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Highlights

• Temperature]dependent SIC is modeled at the microscale via an FE repre-

sentation.

• Modeling of time]dependent SIC kinetics is addressed.

• SIC is computed for the principal directions of the strain field.

• Induced anisotropy effects in the material’s mechanical and thermal re-

sponse are captured.

• SIC on the microscale is computed from the structural response of a steady

state rolling tire.
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Abstract

Besides the numerical representation of elastic properties of elastomers, a thermo-

mechanical finite element model to capture strain-induced crystallization (SIC)

in elastomers under static and dynamic loading is proposed in this contribution.

The reinforcement effect resulting from SIC is assumed to be strain-, time- and

temperature-dependent and is modeled on the microscale. Due to the orientation

of crystallized domains along the principal stretch directions, anisotropy in the

material’s mechanical and thermal response is captured by the proposed model.

Model parameters for the SIC process and its kinetics are identified based on

previously published wide-angle X-ray diffraction (WAXD) results. Numerical

studies and comparisons to experimental data reveal the features of the numer-

ical model for SIC. Within a structural example, the material model for strain-

crystallizable elastomers is employed to reveal SIC in steady state rolling tires

modeled within the finite element framework via a micro-meso-macro transition

of the deformation and temperature field involved.

Keywords: Strain-induced crystallization, elastomers, time dependency,

temperature dependency, thermo-mechanical coupling, finite element method
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1. Introduction

Strain-induced crystallization (SIC) is a specific process observed in a certain

group of polymers (elastomers) subjected to significant large deformations [1].

A priori, SIC takes place at the molecular scale. However, the consequences

of SIC significantly affect the macroscopic material response. The reinforcing

mechanisms of SIC on the micro- and mesoscale contribute to the substantial im-

provement of the crack growth resistance of natural rubber (NR) [2] from which

standard engineering applications involving elastomer products (tires, compo-

nents, bearings etc.) could take advantage. As a first approximation, crystal-

lites can be interpreted as additional crosslinking points or as rigid reinforcing

particles strengthening the initially amorphous rubber [3, 4]. SIC leads to an

increase of the strength at rupture, the large strain modulus and the crack propa-

gation behavior of NR compared to the properties of non-crystallizing synthetic

rubbers [5, 6, 7]. The strain-induced process leads to a rearrangement of the

molecular structure from its ground amorphous state to a higher ordered (regu-

lar) state. The energy required for this process mainly stems from the externally

applied loading (external work) yielding a measurable reinforcement mechanism

(strengthening) of the material. During unloading, SIC is reversible in terms of

the melting of crystallized domains. However, as observed in many experimental

investigations, the specific strain-, time- and temperature-dependent kinetics of

SIC result in the formation of additional hystereses (loading and unloading path)

of a specimen under cyclic loading. Since the SIC process is triggered by the

maximum strain field direction, the amorphous phase and the crystallized phase

of the elastomer generate in total an anisotropic mechanical and thermal material

∗Corresponding author
Email address: michael.kaliske@tu-dresden.de (M. Kaliske)
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behavior [8]. NR also undergoes thermally induced crystallization (TIC) at low

temperatures [9, 10]. The developing crystal structure is the same but the crystal

morphology is different.

The current explanation for SIC is that highly stretched, oriented segments

between crosslinks undergo coil-to-stretch transformations forming extended

chain crystals [11, 12]. In [13], the time dependency of SIC in crosslinked

NR is experimentally studied by using synchrotron wide-angle X-ray diffrac-

tion (WAXD). Due to a time resolution in the millisecond range, time-dependent

SIC during dynamic loading could be observed in dynamic mechanical tests and

tensile impact tests. It is found that the dynamic loading significantly influences

the degree of crystallinity compared to an equilibrium strain state (statics) show-

ing SIC. Due to the time dependency observed, the degree of crystallinity is

lower for dynamic loading [14], which leads to an additional contribution to the

frequency dependency of the mechanical properties of elastomers.

Since the reinforcing mechanisms of SIC are of interest in order to outper-

form other materials with lower resistance to mechanical loading, SIC attracted

various scientists over the last decades [15]. Besides experimental characteriza-

tions, numerical investigations and models gained interest from many researchers

in order to explain the experimental observations and, in turn, to stimulate new

experimental methods and phenomena to be investigated. The classic thermody-

namic theory on SIC in NR [16] states that stretching of a rubber chain reduces

its number of possible conformations and, in consequence, its entropy. This

consideration of a thermodynamic equilibrium neglects any effects of SIC ki-

netics. In [17], the crystallization process is modeled in a more advanced form.

While the stress-strain behavior of the amorphous phase is derived from entropy

elasticity, the crystalline phase does not contribute to the strain energy (assump-
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tion of a nearly rigid crystalline phase with negligible entropy). The model al-

lows to represent an anisotropic crystal morphology. A model to capture the

thermo-mechanical response of NR during and after crystallization is proposed

in [18, 19, 20]. First, the general theory to model thermo-mechanical effects of

crystallization in NR is presented in [18]. Second, thermodynamic properties

(heat capacity, melting temperature etc.) are addressed in [19]. Third, model

parameters are identified based on existing mechanical test results in [20]. It has

to be mentioned that the model concentrates on the representation of equilibrium

states of SIC, it does not capture any strain-rate dependency. A model that ac-

counts for the invariance of SIC with respect to the crosslink density is proposed

in [4]. The model assumes a fluid-like phase, which remains unorientated under

strain and which does not participate in the SIC process, whereas the rubber-like

phase of the material exhibits rubber elasticity and contributes to SIC. In [21, 22],

a phase field model based on the Flory theory of entropy-elasticity is introduced

in order to numerically represent the crystal phase growing in an amorphous ma-

trix of, e.g. a crystallizable elastomer. Several WAXD studies show the isotropy

of a large material fraction [23, 24]. However, this description of the directional

properties of the strain-crystallized material may be too simple [3]. Recently

proposed models for SIC [25] take also into account anisotropic effects by intro-

ducing the crystallinity as an internal variable within a 1D model. Commonly,

the micro-sphere approach is then used for the transition from the 1D model to

the fully 3D model [26] with anisotropic features due to the independent evolu-

tion of the crystallinity in each direction of the micro-sphere or to incorporated

time-dependent effects of SIC kinetics as addressed in [27]. In [28], thermo-

elasticity and SIC are addressed by using the concept of the representative di-

rections. Recently, the non-affine micro-sphere approach is also used in [29] to
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derive a micro-mechanically based continuum model at the microscale (free en-

ergy function) assuming that SIC reduces the entropy of semi-crystalline chains.

Furthermore, an affine full network model for SIC based on these non-Gaussian

chain statistics for a single crystallizing polymer chain has been proposed in [30]

considering a rate-independent evolution law for the degree of crystallinity in an

isothermal setting.

In [31], it is pointed out that especially the kinetics of SIC play an important

role to correctly characterize the short-term behavior of NR within a rolling tire.

Thermal effects of SIC processes can be studied by thermography, but separa-

tion of heating effects related to SIC and dissipative material features is hard to

accomplish in experiments. For carbon black filled NR samples, investigations

with respect to SIC have been carried out in [31] to also account for dissipative

heating and convective cooling during testing. Therefore, a combination of de-

formation experiments with simultaneous synchrotron X-ray scattering as well as

thermography is proposed in [31] to simultaneously separate the crystallization-

dependent heat production or adsorption form dissipative processes in the rubber

material and to track the time dependency of the processes taking place. In the

same direction, a broader experimental scale (characterization of SIC by addi-

tional on-line measurements of the surface temperature by an infrared camera)

has been recently proposed in [32], where an approach to separate the tempera-

ture contributions stemming from dissipative material, crystallization and energy

loss to the surroundings is discussed.

Although SIC is an outstanding feature of a certain group of elastomers, its

significance for engineering applications is limited a priori. On the one hand,

SIC only takes place at significant large strains/deformations. On the other hand,

the strain range of typical engineering applications lies in the small strain regime
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and does not exceed certain limit values to guarantee the product’s service state.

Although only moderate strains are present on the macroscale, on the meso-

and microscale, large strains may occur due to sliding of contacting surfaces,

local defects, material inhomogeneities or dislocations, e.g. in the vicinity of

a crack tip. The latter case shall be exemplarily studied in more detail in this

contribution. In consequence, SIC appears in scenarios in which typical strain

limits are exceeded. The finite element method (FEM) is a widely used numerical

method in engineering. Therefore, a certain interest is present to also incorporate

the phenomena of SIC into advanced finite element (FE) material models. First,

the idea is to render the existing material models more realistic. Second, the

positive reinforcing effects of SIC can also be included on the structural scale

to better understand the structural response of the polymer components under

investigation [1].

Outline The outline is as following: In Section 2, a numerical material model

for time- and temperature-dependent SIC is presented, which is based on the

microscale. The model represents the amorphous elastomer phase (matrix) and

the semi-crystalline phase (unidirectional reinforcement in principal strain direc-

tions) on the microscale. In contrast to other micromechanically based models

for SIC, the present model makes use of an FE discretization of both phases, as-

sembled in the form of a unit cube. The amorphous phase represents the thermo-

elastic properties of an uncrystallized elastomer in its ground state. For the rein-

forcing SIC processes, a strain-, temperature- and time-dependent unidirectional

reinforcing element evolves in each of the three principal strain field directions

according to the associated microscopical strain and temperature field as a func-

tion of time. In Section 3, the features of the proposed microscale model are

demonstrated for tensile experiments and the time dependency of SIC kinetics is
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addressed. Finally in Section 4, the material model is employed in the framework

of the FEM to compute SIC effects for a steady state rolling tire. The intention of

this present study is to close the gap between the modeling of SIC at a local point

on the one hand and its structural incorporation for engineering applications on

the other hand.

2. Material model including strain-induced reinforcement

In this section, the material model representing the material behavior at the

microscale is presented. The model approach consists of two phases (amorphous

and semi-crystalline), which coexist in parallel to each other. First the amor-

phous rubber phase is discussed. Second, the semi-crystalline reinforcing phase

is introduced.

2.1. Continuum mechanical setting

On the macroscale, a homogeneous body B ⊂ R3 consisting of material

particles with position vector X ∈ B of the reference configuration at time t = 0

is considered and forms a continuum. At time t > 0, the material particles are

located at the position x of the deformed body b ⊂ R3. The deformation map

ϕ(X, t) : B × R3 → R3 with the property x = ϕ(X, t) and b = ϕ(B, t)

relates the reference and the current configuration. The relative displacement

of a material particle u at time t ≥ 0 is computed from its initial and current

position, i.e. u = x − X. On the macroscale, the deformation gradient of the

homogeneous body is introduced as

F = ∇X ϕ(X, t) , (1)

representing the gradient of the mapping. The symbols ∇X� and ∇x� are used

to denote the gradient operator with respect to the reference configuration and
8
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the current configuration, respectively. Furthermore, the absolute temperature

Θ > 0 of a material particle will be used in the following.

The deformation field of the microscale is governed by the deformation state

of the macroscopic point x considered and, therefore, is a function of the macro-

scopic deformation gradient F. For the representative volume element (RVE) of

the microscale, a unit cube is considered as illustrated in Fig. 1. The deformation

state of the unit cube is uniquely defined if the Cartesian axis system of the unit

cube coincides with the axis system of the principal stretch directions n1, n2 and

n3 of the deformation field of the macroscale. The temperature distribution of

the microscale is considered as homogeneous (uniform temperature state).

The free energy function of the two-phase material is given as the sum of

the contributions stemming from the amorphous phase and the semi-crystalline

phase,

Ψ = Ψam + Ψcry . (2)

In the following, the function type of the different contributions Ψam and Ψcry is

discussed in more detail.

2.2. Amorphous phase

A different treatment of volume-preserving deformations and deformations

with volume change are represented within the model by a multiplicative decom-

position of the deformation gradient at the mircoscale in the form of

F = F Fvol , Fvol = J
1
3 1, F = J−

1
3 F (3)

with the determinant of the deformation gradient J = det F > 0, an isochoric

part F and a volumetric part Fvol. Related deformation tensors, e.g. the unimod-
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X, x

Y, y

Z, z

B

n1

n2

n3

unit cube on microscalemacroscale

unidirectional semi-crystalline

phase in n1-direction

amorphous phase

rubber (matrix)

Figure 1: Macro- and microscale with representative volume element – unit cube

ular right Cauchy-Green deformation tensor

C = FT F , (4)

are derived at the macro- and microscale. Volumetric and isochoric deformations

are assumed as purely elastic (simplification for the sake of clarity to highlight

the phenomena related to SIC in the following). As discussed e.g. in [33], other

material features can be incorporated into the model if necessary (significant).

The Helmholtz free energy per volume of the reference configuration is intro-

duced as

Ψam = ΨEQ + ΨNEQ (5)

with an equilibrium part (ground state elasticity)

ΨEQ = fEQ(Θ)
[
Ψe

0(C) + U0(J)
]

+ t(Θ) eEQ,0 + C(Θ) (6)
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and a non-equilibrium part related to inelastic effects, e.g. viscoelasticity, which

is neglected in this study for the sake of clarity, i.e.

ΨNEQ = 0 . (7)

The equilibrium part of the Helmholtz free energy consists itself of energy den-

sity functions Ψe
0(C) (isochoric part) and U0(J) (volumetric part), which are

linked to the reference temperature Θ0 for which fEQ(Θ0) = 1 holds. In the

following, the index 0 denotes quantities related to the reference temperature

Θ0. A so-called temperature coefficient function fEQ(Θ) is used to represent the

temperature dependency of the material (equilibrium branch). The term C(Θ)

is a function of the deformation-independent heat capacity as well as the abso-

lute temperature Θ and will be discussed in more detail in the following. The

temperature function

t(Θ) = 1− Θ

Θ0

(8)

describes in compact form the temperature dependency of the internal energy

eEQ,0 = κ0 α0 Θ0 ln J , (9)

itself evaluated at the reference temperature Θ0. The terms κ0 and α0 denote

the bulk modulus and the thermal volume expansion coefficient, respectively,

evaluated at the reference temperature Θ0. The simplest form of the temperature

dependency is represented by the ansatz

fEQ(Θ) =
Θ

Θ0

(10)

for the temperature coefficient function, which has been shown in detail by [34].

Note that also other temperature coefficient functions fEQ(Θ) are possible, for a
11
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general overview, it is referred to [34]. As energy density functions evaluated at

the reference temperature Θ0, the functions

U0(J) = κ0 (J − ln(J)− 1) (11)

and

Ψe
0(C) = W e(I1) + Le(λa) (12)

are introduced, where the latter is assembled from the functions W e(I1) and

Le(λa) of the extended tube model proposed in [35] with

W e(I1) =
Gc

2

[
(1− δ2)

(
I1 − 3

)

1− δ2
(
I1 − 3

) + ln
(
1− δ2

(
I1 − 3

))
]
, (13)

Le(λa) =
2Ge

β2

3∑

a=1

(
λ−βa − 1

)
. (14)

For the invariant I1 = tr C = λ2
1 + λ2

2 + λ2
3 holds. Gc, Ge, β and δ are model

parameters (shear modulus of chemical network nodes due to the crosslinks Gc,

shear modulus of topological constraints Ge, chemical network parameter β, in-

extensibility of the network chains δ). For more details, the reader is referred

to [35]. Furthermore, λa defines the principal stretch associated with the eigen-

vector Na of the unimodular right Cauchy-Green tensor C in the reference con-

figuration,

C =
3∑

a=1

λ2
a Na ⊗Na . (15)

The eigenvector na denotes its counterpart in the current configuration.

The general definition of the volumetric heat capacity of the material (amor-

phous phase)

cam = −Θ
∂2Ψam

∂Θ∂Θ
(16)

12
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per volume of the reference configuration is a function of the temperature- and

deformation-dependent Helmholtz free energy function in terms of Ψam. Ac-

cording to the ansatz proposed in [34], Eq. (16) is expressed as

cam = c(Θ)−Θ
∂2gEQ(Θ)

∂Θ∂Θ
ΨEQ,0 −Θ

∂2gNEQ(Θ)

∂Θ∂Θ
ΨNEQ,0 , (17)

where in the present case

c(Θ) = c0 (18)

is introduced as constant ansatz for the volumetric heat capacity of the unde-

formed material in the model. For a temperature dependency of c(Θ), it is

referred to [36]. Furthermore, dimensionless functions gEQ(Θ) and gNEQ(Θ)

are used to represent the dependency on temperature associated to the purely

deformation-dependent energy terms ΨEQ,0 and ΨNEQ,0 evaluated at the reference

temperature Θ0. Since only the ground-state elasticity of the elastomer bulk ma-

terial shall be considered, see Eq. (7), the non-equilibrium contribution in terms

of gNEQ(Θ) is omitted too and for the equilibrium contribution, the simple di-

mensionless function

gEQ(Θ) =
Θ

Θ0

(19)

is employed, which leads to the relation stated in Eq. (10) representing the sim-

plest form of temperature dependency of the strain energy function in the con-

text of thermo-elasticity, see also [37]. Note that also more sophisticated func-

tion types can be employed for gEQ(Θ) and, in consequence, for fEQ(Θ) in this

framework if enough information on the temperature dependency of the material

are available, e.g. from experiments. More details on the thermo-mechanical

framework used are given in [34].
13
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Finally, the term C(Θ) in Eq. (6) is addressed. For the further derivation, the

function

g(Θ) =
c(Θ)

Θ
(20)

is introduced. An anti-derivative to c(Θ) is computed by

C(Θ̃) =

∫
c(Θ̃) dΘ̃ (21)

making use of Eq. (18). In the same manner, an anti-derivative

G(Θ̃) =

∫
g(Θ̃) dΘ̃ (22)

is computed by making use of Eq. (20). After several computation steps, in

analogy to the derivations presented in [34], the expression

C(Θ) =
[
C(Θ)− C(Θ0)

]
−Θ

[
G(Θ)−G(Θ0)

]
(23)

of the Helmholtz free energy function ΨEQ of the equilibrium part from Eq. (6)

can be completely specified. A more detailed description of the material model

for the amorphous phase (also including continuum damage and finite thermo-

viscoelasticity) is provided in [36].

2.3. Semi-crystalline phase

In Fig. 2, the relations related to SIC and observed from experimental

measurements are illustrated in an idealized manner. From experiments (see

e.g. [38]), the degree of crystallinity Φ depends on the applied stretch level λs.

At small stretches, no significant SIC is observable. At moderate stretches, an

onset of SIC takes place and SIC is mainly developed at large stretches only. A

drop of the degree of crystallinity has been observed by increasing the tempera-

ture Θ. The growth and melting kinetics of SIC are time-dependent in general.
14
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Φ

λs

t = const.
Θ = const.

b)

Φ

1

ΘΘR

t = const.
λs = const.

c)

Φ

Θ = const.
λs = const.

t

Figure 2: Idealized relations revealed from experimental observations, see e.g. [38], Figs. 3 and

4: a) degree of crystallinity as a function of stretch; b) degree of crystallinity as a function of

temperature; c) degree of crystallinity as a function of time

If the stretch is kept constant, the degree of crystallinity reaches an equilibrium

value with elapsing time.

To capture a potential reinforcement effect in all of the three principal stretch

directions na, three contributions Ψcry a are considered,

Ψcry =
3∑

a=1

Ψcry a . (24)

The semi-crystalline phase is characterized by a significant stiff and time-

dependent deformation in terms of the associated free energy function

Ψcry a =

[
Ecry

2
(Φ∞a (λs,Θ)− Φa)

2 + Ψ∞0 a(λs,Θ) + ∆hr (1− Φa)

]
(25)

with λs = λa .

The free energy function is an ansatz consisting of three parts. Ψ∞0 a(λs) stands

for the long-term free energy potential of semi-crystalline chains, i.e. evaluated

at t → ∞ and at the equilibrium degree of crystallinity Φ∞a (λs,Θ) with λs ≥ 1.

To take into account time-dependent effects of the SIC kinetics during cyclic

dynamic loading, the energy termEcry/2 (Φ∞a (λs,Θ)− Φa)
2 is added to take into

account time-dependent crystal growth via the internal variable Φa representing
15
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the current degree of crystallinity of semi-crystalline chains in the direction na.

The parameterEcry represents the mechanical energy per volume of the reference

configuration for crystal growth or melting. For the internal variable Φa, the

evolution law

Φ̇a =
1

τ
[Φ∞a (λs,Θ)− Φa] (26)

holds. The parameter τ models the time characteristics of crystal growth (τl)

and melting (τunl). For τunl → 0, instantaneous melting of the crystallites would

be represented. Different parameters τl and τunl take into account time differ-

ences in the crystal growth and melting kinetics. Note that Eq. (26) represents

a phenomenological approach, however, which is in good qualitative agreement

with experimental observations previously published e.g. in [38], where crystal

growth and melting are driven by the current difference of the current degree of

crystallinity Φa to the current long-term value Φ∞a (λs,Θ). The proposed model

is illustrated in Fig. 4. More advanced diffusion models have been discussed

in the literature. These models are partially based on more physical considera-

tions but are also fitted to experimentally observed relations via a priori unknown

model parameters. Regarding the time dependency of SIC during unloading, a

nearly instantaneous melting of crystallites has been reported from experiments,

see e.g. [13]. Hence, melting of crystallites takes place much faster than crys-

tal growth. The third part in Eq. (25) takes into account the contribution of the

exothermic chemical reaction of crystal growth (assumed as fully reversible).

Hence, the parameter ∆hr stands for the part of heat energy reversibly released

during the complete transformation from amorphous to crystalline phase (release

of latent heat), see [19]. Additionally during crystal growth and melting, me-

chanical energy from the stress field is continuously transformed to heat energy
16
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resulting in a dissipative material behavior due to SIC

−∂Ψcry a

∂Φa

Φ̇a −
1

Θ
Q · ∇XΘ ≥ 0 (27)

(remaining part of the second law of thermodynamics – Clausius-Duhem in-

equality). Eq. (27) contains a heat flux contribution with the heat flux vector Q

(reference configuration) for which Fourier’s law will be used. Furthermore, to

fulfill the dissipation inequality with respect to the part of the internal variable

Φa (thermodynamical consistency), the ansatz

Φ̇a = −γ̇ ∂Ψcry a

∂Φa

= − 1

τ Ecry
{−Ecry [Φ∞a (λs,Θ)− Φa]} (28)

is used, which results in the evolution law stated in Eq. (26) with

γ̇ =
1

τ Ecry
≥ 0 . (29)

In other words, the current degree of crystallinity Φa is used as an internal vari-

able (history variable) to numerically take into account rate- and temperature-

dependent SIC processes of crystal growth and melting over time. Note that the

part ∆hr (1− Φa) does not contribute to an additional stress response, since ∆hr

is assumed as deformation- and temperature-independent (constant).

For the reference equilibrium degree of crystallinity, the positive function

Φ∞a (λs,Θ) = fcry(Θ)
1

2
(tanh(λs − λcry) + 1) with λs = λa ≥ 1 (30)

is used, where fcry(Θ) ≤ 1 is a temperature function describing the maximum

degree of crystallinity at the temperature Θ and λcry ≥ 1 describes the onset of

pronounced SIC effects with respect to the stretch λs.

17
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The long-term reference free energy contribution of the semi-crystalline

phase depends on the applied stretch λs and the current temperature Θ via the

temperature dependency of the degree of crystallinity,

Ψ∞0 a(λs,Θ) = fcry(Θ)
Gcry

48

(
λ2

s − 1
)4

with λs = λa ≥ 1 , (31)

where Gcry represents a material parameter describing the stiffness of the evolv-

ing semi-crystalline phase and λs = λa ≥ 1 is the stretch in the direction na of

the SIC evolution process. For compression states of the amorphous phase, i.e.

λs < 1, the free energy function is set to zero. Furthermore, the temperature evo-

lution function of the semi-crystalline phase is introduced as simple as possible

with

fcry(Θ) =
1

2
[1− tanh(b (Θ−ΘR))] . (32)

Near the reference temperature ΘR, the proposed temperature coefficient func-

tion given in Eq. (32) shows a nearly linear temperature dependency (slope

−0.5 b). The slope in terms of −0.5 b around the temperature ΘR can be identi-

fied from experimental studies involving temperature changes for SIC processes,

previously performed and published e.g. in [38] or in [39]. In these studies, the

degree of crystallinity at constant strain level decreases with increasing temper-

ature, nearly linear proportional to temperature. Note that the negative slope of

the temperature coefficient function given in Eq. (32) results in an energy-elastic

solid-like behavior (cooling upon stretching) of the material portion described

by the second term in Eq. (25), i.e. Ψ∞0 a(λs,Θ).

The functions defined in Eqs. (30) and (32) are illustrated in Fig. 3. A model

representation of the semi-crystalline phase upon stretching is given in Fig. 4.

Note that in case of vanishing time dependency (equilibrium state of crystal-

lization at constant stretch and temperature), a direct relation between λs and
18
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b) Θ
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0.5

ΘR

−0.5 b

fcry(Θ)

Figure 3: Model representation of the long-term degree of crystallinity Φ∞: a) as a function of

the stretch λs; b) as a function of the absolute temperature Θ

the associated long-term value Φ∞a (λs,Θ) can be established, i.e. the degree of

crystallinity is not an argument of the function given in Eq. (31).

From the previously mentioned relations, the stress contribution in the form

of the scalar second Piola-Kirchhoff stress of the semi-crystalline phase is

Scry a = 2
∂Ψcry a

∂λ2
s

=

[
Ha +

{
fcry(Θ)

Gcry

6

(
λ2

s − 1
)3
}]

with λs = λa ≥ 1 , (33)

where the non-equilibrium stress due to crystal growth or melting is

Ha = 2Ecry [Φ∞a (λs,Θ)− Φa]
∂Φ∞a (λs,Θ)

∂λ2
s

with λs = λa ≥ 1

= 2Ecry [Φ∞a (λs,Θ)− Φa] fcry(Θ)
1

2

(
1− tanh2(λs − λcry)

) 1

2λs

(34)

and the scalar tangent moduli (reference configuration)

Ccry a = 2
∂Scry a

∂λ2
s

with λs = λa ≥ 1 (35)

can be computed. In the following, some aspects on the FE implementation,

especially for the semi-crystalline phase, are provided.
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Figure 4: Model representation of semi-crystalline phase upon stretching: a) unstretched amor-

phous rubber; b) significantly stretched rubber with first crystalline domains (rigid) after initial

loading; c) long-term state of semi-crystalline rubber at constant stretch – free energy of remain-

ing amorphous part represented by Ψ∞0 a(λs,Θ)

Finally, the semi-crystalline phase contributes to the volumetric heat capacity

of the two-phase material via the additional part

ccry = −Θ
∂2Ψcry

∂Θ∂Θ
(36)

per volume of the reference configuration in analogy to Eq. (16). Note that

this part depends on deformation and temperature as well but vanishes for a

fully amorphous, undeformed material state. The contributions from both phases

(amorphous and semi-crystalline) are combined during the FE assembling pro-

cess, which is addressed in more detail in the following subsection.

2.4. Finite element implementation and unidirectional strain-induced reinforce-

ment effect

The solution of the evolution equation stated in Eq. (26) is given in terms of

an update formula (at time tn+1 = tn+∆t) for crystal growth (Φ∞a (λs,Θ)−Φa ≥
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0)

Φtn+1
a =

(
1 +

τl

∆t

)−1 (
Φ∞a (λs,Θ)tn+1 +

τl

∆t
Φtn
a

)
with λs = λa (37)

and melting (Φ∞a (λs,Θ)− Φa < 0)

Φtn+1
a =

(
1 +

τunl

∆t

)−1 (
Φ∞a (λs,Θ)tn+1 +

τunl

∆t
Φtn
a

)
with λs = λa . (38)

Eqs. (37) and (38) describe the time evolution function of crystal growth and

melting in the considered direction na.

From the weak form of the balance of momentum

Gm(u) =

∫

B

S · δE dV −
∫

B

ρ0 (b0 − ü) · u dV −
∫

∂B

T · u dA = 0 (39)

and the weak form of the balance of energy

Gt(δΘ) =

∫

B

(
wam − cam Θ̇

)
δΘ dV +

∫

B

Q·∇X (δΘ) dV −
∫

∂B

Q·N δΘ dA ,

(40)

the FE formulation of a thermo-mechanically coupled solid element (amorphous

phase), see Fig. 5, can be derived as outlined e.g. in [40]. S denotes the second

Piola-Kirchhoff stress tensor, E stands for the Green-Lagrange strain tensor, ρ0

is the mass density in the reference configuration, b0 are volume forces due to

gravity and T are surface tractions in the reference configuration. The weak form

of the balance of energy also contains internal and external work contributions

in terms of wam, the heat capacity cam and heat flux vector Q of the amorphous

phase in the reference configuration.

The representative solid element in Fig. 5 contains the afore-introduced uni-

directional SIC reinforcement in the three principal stretch directions along the

vectors na, see also Fig. 1, as additional finite elements in the form of rebars at
21
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Figure 5: Solid 8-node finite element (unit cube) with three displacement (ux, uy , uz) degrees

of freedom and one temperature (Θ) degree of freedom per node (dimensions for the examples

investigated, see Sections 3 and 4, are 1 mm× 1 mm× 1 mm)

large deformations, see e.g. [41] for an isothermal formulation at large strains.

In the following, the FE formulation for one of the three thermo-mechanically

coupled rebars is discussed in more detail.

In Fig. 6, a thermo-mechanical 2-node rebar element is considered for the

direction na. The rebar element is formed by the vector linking the two nodes 1

and 2 in longitudinal s-direction of the rebar. In the reference configuration, the

distance (length) between the two nodes is

L =
3∑

i=1

(Xi,2 −Xi,1)2 . (41)

Xi,j denotes the nodal coordinate in the reference configuration in the i-th direc-

tion at node j of the rebar element. A local coordinate system can be associated

with the rebar element considered. With the help of this local coordinate system,

the rebar stretches (principal stretches) λs, λq1 and λq2 are measured. λs denotes

the longitudinal stretch in rebar direction, while λq1 and λq2 are associated with

the stretches perpendicular to the longitudinal direction. The principal stretches
22
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Figure 6: 2-node rebar element arbitrarily orientated in the 3D space

of the rebar element can be computed from the current and the initial position

of the rebar element in the current configuration and the reference configuration,

respectively. The current positions of the nodes are expressed in terms of the

nodal displacements u. The current length l is

l = L+ u =

√√√√
3∑

i=1

[(Xi,2 + ui,2)− (Xi,1 + ui,1)]2. (42)

The principal stretch in rebar direction can be computed from the current length

l,

λs =
l

L
. (43)

For the constitutive, unidirectional material behavior of the rebar, incompressible

material behavior shall be assumed, i.e.

Jr = λs λq1 λq2 = λs λ
2
q = 1 (44)

with equal lateral stretches λq1 = λq2 = λq,

λq =
1√
λs
. (45)
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From this assumption, the lateral stresses of the rebar are zero. The longitudinal

Green-Lagrange strain of the rebar is

Es =
1

2

(
λ2

s − 1
)
. (46)

According to the weak forms of the solid amorphous phase given in Eqs. (39)

and (40), the weak form of the balance of momentum for the rebar element is

given by

Gm =

∫

(s)

δEs Scry A ds−
∫

(s)

δu bA ds−
∑

k

δuk Pk = 0 , (47)

with b denoting the volume force and Pk are nodal forces at the node k. The

weak form of the balance of energy results in

Gt =

∫

(s)

(
wcry − ccry Θ̇

)
δΘA ds+

∫

(s)

Q∇X (δΘ)A ds−
∫

∂V

Q ·N δΘ dA

(48)

The scalar heat flux along the rebar direction is obtained using Fourier’s law

Q = −kcry
1

λ2
∇X (Θ) (49)

with the heat conduction coefficient kcry ≥ 0 along the reinforcement direction.

Note that values of kcry > 0 will lead to an additional heat conduction in the di-

rection considered (anisotropic) apart from the heat conduction of the underlying

amorphous phase (isotropic). If crystallized domains are not connected to each

other, i.e. if they are surrounded by amorphous domains, the additional effect of

SIC on the heat conduction will be less significant (connection in series).

The work wcry = wint + wext consists of the internal work contribution

wint = −
(
∂Ψcry

∂Φ
−Θ

∂2Ψcry

∂Θ ∂Φ

)
Φ̇ (50)
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and the external work contribution

wext = Θ
∂Scry

∂Θ
Ės (51)

of the semi-crystalline phase (rebars). With the help of the weak form of the

balance equations, a consistent linearization can be performed around a known

solution point denoted by the index p at time tn,

Gm(up + ∆u,Θp + ∆Θ) ≈ Gm(up,Θp) +
∂Gm

∂u

∣∣∣∣
p

∆u +
∂Gm

∂Θ

∣∣∣∣
p

∆Θ , (52)

and in analogy

Gt(up + ∆u,Θp + ∆Θ) ≈ Gt(up,Θp) +
∂Gt

∂u

∣∣∣∣
p

∆u +
∂Gt

∂Θ

∣∣∣∣
p

∆Θ . (53)

Reordering allows to formulate a system of linear equations in the form



∂Ge
m

∂u

∣∣∣
p

∂Ge
m

∂Θ

∣∣∣
p

∂Ge
t

∂u

∣∣∣
p

∂Ge
t

∂Θ

∣∣∣
p





 ∆ue

∆Θe


 =


 −G

e
m(uep,Θ

e
p)

−Ge
t (u

e
p,Θ

e
p)


 , (54)

which has to be solved with respect to the unknown vector containing the incre-

ments in nodal displacements ue and nodal temperatures Θe to obtain the new

solution at time tn+1. Eq. (54) can be abbreviated as

 Suu SuΘ

SΘu SΘΘ




 ∆ue

∆Θe


 =


 r1

r2


 (55)

with the terms

Suu =


 (A1 + A2) − (A1 + A2)

− (A1 + A2) (A1 + A2)


 , (56)

SuΘ =


 −C1 −C1

C1 C1


 , (57)
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SΘu =


 D1 −D2 −D1 + D2

−D1 −D2 D1 + D2


 (58)

and

SΘΘ =


 −B1 −B2 +B3 B1 −B2 +B3

B1 −B2 +B3 −B1 −B2 +B3


 . (59)

The derivation of the matrix components from Eqs. (55) to (59) is shown and

given in Appendix A. Note that up to this stage, Eq. (55) abbreviated as

Sr ∆ur = rr (60)

is formulated with respect to the nodes of the thermo-mechanically coupled rebar

element sketched in Fig. 6,


 ∆ue

∆Θe


 =

[
∆ue1,1 ∆ue2,1 ∆ue3,1 ∆ue1,2 ∆ue2,2 ∆ue3,2 ∆Θe

1 ∆Θe
2

]T
.

(61)

As illustrated in Fig. 5, the nodal unknowns of the rebar element in each principal

stretch direction are projected to the nodes of the underlying solid element of the

amorphous phase. The link between the displacement degrees of freedom of the

rebar element uer and the solid element ue is formed by the reduction matrix R,

uer = R ue , (62)

 u1

u2


 =


 N8(ξ1, η1, ζ1)

N8(ξ2, η2, ζ2)



[

ue
]

(63)

with the shape functionsNi of the 8-node solid element evaluated at the positions

of the node 1 and 2 of the rebar element (ξ1, η1, ζ1) and (ξ2, η2, ζ2), respectively.
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Hence, the reduction matrix takes the form

R =


 N8(ξ1, η1, ζ1)

N8(ξ2, η2, ζ2)


 (64)

with the 3× 3 identity matrix I,

N8(ξi, ηi, ζi) =
[

IN1(ξi, ηi, ζi) . . . IN8(ξi, ηi, ζi)
]
. (65)

The additional (mechanical) contribution of the semi-crystalline phase to the rep-

resentative solid element is in this case

RT Ser R ∆ue = RT rer , (66)

Se ∆ue = re (67)

in terms of the nodal displacement unknowns of the solid element. The reduction

matrix for the temperature degrees of freedom is established in analogy.

In the following, the proposed model for time- and temperature-dependent

SIC is applied to the analysis of rubber specimens under tensile loading and a

steady state rolling tire with a pronounced dynamic load pattern.

3. Comparison to experimental observations

In this section, several features of the proposed model for time- and

temperature-dependent SIC are highlighted. Model parameters are identified

from tensile experiments previously investigated in [24] and in [39].

3.1. Tensile test

As first example, the proposed model for time- and temperature-dependent

SIC is applied to the analysis of a sulfur vulcanized NR (NR-S) specimen loaded
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and unloaded in tensile mode. The experiment and its results are documented

in [24], where also further details regarding the material formulation and cure

conditions are provided. First, the specimen was placed in a thermal chamber at

0◦C. The strain rate was 5.5 ·10−3 s−1. According to [24], time-resolved WAXD

patterns and simultaneous stress-stretch relations were continuously recorded

(no holding times during loading and unloading). Information on the current

temperature state of the specimen were not recorded during the experiment.

The model parameters to simulate the material response seen from the experi-

ment are given in Tab. 1. The model parameters have been identified by fitting the

simulation outcome to the experimentally measured data provided in [24] based

on further information from [35] and standard values for rubber material from

the literature, see e.g. [42] (thermal properties). For the thermo-mechanically

coupled simulation, no heat exchange with the environment is considered (ther-

mally insulated specimen) for the sake of simplicity. The time step size for the

simulation is ∆t = 1.0 s.

In Fig. 7, the computed stress-stretch relation, the evolution of the degree

of crystallinity as well as the temperature variation as a function of the current

stretch in tensile direction are provided together with the experimental data if

applicable. Note that the stress reduction (plateau) at the onset of SIC in NR, see

e.g. [39], is neglected by the model. For comparison, the result of the numerical

study assuming an identical non-crystallizing rubber (purely amorphous upon

loading) is also plotted in Fig. 7. It can be observed that due to time-dependent

SIC kinematics, a hysteresis is formed by the loading and unloading path of

the specimen in the stress-stretch plot giving rise to a remaining temperature in-

crease (dissipation of mechanical input energy) after unloading of the specimen,

see Fig. 7 c). In general, unfilled rubber behaves like an entropy-elastic solid
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Table 1: Model parameters for amorphous and semi-crystalline phase: tensile test according

to [24] (T = 0◦C)

Gc [MPa] 0.355

δ [−] 0.09693

Ge [MPa] 0.351

β [−] 0.2

Θ0 [K] 273.0

k
[

W
m K

]
0.235

c0

[
MPa

K

]
1.439

αV
[
K−1

]
0.00048

ρ0

[ g
cm3

]
1.10

Gcry [MPa] 0.0005

τl [s] 190.0

τunl [s] τl

A
[
mm2

]
1.0

ΘR [K] 155.0

b [−] 0.005

Ecry [MPa] 100.0

λcry [−] 4.5

kcry
[

W
m K

]
0.235

∆hr [MPa] 50.0
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below the onset of SIC, i.e. reversible heating and cooling upon stretching and

unloading occurs, respectively. Heat of crystallization (release of latent heat)

contributes to a further heating during crystal growth. Melting of crystallites

results in a cooling. The thermal consequences of these mainly reversible chem-

ical reactions are incorporated into the model via the additional chemical energy

term ∆hr (1− Φa), see (25). SIC above a material-specific stretch level does not

lead to a further heating upon stretching but to a slight cooling (energy-elastic

material behavior) as it can be observed in Fig. 7 c). Nevertheless, the thermal

short-term and long-term effects and underlying mechanisms of SIC, especially

for cyclic loading conditions, are still under debate [43, 31, 32, 44].

The further increase of the degree of crystallinity at the start of the unload-

ing process, see Fig. 7 b), is a direct outcome of the assumed evolution law

(SIC kinetics). Since the equilibrium (maximum) degree of crystallinity was not

reached by the current value of the degree of crystallinity during loading (time

dependency), the driving force on the crystallization is still large enough to stim-

ulate a further increase at the beginning of unloading. However, at a certain

stretch level, the associated equilibrium (maximum) degree of crystallinity be-

comes smaller than the current value and, in consequence, melting of crystallites

starts.

From a physical point of view, a relation between Gcry, Ecry, ∆hr and the

parameters of the amorphous phase can be established by polymer physical con-

siderations since the reinforcing effect originates from the stretched amorphous

phase.
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Figure 7: Tensile experiment – loading and unloading (strain rate 5.5 · 10−3 s−1) at initial

temperature T = 0◦C (experimental data (exp), see [24], and simulation for strain-crystallizing

rubber (sim) and for non-crystallizing rubber (sim NCR) for comparison): a) engineering stress

as a function of stretch λ ; b) degree of crystallinity as a function of stretch λ; c) temperature

variation as a function of stretch λ
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3.2. Strain-induced crystallization and role of temperature

As second example, the proposed model for time- and temperature-

dependent SIC is used to highlight the role of the testing temperature on the

degree of crystallization and the stress response of a sulfur vulcanized NR spec-

imen loaded and unloaded in tensile mode. The experiment and its results are

documented in [39], where also further details regarding the material formula-

tion and testing are provided. First, specimens were placed in a thermal chamber

at 11◦C, 33◦C, 52◦C and 72◦C, respectively. Second, a constant strain rate of

1.117 · 10−3 s−1 was applied for loading and unloading. According to [39],

time-resolved synchrotron measurements and simultaneous stress-stretch rela-

tions were continuously recorded (no holding times during loading and unload-

ing). Information on the current temperature state (deformation-induced temper-

ature change) of the specimen were not recorded during the experiment.

The model parameter set to simulate the material response seen from the

experiment is given in Tab. 2 and represents the material behavior for the tem-

perature range considered. The model parameters have been identified by fitting

the simulation outcome to the experimentally measured data provided in [39]

and standard values for rubber material from the literature, see e.g. [42] (thermal

properties). For the thermo-mechanically coupled simulation, no heat exchange

with the environment is considered (thermally insulated specimen) for the sake

of simplicity. The time step size for the simulation is ∆t = 5.0 s.

In Fig. 8, the computed stress-stretch relation and the evolution of the degree

of crystallinity as a function of the current stretch in tensile direction are pro-

vided together with the experimental data. It can be observed that due to time-

dependent SIC kinematics, a hysteresis is formed by the loading and unloading

path of the specimen in the stress-stretch plot for lower temperatures at which
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Table 2: Model parameters for amorphous and semi-crystalline phase: tensile test according

to [39] (T = 11◦C, T = 33◦C, T = 52◦C, T = 72◦C)

Gc [MPa] 0.195

δ [−] 0.09693

Ge [MPa] 0.321

β [−] 0.2

Θ0 [K] 284.0

k
[

W
m K

]
0.235

c0

[
MPa

K

]
1.439

αV
[
K−1

]
0.00048

ρ0

[ g
cm3

]
1.10

Gcry [MPa] 0.0001

τl [s] 300.0

τunl [s] τl

A
[
mm2

]
1.0

ΘR [K] 255.0

b [−] 0.016

Ecry [MPa] 100.0

λcry [−] 5.0

kcry
[

W
m K

]
0.235

∆hr [MPa] 50.0
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SIC is more pronounced. At higher temperatures (above 72◦C in this example),

SIC is nearly thermally suppressed. Since the maximum degree of crystallinity

decreases with increasing temperature, the hysteresis related to SIC reduces as

well with increasing temperature, see Fig. 8 b).

A comparison between the experimental results and simulation results shown

in Fig. 8 reveals that a good agreement can be observed for the temperature range

considered. However, the comparison stimulates also a further detailing of the

model approach with respect to a temperature dependency of the parameters λcry

and τl as discussed in the following.

3.3. Time and temperature dependency of SIC kinetics

For the characterization of the SIC process and its dependencies on time and

temperature, the dynamic mechanical testing of rubber specimens at significant

large strains is considered, see [13, 38]. The degree of crystallinity decreases

with increasing temperature and nearly disappears for high temperatures. In con-

sequence, the stretch required for a significant onset of SIC is shifted to higher

stretches in case of higher temperatures. From the experimental measurements,

the general relations illustrated in Fig. 2 could be identified. Recently, the SIC

kinetics as a function of time have been studied in [13] and [38]. From the ex-

perimental data published in [38], the characteristic time τl as a function of the

testing temperature (T ) and the applied constant stretch level (λ) could be iden-

tified based on the following procedure. For a given initial stretching from the

unloaded to the loaded state (λs) at constant temperature, Eq. (26) results in the

characteristic time plot of the degree of crystallinity

h(t) = ΦA

[
1− exp

(
− t
τ

)]
(68)
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Figure 8: Tensile experiment – loading and unloading (strain rate 1.117 · 10−3 s−1) at initial

temperatures T = 11◦C, T = 33◦C, T = 52◦C and T = 72◦C (experimental data (exp),

see [39], and simulation (sim)): a) engineering stress as a function of stretch λ ; b) degree of

crystallinity as a function of stretch λ

35



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

plotted in Fig. 9 for a linear and a logarithmic time scale. ΦA = Φ∞(λs,Θ)

denotes the long-term value of the degree of crystallinity for the constant stretch

level λs considered. With the help of the initial slope

h′(t = 0) = ΦA
1

τ
= m → τ =

ΦA

m
(69)

of the crystallization curve or the determination of the inflection point at t = τ

in the semi-logarithmic plot, the value τ can be identified from the measurement

data. In the latter case, the function

h(x) = ΦA

[
1− exp

(
−10x

τ

)]
(70)

is written in terms of the logarithmic time measure x with the relation

t = 10x . (71)

The second order derivative of h(x) becomes zero at the inflection point, which

is determined to

h′′(x) = 0 → x∗ = log(τ) (72)

resulting in

t∗ = 10x
∗

= τ (73)

with

h(x∗) = ΦA [1− exp(−1)] = 0.632 ΦA . (74)

In Tab. 3, the crystal growth time τl is given for different conditions (holding

stretch and temperature). The identification is based on data from [38] (Fig. 3)

to which the model proposed in Eq. (68) has been applied. The growth time
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a)

Φ

ΦA

t

m

b)

Φ

ΦA

log(t)log(τl)

0.632ΦA

Figure 9: Characteristics of SIC kinetics in terms of the degree of crystallinity Φ as a function of

time for a constant stretch level (initial, instantaneous strain step) and constant temperature (m

initial slope, ΦA final long-term value, τl model parameter, see Eqs. (37) and (38)): a) degree of

crystallinity as a function of time; b) degree of crystallinity as a function of time (logarithmic

time scale)

τl is determined from the measurement data via the relation stated in Eq. (72)

(graphical identification of the inflection point), see also Fig. 9. The modeled

evolution of the degree of crystallinity is proportional to the scaling relations

proposed in [45] for diffusion-limited reaction kinetics in polymer melts. To

take into account the temperature dependency of the crystallization kinetics (see

Tab. 3), τl can be formulated as a function of temperature τl(Θ) in the evolution

law of the degree of crystallinity given in Eq. (26), e.g. via an Arrhenius-like

approach.

4. Application to steady state rolling tires

As structural example, the proposed model for strain-crystallizing rubber is

applied to the analysis of a local material point P in a steady state rolling tire.

Due to the rotation of the tire, the material point P undergoes periodic loading

at moderate stretches (macroscale). During its service, the temperature of the
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TTable 3: Crystal growth time for ΦA

T [◦C] λA [−] τl
[
s−1
]

−25 4.00 9.047

4.55 2.833

5.10 1.650

5.70 0.852

6.20 0.367

0 4.00 10.000

4.55 4.489

5.10 2.015

5.70 1.823

25 4.55 10.000

5.10 3.902

5.70 1.650

6.20 1.585

75 5.10 1.650

5.70 1.650

6.20 1.650
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material point P is assumed as constant (steady state is reached) and an average

temperature of 40◦C is considered, see e.g. a detailed thermo-mechanical study

provided in [42]. For a point S located on the mesoscale, a strain amplification

is considered, which stems from the presence of a defect or an opening crack as

depicted in Fig. 14. First, the macroscopic strain state of point P of the tire cross-

section is investigated. From the macroscopic strain field, the strain field at the

microscale in the vicinity of a defect is computed. Due to the defect, sufficiently

large strains occur in order to observe SIC related processes during steady state

rolling of the tire.

For the identification of model parameters of the amorphous phase, it is

assumed that no SIC takes place during experimental testing at moderated

stretches. The model parameters are chosen in accordance with [35] assuming

a purely elastic rubber material at moderate stretches under cyclic loading at a

constant temperature of T = 40◦C. The thermal material properties are selected

according to standard values for rubber material from the literature, see e.g. [42].

The model parameters are summarized in Tab. 4.

4.1. Finite element tire model

The FE model of the axisymmetric tire is depicted in Fig. 10. The tire

is brought into contact with a rigid plate and loaded by a vertical force of

Fz = 3300 N. The frictional behavior of the interface wheel-plate is ideal-

ized as frictionless, i.e. µ = 0, for the sake of simplicity. The FE segmentation

in circumferential direction is depicted in Fig. 11. The cross-section of the tire,

its FE discretization and material assignment (rubber material and reinforcement

cords) are given in detail in [46] with the difference that the rubber material is

represented by the proposed model of this contribution. To compute the periodic
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Table 4: Model parameters for amorphous and semi-crystalline phase: steady state rolling tire

(T = 40◦C)

Gc [MPa] 0.655

δ [−] 0.09693

Ge [MPa] 0.751

β [−] 0.2

Θ0 [K] 313.0

k
[

W
m K

]
0.235

c0

[
MPa

K

]
1.439

αV
[
K−1

]
0.00048

ρ0

[ g
cm3

]
1.10

Gcry [MPa] 0.0005

τl [s] 1.65; 0.05

τunl [s] 0.001 τl

A
[
mm2

]
1.0

ΘR [K] 155.0

b [−] 0.005

Ecry [MPa] 100.0

λcry [−] 4.5

kcry
[

W
m K

]
0.235

∆hr [MPa] 50.0
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cross-section

cross-sectional point of streamline

x

y

z

Fz

P

streamline

Figure 10: FE tire model and streamline of cross-sectional point P near tread belt

deformation history of point P, load case A (inner pressure p = 1.70 bar, transla-

tional velocity v = 80 km/h, vertical force Fz = 3300 N, see [46]) is considered

in the following.

In Fig. 12, the deformation history of point P is depicted in terms of the

components of F as a function of the circumferential angle ϕ represented in the

local (rotated) coordinate system by following the streamline associated to point

P.

From the components Fij , the principal stretches and the associated principal

stretch directions n1, n2 and n3 are computed for each circumferential angle.

The result is plotted in terms of the three principle stretches λmacro,1, λmacro,2 and

λmacro,3 (macroscale) in Fig. 13.

4.2. Strain-induced crystallization representation

From the computed macroscopic deformation signal in terms of F, a micro-

scopic deformation field in terms of principal stretches has been computed at

the meso-/microscale for point S located near an assumed material singularity

(crack). In Fig. 14, the macro-meso-micro-transition is illustrated. The micro-
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x

y

z

ϕ

180◦ / 16

65◦ / 10 65◦ / 10

50◦ / 16

Figure 11: Circumferential FE discretization (segmentation) of the FE tire model

scopic stretch field is computed assuming a strain amplification of the macro-

scopic strain field by the amplification factor SP in principal stretch directions

(affine micro-macro deformation in terms of the stretch directions of point P and

S). The opening of the crack tip at point S induces a scaling of the strain field

of point P to significantly large strains at which SIC-related phenomena are ex-

pected. Note that for the quantitative computation of the strain field at the crack

tip, advanced numerical methods can be used, see e.g. [47], which is out of the

scope of the present contribution. In a simplified form, the principal stretches at

the microscale become

λ1 =
1√
SP

λmacro,1 , λ2 = SP λmacro,2 , λ3 =
1√
SP

λmacro,3 , (75)

with the same volume change J = 1√
SP
λmacro,1 SP λmacro,2

1√
SP
λmacro,3 =

λ1 λ2 λ3 = J . To relate the strain amplification factor SP to the initial crack

width ∆ of a defect in the mesostructure, a mesostructure with a unit length of
42
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Figure 12: Point P: components Fij of the deformation gradient F as a function of the circum-

ferential angle ϕ, see Fig. 11: a) components Fii; b) components Fij
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Figure 13: Point P: principal stretches λmacro,1, λmacro,2 and λmacro,3 (macroscale) in n1, n2 and

n3 direction, respectively, as a function of time for one cycle duration T = 0.083 s (rotational

velocity Ω = 75.673 s−1 of the tire)

1 is considered as illustrated in Fig. 14. The dimensionless width of the un-

loaded crack is termed ∆. The unit cube on the mesoscale is deformed by the

macroscopic stretch λmacro (boundary conditions). As limit case, parts of the

mesostructure with the total length of (1−∆) will not deform, while parts with

length ∆ located at the vicinity of the crack will deform with the stretch λmacro SP.

In consequence, the relation

λmacro · 1 = 1 · (1−∆) + SP λmacro ∆ (76)

describes the overall stretch of the mesostructure consisting of nearly unstretched

parts (1−∆) with stretch ≈ 1 and the part ∆ with stretch SP λmacro. Hence, the

strain amplification factor in tensile direction is related to the initial width ∆ of

the undeformed crack via the condition

∆ <
λmacro − 1

λmacro SP − 1
, (77)

as illustrated in Fig. 14. In summary, the assumption used for the macro-to-micro

transition is based on a time-, temperature- and deformation-constant amplifica-
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tion factor SP, which scales the macroscopic principal stretches to the micro-

scopical counterparts. Here again, only a scaling is considered and, in conse-

quence, also the principal stretch directions are considered to be the same at

the macroscale and mesoscale. Obviously, this is a strong simplification since

both, the principal stretches as well as the principal stretch directions will vary

as a function of the crack geometry and the current state of the point at the

macroscale. If a specific problem is investigated, a homogenization method has

to be employed which provides the two-way-coupling of macro- and mesoscale

without the simplified assumption of a strain amplification factor.

The result of the stretch amplification at the microscale is plotted in Fig. 15

and is used as input signal for the computation of the material response at the

microscale in the following. The engineering stress-stretch response, the de-

gree of crystallinity as well as the temperature variation at the microscale have

been computed considering SIC for the present example. In Fig. 16, the com-

puted results for five consecutive cycles (rotations of the tire) from the beginning

t = 0 s are provided (time step ∆t = 0.000005 s). The material response has

been computed considering two examples of different time-dependent SIC ef-

fects (example 1: τl = 1.65 s – value identified from experiment; example 2:

τl = 0.05 s – value for comparison). In Fig. 16, it can be seen that SIC leads to a

stress increase upon stretching. Since the characteristic time τl = 1.65 s for crys-

tal growth is relatively large compared to the loading time within the tire, e.g. in

terms of the cycle duration T = 0.083 s, the degree of crystallinity only shows

a small increase upon loading of the specimen and reaches a steady state after

several cycles, see Fig. 16 b). For the characteristic time τl = 0.05 s, the evo-

lution of the degree of crystallinity is more pronounced (faster growth kinetics

in case of example 2). From the relatively negligible variation of the degree of
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Figure 14: Macro-meso-micro transition for point P in the tire with a defect on the mesoscale

and the strain state of a point S in the vicinity of the defect on the microscale
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Figure 15: Point S: principal stretches λ1, λ2 and λ3 in n1, n2 and n3 direction, respectively, as

a function of time for one cycle duration T = 0.083 s (rotational velocity Ω = 75.673 s−1 of

the tire)

crystallinity with elapsing time, it can be explained that the SIC process in case

of τl = 1.65 s is not of pronounced dissipative nature. If the characteristic time

τl is smaller (see example 2 with τl = 0.05 s), the temperature plot in Fig. 16 c)

shows a significant increase of the average temperature of the material point con-

sidered due to the more pronounced contribution of SIC effects to the dissipative

heating of the material. For larger characteristic growth times τl, nearly no SIC

hystereses will appear since the growth kinetics of SIC are not fast enough for the

loading considered. Furthermore, the value of the degree of crystallinity is small

in this example (less than 1.5%). In consequence, the temperature peaks visible

for both cases in Fig. 16 c) are mainly related to the thermo-elastic coupling of

the amorphous phase.

Details to incorporate an evolving temperature field within a steady state FE

tire simulation are provided in [42].

The pull back projection of the material response of the microscale to the

Cartesian frame on the macroscale is not considered in this contribution and, in
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Figure 16: Periodic state of the material point S on the mesoscale including SIC phenomena,

plotted for five cycles (T = 0.083 s) after start of rolling (t = 0 s) in n2 direction for two char-

acteristic growth times τl: a) engineering stress as a function of time; b) degree of crystallinity

as a function of time; c) temperature variation as a function of time
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consequence, no interaction with the macroscale is computed so far. A full two-

scale simulation can be accomplished in two ways. First, an analytical micro-to-

macro transition can be established based on the microscale model and the ho-

mogeneous macroscopic field, see e.g. [48, 49, 50]. Second, in case of a hetero-

geneous mesoscale, numerical homogenization techniques have to be involved,

e.g. as discussed in [51].

To further characterize the material response of the semi-crystalline phase,

the degree of crystallinity can be used as a measurable indicator from experi-

ments to link the observed structural response to the material properties of the

material (amorphous and semi-crystalline phase). Therefore, relations between

the stress-strain response at large stretches and the degree of crystallinity have to

be revealed by further experiments.

5. Discussion

In the past, various experimental studies on SIC in crystallizing rubber re-

vealed the variety of phenomena related to SIC. These observations stimulated

the development of phenomenological and physically based models for SIC to

take into account these effects on the material scale (material behavior) and on

the structural scale (resulting consequences on the structural level, e.g. crack

growth resistance, induced anisotropy) within numerical simulations.

Since SIC is linked to a directional material behavior (strain-induced origin)

and, in consequence, depends on the direction considered, 1D material models

are often developed to track this direction-specific behavior to numerically rep-

resent the complex constitutive behavior. In the past, model developments for

SIC used the phase field approach, e.g. [21, 22], the elastoplastic framework

with a critical stretch level (time-independent), e.g. [29, 30], and the concept of
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viscoelasticity (time-dependent), e.g. [27, 28], or mixtures of both. In reality,

time-independent as well as time-dependent SIC kinetics are likely to occur in a

superposed manner. Furthermore, SIC kinetics depend on temperature and strain

states observed (history-dependent), e.g. [52, 53, 32, 31].

For investigations on the structural scale, the models for SIC have to be

implemented into numerical methods allowing the solution of boundary value

problems (strong or weak forms) involving displacement, temperature and other

significant solution fields of external state variables. Commonly, the 1D models

for SIC are transferred to a 3D constitutive law by the concept of representative

directions [54, 55]. In this case, the material response and associated quanti-

ties [56] are projected to a 3D setting using different representative geometries

(representative volumes) and an analytical expression for the 1D to 3D transition.

The micro-sphere approach [49] is similar to the concept of representative direc-

tions, but mainly focuses on averaging the free energies of single polymer chains

(microscale) over different space orientations of the micro-sphere (representative

directions) to obtain the total free energy (macroscale) in terms of continuum

mechanical deformation or strain tensors. The micro-sphere approach has been

further developed to also take into account inelastic material behavior [50] and

has also been used to generalize SIC effects for a 3D setting, e.g. [25, 26].

The concept used in this work is based on a unit cube with varying directional

reinforcement axes (current principal stretch directions) instead of a sphere (ge-

ometry). Orthotropic material laws with time-independent, fixed material axes

can be seen as another special case. Furthermore, one has to distinguish if only

the SIC effects (crystalline or semi-crystalline phase) is represented by the con-

cept of representative directions or if the combination of amorphous and crys-

talline parts is addressed.
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Among the models for SIC proposed in the literature, a model for SIC ac-

counting for coupling effects between displacement and temperature field is not

standard so far. This work makes an attempt to contribute to the investigation

of SIC effects on the structural scale by mainly focusing on adequate finite ele-

ment implementations of the model approach proposed. The model approach is

mainly based on a phenomenological ansatz in combination with physically mo-

tivated evolution laws for the evolution of the degree of crystallinity upon loading

and unloading. Furthermore, the model is characterized by a small number of un-

knowns, which can be identified from standard experiments (WAXD, tensile tests

etc.) since the model directly incorporates the phenomena observed during stan-

dard experiments. It has to be pointed out that other, more sophisticated, models

for SIC exist in the literature, which allow to explain the phenomena observed

with the help of physical and chemical theories, especially representing phase

changes, crystallinity-dependent heat capacity etc. Nevertheless, these models

often use a large number of model parameters and operate on the material scale,

i.e. they have not been used within finite element analyses. In consequence, a

link of SIC phenomena to the structural scale, e.g. evolution of SIC for cyclic

loading state, has been established in this work. Other constitutive models can

be employed in the same framework. It has to be mentioned that experimental

validation on structural scale (e.g. tire) is hard to accomplish and might concen-

trate on the consequences of SIC (crack growth resistance, extended lifetime).

6. Conclusion

In this contribution, temperature-dependent SIC is modeled at the microscale

via an FE representation consisting of an amorphous rubber phase and a unidi-

rectional reinforcement (semi-crystalline phase) in the principal strain directions
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of the strain field. The model uses an FE unit cube with rebar reinforcements

as RVE. The temperature field is taken into account and the representation of

temperature- and time-dependent SIC kinetics is addressed. SIC phenomena

are computed in the principal directions of the strain field. Induced anisotropy

effects in the material’s mechanical and thermal response are captured by the

unidirectional reinforcement. A micro-meso-macro transition is considered via

the strain field and a strain amplification to form a link between the structural

response of a steady state rolling tire and the material response at the microscale

with SIC phenomena.

Appendix A. Derivations

The linearized terms of Eq. (54) are given in the following:

Temperature of a point of the rebar

The temperature at a given point of the rebar is expressed with the help of its

nodal temperatures and linear shape functions,

Θ = N(ξ) Θe , (A.1)

where

N(ξ) =
[
−1

2
(ξ − 1) 1

2
(ξ + 1)

]
(A.2)

holds and

Θe =


 Θ1

Θ2


 (A.3)

is the vector of nodal temperature values. The temperature gradient is then

∇X (Θ) =
1

L

[
−1 1

]

 Θ1

Θ2


 . (A.4)
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At the integration point ξ = 0, the temperature is computed as

Θm =
Θ1 + Θ2

2
. (A.5)

Linearized weak form of the balance of momentum

The derivation of the scalar Green-Lagrange strain Es with respect to the

nodal displacement values ui,1 at the rebar nodes is

∂Es

∂ui,1
=
∂Es

∂λs

∂λs

∂l

∂l

∂ui,1
. (A.6)

The partial derivatives are

∂Es

∂λs
= λs ,

∂λs

∂l
=

1

L
. (A.7)

The partial derivative of the current length l with respect to the nodal displace-

ments of the rebar is

∂l

∂ui,1
= −1

l
[(Xi,2 + ui,2)− (Xi,1 + ui,1)] . (A.8)

The variation of the Green-Lagrange strain results in

δEs =
3∑

i=1

∂Es

∂ui,1
δui,1 +

3∑

i=1

∂Es

∂ui,2
δui,2. (A.9)

The linearized form of the balance of momentum is

∂Ge
m

∂u

∣∣∣∣
p

∆ue =

∫

(s)

δEs ∆Scry A ds+

∫

(s)

δ∆Es Scry A ds . (A.10)

The linearization of Es yields

∆Es =
1

L2

[
− (Xi,2 −Xi,1)− (ui,2 − ui,1) (Xi,2 −Xi,1) + (ui,2 − ui,1)

]


 ∆ui,1

∆ui,2


 (A.11)
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and the variation of the linearization results in

∆δEs =
1

L2



[
δui,1 δui,2

]

 1 −1

−1 1




 ∆ui,1

∆ui,2




 (A.12)

as a function of the nodal displacements of the rebar. The first integral in

Eq. (A.10) is evaluated with the help of the stress relation ∆Scry = Ccry ∆Es

linearized with respect to the nodal displacements,

∫

(s)

δEs ∆Scry A ds =

∫

(s)

[
δui,1 δui,2

] ACcry

L4


 −∆Xi + ui,1 − ui,2

∆Xi − ui,1 + ui,2





 −∆Xj + uj,1 − uj,2

∆Xj − uj,1 + uj,2




T 
 ∆ui,1

∆ui,2


 ds

=
[
δui,1 δui,2

] ACcry

L3


 kij −kij
−kij kij




 ∆ui,1

∆ui,2




(A.13)

with

kij = (∆Xi + ∆ui) (∆Xj + ∆uj)

= ∆Xi ∆Xj + ∆ui ∆Xj + ∆Xi ∆uj + ∆ui ∆uj . (A.14)

The second integral in Eq. (A.10) results in

∫

(s)

δ∆Es Scry A ds =

∫

(s)

1

L2



[
δui,1 δui,2

]

 1 −1

−1 1




 ∆ui,1

∆ui,2






Scry A ds

=
[
δui,1 δui,2

] Scry A

L


 1 −1

−1 1




 ∆ui,1

∆ui,2


 .

(A.15)
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From these intermediate results, the matrices

A1 =
Ccry A

L3




k11 k12 k13

k21 k22 k23

k31 k32 k33


 , A2 =

Scry A

L




1 0 0

0 1 0

0 0 1


 (A.16)

and the residual vector

r1 =
Scry A

L




∆X1 + ∆u1

∆X2 + ∆u2

∆X3 + ∆u3

−∆X1 −∆u1

−∆X2 −∆u2

−∆X3 −∆u3




, (A.17)

can be found, see Eq. (55). The linearization of the weak form of the balance of

momentum with respect to temperature is defined as

∂Ge
m

∂Θ

∣∣∣∣
p

∆Θe =

∫

(s)

δEs ∆Scry A ds . (A.18)

With the term

∆Scry =
∂Scry

∂Θ
∆Θe , (A.19)
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Eq. (A.18) becomes

∫

(s)

δEs ∆Scry A ds =
[
δui,1 δui,2

]




−∆X1 −∆u1

−∆X2 −∆u2

−∆X3 −∆u3

∆X1 + ∆u1

∆X2 + ∆u2

∆X3 + ∆u3




A

2L

∂Scry

∂Θ

∣∣∣∣
Θm

[
1 1

]

 ∆Θ1

∆Θ2


 . (A.20)

From Eq. (A.20), a tangent term can be identified,

∂Ge
m

∂Θ

∣∣∣∣
p

=
[
δui,1 δui,2

]

 −C1 −C1

C1 C1


 , (A.21)

with

C1 =
A

2L

∂Scry

∂Θ

∣∣∣∣
Θm




∆X1 + ∆u1

∆X2 + ∆u2

∆X3 + ∆u3


 . (A.22)

Linearized weak form of the balance of energy

The linearization with respect to the displacements is given by

∂Ge
t

∂u

∣∣∣∣
p

∆u =

∫

(s)

∆Q∇X (δΘ)A ds+

∫

(s)

(
∆wcry −∆ccry Θ̇

)
δΘA ds (A.23)

and contains parts stemming from the heat flux, the heat capacity and the work

contribution. The first term can be evaluated with the help of the chain rule,

∆Q =
∂Q

∂u
∆ue =

∂Q

∂λs

∂λs

∂l

∂l

∂u
∆ue , (A.24)
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using the constitutive heat flux law

∂Q

∂λs
=

2 kcry

λ3
s

∇X (Θ) . (A.25)

The derivative of Q results in

∂Q

∂u
=

2 kcry

λ4
s L

2

[
−∆Xi −∆ui ∆Xi + ∆ui

]
. (A.26)

If the integration is carried out, one obtains

∂Ge
t

∂u

∣∣∣∣
p

∆ue =

∫

(s)

∆Q∇X (δΘ)A ds =
[
δΘ1 δΘ2

] 2Akcry

λ4
s L

3
(Θ2 −Θ1)


 ∆Xi + ∆ui −∆Xi −∆ui

−∆Xi −∆ui ∆Xi + ∆ui




 ∆ui,1

∆ui,2


 (A.27)

with the tangent term

∂Ge
t

∂u

∣∣∣∣
p

=
[
δΘ1 δΘ2

]

 D1 −D1

−D1 D1


 (A.28)

and the components

D1 =
2Akcry

λ4
s L

3
(Θ2 −Θ1)

[
∆X1 + ∆u1 ∆X2 + ∆u2 ∆X3 + ∆u3

]
.

(A.29)

Integration of the second term in Eq. (A.23) (work contribution and heat capac-

ity),

∆wcry −∆ccry Θ̇ =

[
∂wint

∂Es
+
∂wext

∂Es
− ∂ccry

∂Es
Θ̇

]
∂Es

∂ui
∆ui , (A.30)

results in
∫

(s)

(
∆wcry −∆ccry Θ̇

)
δΘA ds =

[
δΘ1 δΘ2

]

 −D2 D2

−D2 D2




 ∆ui,1

∆ui,2


 (A.31)
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with

D2 =
A

2L

{
−
(
∂2Ψcry

∂Φ ∂Es
−Θ

∂3 Ψcry

∂Θ ∂Φ ∂Es

)
Φ̇

−
(
∂Ψcry

∂Φ
−Θ

∂2Ψcry

∂Θ ∂Φ

)
∂Φ̇

∂Es

+ Θ
∂2Scry

∂Θ ∂Es
Ės + Θ

∂Scry

∂Θ

Ės

∂Es

− ∂ccry

∂Es
Θ̇

}

Θm[
∆X1 + ∆u1 ∆X2 + ∆u2 ∆X3 + ∆u3

]
. (A.32)

The linearization of the weak form of the balance of energy with respect to the

nodal temperature values is

∂Ge
t

∂Θ

∣∣∣∣
p

∆Θe =

∫

(s)

(
∆wcry −∆ccry Θ̇− ccry ∆Θ̇

)
δΘA ds

+

∫

(s)

∆Q∇X (δΘ)A ds . (A.33)

Subsequently, each part of the integral is evaluated. Partial derivation with re-

spect to temperature and integration yields
∫

(s)

∆wcry δΘA ds =

∫

(s)

δΘ
∂wcry

∂Θ
∆ΘA ds

=
[
δΘ1 δΘ2

]
B3


 1 1

1 1




 ∆Θ1

∆Θ2


 (A.34)

with

B3 =
AL

4

{
−
(
∂2Ψcry

∂Φ ∂Θ
− ∂2Ψcry

∂Θ ∂Φ
−Θ

∂3 Ψcry

(∂Θ)2 ∂Φ

)
Φ̇

−
(
∂Ψcry

∂Φ
−Θ

∂2Ψcry

∂Θ ∂Φ

)
∂Φ̇

∂Θ

+
∂Scry

∂Θ
Ės + Θ

∂2Scry

(∂Θ)2
Ės

}

Θm

. (A.35)
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The heat capacity part reads

−
∫

(s)

(
∆ccry Θ̇ + ccry ∆Θ̇

)
δΘA ds =

−
∫

(s)

(
Θ̇
∂ccry

∂Θ
∆Θ + ccry ∆Θ̇

)
δΘA ds =

[
δΘ1 δΘ2

]

−

AL
{

Θ̇
∂ccry

∂Θ

}
Θm

4
− Accry L

4 ∆t





 1 1

1 1




 ∆Θ1

∆Θ2


 ,

(A.36)

where the time discretization of the temperature is used in the form

Θ̇ =
Θtn+1 −Θtn

∆t
. (A.37)

For the contribution to the residuum,

−
∫

(s)

ccry Θ̇ δΘA ds =
[
δΘ1 δΘ2

](
−Accry L

2 ∆t

)


 1

1


Θm −


 1

1


Θtn

m




(A.38)

holds. The heat conduction part becomes

∫

(s)

∆Q∇X (δΘ)A ds =
[
δΘ1 δΘ2

](
−Akcry

λ2
s L

)
 1 −1

−1 1




 ∆Θ1

∆Θ2


 .

(A.39)

Finally, the residuum on the right side of the equation can be summarized to

r2 = − Accry L

2 ∆t


 Θtn

m

Θtn
m


+

Accry L

2 ∆t


 Θm

Θm


+

kcry A

λ2
s L


 Θ1 −Θ2

−Θ1 + Θ2




− AL

2

{
−
(
∂Ψcry

∂Φ
−Θ

∂2Ψcry

∂Θ ∂Φ

)
Φ̇ + Θ

∂Scry

∂Θ
Ės

}

Θm


 1

1


 .

(A.40)
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The tangent term of Eq. (A.33) can be summarized as

∂Ge
t

∂Θ

∣∣∣∣
p

=
[
δΘ1 δΘ2

]

 −B1 −B2 +B3 B1 −B2 +B3

B1 −B2 +B3 −B1 −B2 +B3


 (A.41)

with the components

B1 =
kcry A

λ2
s L

, (A.42)

B2 =
AL

{
Θ̇

∂ccry

∂Θ

}
Θm

4
+
Accry L

4 ∆t
(A.43)

and B3 defined in Eq. (A.35).
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