
International Journal of Solids and Structures 44 (2007) 1380–1390

www.elsevier.com/locate/ijsolstr
A note on thermoelastodynamic instability (TEDI)
for a 1D elastic layer: Force control

L. Afferrante *, M. Ciavarella

CEMEC-PoliBA – Centre of Excellence in Computational Mechanics, Via Re David, 200 Politecnico di Bari, 70124 Bari, Italy

Received 4 April 2006; received in revised form 14 June 2006
Available online 23 June 2006
Abstract

Recently, a new mechanism of frictional instability has been identified, for an elastic layer sliding against a rigid non-
conducting support. This mechanism emerges where neither elastodynamic instabilities (e.g. ‘brake squeal’) nor thermo-
elastic (‘TEI’) instabilities would be active. The time scales of these processes differ considerably, so it is usual to neglect
coupling between them – yet, the natural elastodynamic vibrations of the layer become unstable at arbitrarily low sliding
speeds. In this paper, the force control analogous problem is treated, for which, contrary to the previous case, a pure TEI
instability does not exist. The results show similar mechanisms of instability, but now the average pressure in the limit cycle
is given and hence only the shape of the cycle can change.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently (Afferrante et al., 2006), a new and simple mechanism has been identified for the occurrence of
frictional vibrations in which thermomechanical coupling destabilizes the lowest mode of natural vibration.
The system was an elastic layer (1D model) sliding against a rigid non-conducting wall. Transient behaviour
is characterized by a flutter instability at a frequency close to the first natural frequency of the elastodynamic
system and it leads ultimately to a limit cycle with alternating periods of contact and separation also at this
frequency. The mechanism leads to vibrations normal to the sliding interface.

This instability mechanism is distinct from that known as TEI (Barber, 1969; Dow and Burton, 1972). In
this process, any perturbation in contact pressure causes a corresponding perturbation in heating and hence
thermal distortion, which exaggerates the initial perturbation. Moreover, the instability mechanism is also dis-
tinct from the dynamic instabilities found by Martins et al. (1995) and Adams (1995) in the steady sliding of
two elastic half-planes with elementary Coulomb friction law, which is one explanation of some of the
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mechanisms leading to earthquakes (Ben-Zion, 2001; Rice et al., 2001), and also of ‘squeal’ vibrations in auto-
motive brakes (Moirot and Nguyen, 2000).

In the present paper, we consider the elastic layer sliding in normal force control. We shall find that the
same mechanism occurs, despite, in this case, TEI instability is not there and seizure is not possible.

2. Formulation

The geometry of the system is similar to that shown in Afferrante et al. (2006) (Fig. 1).
However, we now assume that a constant pressure p0 is applied on the layer at x = 0. The boundary con-

ditions hence are
rxx ¼ �p0; h ¼ 0; x ¼ 0 ð1Þ

ux ¼ 0; K
oh
ox
¼ �fV r; x ¼ h ð2Þ
where r is the tensile stress and K is the thermal conductivity.
A convenient dimensionless formulation can be developed by defining the quantities
n ¼ x
h

; t̂ ¼ kt

h2
; bV ¼ 2lað1þ mÞfVh

Kð1� 2mÞ ; c ¼ k
ch

p̂0 ¼
ð1� 2mÞp0

2lð1� mÞ ; û ¼ ux

hp̂0

; r̂ ¼ r
p0

; ĥ ¼ að1þ mÞh
ð1� mÞp̂0

ð3Þ
where l, m, q, k and a are respectively the modulus of rigidity, Poisson’s ratio, density, thermal diffusivity and
coefficient of expansion for the material of the layer, and
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lð1� mÞ
qð1� 2mÞ

s
ð4Þ
is the dilatational wave speed. The parameter c defines the ratio between the time scales for elastic wave prop-
agation and for heat conduction.

In this case, Eqs. (1) and (2) reduce to
r̂ ¼ �1; ĥ ¼ 0; n ¼ 0 ð5Þ

û ¼ 0;
oĥ
on
¼ �bV r̂; n ¼ 1 ð6Þ
and
o2ĥ

on2
� oĥ

ôt
¼ 0 ð7Þ

or̂
on
� c2 o2û

ôt2
¼ 0 ð8Þ

r̂� oû
on
þ ĥ ¼ 0 ð9Þ
are still the governing equations, in dimensionless formulation.
At the steady-state, the temperature must be a linear function of x and the stress must be constant. There-

fore, we trivially obtain
r̂ ¼ �1 ð10Þ
ĥ ¼ bV n ð11Þ

û ¼
bV
2

n2 � nþ 1�
bV
2

 !
ð12Þ
Hence, the steady-state does not depend on the speed (contrary to the case of displacement control).
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Fig. 1. An elastic layer sliding against a rigid plane surface at x = h and bonded to a rigid body at x = 0.
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2.1. Perturbation analysis

Here, we repeat the analysis done in the previous paper (Afferrante et al., 2006), where the stability of the
steady-state is studied by considering the possibility that a small perturbation in the temperature and displace-
ment fields can grow exponentially with time
ĥðn; t̂Þ ¼ ĥ0ðn; t̂Þ þHðnÞ expðb̂tÞ ð13Þ
ûðn; t̂Þ ¼ û0ðn; t̂Þ þ UðnÞ expðb̂tÞ ð14Þ
r̂ðn; t̂Þ ¼ r̂0ðn; t̂Þ þ SðnÞ expðb̂tÞ ð15Þ
where ĥ0, û0 and r0 represent the unperturbed solution and b is the growth rate of the perturbation.
Therefore, the following characteristic equation can be derived
bV ¼ 1

c
ð1� c2z2Þ coshðzÞ coshðcz2Þ

coshðzÞ sinhðcz2Þ � cz sinhðzÞ coshðcz2Þ ð16Þ
where
z ¼
ffiffiffi
b
p

ð17Þ

If we assume that the coefficient of thermal expansion is zero, we recover the solution of the elastodynamic

problem. In fact, if the coefficient of expansion a! 0, giving bV ¼ 0 for all finite sliding speeds, Eq. (16)
reduces to
ð1� c2z2Þ coshðzÞ coshðcz2Þ ¼ 0 ð18Þ

and this has various sets of zeros. One corresponds to the factor cosh(z) = 0, which gives z = ı(2n + 1)p/2 and
n is an integer, corresponding to b = �(2n + 1)2p2/4 and hence to exponentially decaying solutions of the heat
conduction equation with mixed homogeneous end conditions. Also, cosh(cz2) = cosh(cb) = 0 when
cb = z = ı(2n + 1)p/2, corresponding to oscillatory solutions which define undamped elastodynamic oscilla-
tions of the layer with fixed-free end conditions.

2.2. Zeros of the characteristic equation

The stability of the layer can be studied by finding the zeros of the characteristic equation (16) by using the
method described in Afferrante et al. (2006). Alternatively, we can provide an approximate solution of the
growth rate. In such case, if we redefine
~b ¼ cb ¼ cz2 ð19Þ

and we rewrite the characteristic equation in the following form:
cbV cosh

ffiffiffiffiffiffiffi
~b=c

q� �
sinhð~bÞ � c

ffiffiffiffiffiffiffi
~b=c

q
sinh

ffiffiffiffiffiffiffi
~b=c

q� �
coshð~bÞ

� �
¼ ð1� c~bÞ cosh

ffiffiffiffiffiffiffi
~b=c

q� �
coshð~bÞ ð20Þ
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When bV ¼ 0, this reduces to
Fig. 2.
c = 10
ð1� c~bÞ cosh

ffiffiffiffiffiffiffi
~b=c

q� �
coshð~bÞ ¼ 0 ð21Þ
where the elastodynamic modes correspond to
coshð~bÞ ¼ 0 ð22Þ

with solution
~b ¼ ıðnþ 1=2Þp ð23Þ

Knowing the qualitative process, in which pure imaginary roots acquire a small real part, we suppose to

perturb these roots slightly by writing
~b ¼ ıðnþ 1=2Þpþ � ð24Þ

We can then get a first approximation to the perturbed roots by perturbing the RHS of (20) to first order

and replacing the LHS functions of ~b by their zeroth order approximations.
After some obvious algebra, we obtain the following relation between growth rate � and speed bV
�

cbV ¼ cosh 2xþ cos 2x

2c2 bV xð1þ ıÞðsinh x cosh xþ ı sin x cos xÞ þ ð1� ıcðnþ 1=2ÞpÞðcosh 2xþ cos 2xÞ
ð25Þ
where
x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1=2Þp=2c

p
ð26Þ
For very large speed,
�

c
¼ cosh 2xþ cos 2x

2c2xð1þ ıÞðsinh x cosh xþ ı sin x cos xÞ ð27Þ
which is independent on speed, whereas for very small speeds,
�

cbV ¼ 1

ð1� ıcðnþ 1=2ÞpÞ ð28Þ
Fig. 2 shows the dependence of the exponential growth rate RðbÞ ¼ Rð�Þ=c on the wave number n for different
dimensionless speed bV and for the first 30 modes.
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Dependence of the exponential growth rate RðbÞ on the wave number n, for different dimensionless speed bV , the first 30 modes and
�1.
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Fig. 3. Dependence of the exponential growth rate RðbÞ on the dimensionless speed bV , for the first mode and different c.

1384 L. Afferrante, M. Ciavarella / International Journal of Solids and Structures 44 (2007) 1380–1390
The first mode is the dominant one and the growth rate very quickly reduces with n, so only the first modes
characterize the stability of the layer. In Fig. 3, we plot the dependence of the exponential growth rate of the
first mode on the sliding speed.

In the previous paper, we considered displacement control in the normal direction, and hence there was a
well defined TEI critical speed, which was also where the quasi-static solution predicted infinite amplification
of the pressure. The model with both dynamic and thermoelastic terms showed a new instability (giving rise in
the long term to jumps and impacts at the interface). The instability originated at any speed and was surpris-
ingly there also for systems having very different characteristic times of the thermal and dynamic phenomena.

Here, we control the force and find similar instabilities, but the pure TEI modes disappear (in Fig. 3, we
have only complex growth factors), since in the normal direction, a quasi-static solution (like done in TEI)
predicts a trivial solution which we cannot perturb in terms of pressure by definition. In the transient case,
we would have again impacts and jumps, this time with ‘‘flights’’ of the layer above the plane. The complex
roots persist for arbitrarily small c and hardly any further change occurs in the plot of Fig. 3 for c < 10�2.

In Fig. 4, a comparison between the solution obtained with the approximate expression (28) and the ‘exact’
solution determined by the root finder is shown for the first mode. Notice as the approximate solution (dashed
line) is very closed to the numerical one (solid line).
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Fig. 4. Comparison between the approximate (28) and numerical solution for the first mode and c = 10�1.
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Fig. 5. Variation of the imaginary part IðbÞ of the growth rate with the real part RðbÞ for the first mode and c = 10�1.
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Fig. 5 shows the motion of the roots in the complex plane for the first mode.
Notice that the zeros on the imaginary axis representing undamped elastodynamic oscillations of the layer,

and the figures shows how they move into the unstable half-plane, as bV is increased from zero. Also, a zoom of
the plot near to RðbÞ ¼ 0 is given. Notice for low speeds the relation between the imaginary part IðbÞ and the
real part RðbÞ is nearly linear.

3. Transient analysis

To explore the transient behaviour of the system, a finite difference method was employed, similarly to the
case in displacement control. Details of the numerical algorithm are provided in the Appendix. The quasi-sta-
tic solution predicts a monotonic transition to the steady-state (10)–(12), but the thermoelastodynamic solu-
tion predicts unstable growing oscillations. Fig. 6 shows the transient evolution of the dimensionless
displacement û of the layer at n = 1 for c = 10�1 and bV ¼ 0:1.
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Fig. 6. Evolution of the dimensionless displacement û of the layer at n = 1 for c = 10�1 and bV ¼ 0:1.
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The displacement falls to zero when the layer makes contact with the rigid wall. In particular, separation
has a stabilizing effect on the process, which then tends asymptotically to a limit cycle.

In Fig. 7, the limit cycle for the contact pressure p̂ ¼ �r̂ð1; t̂Þ is shown for c = 10�1 and different bV . Notice
as the limit cycle represents a non-linear oscillation about the quasi-static solution. However, it would seem
that the main effect, even in the limit of near zero speed, is to produce a limit cycle with about 1/2 of the period
in separation, and 1/2 under contact.

As secondary effect, a localized maximum appears, and the period of the steady-state oscillation slightly
increases with speed, with the contact phase one reducing and the maximum pressure growing sensibly.
The small reduction of pressure before the maximum value which we have at higher speed, is, probably a
numerical dispersion error typical of second order discretization methods.

Fig. 8 shows the effect of the dimensionless speed bV on the maximum contact pressure p̂max. As expected,
p̂max monotonically increases more than linearly with bV .

Finally, the forms of the pressure waves in the steady-state are sketched in Figs. 9 and 10. In particular, two
waves traveling in the layer during the separation (Fig. 9) and contact (Fig. 10) period are plotted. With
dashed line, we plot waves traveling from n = 1 to n = 0 and with solid line waves traveling in the opposite
direction.
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Fig. 7. Limit cycle for the contact pressure p̂ (c = 10�1 and bV ¼ 0:1; 0:2; 0:4).
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Fig. 9. Pressure waves in the steady-state during the separation phase (c = 10�1, bV ¼ 0:4).
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Fig. 10. Pressure waves in the steady-state during the contact phase (c = 10�1, bV ¼ 0:4).
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In Fig. 9, notice that the first part of the wave traveling from n = 1 to n = 0 will reflect at n = 0 from a free
end as a tensile wave. This produces the tensile region well visible in Fig. 9. Similarly, the first part of the wave
traveling in the opposite direction will reflect at n = 1 as a wave of opposite sign until sufficient motion occurs
to close the gap.

In Fig. 10, the wave traveling from n = 0 to n = 1 will reflect at n = 1 from a fixed end without changing
your sign. The upper-pressure associated to these waves causes the peak of the pressure shown in Fig. 7.

4. Conclusions

In the study of the previous paper, under displacement control, we found a new instability which we called
TEDI. This has the form of an instability of the natural dilatational modes of the layer, which in the transient
regime separates and produces a non-linear limit cycle of contacts and separations. TEDI was found to be a
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completely new mechanism, which makes unstable the dynamic modes, otherwise neutrally stable, due to
thermoelastic effects. Dynamic instability without thermal effects would not emerge for this model, no matter
how large the friction coefficient could be. However, the model in the previous paper had still a pure TEI ther-
moelastic instability for bV > bV cr. Hence, in the present paper, to assess whether TEDI would be still present
even if a pure TEI mode were not present, we wanted to clean the system even further, by considering force
control, so that TEI instability is not there when thermomechanical coupling is neglected.

The analysis shows that thermomechanical coupling still destabilizes the lowest mode of natural vibration
and the transient behaviour is characterized by a flutter instability. The steady-state is a limit cycle with alter-
nating periods of contact and separation. In this case seizure is not possible, yet the maximum contact pressure
continuously increases with the sliding speed bV . The form of the limit cycle is different with respect to the case
in displacement control. Here, the contact pressure shows a rapid rise and decay and exhibits a peak before
falling to zero.

If a small amount of internal damping is introduced into the system, for example by considering a visco-
elastic behaviour of the material, we expect the effect of the damping will be to reduce but not completely sup-
press the unstable thermoelastodynamic growth rate. In particular, a critical speed greater than zero could be
introduced as a function of the damping factor.

More investigations occur for two dimensional geometries. However, here we can anticipate that the cou-
pling between thermal and dynamic properties will destabilize the otherwise stable dynamic modes or will
modify significantly those already unstable. Such considerations find a first confirmation in recent works of
Yi (2006) and Afferrante and Ciavarella (2006).
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Appendix A. Transient formulation

We consider the following dimensionless equations to be solved (obtained by combining Eqs. (7)–(9)):
o2ĥ

on2
� oĥ

ôt
¼ 0 ð29Þ

o
2û

on2
� c2 o

2û
ôt2
� oĥ

on
¼ 0 ð30Þ
When the layer makes contact with the rigid wall B, the boundary conditions can be written in the following
form:
oûð0; t̂Þ
on

� ĥð0; t̂Þ ¼ 1; ĥð0; t̂Þ ¼ 0 ð31Þ

ûð1; t̂Þ ¼ 0;
oĥð1; t̂Þ

on
¼ �bV r̂ ð32Þ
When separation conditions occur, we need to consider the following new boundary conditions:
oûð0; t̂Þ
on

� ĥð0; t̂Þ ¼ 1; ĥð0; t̂Þ ¼ 0 ð33Þ

oûð1; t̂Þ
on

� ĥð1; t̂Þ ¼ 0;
oĥð1; t̂Þ

on
¼ 0 ð34Þ



L. Afferrante, M. Ciavarella / International Journal of Solids and Structures 44 (2007) 1380–1390 1389
Finally, the initial condition was taken to be quiescent with initial temperature everywhere zero i.e.
ĥðn; 0Þ ¼ 0 ð35Þ

ûðn; 0Þ ¼ 0;
oûðn; 0Þ

ôt
¼ 0 ð36Þ
Wave equation

Eq. (30) is solved by using the Crank–Nicolson implicit scheme (in this way the system of finite difference
equations obtained is unconditionally stable)
� m2

2
ûjþ1

iþ1 þ ð1þ m2Þûjþ1
i � m2

2
ûjþ1

i�1 ¼
m2

2
ûj

iþ1 þ 2 1� m2

2

� �
ûj

i þ
m2

2
ûj

i�1 � ûj�1
i � m2 ĥj

iþ1 � ĥj
i

� �
Dn ð37Þ
where m ¼ Dt̂=ðcDnÞ, Dt̂ is the dimensionless time between two successive instants and Dn is the dimensionless
length of the elements.

In particular, the following tridiagonal system of linear algebraic equations at each new time level is
obtained:
� m2

2
ûjþ1

2 þ 1þ m2

2

� �
ûjþ1

1 ¼ C1 ð38Þ

� m2

2
ûjþ1

iþ1 þ ð1þ m2Þûjþ1
i � m2

2
ûjþ1

i�1 ¼ Ci i ¼ 2; . . . ; n� 2 ð39Þ

ð1þ m2Þûjþ1
n�1 �

m2

2
ûjþ1

n�2 ¼ Cn�1 ð40Þ
where the constants Ci can be written as
C1 ¼
m2

2
ûj

2 þ 2 1� m2

2

� �
ûj

1 þ
m2

2
ûj

1 � ûj�1
1 � m2 ĥj

2 � ĥj
1

� �
Dnþ m2Dn ð41Þ

Ci ¼
m2

2
ûj

iþ1 þ 2 1� m2

2

� �
ûj

i þ
m2

2
ûj

i�1 � ûj�1
i � m2 ĥj

iþ1 � ĥj
i

� �
Dn i ¼ 2; . . . ; n� 2 ð42Þ

Cn�1 ¼
m2

2
ûj

n þ 2 1� m2

2

� �
ûj

n�1 þ
m2

2
ûj

n�2 � ûj�1
n�1 � m2 ĥj

n � ĥj
n�1

� �
Dn ð43Þ
The above system is solved when the layer makes contact with the rigid wall B (in this case ûð1; t̂Þ ¼ ûjþ1
n ¼ 0).

When separation conditions occur the new boundary condition (34: i) involves
ûjþ1
n ¼ Dnĥjþ1

n þ ûjþ1
n�1 ð44Þ
Consequently, we need to modify Eq. (40) in the following form:
1þ m2

2

� �
ûjþ1

n�1 �
m2

2
ûjþ1

n�2 ¼
m2

2
ûj

n þ 2 1� m2

2

� �
ûj

n�1 þ
m2

2
ûj

n�2 � ûj�1
n�1 � m2 ĥj

n � ĥj
n�1

� �
Dnþ m2

2
Dnĥjþ1

n ð45Þ
In both cases, the Thomas algorithm (Thomas, 1949) is used to solve the system of equations.

Heat equation

The heat equation (29) can be discretized in the following form (Crank–Nicolson scheme):
� r
2
ĥjþ1

iþ1 þ ð1þ rÞĥjþ1
i � r

2
ĥjþ1

i�1 ¼
r
2
ĥj

iþ1 þ ð1� rÞĥj
i þ

r
2
ĥj

i�1 ð46Þ
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where r ¼ Dt̂=Dn2. For full sliding conditions the boundary condition at the right end of the layer can be dis-
cretized as
ĥjþ1
n ¼

ĥjþ1
n�1 � bV ûjþ1

n � ûjþ1
n�1

	 

1� bV Dn

ð47Þ
and the equations which need to be solved are
� r
2
ĥjþ1

2 þ ð1þ rÞĥjþ1
1 ¼ E1 ð48Þ

� r
2
ĥjþ1

iþ1 þ ð1þ rÞĥjþ1
i � r

2
ĥjþ1

i�1 ¼ Ei i ¼ 2; . . . ; n� 2 ð49Þ

1þ r � r=2

1� bV Dn

� �
ĥjþ1

n�1 �
r
2

ĥjþ1
n�2 ¼ En�1 ð50Þ
where
E1 ¼
r
2

ĥj
2 þ ð1� rÞĥj

1 ð51Þ

Ei ¼
r
2

ĥj
iþ1 þ ð1� rÞĥj

i þ
r
2

ĥj
i�1 i ¼ 2; . . . ; n� 2 ð52Þ

En�1 ¼
r
2
ĥj

n þ ð1� rÞĥj
n�1 þ

r
2
ĥj

n�2 �
r
2

bV ûjþ1
n � ûjþ1

n�1

	 

1� bV Dn

ð53Þ
During separation periods (boundary condition at the end B of the layer involves ĥjþ1
n ¼ ĥjþ1

n�1), the same equa-
tions apply, except that the terms involving bV drop and hence the modified forms of (48)–(53) can be obtained
by setting bV ¼ 0.

In all the examples the layer was divided into 100 elements of equal length.
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