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The compatibility between a composite beam cross-sectional analysis based on the varia-
tional asymptotic approach, and a helicopter rotor blade model which is part of a compre-
hensive rotorcraft analysis code is examined. It was found that the finite element
cross-sectional analysis code VABS can be combined with a moderate deflection rotor blade
model in spite of the differences between the formulations. The new YF/VABS rotor blade
model accounts for arbitrary cross-sectional warping, in-plane stresses, and moderate
deflections. The YF/VABS composite rotor blade model was validated against experimental
data and various rotor blade analyses by examining displacements and stresses under sta-
tic loads, as well as aeroelastic stability of a composite rotor blade in hover, and forward
flight vibratory hubloads of a four bladed composite rotor.
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1. Introduction

Accurate modeling of composite helicopter rotor blades is an important element in the development of comprehensive
rotorcraft analysis codes. The composite rotor blade is a long and slender beam type structure subject to non-classical effects
such as transverse shear deformation, geometric nonlinearities, cross-sectional warping, and elastic coupling due to material
anisotropy. Over the past 25 years, significant advances have been made toward accurate modeling of composite blades with
arbitrary cross-sectional geometry and material distribution. Particularly, Hodges and coworkers (Hodges, 2006; Danielson
and Hodges, 1987; Hodges et al., 1992; Cesnik and Hodges, 1997; Popescu and Hodges, 1999) have developed a beam model
which accounts for all of the non-classical effects mentioned above, while requiring significantly less computational effort
than a direct three dimensional (3D) solution based on a nonlinear finite element discretization of the structure.

In the approach developed by Hodges et al., dimensional reduction of the 3D elasticity equations representing the slender
structure is performed by means of an asymptotic approximation, which results in a 1D beam model. The dimensional reduc-
tion is based on the presence of a small parameter associated with the slender structure, namely the inverse of the blade’s
aspect ratio, which is used to split the 3D structural dynamic problem into two independent problems with different spatial
scales: a 2D problem at the cross-section, and a 1D problem along the longitudinal dimension. The 1D problem defines the
beam equations of motion, given in terms of 1D deformations – i.e. axial, bending, torsion, and shear deformation – under
applied loads, while the solution of the 2D problem provides cross-sectional stiffness and inertia constants which depend on
the material distribution and cross-sectional geometry. Since the 1D beam equations of motion are based on geometrically
exact kinematics, the formulation is appropriate for large displacement analysis. The cross-sectional coefficients needed as
inputs to the 1D beam solver come from the 2D finite element code VABS (variational asymptotic beam sectional analysis),
. All rights reserved.
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which accounts for arbitrary in and out-of-plane cross-sectional warping. Although warping displacements are much smaller
than the 1D beam deformations, accurate modeling of the warping is important since the stress field is a function of warping
derivatives which may not be small (Hodges, 2006). The work by Hodges et al. represents the state of the art in computa-
tionally efficient structural modeling of a composite rotor blade. Detailed reviews of structural modeling of helicopter rotor
blades can be found in Hodges (1990, 2006) and Jung et al. (1999). Note that a substantial body of research on geometrically
exact beam theory exists. This research has been motivated by applications other than helicopter rotor blade modeling, e.g.
Simo (1985), Simo and Vu-Quoc (1986), Bori and Merlini (1986), Cardona and Geradin (1988), Crisfield (1990), Simo et al.
(1995), and Ibrahimbegovic et al. (1995). However, a detailed review of the subject is beyond the scope of this paper.

In parallel to the emphasis on the structural aspect of rotor blade modeling carried out by Hodges and his associ-
ates, research on other aspects which are equally important for comprehensive rotorcraft analysis, such as unsteady
aerodynamics, active control of noise and vibration, global optimization of rotor blades for vibration reduction, and ac-
tive/passive optimization for noise and vibration reduction, was conducted by Friedmann and coworkers (Myrtle and
Friedmann, 2001; Patt et al., 2006; Glaz et al., 2008a,b). Other comprehensive rotorcraft analysis codes are discussed
in Friedmann and Hodges (2003) and Friedmann (2004). The rotor blade analysis developed by Friedmann and his
associates has a composite blade modeling capability described in Yuan and Friedmann (1995, 1998) and Kosmatka
(1986). In this composite blade model, higher order terms associated with the strain–displacement relations are ne-
glected using an ordering scheme, which results in a 1D kinematical formulation appropriate for moderate deflection
analysis only. In the moderate deflection analysis, blade displacements up to 10–15% of the blade radius can be accu-
rately modeled. The moderate deflection simplification is justified for composite helicopter rotor blade analysis since
rotor blades are designed from low stress and long-cycle fatigue considerations, while large displacements imply larger
strains and thus higher stresses and increased fatigue. Therefore, it is unlikely that a well designed rotor blade will be
subject to large displacements.

Although the cross-sectional analysis utilized in Yuan and Friedmann (1995, 1998) and Kosmatka (1986) can account for
arbitrary cross-sectional geometries and material distributions, in-plane stresses and warping were neglected. In VABS, the
in-plane stresses are not neglected since it has been shown that the uniaxial stress assumption can lead to significant errors
in the torsional rigidity for some composite cross-sections (Yu et al., 2002b). Furthermore, the out-of-plane warping defor-
mation associated with the structural model from Yuan and Friedmann (1995, 1998) and Kosmatka (1986) is based on the St.
Venant solution of a tip-loaded prismatic beam, as opposed to the more general warping displacements modeled in VABS.
Another advantage of VABS is that the variational-asymptotic approach provides a powerful tool for extending basic theory,
e.g. the solution of the coupled electroelastic beam problem, which is applicable to rotor blades with embedded piezocom-
posites, and the treatment of non-classical cross-sectional deformations associated with rotor blades with adaptive airfoils
(Palacios and Cesnik, 2005, 2008). In both cases, however, the 1D beam equations needed to be modified to account for the
additional effects.

Clearly, it is desirable to upgrade the blade model in the Friedmann et al. analysis code with VABS. Although VABS was
designed to be used with the geometrically exact formulation described in Hodges (2006), it has been used to calculate the
cross-sectional properties needed as inputs for other rotorcraft analysis codes (Hodges et al., 2007; Murugan et al., 2007).
However, there are two differences associated with the blade model developed by Yuan and Friedmann and the other models
with which VABS has been coupled: (1) the amplitude of the out-of-plane warping is represented as a spanwise degree of
freedom in the Yuan and Friedmann (YF) model and (2) there are cross-sectional constants associated with the YF model
which are not computed in the VABS formulation. Furthermore, the justification for using VABS, as well as the capabilities
and limitations of the resulting blade models, have not been examined in the existing literature.

The overall objectives of this paper are: (a) demonstrate that VABS can be used as the cross-sectional analysis associated
with the YF blade model despite the differences between the formulations and without extensive modification to the numer-
ous underlying subroutines associated with comprehensive rotorcraft analysis codes, and (b) to provide a clear methodology
and complete description of the implications of incorporating VABS into existing helicopter comprehensive analysis codes.
The YF blade model combined with VABS coefficients is designated YF/VABS, and is validated in this paper by:

(1) Demonstrating that displacement and stresses calculated by the YF/VABS compare well with experimental results and
results generated by a geometrically exact beam model developed for use with VABS, as long as displacements are in
the moderate deflection regime.

(2) Comparing the YF/VABS model with other rotorcraft analyses for several helicopter applications such as composite
rotor blade aeroelastic stability analysis in hover and computation of 4/rev forward flight vibratory hub shears and
moments of a four bladed composite rotor.

2. Comparison of cross-sectional analyses

In order to determine the compatibility between the cross-sectional properties calculated by VABS and those needed as
inputs to the YF blade model, it is useful to understand the similarities and differences between the two formulations. There-
fore, this section provides comparisons between the strain relations, constitutive relations, the resulting strain energy
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relations, and the kinetic energy relations associated with the two formulations. The strain and kinetic energy relations are
functions of the cross-sectional coefficients associated with each model.

2.1. Strain relations

Consider a beam idealized as a reference line, with a cross-section depicted in Fig. 1. A coordinate system parallel to the
orthogonal unit vectors bi for i ¼ 1;2;3 is fixed at each point along the undeformed reference line, where b1 is tangent to the
reference line and b2;b3 are orthogonal to b1. The coordinates x2 and x3 correspond to the b2;b3 unit vectors respectively,
while x1 denotes the axial location of the cross-section.

From Yuan and Friedmann (1995), the non-zero components of the strain tensor in the bi system associated with the YF
blade model are given by
CðYÞ11 ¼ c11 þwðYÞ1;1 þ k1 x3wðYÞ1;2 � x2wðYÞ1;3

� �
� x2ð�j3 � 2c12;1 þ 2k1c13Þ � x3ð��j2 � 2c13;1 � 2k1c12Þ þ

1
2
ðx2

2 þ x2
3Þ�j2

1; ð1Þ

2CðYÞ12 ¼ 2c12 þwðYÞ1;2 � x3 �j1; ð2Þ

2CðYÞ13 ¼ 2c13 þwðYÞ1;3 þ x2 �j1; ð3Þ
where the ðYÞ superscript denotes association with the YF blade model and ð Þ;i denotes a derivative with respect to the xi

coordinate. In Eqs. (1)–(3), the 1D axial and shear strain measures at the reference line, which are functions of the x1 coor-
dinate only, are given by c11, c12, and c13, respectively. The initial twist is denoted by k1. The out-of-plane warping displace-
ments w1 are functions of x1, x2, and x3. In the YF model,
wðYÞ1 ðx1; x2; x3Þ ¼ aðx1ÞWðx2; x3Þ; ð4Þ
where aðx1Þ is the unknown 1D warping amplitude and Wðx2; x3Þ is the 2D warping shape function. The warping shape func-
tions are based on the St. Venant solution of a tip-loaded prismatic beam (Kosmatka, 1986) and thus are known for a given
cross-section.

The 1D ‘‘moment strains” (Hodges, 2006), �ji, are with respect to a coordinate system parallel to the Ti basis vectors shown
in Fig. 2 and represent the differences between the deformed and initial states of the twist and bending curvatures. The elas-
tic twist is given by �j1, while �j2 and �j3 are the moment strains corresponding to bending. Since the helicopter rotor blade is
assumed to have no initial curvature in the YF model, the bending moment strains are equal to the deformed bending
curvatures.

In the VABS formulation, the moment strains are written with respect to the Bi coordinate system and denoted by ji. The
Ti and Bi systems differ due to transverse shear deformation since T1 is tangent to the deformed reference line, while B1 is
normal to the deformed cross-section. With the assumption of no initial bending curvature, the elastic twist and the de-
formed bending curvatures in the Ti system are transformed to the Bi coordinate system by (Yu et al., 2002a)
�j1 ¼ j1; ð5Þ
�j2 ¼ j2 � 2c13;1 � 2k1c12; ð6Þ
�j3 ¼ j3 þ 2c12;1 � 2k1c13: ð7Þ
The YF strain relations can be rewritten in a form which is consistent with the VABS formulation by substituting Eqs. (5)–(7)
into Eqs. (1)–(3), resulting in
CðYÞ11 ¼ c11 þwðYÞ1;1 þ k1 x3wðYÞ1;2 � x2wðYÞ1;3

� �
� x2j3 þ x3j2 þ

1
2

x2
2 þ x2

3

� �
j2

1; ð8Þ

2CðYÞ12 ¼ 2c12 þwðYÞ1;2 � x3j1; ð9Þ

2CðYÞ13 ¼ 2c13 þwðYÞ1;3 þ x2j1: ð10Þ
Note that CðYÞ22 ¼ CðYÞ23 ¼ CðYÞ33 ¼ 0 since in-plane warping is neglected in the YF model.
b3
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b1

undeformed reference line

Fig. 1. Undeformed coordinate system.
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Fig. 2. Coordinate systems which differ due to transverse shear deformations.
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From Hodges (2006), the strain relations corresponding to VABS’ ‘‘generalized Timoshenko model” with the ‘‘trapeze
effect” are given by
CðVÞ11 ¼ c11 þwðVÞ1;1 þ k1 x3wðVÞ1;2 � x2wðVÞ1;3

� �
� x2j3 þ x3j2 þ

1
2

x2
2 þ x2

3

� �
j2

1 þH:O:T:; ð11Þ

2CðVÞ12 ¼ 2c12 þwðVÞ1;2 � x3j1 þ f12 wðVÞ2 ;wðVÞ3

� �
þH:O:T:; ð12Þ

2CðVÞ13 ¼ 2c13 þwðVÞ1;3 þ x2j1 þ f13 wðVÞ2 ;wðVÞ3

� �
þH:O:T:; ð13Þ

CðVÞ22 ¼ f22 wðVÞ2

� �
þH:O:T:–0; CðVÞ23 ¼ f23 wðVÞ2 ;wðVÞ3

� �
þH:O:T:–0;

CðVÞ33 ¼ f33 wðVÞ3

� �
þH:O:T:–0; ð14Þ
where the ðVÞ superscript denotes association with VABS, fij represent the contributions from the in-plane warping to the
strain field, and H.O.T. refers to higher order terms which are present in the VABS formulation but are not accounted for
in the YF strain relations.

In VABS, the warping displacements are discretized over the cross-section using the finite element approach. The VABS
warping displacements can be written as
wðVÞi ðx1; x2; x3Þ ¼ Sijðx2; x3ÞVjðx1Þ; i ¼ 1;2;3 and j ¼ 1;2; . . . ;NV : ð15Þ
In Eq. (15), Sij are 2D finite element shape functions, Vj are the nodal values of the warping displacement over the cross-sec-
tion, and NV is the number of nodal degrees of freedom. In contrast to the YF formulation, the VABS warping displacements
are not assumed to be in the shape of the St. Venant warping function Wðx2; x3Þ. Since the shape of the warping is not as-
sumed, VABS treats warping displacements in a more general manner than the YF model.

The H.O.T.’s in Eqs. (11)–(13) consist of nonlinearities in the 1D strain measures, such as c2
11 and j2j3 for example, and

couplings between the warping displacements and the 1D strain measures. Such H.O.T.’s were neglected in the derivation of
the YF strain equations. However, 1

2ðx2
2 þ x2

3Þj2
1 was retained in the YF formulation since it accounts for a higher order exten-

sion-torsion coupling known as the ‘‘trapeze effect”, which is known to be important for helicopter rotor blade modeling due
to the large centrifugal forces.

From comparison of Eqs. (8)–(10) with Eqs. (11)–(14), it is clear that there are three differences in the strain relations
associated with the VABS and YF formulations:

(1) VABS treats out-of-plane warping in a more general manner, thus wðVÞ1 –wðYÞ1 .
(2) The effects of in-plane warping on the strain field are accounted for in VABS.
(3) VABS includes higher order couplings between the 1D strain measures, and coupling between the 1D strain measures

and warping displacements, which are neglected in the YF formulation.
2.2. Constitutive relations

The constitutive relation for an anisotropic material is given by
rðVÞ ¼ DCðVÞ; ð16Þ
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where
rðVÞ ¼ ½r11 r12 r13 r22 r23 r33 �T; ð17Þ
CðVÞ ¼ ½C11 2C12 2C13 C22 2C23 C33 �T; ð18Þ
and D is the 6� 6 symmetric compliance matrix. The VABS constitutive relation is based on Eq. (16). In contrast, the YF mod-
el employs the uniaxial stress assumption, i.e. r22 ¼ r23 ¼ r33 ¼ 0. After neglecting the in-plane stresses, the constitutive
relation associated with the YF model is written as
rðYÞ ¼ QCðYÞ; ð19Þ
where
rðYÞ ¼ ½r11 r12 r13 �T; ð20Þ
CðYÞ ¼ ½C11 2C12 2C13 �T; ð21Þ
and Q is a 3� 3 symmetric matrix. Expressions for Q in terms of the D matrix’s elements can be found in Yuan and
Friedmann (1995). Although the uniaxial stress assumption was considered valid for composite thin-walled structures
in Yuan and Friedmann (1995), it was demonstrated in Yu et al. (2002b) and Hodges (2006) that this simplification
may lead to significant errors in the torsional rigidity of a thin-walled composite boxbeam. Therefore, while the uniaxial
stress simplification may lead to acceptable results for some composite cross-sections, the only way to ensure correct
results for all cases is to employ a formulation, such as the one associated with VABS, which does not neglect in-plane
stresses.

2.3. Strain energy relations

The relation for strain energy, U, is
2U ¼
Z L

0

Z Z
A

CTrdAdx1; ð22Þ
where L is the length of the beam, and A is the cross-sectional area of the structural member. Substitution of Eqs. (4), (8), (9),
(10), and (19) into Eq. (22) gives the strain energy associated with the YF model
2UðYÞ ¼
Z L

0
�T

Y Y�Y dx1; ð23Þ
where
�Y ¼ ½ c11 2c12 2c13 j1 j2 j3 j2
1 a a;1 �T ð24Þ
and Y is a 9� 9 symmetric matrix containing integrals over the cross-section. The elements of Y are needed as inputs for the
YF model, and are computed by the 2D finite element cross-sectional analysis described in Kosmatka (1986). To facilitate a
straight forward comparison with the VABS strain energy relation, Eq. (23) can be rewritten as
2UðYÞ ¼ 2
Z L

0
uðYÞ1 þ uðYÞ2 þ uðYÞa

� �
dx1; ð25Þ
where
uðYÞ1 ¼
1
2

c11

2c12

2c13

j1

j2

j3

2666666664

3777777775

T Y11 Y12 Y13 Y14 Y15 Y16

Y12 Y22 Y23 Y24 Y25 Y26

Y13 Y23 Y33 Y34 Y35 Y36

Y14 Y24 Y34 Y44 Y45 Y46

Y15 Y25 Y35 Y45 Y55 Y56

Y16 Y26 Y36 Y46 Y56 Y66

2666666664

3777777775

c11

2c12

2c13

j1

j2

j3

2666666664

3777777775
; ð26Þ

uðYÞ2 ¼ j2
1 Y17c11 þ 2Y27c12 þ 2Y37c13 þ Y47j1 þ Y57j2 þ Y67j3 þ

Y77

2
j2

1

� �
; ð27Þ

uðYÞa ¼
a
a;1

� 	
Y18 . . . Y88

2 Y89

Y19 . . . Y89
Y99

2

" #
�Y : ð28Þ
The VABS strain energy is a function of the following 1D parameters: c11, 2c12, 2c13, j1, j2, j3, and Vj, i.e.
2UðVÞ ¼ f ðc11;2c12;2c13;j1;j2;j3;VjÞ: ð29Þ
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From Eqs. (23) and (24), it is clear that UðYÞ is similar in form to UðVÞ in the sense that UðYÞ is a function of c11, 2c12, 2c13, j1,
j2, j3, and the 1D warping variable a. However, in VABS the variational asymptotic method is applied in order to obtain an
approximation of UðVÞ which is not a function of the 1D warping variables, i.e.
2UðVÞ ffi 2eU ðVÞ ¼ ~f ðc11;2c12;2c13;j1;j2;j3Þ; ð30Þ
where eU ðVÞ and ~f are the approximations of UðVÞ. The approximation of UðVÞ is obtained by minimizing the strain energy with
respect to warping, which results in warping recovery relations for the nodal displacements Vj. The warping recovery relations
are functions of the 1D strain measures, c11, 2c12, 2c13, j1, j2, and j3.

In the original VABS strain energy UðVÞ, the contribution due to warping is associated with the cross-sectional parameters
multiplying Vj. However, in the approximate VABS strain energy, eU ðVÞ, the contributions from warping are accounted for by a
new set of cross-sectional parameters which multiply c11, 2c12, 2c13, j1, j2, and j3. Therefore, by approximating UðVÞ witheU ðVÞ, the strain energy associated with warping displacements is accounted for by the terms multiplying the 1D strain mea-
sures. Details on the application of the variational asymptotic method and the resulting expressions are given in Chapter 4 of
Hodges (2006). From Hodges (2006), the VABS strain energy is given by
2eU ðVÞ ¼ Z L

0

c11

2c12

2c13

j1

j2

j3

2666666664

3777777775

T H11 H12 H13 H14 H15 H16

H12 H22 H23 H24 H25 H26

H13 H23 H33 H34 H35 H36

H14 H24 H34 H44 H45 H46

H15 H25 H35 H45 H55 H56

H16 H26 H36 H46 H56 H66

2666666664

3777777775

c11

2c12

2c13

j1

j2

j3

2666666664

3777777775
dx1 þ 2

Z L

0

c11

j1

j2

j3

26664
37775

T

c11Aþj1Bþj2Cþj3Dð Þ

c11

j1

j2

j3

26664
37775dx1;

ð31Þ
where A, B, C, and D are symmetric 4� 4 matrices. Note that the strain energy terms associated with A, B, C, and D are higher
order functions of the 1D strain measures than the terms associated with H. The H, A, B, C, and D matrices are output by
VABS. In order to compare with UðYÞ, Eq. (31) can be rewritten as
2eU ðVÞ ¼ 2
Z L

0
uðVÞ1 þ uðVÞ2 þ uðVÞH:O:T:

� �
dx1; ð32Þ
where
uðVÞ1 ¼ 1
2

c11

2c12

2c13

j1

j2

j3

2666666664

3777777775

T H11 H12 H13 H14 H15 H16

H12 H22 H23 H24 H25 H26

H13 H23 H33 H34 H35 H36

H14 H24 H34 H44 H45 H46

H15 H25 H35 H45 H55 H56

H16 H26 H36 H46 H56 H66

2666666664

3777777775

c11

2c12

2c13

j1

j2

j3

2666666664

3777777775
; ð33Þ

uðVÞ2 ¼ j2
1 A22 þ 2B12ð Þc11 þ B22j1 þ 2B23 þ C22ð Þj2 þ 2B24 þ D22ð Þj3½ �; ð34Þ

uðVÞH:O:T: ¼

c11

j1

j2

j3

26664
37775

T

c11Aþ j1Bþ j2Cþ j3Dð Þ

c11

j1

j2

j3

26664
37775� uðVÞ2 : ð35Þ
Using the strain energy relations given in Eqs. (25)–(28) for the YF formulation, and Eqs. (32)–(35) for VABS, a direct com-
parison of the cross-sectional parameters associated with both models can be made. The comparison is organized into three
categories – (1) terms which are present in both model, (2) terms which are present in VABS’ strain energy relation, but are
not accounted for in the YF model, and (3) terms present in the YF model, but are not included in the VABS formulation.

2.3.1. Strain energy terms present in both models
A comparison of Eqs. (26) and (27) with Eqs. (33) and (34) shows that
Yij () Hij for i; j ¼ 1; . . . ;6; ð36Þ
Y17 () A22 þ 2B12; ð37Þ
Y47 () B22; ð38Þ
Y57 () 2B23 þ C22; ð39Þ
Y67 () 2B24 þ D22: ð40Þ
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In Eqs. (36)–(40), ‘‘,” denotes that the cross-sectional parameters multiply the same 1D strain measures. It is important to
use ‘‘,” instead of ‘‘=” because the cross-sectional parameters will not be equal to one another in general. There are two
reasons the cross-sectional parameters in Eqs. (36)–(40) will not be equal:

(1) In the constitutive relations associated with the YF model, the in-plane stresses are neglected; thus Eq. (19) is substi-
tuted into Eq. (22) in order to derive the strain energy relation. However, VABS does not make the uniaxial stress sim-
plification. Therefore, the VABS strain energy relation is obtained by substituting Eq. (16) into Eq. (22).

(2) The 1D warping variables are eliminated from the VABS strain energy formulation, which results in eU ðVÞ. In effect,
VABS accounts for the strain energy due to in and out-of-plane warping in the H, A, B, C, and D matrices, which mul-
tiply the 1D strain measures and are functions of Sij. However, the warping strain energy in the YF model is retained in
terms of the 1D out-of-plane warping amplitude a and the cross-sectional coefficients Yi8 and Yi9, which are functions
of W.

2.3.2. Strain energy terms present in VABS, but not in the YF model
The higher order VABS strain energy terms, uðVÞH:O:T:, are not accounted for in the YF model. The strain energy contribution

from uðVÞH:O:T: is due to the H.O.T.’s retained in the VABS strain relations.

2.3.3. Strain energy terms present in the YF model, but not in VABS
A comparison of Eqs. (27) and (34) shows that VABS does not output cross-sectional coefficients which correspond to Y27,

Y37, and Y77. Such terms were neglected in the VABS strain energy formulation (Hodges, 2006). In addition, VABS does not
calculate cross-sectional properties which correspond to the Yi8 and Yi9 terms present in uðYÞa . Instead, VABS accounts for the
strain energy due to warping within the H, A, B, C, and D matrices.

2.4. Kinetic energy relations

The kinetic energy cross-sectional properties calculated by VABS are given in Eqs. (41)–(46),
m �
Z Z

A
qdA; ð41Þ

mx2 �
Z Z

A
qx2 dA; ð42Þ

mx3 �
Z Z

A
qx3 dA; ð43Þ

Im22 �
Z Z

A
qx2

3 dA; ð44Þ

Im33 �
Z Z

A
qx2

2 dA; ð45Þ

Im23 �
Z Z

A
qx2x3 dA; ð46Þ
where q is the material density. The YF model requires the same kinetic energy cross-sectional parameters given by Eqs.
(41)–(46) as inputs. In addition, the YF model also requires cross-sectional properties associated with the kinetic energy
due to warping velocities (Yuan and Friedmann, 1995). Since warping velocity is neglected in the VABS formulation (Hodges,
2006), VABS will not output cross-sectional properties associated with kinetic energy due to warping.

3. The YF/VABS blade model

In Section 2, the similarities and differences between the two cross-sectional analyses were specified. This section pro-
vides a description of how the similarities can be used to couple VABS with the YF model, and justification for why the dif-
ferences between the cross-sectional formulations do not prevent the coupling. The capabilities and limitations of the YF/
VABS model will be described in terms of the cross-sectional analysis, the solution of the 1D beam displacements, and recov-
ery of cross-sectional warping displacements and stresses.

3.1. Cross-sectional analysis

In order to couple VABS with the YF model, the cross-sectional parameters in the YF strain energy formulation are re-
placed with their VABS counterparts. This implies that the Yij terms in Eqs. (36)–(40) are replaced with the corresponding
right hand side terms. The warping cross-sectional properties, Yi8 and Yi9, as well as Y27, Y37, and Y77 are set to zero since
there are no VABS counterparts. The YF warping cross-sectional coefficients need to be set to zero in order to avoid ‘‘double
counting” of the strain energy due to warping since VABS already accounts for warping in the H, A, B, C, and D matrices. Even
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though strain energy contributions associated with Y27, Y37, Y77, and uðVÞH:O:T: are not accounted for in the YF/VABS model, the
YF/VABS formulation represents an accurate representation of the ‘‘actual” strain energy since the unaccounted for terms are
higher order functions of the 1D strain measures than the terms which are accounted for. For example, Y27 is associated with
the shear-twist coupling j2

1c12, which is higher order than the j1c12 term corresponding to H24.
This process of replacing appropriate coefficients in the YF model with equivalent VABS parameters and setting various

cross-sectional coefficients equal to zero will result in a ‘‘hybrid” strain energy formulation which will be different from UðYÞ

and eU ðVÞ. In certain regards, the YF/VABS hybrid strain energy will be more accurate for composite beam modeling than the
original YF formulation based on the cross-sectional analysis from Kosmatka (1986) since in-plane stresses and warping are
accounted for, and out-of-plane warping is treated in a more general manner by VABS. Furthermore, the loss in accuracy
compared to the original YF and VABS strain energy formulations is due to the neglect of higher order terms, and thus is
expected to be insignificant.

The YF/VABS kinetic energy cross-sectional parameters are taken directly from the VABS outputs for Eqs. (41)–(46) since
the YF model requires these coefficients. The kinetic energy parameters associated with warping velocities are set to zero
since VABS does not account for warping inertia. However, the kinetic energy contribution from warping is not expected
to be significant. Therefore, since higher order strain energy terms and warping inertia are not considered to be significant,
the differences between the two formulations do not prohibit coupling of VABS with the YF model.

3.2. Solution of 1D beam displacements

Using the VABS cross-sectional outputs as inputs to the YF model based on the procedure described above does not re-
quire modification of the 1D kinematics associated with the YF model. Thus, upgrading the cross-sectional analysis does not
require significant modification to the rotorcraft analysis code since only the inputs to the blade model have been modified.
This implies that the strain–displacement relations employed in Yuan and Friedmann (1995) are retained, and the 1D beam
displacements – axial, bending, torsion, and shear deformation – are solved for by the finite element method utilized in the
original YF model. Since the strain–displacement relations are based on the ordering scheme described in Yuan and
Friedmann (1995), the YF/VABS model is only valid for moderate deflection analysis, which is sufficient for most helicopter
rotor blade applications. Comprehensive rotorcraft codes are usually developed over extensive time periods (years), thus
substantial modification of such codes is a complex and time consuming task. Therefore modifying the numerous subrou-
tines associated with an existing complicated analysis code in order to incorporate a more general geometrically exact 1D
kinematic formulation is not justified.

3.3. Recovery of cross-sectional warping displacements

Since Yi8 and Yi9 are set to zero in the YF/VABS model, the out-of-plane warping amplitude a is eliminated from the finite
element discretized equations of motion. Therefore, warping must be calculated using the VABS warping recovery relations.
The warping recovery relations approximate Vj as functions of c11, 2c12, 2c13, j1, j2, and j3 using the variational asymptotic
approach (Hodges, 2006). In the YF/VABS model, warping displacements are obtained from the VABS warping recovery rela-
tions as follows:

(1) The beam 1D displacements are solved for using the finite element approach.
(2) The 1D strain measures are recovered by substituting the displacements into the YF strain–displacement relations.
(3) The 1D strain measures are substituted into the VABS warping recovery relations, which yield in and out-of-plane

warping displacements.

It is worth noting that by eliminating the 1D variable a, the capability to model restrained warping, i.e. constraining warping
displacements at the boundary to be zero, is lost. Without a 1D variable associated with warping, there is no way to enforce
boundary conditions on the warping displacements at the root. However, accounting for restrained warping is generally not
considered to be critical for composite closed cross-sections (Hodges, 2006; Volovoi et al., 2001), even though exceptions are
known to exist (Rehfield et al., 1990). In the most extreme example presented by Rehfield et al. (1990), a moderate error of
11% was observed in the prediction of the tip twist deformation when neglecting restrained warping effects. Furthermore,
the Vlasov-type approach to restrained warping available in VABS is only appropriate for open cross-sections and may pro-
duce errors if used for closed section modeling (e.g. Chapter 7 of Hodges, 2006), and therefore is not used with the YF/VABS
model. Thus, the YF/VABS model is suitable for rotor blade analysis since helicopter rotor blades are modeled as closed cross-
sections. Furthermore, accounting for restrained warping effects associated with closed sections would likely produce only
moderate gains in accuracy at most.

3.4. Stress recovery

The YF/VABS strain field is recovered by substituting the 1D strain measures and cross-sectional warping derivatives into
Eqs. (11)–(14). Note that the contributions from in-plane warping are included in the YF/VABS strain field since VABS
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accounts for in-plane warping. Stresses are obtained by substituting Eqs. (11)–(14) into Eq. (16) instead of Eq. (19) since
VABS accounts for in-plane stresses.

It should be noted that a higher order beam theory would be needed to impose zero beam strains at the root and therefore
the current approach will only provide an accurate estimation of the cross-sectional stress distributions away from the
boundary.

4. Results

In this section, results from the YF/VABS model are compared with experimental data and other analysis codes. The YF/
VABS model was validated by considering displacements and stresses due to static loading, as well as hover and forward
flight helicopter applications. As in Hodges et al. (2007) and Hodges and Yu (2007), the trapeze effect was treated by setting
A22 ¼ H55 þ H66 and all other elements of A, B, C, and D to zero for all results. This is consistent with the YF model, in which
Y17 ¼ Y55 þ Y66.

4.1. Displacements and stresses under static loading

The YF/VABS static analysis capability is validated by considering a prismatic composite cantilevered beam, loaded by a
vertical tip force. The YF/VABS results were compared with experimental data from Minguet and Dugundji (1990) and results
generated by NLABS (nonlinear active beam solver, Palacios and Cesnik, 2008), which is based on the geometrically exact
kinematic formulation for which VABS was designed. Details on the experimental setup can be found in Minguet and Dugun-
dji (1990) and Cesnik and Hodges (1997). The static displacement results in Fig. 3 correspond to two composite cross-sec-
tions: (1) a symmetric layup, ½45�=0��3s which exhibits bending-torsion coupling and (2) an anti-symmetric layup,
½20�=� 70�=� 70�=20��2a which exhibits extension-twist coupling. The YF/VABS model compares well with the experimental
results and NLABS until the loading is large enough to cause deflections over 10% of the beam length. This is expected since
the ordering scheme used to simplify the YF strain–displacement relation is based on the assumption that the maximum
bending deflections are on the order of 10–20% of the beam’s length (Yuan and Friedmann, 1995). These results demonstrate
that the YF/VABS model is valid for moderate deflection analysis, while a geometrically exact formulation is necessary to
accurately model large deflections.

Fig. 4 shows the axial stress distribution at the midspan section calculated by NLABS, YF/VABS, and a 3D finite element
solution using the MSC.NASTRAN linear static solver for the symmetric layup and a tip force of 0.0044 N, which is well within
the moderate deflection regime. The NASTRAN model contains over 2 million degrees of freedom and requires 25 GB of
memory and 8 h of simulation time on a 3.2 GHz Xeon processor. By comparison, NLABS and YF/VABS require less than
1 min of simulation time. Fig. 4 illustrates that the cross-sectional stress distributions calculated by YF/VABS and NLABS yield
similar agreement with the NASTRAN results for moderate deflection analysis.

4.2. Helicopter applications

The YF/VABS model was validated against other composite rotor blade analyses by considering the fundamental rotating
natural frequencies, aeroelastic stability characteristics in hover, and vibratory hubloads in forward flight. The aerodynamic
loads used to generate the results in Yuan and Friedmann (1995) are based upon a relatively simple quasi-steady, incom-
pressible aerodynamic model combined with a uniform inflow assumption. These loads were applied to a four bladed hinge-
less rotor, thus the dominant frequency of the oscillatory hubloads is 4/rev.
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4.2.1. Fundamental rotating natural frequencies of a single-cell composite blade
The single-cell composite rotor blade described in Friedmann et al. (2002) was considered in this study. In the single-cell

section depicted in Fig. 5, the ply angles in the horizontal walls were set to zero while, Kv in both vertical walls was allowed
to vary. As shown in Fig. 5, a positive Kv implies that the fibers are oriented toward the top of the blade.

For Kv ¼ 0, the results presented in Table 1 display the differences between the fundamental rotating lead-lag, flap, and
torsional natural frequencies – xL1, xF1, and xT1 – calculated by the YF/VABS model, relative to the following analysis codes:

(1) Hong and Chopra (1985): The model employed in Hong and Chopra (1985) is based on a moderate deflection theory in
which the transverse shear deformation was neglected. In-plane stresses and warping are neglected in the cross-sec-
tional analysis.

(2) Fulton and Hodges (1993a,b): This model is based on a geometrically exact kinematical formulation and is valid for
large deflection analysis. The cross-sectional analysis is based on Berdichevsky et al. (1992), and does not account
for in-plane warping.

(3) Yuan and Friedmann (1995): This is the original moderate deflection YF model, which is based on the cross-sectional
analysis described in Kosmatka (1986).

The results in Table 1 demonstrate good agreement between the fundamental frequencies predicted by YF/VABS and the
other composite blade models. Note that the 3.4% difference between the torsional frequencies predicted by YF/VABS and
the YF model can be attributed to the effects of restrained warping, which increase the torsional stiffness of the YF beam
model.

4.2.2. Aeroelastic stability boundaries in hover
For aeroelastic stability in hover of a rotor blade, the governing equations of motion are linearized about a static equilib-

rium solution and cast into first-order state variable form (Friedmann et al., 2002). The eigenvalues of the linearized system
determine the hover stability characteristics of the blade. A comparison of the real part of the first lead-lag eigenvalue for
Kv ¼ �30�;0�;30� as a function of thrust coefficient (CT) divided by rotor solidity (r) is given in Fig. 6 for the single-cell
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Fig. 5. Single-cell cross-section.

Table 1
Differences in YF/VABS fundamental frequencies relative to various models

Model Percent differences

xL1 xF1 xT1

Hong and Chopra (1985) 1.5% 3.1% 0.2%
Fulton and Hodges (1993a,b) 5.0% 0.9% �1.0%
Yuan and Friedmann (1995) �0.7% �0.5% �3.4%
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cross-section. The YF/VABS yields excellent agreement with the models by Fulton and Hodges (1993a,b) and Yuan and Fried-
mann (1995). In Friedmann et al. (2002), the poor agreement from Hong and Chopra (1985) with the other models for
Kv ¼ �30� and 30� was attributed to the neglect of transverse shear deformation.

Root locus plots of the hover stability eigenvalues as a function of ply angle Kv for the single-cell blade are shown in Fig. 7.
Fig. 7 indicates that the YF/VABS model produces similar stability eigenvalues compared to the original YF analysis for each
value of Kv. The differences between the YF/VABS and the original YF imaginary parts of the eigenvalues range from 0.1% to
3.8% relative to the YF values. The relative differences between the real parts range from 0.3% to 37%. The 37% relative dif-
ference, which corresponds to the lead-lag mode at Kv ¼ 30� and CT ¼ 0:0025, is deceiving because the absolute difference is
small, which is evident from Fig. 7(a). The relative error is large even though the absolute error is small because the YF/VABS
and original YF models yield real parts of the lead-lag eigenvalue close to zero because the damping in the lag mode is very
small for Kv ¼ 30� and CT ¼ 0:0025. Excluding the lead-lag mode, there is a maximum relative difference of only 3.1% in the
-0.150

-0.100

-0.050

0.000

0.050

0 0.02 0.04 0.06 0.08 0.1
Thrust Coefficient / Rotor Solidity (CT / σ )

R
ea

l P
ar

t o
f E

ig
en

va
lu

e 
(n

on
-d

im
en

si
on

al
)

YF/VABS: 0 deg
YF/VABS:  30deg
YF/VABS:  -30deg
Fulton and Hodges (1993a,b)
Hong and Chopra (1985)
Yuan and Friedmann (1995): 0deg
Yuan and Friedmann (1995): 30deg
Yuan and Friedmann (1995): -30deg

30 deg

-30 deg

Fig. 6. Real part of the hover stability first lead-lag eigenvalue for the single-cell composite blade.
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real parts of the eigenvalues. Therefore, there is strong agreement between YF/VABS and the original YF model for hover sta-
bility analysis of the single-cell composite blade.

In addition to the single-cell blade, hover stability of a double-cell composite blade with a cross-section depicted in Fig. 8
was considered. Details on the rotor and helicopter parameters can be found in Friedmann et al. (2002). For all cases con-
sidered in this study, the ply angles in the middle vertical wall and the inner half of the rear vertical wall were oriented
at Kv, while ply angles in the remaining walls were set to zero.

The double-cell blade root locus eigenvalues are presented in Fig. 9. The maximum difference in the imaginary parts
of the eigenvalues is less than 1%, while the differences between the real parts of the eigenvalues range from 2.2% to
11.4%. The differences due to the improved cross-sectional analysis in YF/VABS – i.e. accounting for in-plane warping
and stresses, and a more general treatment of out-of-plane warping displacements even though restrained warping ef-
fects are neglected – lead to negligible differences in the imaginary parts of the hover stability eigenvalues, and less than
12% differences in the real parts for the double-cell blade. The results in Figs. 6–9 demonstrate that the hover stability
analysis based on the YF/VABS model generally produces good agreement with other composite rotor blade analyses for
the cross-sections considered in this study.

4.2.3. Vibratory hubloads in forward flight
Using the rotor and helicopter parameters from Yuan and Friedmann (1998), the 4/rev vibratory hub shears and mo-

ments were calculated for the double-cell composite blade at an advance ratio of 0.30. The vibratory hub shears and
moments are obtained from the integration of the distributed inertial and aerodynamic loads over the entire blade span
in the rotating frame. Subsequently, the loads are transformed to the hub-fixed non-rotating system, and the contribu-
tions from the individual blades are combined (Yuan and Friedmann, 1995). The vibratory hubloads calculated by YF/
VABS are compared with the YF model in Fig. 10 for various values of Kv. It is clear from Fig. 10 that YF/VABS and
the YF model predict similar trends in vibratory loads as Kv is varied. Furthermore, the differences in hub shears range
from 0.1% to 8.7% relative to the YF values, and 0.01–8.2% for the hub moments. These results suggest that the VABS
cross-sectional analysis will result in small to moderate differences in the vibratory loads compared to the model based
on the cross-sectional analysis described in Kosmatka (1986).
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5. Conclusions

The results demonstrate that VABS is suitable for coupling with the moderate deflection composite blade model described
in Yuan and Friedmann (1995), in spite of the differences between the formulations. Compared to the original YF blade mod-
el, YF/VABS will produce a more accurate stress field due to the more general treatment of warping. Furthermore, YF/VABS
will produce accurate elastic stiffness quantities for composite cross-sections in which the neglect of in-plane stresses would
result in large errors. The YF/VABS composite rotor blade model was validated against experimental data as well as other
rotor blade analyses by considering static displacements and stresses, aeroelastic stability in hover for composite rotor
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blades, and forward flight vibratory hub shears and moments. Thus, this paper demonstrates the feasibility of combining a
moderate deflection beam model with VABS. This finding facilitates the use of VABS in comprehensive rotorcraft simulation
codes which employ a moderate deflection blade model. Thus, it has potential for improving the accuracy and versatility of
such codes without requiring extensive investment of effort in code modification. The principal findings from this study are
summarized below:

(1) The differences between the VABS and YF strain energy formulations are due to higher order effects, and thus do not
preclude coupling between the two models.

(2) By using VABS with the YF blade model, the ability to account for restrained warping effects is lost. However, such
effects generally are not critical for treating composite closed-cross sections, which is the type of structural configu-
ration used for modeling composite rotor blades.

(3) For moderate deflections, YF/VABS compared well with a beam model based on geometrically exact kinematics and
experimental displacement data corresponding to a composite beam under a static load. As expected, the geometri-
cally exact NLABS model is superior to YF/VABS for large displacement analysis only, which is not expected to be crit-
ical for modeling well-designed helicopter blades.

(4) Fundamental rotating natural frequencies and hover stability eigenvalues calculated by YF/VABS correlated well with
other composite rotor blade models for both single-cell and double-cell blade configurations.

(5) The vibratory hub shears in forward flight calculated by YF/VABS differed by 0.1–8.7% compared to the original YF val-
ues, and 0.01–8.2% for the hub moments. These results suggest that the VABS cross-sectional analysis will result in
small to moderate differences in the vibratory loads compared to the cross-sectional analysis described in Kosmatka
(1986).
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