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Abstract

The exact analytical solution of buckling in delaminated columns is presented. In order to investigate analytically the
influence of axial and shear strains on buckling loads the geometrically exact beam theory is employed with no simplifi-
cation of the governing equations. The critical forces are then obtained by the linearized stability theory. In the paper,
we limit the studies to linear elastic columns with a single delamination, but with arbitrary longitudinal and vertical asym-
metry of delamination and arbitrary boundary conditions. The studies of quantitative and qualitative influence of trans-
verse shear are shown in detail and extensive results for buckling loads with respect to delamination length, thickness and
longitudinal position are presented.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since Euler’s work in buckling of elastic columns (Euler, 1744) the buckling and post-buckling analysis of
structures has been a subject of research of many authors. Euler’s results differ from the experimental ones due
to material non-linearity, imperfections in geometry and loading eccentricities (Bažant and Cedolin, 1991;
Timoshenko and Gere, 1961). Better understanding of mechanical grounds for the failure of structures is espe-
cially important for design of modern structures, often build from modern-type composite materials. The use
of laminated composites, for instance, or more generally a load carrying members with geometric imperfec-
tions can result in premature collapse due to local instabilities. That is why the mathematical modelling of
buckling and post-buckling considering different effects of non-linearity and imperfections has received con-
siderable attention in the last decade, see, e.g. the publications by Chen (1991, 1993), Čas et al. (2004,
2007), Kardomateas and Schumueser (1988), Krauberger et al. (2007), Lim and Parsons (1993), Moradi
and Taheri (1999), Numayr and Haddad (2001), MSRao et al. (2004), MSRao and Shu (2004), Sheinman
and Soffer (1991) and Wang et al. (2005).
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The work by Chai and coworker (1981) represents a first attempt in modelling the delaminated beam. In
Chai et al. (1981) the energy release rate criterion is applied and the effect of delamination growth is also stud-
ied. The beam is divided into four regions and the continuity conditions at the delamination ends are applied.
Similar delaminated beam model was used by Simitses et al. (1985), where the effect of delamination length
and vertical position is studied in detail for simply supported beams and the beams with clamped ends.

Kardomateas and Schumueser (1988) and later Chen (1991) have incorporated the transverse shear effect
into their studies. Kardomateas and Schumueser (1988) studies are based on classical Euler’s solution, Chen
(1991) used the a variational energy principle instead. Both papers employ the Griffith-type fracture criterion
for studying the delamination growth. Later Chen (1993) used the first order shear deformation theory to
develop closed-form expressions for buckling and post-buckling of asymmetrically delaminated beams with
clamped boundary. Moradi and Taheri (1999) solved the same problem by the differential quadrature method.

The objective of the present paper is twofold: to derive the exact analytical solution for the buckling of sin-
gle-delaminated column with consistent consideration of transverse shear, and to investigate the effect of
delamination length position and shear effect on buckling loads. In contrast to other authors we here employ
the linearized stability theory (Keller, 1970) and present the exact analytical solution with no simplification of
the governing equations. We restrict our analysis to the buckling analysis of linear elastic columns with a sin-
gle asymmetric delamination and arbitrary boundary conditions. The post-buckling analysis is not the issue of
the present paper. The extension of the present formulation on multiple delamination and composites made of
several materials with different material properties can easily be made.
2. Problem definition

We consider straight column with constant cross-section and compressive axial force F, acting along the
neutral axis of the column (Fig. 1). The column is divided by a single delamination into four elements. Ele-
ments 1 and 4 represent both non-delaminated ends of the column. Elements 2 and 3 represent the two layers
at the middle of the column. Delamination is parallel to the neutral axis of the column, but otherwise placed at
an arbitrary position. Relative delamination length is defined by d:l: ¼ L2

L , where L denotes the total length of
the column. The asymmetry of delamination with respect to the height of the column is uniquely described by
parameter l 2 (�1,1). l = 0 means the vertically symmetrical delamination, by increasing (or decreasing) the
value of l, the delamination is moved along the height of the column towards the boundary. The longitudinal
asymmetry is defined by the ratio of the undelaminated ends a = L1/L4. a = 1 means longitudinally symmet-
rical delamination, delamination is positioned nearer left end for a 2 (0,1) and nearer right end for a > 1.

Global coordinate system (X,Y,Z) is chosen, in which the undeformed centroidal axis lies in the plane XZ,
X-axis is perpendicular to the neutral axis of the column, Y-axis points out of the figure, and the reference
point (0,0,0) coincides with the bottom of the column. Local coordinate system (x,y,z) is assumed to coincide
initially with global coordinates, and then follows the deformation of the beam. Plane cross-sections are
assumed to remain planar and preserve their shape and area after the deformation. The column is made of
Fig. 1. Model of the column with single asymmetric delamination.
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linearly elastic homogenous material. The smallest point load, called the critical force, is sought, such that the
buckling of the column occurs. Note that both layers are initially straight and that contact along the length of
layers can occur only at the post-buckling stage. Note that the present model assumes that the delaminated
layers deforms freely and have different transverse deformations. This assumption may not be practical due
to the overlapping of the delaminated layers (Wang et al., 1997) in the post-buckling analysis which is, how-
ever, not the issue of the present paper.

3. Analytical solution

3.1. Governing equations

The present solution is based on the stability analysis of the exact analytical solution of the linearized planar
beam theory (Reissner, 1972). We stem from non-linear planar Reissner beam theory and describe the beam by:

(i) Kinematic equations
1þ u0 ¼ ð1þ eÞ cos uþ c sin u; ð1Þ
w0 ¼ �ð1þ eÞ sin uþ c cos u; ð2Þ
u0 ¼ j; ð3Þ
(ii) Equilibrium equations
R0X þ pX ¼ 0; ð4Þ
R0Z þ pZ ¼ 0; ð5Þ
M 0 � ð1þ eÞQþ cN� mY ¼ 0; ð6Þ
where
N ¼ RX cos u� RZ sin u; ð7Þ
Q ¼ RX sin uþ RZ cos u; ð8Þ
(iii) and Constitutive equations
N ¼ E
Z

A
ðeþ zjÞdA; ð9Þ

Q ¼ GAsc; ð10Þ

M ¼ E
Z

A
zðeþ zjÞdA: ð11Þ
Here

• E and G denote elastic and shear moduli of material;
• A is the cross-sectional area;
• As is the effective shear area (Cowper, 1966);
• u and w denote the displacements of the beam;
• u is the rotation;
• e is the extensional strain, c is the shear strain, j is the bending strain (curvature);
• pX, pZ and mY are external distributed forces and moments, respectively;
• RX, RZ and M are the stress-resultant forces and moment.

Note that, when expressed with respect to the local basis, the stress forces are denoted by N and Q and
related to RX and RZ by coordinate transformation (7) and (8).

After considering that the column is loaded only by point loads and employing some simple eliminations we
obtain the complete set of non-linear governing equations
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1þ u0 � ð1þ eÞ cos u� c sin u ¼ 0; ð12Þ
w0 þ ð1þ eÞ sin u� c cos u ¼ 0; ð13Þ
u0 � j ¼ 0; ð14Þ
R0X ¼ 0; ð15Þ
R0Z ¼ 0; ð16Þ
M 0 þ w0RX � ð1þ u0ÞRZ ¼ 0; ð17Þ

E
Z

A
ðeþ zjÞdA� RX cos uþ RZ sin u ¼ 0; ð18Þ

GAsc� RX sin u� RZ cos u ¼ 0; ð19Þ

E
Z

A
zðeþ zjÞdA�M ¼ 0: ð20Þ
The critical points of the non-linear set of equations agree with the critical points of the linearized system (Kel-
ler, 1970). For the application of linearized stability theory in existence and uniqueness of the solution of
Reissner’s elastica see the paper by Flajs et al. (2003).
3.2. Linearized equations

Similarly as in paper by Zupan and Saje (2006) for three-dimensional beams, consistent variation of Eqs.
(12)–(19) will be employed at an arbitrary configuration of the beam. The deduction of the variations is sim-
plified if variations of constitutive equations are prepared in advance
dN ¼ C11deþ C12dj; ð21Þ
dM ¼ C21deþ C22dj; ð22Þ
where
C11 ¼
oN
oe
¼ E

Z
A

o

oe
ðeþ zjÞdA ¼ EA; ð23Þ

C12 ¼
oN
oj
¼ E

Z
A

o

oj
ðeþ zjÞdA ¼ E

Z
A

zdA ¼ ESy ; ð24Þ

C21 ¼
oN
oe
¼ E

Z
A

o

oe
ðzeþ z2jÞdA ¼ E

Z
A

zdA ¼ ESy ; ð25Þ

C22 ¼
oM
oj
¼ E

Z
A

o

oj
ðzeþ z2jÞdA ¼ E

Z
A

z2 dA ¼ EIy : ð26Þ
Here Sy denotes the moment of area and Iy the moment on inertia. Note that Sy is not zero for all the layers
where the centroidal axis does not coincide with the neutral axis of the whole beam. C11, C12, C21 and C22 are
the components of the cross-section constitutive tangent matrix. Its determinant
c ¼ C11C22 � C12C21 ð27Þ
is crucial for observing the failure at the cross-section. Here, it is suitable to introduce the notation
d ¼ c
C11

ð28Þ
for the constitutive tangent matrix determinant divided by the axial stiffness. Note also that the axial stiffness
is strictly positive quantity. As reported by Krauberger et al., the non-linearity of material could considerably
affect buckling and post-buckling behaviour of frame structures. The present approach could easily be
extended to non-linear material due to consistent linearization of constitutive equations introduced above.
After these preparations the variations of the equations of the beam are easily derived and are as follows:
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du0 � w0du� cos ude� sin udc ¼ 0; ð29Þ
dw0 þ ð1þ u0Þduþ sin ude� cos udc ¼ 0; ð30Þ
du0 � dj ¼ 0; ð31Þ
dR0X ¼ 0; ð32Þ
dR0Z ¼ 0; ð33Þ
dM 0 þ RX dw0 � RZdu0 þ w0dRX � ð1þ u0ÞdRZ ¼ 0; ð34Þ
C11deþ C12djþ ðRX sin uþ RZ cos uÞdu� cos udRX þ sin udRZ ¼ 0; ð35Þ
GAsdc� ðRX cos u� RZ sin uÞdu� sin udRX � cos udRZ ¼ 0; ð36Þ
C21deþ C22dj� dM ¼ 0: ð37Þ
The linearized Eqs. (29)–(37) can be evaluated at an arbitrary configuration of the beam. In order to apply
equations to the column buckling problem, the linearized equations are to be evaluated at the primary con-
figuration of the column. The primary configuration of the column is an arbitrary deformed configuration
in which the column is straight
uðxÞ ¼ 0; wðxÞ ¼ 0 ð38Þ

an loaded only along the neutral axis
RZðxÞ ¼ 0; MðxÞ ¼ 0: ð39Þ

By inserting (38) and (39) into Eqs. (12)–(19) we have
jðxÞ ¼ 0; ð40Þ
cðxÞ ¼ 0; ð41Þ
u0ðxÞ ¼ eðxÞ ¼ const; ð42Þ
RX ðxÞ ¼ const: ð43Þ
Combining (38)–(43) and (29)–(37) gives linearized equations at primary configuration
du0 � de ¼ 0; ð44Þ
dw0 þ ð1þ eÞdu� dc ¼ 0; ð45Þ
du0 � dj ¼ 0; ð46Þ
dR0X ¼ 0; ð47Þ
dR0Z ¼ 0; ð48Þ
dM 0 þ RX dw0 � ð1þ eÞdRZ ¼ 0; ð49Þ
C11deþ C12dj� dRX ¼ 0; ð50Þ
GAsdc� RX du� dRZ ¼ 0; ð51Þ
C21deþ C22dj� dM ¼ 0: ð52Þ
Eqs. (44)–(49) represent system of six ordinary differential equations for nine unknown functions of x: du, dw,
du, dRX, dRZ, dM. Algebraic Eqs. (50)–(52) are linearized constitutive equations that represents relations be-
tween dRX, dRZ, dM and de, dc, dj. Due to the simple form of (44)–(52) they can be solved analytically.

3.3. Analytical solution of linearized equations

The set of nine Eqs. (44)–(52) will be transformed into only two differential equations of higher order. The
only remaining unknown will be axial and lateral deflections du and dw. By taking the first derivative of Eq.
(45), the first derivative of (51) and (48) we have
dw00 ¼ �ð1þ eÞ þ RX

GAs

� �
du0 ¼ �ð1þ eÞ þ RX

GAs

� �
dj ð53Þ
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and
dwðivÞ ¼ �ð1þ eÞ þ RX

GAs

� �
dj00: ð54Þ
Second derivative of (52) gives
dM 00 ¼ C21de00 þ C22dj00; ð55Þ
on the other hand from (49) and (48) it follows that
dM 00 ¼ �RX dw00: ð56Þ
The equality of right hand sides in (55) and (56) gives
C21de00 þ C22dj00 þ RX dw00 ¼ 0: ð57Þ
Finally by inserting (50) and (54) into (57) and considering (28), we get
ddwðivÞ þ RX �ð1þ eÞ þ RX

GAs

� �
dw00 ¼ 0: ð58Þ
If we introduce the buckling parameter
k2 ¼ � RX
d ð1þ eÞ � RX

GAs

h i
; ð59Þ
fourth order differential Eq. (58) can be written in a simple form as:
dwðivÞ þ k2dw00 ¼ 0: ð60Þ
Eq. (60) can be solved analytically; the solution is
dwðxÞ ¼ A sin kxþ B cos kxþ Cxþ D: ð61Þ
Four parameters A, B, C and D must be determined form the boundary conditions. Various boundary con-
ditions, presented in the next section, need to be analyzed: different supports at both ends of the column and
the bonding conditions between middle layers and the elements at both ends. It is obvious from the general
approach that the solution (61) holds for all four elements composing the column. However due to different
boundary conditions each element has different parameters. Thus, 16 parameters Ai, Bi, Ci and Di, i = 1, . . . ,4
uniquely define the lateral deflection of the column.

Taking the first derivative of (50) and considering (44) and (47) gives
C11du00 þ C12dj0 ¼ 0:
From (53) we then obtain
C11

C12

�ð1þ eÞ þ RX

GAs

� �
du00 þ dw000 ¼ 0:
After inserting the solution for dw (61) and taking into account (59) we finally get
du00 ¼ RX C12

dC11

kðA cos kx� B sin kxÞ: ð62Þ
Exact solution of the second order Eq. (62) reads
duðxÞ ¼ aþ bx� RX C12

kdC11
ðA cos kx� B sin kxÞ; ð63Þ
where the two parameters a and b are to be determined from the boundary equations. Again each element
could have different values of parameters a and b. All together eight parameters ai, bi, i = 1, . . . , 4 uniquely
define the axial deflection of the column.

An arbitrary deformed configuration of the linearized beam is uniquely described by dw(x), du(x), and the
boundary conditions. The remaining quantities of the beam du, dRX, dRZ, dM can be obtained from (44)–(52).
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It is, however, suitable to directly express those quantities with du, dw, and their derivatives as we will employ
these expressions in order to properly consider the physical boundary and bonding conditions.

First, we express dRZ from (49)
dRZ ¼
RX

1þ e
dw0 þ 1

1þ e
dM 0: ð64Þ
dM 0 can further be expressed from (52) and considering (50) and (47) as
dM 0 ¼ ddj0: ð65Þ

From (53), (64) and (65) now follows
dRZ ¼
RX

1þ e
dw0 þ d

ð1þ eÞ �ð1þ eÞ þ RX
GAs

h i dw000;

dRZ ¼
RX

1þ e
dw0 þ 1

k2
dw000

� �
:

ð66Þ
Inserting the solution for dw into (66) results in
dRZ ¼ RX
1þe C: ð67Þ
From (44) we have
dc ¼ dw0 þ ð1þ eÞdu ð68Þ

and on the other hand from (51) we get
dc ¼ RX

GAs

duþ 1

GAs

dRZ : ð69Þ
Upon insertion (69) and (66) into (68) and some short simplification where (59) is taken into account, it yields
du ¼ � 1

1þ e
dw0 þ R2

X

GAsk
4d

dw000
� �

: ð70Þ
After we insert the solution (61) into (70) and rearrange the terms, we obtain
du ¼ RX
kd ðA cos kx� B sin kxÞ � 1

1þe C: ð71Þ
By inserting (44) and (53) into (52) we have
dM ¼ C21du0 þ C22

RX

k2d
dw00 ð72Þ
and in completely analogous way
dRX ¼ C11du0 þ C12

RX

k2d
dw00: ð73Þ
It is suitable to insert solutions (61)–(63) into (72) and (73) as the expression simplify considerably. After some
short derivations we directly obtain
dRX ¼ C11b; ð74Þ

dM ¼ C21b� RX ðA sin kxþ B cos kxÞ: ð75Þ
4. Boundary and continuity conditions

Before we discuss the conditions on linearized formulation the continuity of displacements and equilibrium
of forces in non-linear primary configuration need to be considered. Continuity of displacements at the
delamination ends (points T2 and T3 on Fig. 1) reads:
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u1ðL1Þ ¼ u2ð0Þ ¼ u3ð0Þ;
u2ðL2Þ ¼ u3ðL2Þ ¼ u4ð0Þ:
From (12) and (38) we have
u0 ¼ e;

uðxÞ ¼ uð0Þ þ ex:
ð76Þ
As one end of column is fixed, we have
u1ð0Þ ¼ 0;
and inserting (76) into continuity conditions yields
e1L1 ¼ u2ð0Þ ¼ u3ð0Þ;
u2ð0Þ þ e2L2 ¼ u3ð0Þ þ e3L2 ¼ u4ð0Þ:
Thus the axial strains of both layers are equal
e2 ¼ e3: ð77Þ
Equilibrium conditions of axial forces at points T2, T3 and T4 are
RX ;2 þ RX ;3 ¼ RX ;1; ð78Þ
RX ;2 þ RX ;3 ¼ RX ;4; ð79Þ
RX ;4 ¼ �F : ð80Þ
The axial forces can be expressed with axial strains. From (38)–(43) and (18) we obtain
RX ;i ¼ EAiei; for i ¼ 1; . . . ; 4: ð81Þ
By inserting (81) into (78), (79) and considering (77) we get
EA2e2 þ EA3e2 ¼ EA1e1;

EA2e2 þ EA3e2 ¼ EA4e4:
As for columns with constant cross-sections A2 + A3 = A1 = A4, we finally have the continuity of axial strains
e1 ¼ e2 ¼ e3 ¼ e4: ð82Þ
From (81) and (82) now follows
RX ;1 ¼ �F ; ð83Þ

RX ;2 ¼ �
A2

A4

F ; ð84Þ

RX ;3 ¼ �
A3

A4

F : ð85Þ
As reported by Li (2003) the exact solution for buckling considering the effect of shear cannot be easily ob-
tained for non-uniform bar, especially for multi-step bars. Note that the present approach allows us to directly
extend the formulation to columns with varying cross-section.

Different boundary conditions for the solutions of linearized equations will be taken into account. For the
points at which the elements bond we demand the equality of displacements and rotations and the equilibrium
of the internal forces. At the delamination ends, e.g. at the points T2 and T3 (see Fig. 1) we thus have:
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du1ðL1Þ ¼ du2ð0Þ ¼ du3ð0Þ; ð86Þ
dw1ðL1Þ ¼ dw2ð0Þ ¼ dw3ð0Þ; ð87Þ
du1ðL1Þ ¼ du2ð0Þ ¼ du3ð0Þ; ð88Þ
dRX ;1ðL1Þ ¼ dRX ;2ð0Þ þ dRX ;3ð0Þ; ð89Þ
dRZ;1ðL1Þ ¼ dRZ;2ð0Þ þ dRZ;3ð0Þ; ð90Þ
dM1ðL1Þ ¼ dM2ð0Þ þ dM3ð0Þ; ð91Þ
and
du2ðL2Þ ¼ du3ðL2Þ ¼ du4ð0Þ; ð92Þ
dw2ðL2Þ ¼ dw3ðL2Þ ¼ dw4ð0Þ; ð93Þ
du2ðL2Þ ¼ du3ðL2Þ ¼ du4ð0Þ; ð94Þ
dRX ;2ðL2Þ þ dRX ;3ðL2Þ ¼ dRX ;4ð0Þ; ð95Þ
dRZ;2ðL2Þ þ dRZ;3ðL2Þ ¼ dRZ;4ð0Þ; ð96Þ
dM2ðL2Þ þ dM3ðL2Þ ¼ dM4ð0Þ: ð97Þ
For each of the analyzed columns one end (point T1) is fixed in axial direction, and at the other end (point T4)
the axial force is zero:
du1ð0Þ ¼ 0; ð98Þ
dRX ;4ðL4Þ ¼ 0: ð99Þ
Four different boundary conditions for columns will be analyzed:

(i) Clamped at one end free at the other (cantilever)
dw1ð0Þ ¼ 0; ð100Þ
du1ð0Þ ¼ 0; ð101Þ
dRZ;4ðL4Þ ¼ 0; ð102Þ
dM4ðL4Þ ¼ 0: ð103Þ
(ii) Pinned at both ends (simply supported)
dw1ð0Þ ¼ 0; ð104Þ
dw4ðL4Þ ¼ 0; ð105Þ
dM1ð0Þ ¼ 0; ð106Þ
dM4ðL4Þ ¼ 0: ð107Þ
(iii) Clamped column at one end, pinned at the other
dw1ð0Þ ¼ 0; ð108Þ
du1ð0Þ ¼ 0; ð109Þ
dw4ðL4Þ ¼ 0; ð110Þ
dM4ðL4Þ ¼ 0: ð111Þ
(iv) Clamped at both ends
dw1ð0Þ ¼ 0; ð112Þ
du1ð0Þ ¼ 0; ð113Þ
dw4ðL4Þ ¼ 0; ð114Þ
du4ðL4Þ ¼ 0: ð115Þ
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The total set of equations consist of 18 continuity conditions Eqs. (86)–(97) and six boundary conditions;
totally 24 equations for 24 unknowns: ai, bi, Ai, Bi, Ci, Di, i = 1, . . . , 4. We are interested only in non-trivial
solutions, where all the parameters are not equal to zero. The equations are linear and homogenous, thus they
can be written in the form
Ka ¼ 0;
where K denotes the 24 · 24 matrix of coefficients and a the vector of 24 unknowns. For solutions, where
a 5 0, the lowest value of F is sought, such that detK = 0. The lowest pair (F, e) is sought such that the deter-
minant of the system of equations vanishes with the determinant of the cross-sectional tangent matrix being
positively definite (c > 0). The analytical expressions for detK are unfortunately too complicated to be pre-
sented as closed formulae (Wolfram, 2003); some of the results, obtained by the above algorithm are presented
in next section. For further details on calculus of critical points and their classification see the paper by Planinc
and Saje (1999).
5. Results and discussion

The critical force of the delaminated column is dependent on various parameters. Here, the influence of the
delamination length, delamination position, shear modulus and slenderness ratio is analyzed. Some of the
results and parameters are normalized in order to present the buckling behaviour and the influence of various
parameters more evidently. In all the examples the obtained critical force, e.g. the buckling load, is normalized
with respect to the value of the classical Euler’s result. In order to study the shear effect the elastic to shear
modulus ratio has been varied. The present results are presented for:

(i) E/G = 0; shear incompressible material, commonly taken in studying the buckling and post-buckling
behaviour,

(ii) E/G = 2; typical for isotropic materials, and
(iii) E/G = 6; which is typical for composite materials, such as fibre-glass.

As the ratio is much larger for composite materials, in which the phenomena of delamination is one of typ-
ical failure modes due to production procedures, the shear effect could not be neglected for such materials.
Results will be presented and discussed with respect to slenderness of the column, defined by
k ¼ L

ffiffiffiffi
A
Iy

s
:

Some of the present results are compared to the results in the available literature. Then thorough parametric
studies are presented according to the present formulations for each type of supports.
5.1. Parametric studies for simply supported beam

To compare the present model with other authors we have employed the shear incompressible material,
material with E/G = 6 and a modification (simplification) of the present formulation. Comparisons of normal-
ized buckling loads of the simply supported beam are shown in Tables 1 and 2. The present results are pre-
sented for slenderness ratio k = 17.3. It is interesting to observe that for shear incompressible material the
present formulation gives larger values comparing to the classical laminate theories. The reason stems from
the exact non-linear formulation employed in the present formulation. In order to validate the present results
with respect to classical theories a modified buckling parameter
~k2 ¼ �RX

d



Table 1
Normalized buckling loads of simply supported beam: comparison table 1

d.l. l = 0 l = 0.2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Simitses et al. (1985) 0.9997 0.9912 0.9343 0.7867 0.9997 0.9902 0.9198 0.7264

MSRao and Shu (2004) 0.9997 0.9912 0.9343 0.7867

Lim and Parsons (1993) 0.9997 0.9902 0.9198 0.7264
Lim and Parsons (1993) 0.9997 0.9902 0.9198 0.7264

Present simplified 0.99974 0.99122 0.93432 0.78673 0.99972 0.99023 0.91981 0.72636
Present G = inf 1.03498 1.02585 0.96495 0.80822 1.03496 1.02478 0.94946 0.74460
Present G = E/6 0.85176 0.84543 0.80285 0.68970 0.85174 0.84469 0.79190 0.64223

d.l., relative delamination length; l, relative vertical position of delamination with respect to centroid.

Table 2
Normalized buckling loads of simply supported beam: comparison table 2

d.l. l = 0.4 l = 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Simitses et al. (1985) 0.9997 0.9827 0.8149 0.5118 0.9723 0.2494 0.1109 0.0624

MSRao and Shu (2004) 0.9997 0.9852 0.9149 0.5118 0.9723 0.2494 0.1109 0.0624

Present simplified 0.99965 0.98515 0.81492 0.51179 0.97228 0.24938 0.11087 0.06237
Present G = inf 1.03488 1.01934 0.83803 0.52071 1.00554 0.25146 0.11127 0.06250
Present G = E/6 0.85169 0.84092 0.71163 0.46726 0.83131 0.23784 0.10847 0.06159

d.l., relative delamination length; l, relative vertical position of delamination with respect to centroid.
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has been employed. For such simplification the influence of the axial strain in primary configuration in ne-
glected, which is common to classical approach. Our results for modified buckling parameter completely agree
with other authors. The present approach for incompressible material shows that the classical approach is con-
servative. This is not the case when the shear effect is considered. The present theory gives lower relative crit-
ical forces even for relatively slender beam. The shear effect is studied in detail in the next section. Note also
that the solution, based on Reissner’s beam theory, considers the extensional and bending stiffness coupling
and transverse shear effect. The extensional and bending stiffness coupling results in larger critical forces with
respect to classical Euler’s solution when transverse shear is neglected (G =1).

As expected the relative buckling load reduces by increasing the delamination length and/or by moving the
delamination towards the cross-section’s boundary. The effect of delamination length and relative vertical
position on normalized buckling load is presented by a surface in Fig. 2. It is evident from Fig. 2, that the
relationship between buckling load and both parameters is non-linear. For relatively short delamination
(d.l. 6 0.3), the normalized buckling load is mostly independent on their vertical position. This is not the case
only for the delaminations that are very close to the boundary (l > 0.8); for which normalized buckling load
rapidly decreases. For relatively longer delaminations even relatively small vertical asymmetry of delamination
results in considerable reduction of normalized buckling load. Note that in Fig. 2 elastic to shear ratio is taken
to be 6 and that the slenderness ratio is approximately 70. The results for lower slenderness are quite different.
In order to make comparisons more clear results for various shear moduli are presented as two-dimensional
charts in Figs. 3 and 4.

In Fig. 3, the normalized buckling load is presented for various relative delamination lengths. Nine cases
are considered introducing different shear moduli and delamination vertical positions. From all the charts
we observe that by increasing the delamination length the relative buckling load decreases. However, the
reduction of relative buckling load is non-linear and is strongly dependent on the delamination position.
For symmetric delamination the slenderness-load curves are almost identical for d.l. 6 0.3; for lager delami-
nation lengths the distance between the curves raises. For delamination of the column at the quarter of the



Fig. 2. Relative critical force vs. relative delamination length and vertical position.
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height (l = 0.5) first three curves are still very close together, but the distances between the other change. This
is even more evident for the delamination at 10% of the height (l = 0.8), where the normalized critical forces
reduce most rapidly between d.l. = 0.2 and d.l. = 0.3. Results for larger delaminations are, however, more clo-
ser to each other.

In Fig. 4, the normalized buckling load is presented for various relative delamination vertical positions.
Nine cases are considered introducing different shear moduli and relative lengths of delamination. Again it
could be confirmed that relatively short delamination are insensitive to moderate asymmetry of delamination
position. This is not the case for longer delaminations, where the vertical asymmetry seems to be crucial.

Another important issue, evident form Figs. 3 and 4, is the relationship between the slenderness ratio and
the shear effect. The shear effect could not be neglected for relatively stocky columns (k < 50). When the mate-
rial is shear incompressible (G =1), the relative buckling load is almost independent on the slenderness. The
slight increase in relative buckling load for stocky columns is due to the non-linear model where the axial
deformation is properly taken into account. For typical isotropic materials (G = E/2), the shear effect is
observed for thick columns (k < 20) and relatively short delaminations. The shear effect reduces the relative
buckling load. When the composite material is applied, the shear to elastic modulus is even larger, which
results in considerably lover critical forces for slenderness lower than 60. The effect is stronger for shorter
delamination positioned nearer the symmetry axis of the cross-section. The shear effect could reduce the nor-
malized buckling load for more than 20% when slenderness ratio is approximately 15.
5.2. Study of various boundary conditions

The parametric studies presented above have been preformed for simply supported column. Different
boundary conditions, especially non-symmetric boundary conditions can have considerable influence on the
quantitative and qualitative buckling of the delaminated column. In all of the results columns with slenderness
ratio 34.6 and longitudinally symmetrical delamination were studied. Different support types were analyzed
with respect to transverse shear effect (introduced by shear modulus G), vertical delamination position l,
and delamination length d.l. In Table 3, the comparison between different support types is shown for various
combinations of parameters.

Results for different support types, although normalized with respect to Euler’s critical force for the same
boundary conditions, differ considerably. The variation of the analyzed parameters could have substantially



Fig. 3. Simply supported beam: relative critical force vs. slenderness ratio for various delamination lengths (d.l.), shear moduli (G) and
delamination positions (l).
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dissimilar values when different boundary conditions are applied. It is common for all the support types that
by increasing the delamination length the relative critical force is decreased. By increasing the shear modulus
the relative critical force is increased in all the cases. For most cases the relative critical force is decreased by
increasing the vertical asymmetry of delamination (parameter l). It is important to observe that this is not
always the case when asymmetrical boundary conditions are applied (clamped–pinned and cantilever column).
For all the parameter combinations the highest relative buckling load is almost always obtained when the col-
umn is clamped only at one end, thus cantilever column is the most conservative for variations of parameters.
On the other hand the clamped–pinned column gives the lowest results for critical force when analyzing rel-
atively short delaminations near the neutral axis. For longer delaminations and higher values of l clamped–
clamped column gives considerably lower results as the clamped–pinned one.



Fig. 4. Simply supported beam: relative critical force vs. slenderness ratio for various delamination positions (l), shear moduli (G) and
delamination lengths (d.l.).
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Buckling mode shapes for various boundary conditions are presented in Fig. 5. We should point out that
for all cases the matrix rank of the entire set of equations was equal to 23 at the critical load. Thus, a single
eigenvector defines the corresponding buckling mode. We could agree from Fig. 5 that the modes could be
classified to global, where the buckling of entire column is dominant with respect to delamination, local, where
only delamination occurs, and mixed, where both global and local buckling take place. Note that this classi-
fication is based entirely on the appearance of buckling shapes and has not been defined theoretically. Note
also that by analyzing the matrix rank of boundary and continuity conditions separately this phenomenon
could not be described, as for all the cases the separated ranks were 6 and 18, respectively. We could observe
that vertically symmetrical delaminations have only minor affect on the buckling shapes; the global buckling
occurs. By reducing the height of the layers, the delamination appears together with global buckling, but for
very thin and long delaminations only the thin layer buckles, which results in local buckling shape. The com-
parison between various boundary conditions shows considerable dissimilarities in mode shapes for otherwise
identical columns. We should point out that for relatively short delaminations the longitudinal asymmetry
could considerably affect the global mode shape, as observed for clamped–clamped beam in Fig. 5. Note also
that the transverse shear does not affect the buckling mode shapes (it affects only the magnitudes of buckling
forces), thus the comparisons are not presented here.
5.3. Study of longitudinal asymmetry

The shear effect is only rarely considered in delamination models. Here we compare the results of the pres-
ent theory to the ones obtained by Chen (1991) for the beam clamped at both ends. In Chen (1991) the shear
deformation parameter introduced is dependent on length to thickness ratio. In present approach the shear



Table 3
Normalized buckling loads for various support types

G l d.l. Pinned–pinned Clamped–clamped Clamped–pinned Clamped-free

E/6 0 0.2 0.9534 0.8487 0.8732 0.9827
E/6 0 0.5 0.9289 0.6129 0.5878 0.9114
E/6 0 0.8 0.7575 0.3293 0.4107 0.7355

E/2 0 0.2 0.9885 0.9537 0.9378 0.9921
E/2 0 0.5 0.9623 0.6690 0.6153 0.9195
E/2 0 0.8 0.7797 0.3459 0.4241 0.7408

1 0 0.2 1.0081 1.0305 0.9777 0.9970
1 0 0.5 0.9808 0.7060 0.6312 0.9237
1 0 0.8 0.7919 0.3556 0.4316 0.7435

E/6 0.2 0.2 0.9534 0.8483 0.8763 0.9831
E/6 0.2 0.5 0.9250 0.5137 0.6126 0.9215
E/6 0.2 0.8 0.7013 0.2318 0.3849 0.7644

E/2 0.2 0.2 0.9885 0.9532 0.9426 0.9928
E/2 0.2 0.5 0.9580 0.5534 0.6445 0.9304
E/2 0.2 0.8 0.7204 0.2402 0.3971 0.7708

1 0.2 0.2 1.0081 1.0299 0.9841 0.9978
1 0.2 0.5 0.9764 0.5786 0.6631 0.9350
1 0.2 0.8 0.7308 0.2448 0.4037 0.7741

E/6 0.8 0.2 0.9283 0.2380 0.4651 0.9866
E/6 0.8 0.5 0.1584 0.0396 0.0775 0.6325
E/6 0.8 0.8 0.0622 0.0156 0.0304 0.2486

E/2 0.8 0.2 0.9616 0.2467 0.4822 0.9964
E/2 0.8 0.5 0.1593 0.0399 0.0780 0.6365
E/2 0.8 0.8 0.0623 0.0156 0.0305 0.2492

1 0.8 0.2 0.9802 0.2516 0.4918 1.0014
1 0.8 0.5 0.1598 0.0400 0.0782 0.6385
1 0.8 0.8 0.0624 0.0156 0.0305 0.2495

d.l., relative delamination length; l, relative vertical position of delamination with respect to centroid.
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effect is applied directly with shear modulus G. The shear deformation parameter 0.2 from Chen (1991) is thus
adequately replaced by elastic to shear modulus ratio. For the present length to thickness ratio h/L = 0.1 the
size of E/G, accordant to Chen (1991), is 6.8. Tables 4 and 5 show good agreement between both results (up to
three significant digits). The differences stem from different approach applied here with respect to the one in
Chen (1991). Note that the delamination is normally positioned to the middle of the beam’s length and dif-
ferent thicknesses are studied. Our results show that the longitudinal position of delamination can be of con-
siderable influence. The present results in Tables 4 and 5 are shown for L1:L4 = 1:1, L1:L4 = 1:2 and
L1:L4 = 1:3. We can observe that the results for longitudinally symmetric delamination (L1 = L4) can be
non-conservative and the proper consideration of delamination position can be of great importance.

The phenomenon of relative critical force reduce by asymmetrical longitudinal delamination position has
been studied for columns with slenderness ratio 35 and several vertical delamination positions. The transverse
shear effect was studied by taking different values of shear moduli (G =1 and G = E/6). In the study sym-
metric delamination was compared to the cases with delamination positioned at 1/4 and 1/8 of the non-del-
aminated length (L1:L4 = 1:3, L1:L4 = 1:7), respectively. Various boundary conditions were taken into
account.

The results for clamped–clamped columns are shown in Fig. 6. We can observe that the increase of longi-
tudinal asymmetry affects the most the columns with medium-sized delaminations when the delamination is at
the centroid of the column (l = 0). For delaminations asymmetric to the height of the column, the effect is
reduced and can be neglected for larger values of l. It is however interesting that by vertically positioning
the delamination towards the boundary of the cross-section shorter delaminations indicate to be more sensi-



Table 4
Normalized buckling loads of clamped–clamped beam: comparison table 1

d.l. l = 0 l = 0.2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Chen (1991) 0.99556 0.85606 0.54114 0.35142 0.99504 0.7883 0.41239 0.24281
Chen + shear (Chen, 1991) 0.83025 0.73092 0.48829 0.32834 0.82989 0.68094 0.38097 0.23156

Present 1.03049 0.87316 0.55113 0.35558 1.02994 0.80988 0.41814 0.24478
Present + shear, 1:1 0.83232 0.70267 0.48558 0.32633 0.83195 0.67951 0.37861 0.23031

Present + shear, 1:2 0.76136 0.57163 0.46955 0.32590 0.76880 0.58756 0.37765 0.23034
Present + shear, 1:3 0.72973 0.52076 0.45151 0.32536 0.73942 0.54067 0.37630 0.23038

d.l., relative delamination length; l, relative vertical position of delamination with respect to centroid.

Fig. 5. Buckling modes of various delaminated columns.

Table 5
Normalized buckling loads of clamped–clamped beam: comparison table 2

d.l. l = 0.4 l = 0.8

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Chen (1991) 0.99239 0.53138 0.24353 0.13901 0.24953 0.06242 0.02776 0.01562
Chen + shear Chen (1991) 0.82804 0.48033 0.23222 0.13525 0.23767 0.06165 0.02761 0.01557

Present 1.02710 0.54101 0.24551 0.13965 0.25162 0.06255 0.02778 0.01563
Present + shear, 1:1 0.83005 0.47763 0.23096 0.13473 0.23637 0.06153 0.02758 0.01556

Present + shear, 1:2 0.78610 0.47873 0.23120 0.13476 0.23640 0.06154 0.02758 0.01556
Present + shear, 1:3 0.76335 0.48034 0.23151 0.13480 0.23644 0.06154 0.02758 0.01556

d.l., relative delamination length; l, relative vertical position of delamination with respect to centroid.
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tive on longitudinal position. The qualitative influence of longitudinal delamination position is analogous
when the shear incompressible material is applied, but the quantitative values of relative critical forces (dotted
lines) can be non-conservative, especially for shorter delaminations. Note that due to symmetry of boundary



Fig. 6. Clamped–clamped column: relative critical force vs. delamination length for various delamination longitudinal positions.

Fig. 7. Clamped–pinned column: relative critical force vs. delamination length for various delamination longitudinal positions.
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conditions the identical results are obtained for delaminations with L1:L4 = 3:1 and L1:L4 = 7:1, respectively.
For non-symmetric boundary conditions no such symmetry of results according to the mid-span of the beam
is expected, as we will confirm in further examples.

Results for columns, clamped at one end, pinned at the other, are shown in Fig. 7. From Fig. 7 it is obvious
that the longitudinal delamination position could have considerable influence on buckling loads particularly
for vertically symmetrical delaminations and moderate vertical asymmetry (l < 0.5). In contrast to previous
example the delamination centered at mid-span of the column’s length does not give the largest buckling loads.
Generally by moving the delamination from the clamped end (x = 0) to the pinned one (x = L), the relative
critical force raises. It is, however, interesting to observe that relatively short delaminations when positioned
closer to mid-span (L1:L4 = 3:1) can give larger buckling loads as when positioned nearer the pinned end
(L1:L4 = 7:1). The same phenomenon, but not so distinctive in values of relative buckling loads, is observed
by moving the delamination to the clamped end. The comparisons between more realistic (solid line) and shear
incompressible (dotted line) material show completely analogous behaviour of shear incompressible column
with respect to the longitudinal delamination position. On the other hand, the values of relative critical forces
can be non-conservative when transverse shear is neglected.

Our last example is the most conservative one as the various parameters, studied in previous examples, have
the lowest influence on the buckling loads. The column is now clamped at one end, free at the other (cantilever
column). The delamination longitudinal position and transverse shear have only slight influence for this type



Fig. 8. Cantilever column: relative critical force vs. delamination length for various delamination longitudinal positions.
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of boundary conditions (see Fig. 8). Delamination length and vertical position have substantial influence, but
comparing to other examples their effect is lower. The most interesting issue, observed from Fig. 8, is that in
contrast to previous example by moving the delamination from the clamped end (x = 0) to the free one the
relative critical forces are reduced. This is in accord with the expectation that the delamination in the neigh-
borhood of the clamped end would have the lowest effect.
6. Conclusions

We presented the analytical approach to the buckling analysis of the asymmetric delaminated beam con-
sidering the shear effect. The essential points of the present studies are:

(i) The present formulation agrees well with the classical results for shear incompressible material.
(ii) The dependence of the buckling load on delamination length and position is strongly non-linear.

(iii) The shear effect can be substantial and cannot be neglected even for isotropic material when the beams
are stocky.

(iv) For composite materials the shear effect is substantial for low to moderate slenderness ratio. Classical
approach can be most non-conservative for such cases.

(v) It is recommended that for materials with high elastic to shear modulus ratio the shear effect is properly
considered.

(vi) The obtained and presented results can on behalf of their exactness serve as a benchmark for numerical
methods.

Post-critical behaviour, geometric imperfections and non-linearity of material non-analyzed in the present
paper are the subject of further studies.
Appendix A. Shear incompressible material

We will prove that for G =1, the shear dependent formulation reduces to exact formulation of shear
incompressible material. When the shear deformations can be neglected, the governing equations read:
du0 � de ¼ 0; ð116Þ
dw0 þ ð1þ eÞdu ¼ 0; ð117Þ
du0 � dj ¼ 0; ð118Þ
dR0X ¼ 0; ð119Þ
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dR0Z ¼ 0; ð120Þ
dM 0 þ RX dw0 � ð1þ eÞdRZ ¼ 0; ð121Þ
C11deþ C12dj� dRX ¼ 0; ð122Þ
C21deþ C22dj� dM ¼ 0: ð123Þ
After procedure analogous to the one in Section 3.3, Eq. (60) is obtained once again, however the parameter k2

is now described by
k2 ¼ �RX

d
ð1þ eÞ; ð124Þ
but the general form of the solution (61) remains the same.
From (117) and (118) we have
du ¼ � 1

1þ e
dw0 ¼ � 1

1þ e
kðA cos kx� B sin kxÞ þ C½ �; ð125Þ

dj ¼ � 1

1þ e
dw00 ¼ 1

1þ e
k2ðA sin kxþ B cos kxÞ: ð126Þ
First derivative of (122) yields differential equation for axial displacements:
C11du00 � C12

1

1þ e
dw000 ¼ 0:
Its solution reads
duðxÞ ¼ aþ bx� C12

C11

1

1þ e
kðB sin kx� A cos kxÞ:
From (116) we now have
de ¼ b� C12

C11

1

1þ e
k2ðA sin kxþ B cos kxÞ:
After inserting de and dj into (122) and (123) and some simplification we get
dRX ¼ C11b; ð127Þ

dM ¼ C21bþ
1

1þ e
dk2ðA sin kxþ B cos kxÞ: ð128Þ
Inserting the expressions for dM, dw and d RZ into (121) results in
dRZ ¼
1

1þ e
RX C: ð129Þ
The comparison shows the complete analogy between no-shear and shear theory, where the shear effect can be
fully considered only by proper modification of the buckling parameter k.
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