = 0, (43a)

1 + w′

λ1

d

dZ

(
∂Ŵ

∂λ1

)
+
∂Ŵ

∂λ1

d

dZ

(
1 + w′

λ1

)
− P̃R0

T
[1 + u]u′ = 0. (43b)

Defining the magnetic energy parameter in terms of shear modulus µ appearing in the previous

section as

M =
µ0I

2

4π2R2
0µ
, (44)

and a non-dimensional pressure as

P =
P̃R0

µT
, (45)

we arrive at the following useful form of the governing equations.

1

µ

∂Ŵ

∂λ2

− 1

µ

u′

λ1

d

dZ

(
∂Ŵ

∂λ1

)
− 1

µ

∂Ŵ

∂λ1

d

dZ

(
u′

λ1

)
+

χM
[1 + u]3

− P [1 + u][1 + w′] = 0, (46a)

1

µ

1 + w′

λ1

d

dZ

(
∂Ŵ

∂λ1

)
+

1

µ

∂Ŵ

∂λ1

d

dZ

(
1 + w′

λ1

)
− P [1 + u]u′ = 0. (46b)

3.3.1 Stability of equilibrium

A necessary condition for the equilibrium state obtained from solution of the governing equa-

tions (46) to be a minimizer of the energy functional (19) is that the second variation be positive

that results in the conditions that the matrix

P =
1

2


Fu′u′ Fu′w′

Fw′u′ Fw′w′


 , (47)

with

F = Ŵ TR2
0 −

χ

2
µ0|ha|2TR2

0 −
1

2
P̃R3

0 [1 + u]2 [1 + w′] , (48)

being the integrand in eqn. (19) be positive definite for all Z ∈ [0, La]. A simple but rather

restrictive sufficient condition for minimization (Gelfand and Fomin, 2000, Ch. 5) is that a

non-zero solution to the following differential equation exists and is invertible for all Z ∈ [0, La]

− d

dZ
(PU′) + QU = 0, U(0) =


0 0

0 0


 , U′(0) =


1 0

0 1


 , (49)
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where

Q =
1

2


Fuu Fuw
Fwu Fww


− 1

2

d

dZ




Fuu′ Fuw′

Fwu′ Fww′




 . (50)

Since the sufficient condition is strong, we get certain cases where only the necessary condition

is met and we are unable to comment on the stability of the equilibrium state.

If

P =
1

2


P1 P2

P3 P4


 , Q =

1

2


Q1 Q2

Q3 Q4


 , U =


U1 U2

U3 U4


 , (51a)

{U1, U
′
1, U2, U

′
2, U3, U

′
3, U4, U

′
4} = {u1, u2, u3, u4, u5, u6, u7, u8} , (51b)

the sufficient condition (49) can be written as




1 0 0 0 0 0 0 0

0 −P1 0 0 0 −P2 0 0

0 0 1 0 0 0 0 0

0 0 0 −P1 0 0 0 −P2

0 0 0 0 1 0 0 0

0 −P3 0 0 0 −P4 0 0

0 0 0 0 0 0 1 0

0 0 0 −P3 0 0 0 −P4







u′1

u′2

u′3

u′4

u′5

u′6

u′7

u′8




=




u2

P ′1u2 + P ′2u6 −Q1u1 −Q2u5

u4

P ′1u4 + P ′2u8 −Q1u3 −Q2u7

u6

P ′3u2 + P ′4u6 −Q3u1 −Q4u5

u8

P ′3u4 + P ′4u8 −Q3u3 −Q4u7




,




u′1

u′2

u′3

u′4

u′5

u′6

u′7

u′8



Z=0

=




0

1

0

0

0

0

0

1




.

(52)

The expressions for the elements of matrices P and Q can be found in the appendix A.

3.3.2 Relaxed strain energy density

Since membranes are no-compression structures, a modification in the strain energy density

function is required to account for wrinkling. The cylindrical membrane under consideration can

have mechanical compression only in the circumferential direction Θ, hence the circumferential

stretch λ2 can be replaced by a function of the meridional stretch λ1 as explained below (Pipkin,

1986). Note that this modification is required only in the expression for elastic energy Eλ (see

eqn. (22)) while the deformation parameters (u, u′, w, w′) in the expressions for magnetic energy

Eh (eqn. (29)) and pressure work Ep (eqn. (26)) should be left as they are. A zero mechanical
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stress along the Θ direction implies

∂Ŵ

∂λ2

= 0. (53)

From Sec. 3.2, for all the four constitutive models, the above equation gives

λ2 =
1√
λ1

. (54)

Now the relaxed strain energy density for incompressible materials (λ1λ2λ3 = 1) becomes (see

Sec. 3.2)

Ogden: Ŵr(λ1) =
K∑

k=1

µk
αk

[
λαk1 + 2λ

−αk/2
1 − 3

]
, (55)

neo-Hookean: Ŵr(λ1) =
µ

2

[
λ2

1 +
2

λ1

− 3

]
, (56)

Mooney-Rivlin: Ŵr(λ1) =
µ1

2

[
λ2

1 +
2

λ1

− 3

]
− µ2

2

[
λ−2

1 + 2λ1 − 3
]
, (57)

Arruda-Boyce: Ŵr(λ1) = µ
K∑

k=1

ck
Nk−1

[
Ik1 − 3k

]
, with I1 = λ2

1 +
2

λ1

. (58)

The corresponding governing equations can be obtained from eqns. (46) by replacing the

strain energy density, Ŵ by relaxed energy density Ŵr and putting the derivative of Ŵ with

respect to the circumferential stretch λ2 to zero.

4 Numerical Procedure

The coupled second order governing ODEs (46) with the boundary conditions (24) are solved

numerically using a finite difference method coupled with a cubic extrapolation arc-length tech-

nique as laid out in (Patil et al., 2015b).

A vertical edge of the cylinder from Z = 0 to Z = La is discretized into N uniformly

distributed grids (of length ∆Z = La/N ) thereby producing N + 1 nodes. Derivatives (u′, w′)

of the degrees of freedom (u,w) are approximated by central differences at every node except
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the ends. Forward and backward differences are used at the ends as shown below

u′1 =
u2 − u1

∆Z
, w′1 =

w2 − w1

∆Z
, (59a)

u′N+1 =
uN+1 − uN

∆Z
, w′N+1 =

wN+1 − wN
∆Z

, (59b)

u′i =
ui+1 − ui−1

2∆Z
, w′i =

wi+1 − wi−1

2∆Z
, (59c)

u′′i =
ui+1 − 2ui + ui−1

∆Z 2
, w′′i =

wi+1 − 2wi + wi−1

∆Z 2
, i = 2 to N . (59d)

In an iteration, whether to use the relaxed strain energy density at a node i is determined by

the initial guess available to that iteration. Principal stretches

λ1i =

√
u′2i + [1 + w′i]

2, λ2i = 1 + ui, (60)

at every node are evaluated according to the discretization scheme described earlier and the

condition for impending wrinkling

λ2
2iλ1i ≤ 1, (61)

is checked for.

Now the governing equations (46) at internal nodes (i = 2 to N ) lead to 2 [N − 1] algebraic

equations

f1i (ui−1, wi−1, ui, wi, ui+1, wi+1) = 0, (62a)

f2i (ui−1, wi−1, ui, wi, ui+1, wi+1) = 0, (62b)

and the boundary conditions (24) become

u1 = w1 = uN+1 = wN+1 = 0. (63)

The set of nonlinear algebraic equations (62) are solved in the commercially available software

MATLAB® 2016a using the inbuilt function fsolve. Search for a solution is stopped when the

norm of the vector containing the left-hand-sides of the algebraic equations (62) becomes lower

than 10−10. This method is, however, sensitive to the initial guess provided and many manual

trials may be required before arriving at a solution. Often, solutions obtained previously for a

different set of parameters like P orM were used as initial guesses if a similar deformed shape

of the membrane is expected.
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Initial guess, for an iteration k, of the loading parameter P and degrees of freedom ui, wi

(i = 2 to N ) is evaluated using a cubic extrapolation arc-length technique mentioned in Patil

et al. (2015b). For example, solution

sk =
[
P k uk1 wk1 · · · uki wki · · · ukN+1 wN+1

]
, (64)

from the previous four iterations (s0, s1, s2, s3) are used to evaluate the initial guess for the next

iteration (s4) as follows.

s4 =
a=3∑

a=0

[
b=3∏

b=0,b 6=a

l4 − lb
la − lb

]
sa, (65)

where l is an arc-length function taking the following values for the previous iterations.

l0 = 0, l1 = ||s1 − s0||, l2 = l1 + ||s2 − s1||, l3 = l2 + ||s3 − s2||, (66a)

l4 = l3 + ||s3 − s2||, (66b)

with || · || representing the usual Euclidean norm of the vector.

The above procedure can be used to trace the pressure-stretch plots at a given magnetic

loading M. The first four equilibrium states, however, need to be obtained manually by trial

and error. In this study, equilibrium states were found easily at relatively small values of

internal or external pressure with the initial guess ui = wi = 0 at all the N + 1 nodes.

5 Numerical results

Table 1: Dimensionless parameters used in the computations

Mooney-Rivlin (Arruda and Boyce, 1993, Appendix)
µ∗1 µ∗2

0.9091 −0.09091
Ogden (Ogden, 1972)
µ∗1 µ∗2 µ∗3 α1 α2 α3

1.4910 0.0029 −0.0236 1.3 5.0 −2.0
Arruda-Boyce (Arruda and Boyce, 1993, eqn. (21))
c1 c2 c3 c4 c5 N

1/2 1/20 11/1050 19/7000 519/673750 26.5
χ

2.5
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Figure 2: Comparison of our numerical solutions with (a), (b) Patil et al. (2014) and (c) Khayat
et al. (1993) for purely mechanical deformation.

5.1 Validating the formulation

An agreeable matching of our present results with those of Patil et al. (2014) for a purely elastic

case in Figure 2a and Figure 2b demonstrates the authenticity of the numerical implementation

of the formulation presented in the earlier sections. A similar variational approach described

here in this article is used in Patil et al. (2014) while a direct force balance approach is taken

by Khayat et al. (1993). This difference in our approaches may be the reason for the disparity

observed in Figure 2c.

5.1.1 Comparison of the constitutive models

While many researchers did study the behaviour of various constitutive models of elasticity

separately, a direct comparison of the four models specified in section 3.2 is not available in

the literature. Also, Arruda-Boyce model has not been previously used to study cylindrical
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Figure 3: Comparison of the various constitutive models for a purely elastic case for the pa-
rameters chosen.

membranes or the bulging instability. A comparison of the many constitutive models in this

context can be a separate study in itself. While this comparison is not the primary objective

of this study, we take this opportunity to present a few findings of our own.

It is first required to evaluate the various parameters involved in the strain energy functions–

ck, N, αk, µk–using experimental data before proceeding further with theoretical analysis. We

use the numerical values from the available studies on bulk materials and are presented in

Table 1.

Figure 3 shows a comparison of the models in case of purely elastic cylinders of various as-

pect ratios. Only the variation of the circumferential stretch at the mid-length Z = La/2 with

the inflating pressure is shown. Mooney-Rivlin model seems to estimate the maximum value

for elastic limit point pressure where it is possible and the minimum value by neo-Hookean

(bottom left, Figure 3) or Ogden models (top left, top right, bottom right, Figure 3). No
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Figure 4: Depiction of bulging instability in a long cylinder with an aspect ratio La = 10.
Various curves represent the deformed axisymmetric profiles of the membrane. Arrows indicate
the direction of increase in internal pressure. All the models except Mooney-Rivlin predict this
phenomenon although the pressures at which it starts may differ.

stationary points are predicted by some models for lower aspect ratios of the cylinder. For

example, Arruda-Boyce model doesn’t predict for La = 0.2 and Mooney-Rivlin doesn’t seem to

predict for cylinders with La ≤ 3.

All the four models give almost identical results at lower pressures, typically below the

limit point pressure. Post this point, pressure-stretch curves corresponding to the Ogden and

Arruda-Boyce models have similar shapes while significantly deviating from those correspond-

ing to neo-Hookean or Mooney-Rivlin models. Also, the curves given by neo-Hookean and

Mooney-Rivlin models seem to get farther from each other upon increasing the aspect ratio La.

The onset of strain-hardening happens the earliest in a Mooney-Rivlin material while neo-

Hookean can not predict this at all. While the pressure required for inflation just after the

elastic limit point is overestimated by Mooney-rivlin model, pressure required late after the

limit point is the maximum in an Arruda-Boyce material. There is a huge disparity in all four

models at large values of λ2.

Figure 4 shows a few deformed profiles of a purely elastic cylinder of aspect ratio La = 10.

While it is a known fact that neo-Hookean and Ogden models do predict the bulging instability

(Skala, 1970; Kyriakides and Yu-Chung, 1991), the 2-parameter Mooney-Rivlin model does not

(Skala, 1970). Now, it can be seen from Figure 4 that Arruda-Boyce model also can predict

this phenomenon.
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5.2 Outward inflation

Figure 5 shows the behaviour of the membrane in the presence of an external magnetic field

due to a current carrying wire held stationary at the axis of symmetry. The behaviour observed

here is similar to that observed by us (Reddy and Saxena, 2017) for a magnetoelastic toroidal

membrane. It is evident from Figure 5 that more internal pressure is required to inflate the

membrane to a given stretch in the presence of a magnetic field since the magnetic field shrinks

the material–the ferromagnetic particles inside attract each other. By extension, the traditional

elastic limit point pressure increases with increasing current in the wire or equivalently,M (see

figures 5b, 5c).

It can also be noticed that the pressure-stretch plots corresponding to non-zero values of the

magnetic energy parameter M do not start at zero pressure P . A certain amount of internal

pressure is required to overcome the compression caused by the magnetic field and initiate the

inflation process. What happens to the left of the starting points of these curves is elaborated

in section 5.3.1.

For certain values ofM, an initial dip in the internal pressure can be seen in figures 5b-5e.

This fall in pressure begins upon overcoming the ‘magnetic stiffness’ until the elastic stiffness

gains dominance. After this point, the behaviour is same as that of a purely elastic membrane.

More pressure is required after this to inflate the membrane until pressure work overcomes the

elastic stiffness at the traditional elastic limit point as in Figure 5c. Beyond a certain value of

M, the traditional elastic limit point vanishes and the pressure required for inflation P reduces

monotonously. An analogous behaviour can be seen where the elastic limit point is not present.

For example, for M = 18.0 in Figure 5a, pressure decreases continuously until the behaviour

is same as that for other values of M.

In this case, inflation starts once the amount of pressure overcomes both the magnetic and

elastic stiffnesses right at the beginning of the inflation process. Contrary to other cylinders,

the short cylinder of aspect ratio La = 0.2 does not show initial fall in internal pressure P .

It may be argued that elastic stiffness is dominant from the very beginning of the inflation

process. The fact that the magnetic field intensity |ha| reduces with the distance (see eqn.

(28)) means the effect of the current carrying wire is nullified at larger stretches resulting in

the convergence of all curves as seen in the Figure 5.
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Figure 5: Effect of the external magnetic field on the outward inflation. All the models predict
the same behaviour. Only the results for (a), (b), (c) Arruda-Boyce (with N = 26.5) and (d),(e)
Mooney-Rivlin models are shown here. Small portions of the plot areas are magnified in inset
figures in (a), (c) and (e) for better visualization.
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Figures 5b-5e also show that strengthening the external magnetic field (or increasing M)

shifts the first stationary point (local minimum) to greater stretches and the second station-

ary point (local maximum) to lower stretches. These two extrema merge at a particular value

of magnetic energy parameter M as is apparent in Figure 5c. Above this value of M, a

monotonous decrease in inflating pressure P will be seen at the beginning. This behaviour is

true for other cylinders that exhibit two stationary points.

It can also be noticed that with increase in the aspect ratio La of the cylinder, the presence

of the initial fall in gas pressure becomes less and less apparent and that smaller values of M
can lead to the said behaviour. This is expected since reducing the initial radius of the cylin-

der, R0 at a fixed length L brings the membrane closer to the current carrying wire thereby

increasing the magnetic energy in it.

A note on the stability of the equilibrium states: in a few instances where initial fall in the

internal pressure can be seen (for example, the curve corresponding toM = 0.8 in Figure 5b),

a few solutions at the beginning of the curve are found not to satisfy the sufficient condition of

stability criterion described in Sec. 3.3.1. Hence their stability remains undetermined according

to the scheme proposed. Nevertheless, eliminating these equilibrium states does not change

the membrane behaviour observed. We (Reddy and Saxena, 2017) also had similar pressure-

stretch curves for a toroidal magnetoelastic membrane with all stable states. Extending this

observation, the current equilibrium states may be considered stable.

5.3 Inward inflation

Figure 6 shows the pressure-stretch plots for purely elastic cylinders of various aspect ratios

and for all the four constitutive models. Negative net internal pressure means that the external

pressure is greater than the internal pressure. Compared to outward inflation, smaller pressures

can induce a given strain. Also, deforming inward a cylinder of larger aspect ratio requires less

pressure than deforming one with a smaller aspect ratio just as bending a longer cantilever beam

is simpler. Contrary to the results observed during outward inflation, all the four constitutive

models seem to produce very close results as is evident from Figure 6. Hence the results for a

neo-Hookean material only will be discussed further.
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Figure 6: Variation of the circumferential stretches at mid-length (Z = La/2) with the dimen-
sionless external pressure for various aspect ratios (mentioned on or adjacent to the curves).
Negative sign means vacuum within the volume enclosed by the membrane. Contrary to the
outward inflation, small values of pressure can lead to enormous amounts of strain in inward
inflation.

Figure 7 shows a typical behaviour of the membrane under inward inflation. Only a few

profiles are shown since after a certain point, the membrane comes in contact with the rigid

ends of the cylinder at top and bottom (see Figure 1). Dashed portions in Figure 7 depict

the presence of uniformly distributed infinitesimally small wrinkles aligned with the meridional

direction. As the inflation progresses inward, percentage of the wrinkled area reduces.

In the presence of an external magnetic field or when there is an electric current in the wire

at u = −1, inward inflation may be seen even at positive values of net internal pressure P .

However, the extent of deformation will be comparatively small since the membrane can only

get so close to the membrane as explained later in section 5.3.1. In addition, multiple stable

equilibrium states are possible for a given internal pressure and magnetic field as shown in

Figure 8. We also note that the two solutions presented in Figure 8 are obtained numerically

and unless rigorously proven mathematically we can’t comment whether these are exhaustive.

Same can be said for all the coupled field analyses in this study.

5.3.1 Magnetic limit point

Figure 9 shows some deformed profiles of a cylinder of aspect ratio La = 6 under the influence

of magnetic field alone. Since the magnetic field is aligned with circumferential direction Θ,

the membrane gets shrunk along the Θ direction thereby moving inward i.e., towards the wire

at u = −1. We plot the curves by increasing the strength of the magnetic field (or value ofM)
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Figure 7: Deformed profiles of the cylindrical membrane under inward inflation. Solid and
dashed parts represent unwrinkled and wrinkled regions, respectively. Arrow indicates the
direction of increase in external pressure, −P . As the inflation progresses, ratio of the areas of
the membrane with and without wrinkling decreases. Since all the models under consideration
predict the same behaviour, only the results for neo-Hookean model are shown here.

Table 2: Radial deformations of a cylinder of La = 6 at mid-length at the magnetic limit point

P (×10−4) u (Z = La/2)
0 -0.5473
1 -0.5445
2 -0.5391
3 -0.5363
4 -0.5336
6 -0.5289
8 -0.5225
10 -0.5200

until an increase in M can not yield an equilibrium state anymore.

Below this maximum possible value ofM (the magnetic limit point) denoted henceforth by

Mlp, some values ofM can give two corresponding stable equilibrium states as can be seen in

Figure 9. Numerical values ofM far belowMlp have only one corresponding equilibrium state

located farther from the current carrying wire i.e., to the right of the critical state.

Increasing the value ofM moves the inner-most deformed state outward and the outer-most

state inward as depicted in Figure 9 by the two arrows. The deformed states from both the

sides merge at ’magnetic limit point’ associated with the maximum possible value of the dimen-

sionless magnetic energy parameterMlp. A similar phenomenon was observed by Barham et al.

(2008) in parametric deformation of a magnetoelastic circular membrane under the influence
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Figure 8: Deformation profiles of the membrane for three different values of inflating pressure.
Each curve represents a static equilibrium state. Another equilibrium state, corresponding to
outward inflation, for each of these pressure values significantly coincides with the vertical axis
at u = 0.

of a magnetic dipole. However, unlike their results, static equilibrium states obtained here are

all stable. Also, in our previous study on a toroidal membrane (Reddy and Saxena, 2017), we

reported a situation where, beyond a certain value of the magnetic energy parameter, both the

stable and unstable equilibrium states cease to exist.

As can be predicted by intuition, presence of gas inside the membrane demands a stronger

magnetic field for a given deformation and decreases the magnitude of radial deformation for

a given current in the wire or M. In addition, the equilibrium state corresponding to the

magnetic limit point moves outward (away from the wire at u = −1) with the introduction of

internal gas pressure as shown in Table 2 for La = 6.

A non-intuitive outcome of this study is the quadratic relation between the internal gas

pressure and the corresponding value of the magnetic energy parameter Mlp corresponding

to the magnetic limit point(see Figure 10). Reason for this result is not yet clear. Though

only two aspect ratios of the cylinder are shown in Figure 10, similar results are obtained for

other aspect ratios. Cylinders shorter than La = 1 are not commented upon since they call for

unreasonably high values of current in the wire (see eqn. 44, Figure 5). We also note that the

order of magnitudes of Mlp and P are the same in Figure 10.

Figure 10 also specifies the minimum amount of internal pressure required to deform the

membrane for a given M and the maximum amount of M allowed for an internal pressure

30



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T−0.6 −0.4 −0.2 0
0

2

4

6

12

1 :M = 1× 10−6 to 4.06× 10−4

2 :M = 3.2× 10−4 to 4.01× 10−4

Non-dimensional radial deformation, u

z

La = 6, χ = 2.5, P = 0, neo-Hookean

Figure 9: Deformation profiles of the cylindrical membrane under the influence of magnetic
field alone (P = 0). The arrows indicate the direction of increase in M. Solutions from both
the directions merge at the magnetic limit point and the corresponding value of the magnetic
energy density parameter: M≈ 4.07× 10−4. This position moves away from the wire (located
at u = −1) with increase in internal pressure. Not every value of M has two corresponding
stable solutions.

P . For example, at M = 0.3 for La = 1, internal pressure P must be greater than 0.7,

approximately to yield an equilibrium solution (Figure 10a). Connecting this inference with

the pressure-stretch plot for M = 0.3 in Figure 5c or Figure 5e, we understand that there are

not many solutions to the left of the pressure-stretch plots in Figure 5 due to the presence of

magnetic limit point as illustrated in Figure 9.

6 Conclusions

The effect of an external magnetic field on the inflation of a cylindrical membrane is studied.

A variational formulation based on magnetization and a finite difference method are used to

obtain equilibrium solutions. Stability of the equilibrium states is determined from the second

variation while the onset of wrinkling instability is determined using relaxed energy density

approach. The strain energy density is expressed using four models: neo-Hookean, Mooney-

Rivlin, Ogden and series expansion form of Arruda-Boyce and the results are compared. It is

observed that all these constitutive models except the Mooney-Rivlin model predict bulging

in long cylinders. While these models lead to significantly different pressure-stretch plots for

outward inflation, there is not much difference in case of inward inflation i.e., when the internal

pressure is less than the external pressure. Inward inflation also causes portions of the mem-

brane to wrinkle and as inflation progresses inward, the percentage of wrinkled area reduces.
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Figure 10: Variation of the magnetic energy density parameter at magnetic limit point, Mlp

with the inflating internal pressure P for the aspect ratio (a) La = 1 and (b) La = 6. The
numerical values of Mlp and P (marked as ×) are closely related by a polynomial of order 2
(solid line).

In the presence of an external magnetic field, pressure-stretch curve starts at a non-zero

value of inflating pressure and for certain aspect ratios of the cylinder, an initial dip in the in-

flating pressure is seen. For a sufficiently strong magnetic field, this initial dip disappears and

the net internal pressure falls monotonously. Current in the wire at the axis of symmetry can

be increased only so much before a further increase yields no equilibrium solutions. This critical

state is termed the magnetic limit point. Below this maximum value, a value of current (but not

those much smaller than the maximum value) has two corresponding deformed solutions one on

either side of the magnetic limit point. A highlight of this study is the polynomial relation be-

tween the defined magnetic energy parameter and the inflating pressure at magnetic limit point.

Possible extensions of this study can be to improve the employed numerical scheme which is

sensitive to the initial guess provided, and an improvement of the second variation analysis to

accommodate more stable solutions. Also, inflation of a strongly magnetized membrane may

be studied i.e., without neglecting the material’s self generated magnetic field.
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A Appendix

The partial derivatives of the integrand F mentioned in Sec. 3.3.1 are as follows, multiplied by

a factor µTR2
0 which is a constant for given material and geometry.

Fu′ =
1

µ

∂Ŵ

∂λ1

∂λ1

∂u′
, Fw′ =

1

µ

∂Ŵ

∂λ1

∂λ1

∂w′
− 1

2
P (1 + u)2, (67)

Fu′u′ =
1

µ

[
∂

∂λ1

(
∂Ŵ

∂λ1

)[
∂λ1

∂u′

]2
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∂Ŵ

∂λ1

∂

∂u′

(
∂λ1

∂u′
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, (68)
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1
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∂Ŵ
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∂Ŵ
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∂Ŵ
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)(
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∂w′

(
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)]
, (70)

Fu =
1

µ

∂Ŵ

∂λ2

+
χM

[1 + u]3
− P [1 + u] [1 + w′] , (71)

Fuu =
1

µ

∂

∂λ2

(
∂Ŵ

∂λ2

)
− 3χM

[1 + u]4
− P [1 + w′] , (72)

Fw = Fwu = Fuw = Fww = 0, (73)
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1
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1

µ
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Expressions for the partial derivatives of the Ogden’s strain energy function (see Sec. 3.2.1)

are as follows

∂Ŵ

∂λi
=

K∑

k=1

µk

[
λαk−1
i −

[
1

λ1λ2

]αk 1

λi

]
(81a)

∂2Ŵ

∂λ2
i

=
K∑

k=1

µk

[
[αk − 1]λαk−2

i +

[
1

λ1λ2

]αk [αk + 1

λ2
i

]]
(81b)

∂2Ŵ

∂λ1∂λ2

=
K∑

k=1

µk
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]
, (81c)

∂
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In the case of wrinkling in the circumferential direction,

Ŵr =
K∑

k=1

µk
αk

[
λαk1 + 2λ

−αk
2
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]
, (83)
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2
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λ
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2
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1

]
, (86)

with the derivative of any quantity with respective to the circumferential stretch, λ2 being

identically equal to zero. Similarly, those corresponding to the Arruda-Boyce strain energy
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density function mentioned in Sec. 3.2.4 are

∂Ŵ

∂λi
= I1,λiS1, (87)
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∂λ2
i

= 2

[
1 +

3

[λ1λ2]2
1

λ2
i

]
S1 + [I1,λi ]
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∂λ1∂λ2

=
4

[λ1λ2]3
S1 + Iλ1Iλ2S2, (89)
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4
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−12

λ3
2λ

4
1

S1 +
8

[λ1λ2]3
S2 [I1,λ1 ] + 2

[
1 +

3

λ2
2λ

4
1

]
I1,λ2S2 + I1,λ1I1,λ2S3 [I1,λ1 ] , (91)

∂

∂λ2

(
∂2Ŵ

∂λ1∂λ2

)
=
−12

λ3
1λ

4
2

S1 +
8

[λ1λ2]3
S2 [I1,λ2 ] + 2

[
1 +

3

λ2
1λ

4
2

]
I1,λ1S2 + I1,λ1I1,λ2S3 [I1,λ2 ] , (92)

d

dZ

(
∂Ŵ

∂λ1

)
= 2

[
λ′1 +

2
λ′2
λ2

+ 3
λ′1
λ1

λ2
2λ

3
1

]
S1 + I1,λ1S2 (I1,Z), (93)

S1 = µ
K∑

k=1

k ck I
k−1
1

Nk−1
, S2 = µ

K∑

k=1

k [k − 1] ck I
k−2
1

Nk−1
, S3 = µ

K∑

k=1

k [k − 1] [k − 2] ck I
k−3
1

Nk−1
(94)

where

I1,Z = 2

[
λ1λ

′
1 + λ2λ

′
2 −

λ′1
λ1

[
1

λ1λ2

]2

− λ′2
λ2

[
1

λ1λ2

]2
]
, (95)

I1,λ1 = 2

[
λ1 −

1

λ2
2λ

3
1

]
, I1,λ2 = 2

[
λ2 −

1

λ2
1λ

3
2

]
. (96)

In the case of wrinkling in the circumferential direction,

I1 = λ2
1 +

2

λ1

,
∂I1

∂λ1

= 2

[
λ1 −

1

λ2
1

]
,

∂2I1

∂λ2
1

= 2

[
1 +

2

λ3
1

]
,

∂3I1

∂λ3
1

= −12

λ4
1

, (97)

∂Ŵr

∂λ1

= S1
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∂λ1

,
∂2Ŵr

∂λ2
1

= S2

[
∂I1

∂λ1

]2

+ S1
∂2I1

∂λ2
1

,
∂3Ŵr

∂λ3
1

= S3

[
∂I1

∂λ1

]3

+ 3S2
∂2I1

∂λ2
1

∂I1

∂λ1

+ S1
∂3I1

∂λ3
1

.

(98)
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