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a b s t r a c t

The anti-plane magnetoelectroelastic behavior of three-phase magnetoelectroelastic composites (fiber/
interphase/matrix) with doubly periodic microstructures is dealt with. With the aid of the matrix nota-
tion, the anti-plane magnetoelectroelastic coupling problem is formulated as same as the anti-plane pie-
zoelectric coupling problem. And then the eigenfunction expansion-variational method (EEVM) is
extended to solve such a problem. Series solutions for the effective magnetoelectroelastic moduli are pre-
sented, which are in a unified form for generally periodic fiber arrays, different unit cell shapes as well as
different constituent properties, and are applicable for high volume fraction of fibers. With the present
solution, it is found that the effective magnetoelectric coefficient of a two-phase composite may have
two local extrema rather than only one extremum predicted by the Mori-Tanaka method. By optimizing
the volume fraction, permutation and the choice of the constituent phases, the maximum magnitude of
the effective magnetoelectric coefficient of a three-phase composite can be much larger than that of any
of the two-phase composites, and the sign of the magnetoelectric coefficient can be changed, which is not
observed in a two-phase composite. For composites with a generally periodic array of fibers, the effective
magnetoelectric moduli can be anisotropic.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Magnetoelectric effect provides a useful tool for the conversion
of energy between magnetic and electric forms. As a successful
case of the man-made materials, magnetoelectroelastic composites
can exhibit a magnetoelectric effect that is absent in each of the
phases, by combining the piezoelectric effect in a piezoelectric
phase and the piezomagnetic effect in a piezomagnetic phase. This
kind of magnetoelectric effect in magnetoelectroelastic composites
is caused by ‘‘product properties’’ (Van Suchtelen, 1972): the elec-
tric field and the magnetic field are related through the elastic
strain. In a two-phase magnetoelectroelastic composite BaTiO3/
CoFe2O4, the magnetoelectric coefficient can be two orders of mag-
nitude larger than that of the single-phase magnetoelectric mate-
rials (Van Run et al., 1974). Moreover, such a magnetoelectric
effect in the composite can be observed at room temperature,
whereas the magnetoelectric effect in single-phase magnetoelec-
tric materials is often observed only at very low temperature
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(Spaldin and Fiebig, 2005). Due to such outstanding performances,
magnetoelectroelastic composites are increasingly applied in intel-
ligent structures and smart devices (Ma et al., 2011; Nan et al.,
2008; Pyu et al., 2002; Ramesh and Spaldin, 2007; Srinivasan,
2010). Motivated by such a finding, various designs of novel mag-
netoelectroelastic composites are presented, as well as the corre-
sponding theoretical models and fabrication methods are
developed (Eerenstein et al., 2006; Nan et al., 2008; Ramesh and
Spaldin, 2007; Spaldin and Fiebig, 2005; Srinivasan, 2010).

According to the microstructural connectivity, the magneto-
electroelastic composites are generally categorized into particle
composites, fiber composites, laminate composites, and so on
(Nan et al., 2008). The magnetoelectroelastic fiber composites have
been attracting extensive attention because of their enhanced
magnetoelectric performance as well as the still open question in
modeling. To achieve the ‘tailored’ properties (Zohdi, 2008), rea-
sonable models for simulation of the macroscopic and microscopic
response are necessary. Some classic micromechanical models for
purely elastic problems are generalized to solve the magnetoelec-
troelastic problems in terms of an analogy between the governing
equations of the magnetoelectroelastic problems and the purely
elastic problems. These models include the dilute model (Zhang
and Soh, 2005), self-consistent model (Nan, 1994; Srinivas and Li,
2005; Zhang and Soh, 2005), generalized self-consistent model
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(Tong et al., 2008), Mori-Tanaka model (Dinzart and Sabar, 2011;
Huang and Kuo, 1997; Li and Dunn, 1998; Srinivas et al., 2006;
Wang and Pan, 2007; Wu and Huang, 2000; Zhang and Soh,
2005), composite cylinder assemblage model (Benveniste, 1995)
and multi-inclusion model (Li, 2000). With these models some
general analytical solutions for effective magnetoelectroelastic
properties are presented by treating the inclusion interactions
either approximately or in a statistically sense. As coupling moduli
resulted from the interaction between the piezoelectric phase and
the piezomagnetic phase, the magnetoelectric coefficients strongly
depend on the inclusion interactions. From the existing researches,
the magnetoelectric coefficient reaches the extremum usually at a
relatively high inclusion volume fraction, where the inclusion
interaction is strong. In consideration of these, high-order solu-
tions of the magnetoelectric coefficient treating the inclusion inter-
actions more accurately are necessary.

By adding another active interphase between the fiber and ma-
trix of a two-phase composite, the three-phase magnetoelectro-
elastic fiber composites possess greater design flexibility. Several
researches focus on such three-phase composites, such as multi-
coated circular fibrous composites (Kuo and Pan, 2011), multi-
coated elliptic fibrous composites (Kuo, 2011), composites with
thinly coated inclusions (Dinzart and Sabar, 2011). Among these
works, Kuo and Pan (2011) found that the magnetoelectric effect
in coated composites can be enhanced by more than one order of
magnitude as compared to the corresponding two-phase compos-
ite. However, an attendant problem of greater design flexibility is
that more microscopic parameters influencing the effective prop-
erties need to be considered. Therefore, in order to optimize the
numerous microscopic parameters to obtain extrema or desired
magnitudes of effective magnetoelectroelastic properties, the solu-
tions of the effective properties should cover all the key micro-
scopic parameters.

In contrast to random microstructures, periodic microstructures
usually exist in elaborately designed composites, since the design
of an advanced composite is generally the one for a unit cell (Sun
et al., 2001). Along with the progress of composites fabrication
technology, some advanced magnetoelectroelastic composites
with relatively rigorous periodic microstructures are invented. Re-
cently, Zheng et al. (2004) reported a self-assembled multiferroic
nanocomposite with hexagonal arrays of CoFe2O4 nanopillars
embedded in a BaTiO3 matrix. Boyd IV et al. (2003) presented a
method for using arrays of micro-electro-mechanical systems elec-
trodes and electromagnets to achieve microscale positioning of
piezoelectric and piezomagnetic particles in liquid polymers. Shi
et al. (2005) reported a kind of 1–3-type multiferroic and multi-
functional composite with Pb(Zr, Ti)O3 rod arrays embedded in a
ferromagnetic medium of (Tb, Dy)Fe2/epoxy produced by the
dice-and-fill method. On the other hand, the periodic composite
models provide useful limiting values of interacting inclusions
from entirely disorder (random) to order (Nemat-Nasser and Hori,
1999). As far as the magnetoelectroelastic composites with a peri-
odic array of fibers are concerned, Lee et al. (2005) performed a fi-
nite element analysis of a representative volume element to
determine the effective magnetoelectroelastic moduli. Kuo and
Pan (2011) generalized Rayleigh’s formulism for the evaluation of
the effective material properties in multicoated circular
fibrous multiferroic composites. Camacho-Montes et al. (2009)
and Espinosa-Almeyda et al. (2011) applied the asymptotic
homogenization method to calculate the properties of the fiber
composites and the ones with imperfect interfaces. Kuo (2011)
combined the methods of complex potentials with a re-expansion
formulae and the generalized Rayleigh’s formulation to obtain a
complete solution of the multi-field many-inclusion problem. The
periodic microstructures considered in these researches are either
hexagonal or square fiber arrays. Researches on the magnetoelec-
troelastic composites with a generally periodic array of fibers are
not presented yet. Though, to the best of our knowledge, a real
composite with such a periodic microstructure is not reported
yet, such composites can be fabricated by the technique presented
by Boyd IV et al. (2003). Furthermore, the magnetoelectroelastic
composites with a generally periodic array of fibers are expected
to exhibit a special magnetoelectric effect due to the overall anisot-
ropy induced by general fiber arrays. That is, an electric field in one
direction can result from a magnetic field in another perpendicular
direction. Therefore, it is highly desirable to develop a method to
analyze the magnetoelectric effect of such composites, especially
the influence of the different fiber distributions and the anisotropy
induced by general fiber arrays.

The present work is devoted to extend the eigenfunction expan-
sion-variational method (EEVM) (Yan et al., 2011) to solve the anti-
plane magnetoelectroelastic coupling problem for composites with
a generally doubly periodic array of fibers. Series solutions in uni-
fied form for the effective magnetoelectroelastic moduli are pre-
sented, and then the validity and efficiency of such series
solutions are verified. With the present solution, the influences of
the volume fraction, permutation and the choice of the constituent
phases, as well as the fiber distribution on the effective magneto-
electroelastic moduli are discussed. And then the influences of
the volume fraction and interphase on interfacial stresses are dis-
cussed. Finally, the anisotropy of the composites induced by the
general fiber arrays is discussed.

2. Statement and formulation of the problem

Consider a three-phase fiber composite subjected to combined
anti-plane shear, inplane (Ox1x2-plane) electrical and magnetic
loads as shown in Fig. 1, where the fiber, coating (interphase)
and matrix are made of piezoelectric materials, piezomagnetic
materials or inactive materials. The fibers are aligned in x3 direc-
tion, the piezoelectric and piezomagnetic materials are polarized
and magnetized along x3-axis, respectively. Then only the anti-
plane displacement w, inplane electrical potential / and magnetic
potential u need to be considered, they are the functions of x1 and
x2 only,

fw;/;ug ¼ fwðx1; x2Þ;/ðx1; x2Þ;uðx1; x2Þg ð1Þ

For transversely isotropic piezoelectric materials and piezomag-
netic materials, the anti-plane constitutive equations are

si3
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� �
¼

C44 e15
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�Ei

� �
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si3
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; ð2Þ

respectively. si3, Di and Bi (i = 1,2) are the anti-plane shear stress
and inplane electrical displacement and magnetic induction compo-
nents, respectively; ei3, Ei and Hi (i = 1,2) are the strain, electrical
field and magnetic field components, respectively; C44, e15, q15,
j11 and l11 are the shear modulus, piezoelectric coefficient, piezo-
magnetic coefficient, dielectric permittivity and magnetic permit-
tivity, respectively. The piezoelectric constitutive equation and
piezomagnetic constitutive equation can be cast into the following
unified form:
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where a11 is the magnetoelectric coefficient, and is generally zero
for monolithic piezoelectric materials and piezomagnetic materials.

For brevity and convenience, introduce the following matrix
notations:
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Fig. 1. Cross section of a three-phase magnetoelectroelastic fiber composite with a doubly periodic microstructure and its three types of unit cells. (a) Three-phase fiber
composite subjected to combined anti-plane shear, inplane (Ox1x2 -plane) electrical and magnetic loads; (b) doubly periodic microstructure; (c) parallelogram unit cell; (d)
staggered rectangular unit cell; (e) six-sided Voronoi unit cell.
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where w, c and s are called the generalized displacement, strain and
stress, respectively. In the absence of body forces, electric charge
and electric current densities, the basic equations are put in matrix
form:

gradient equation : c ¼ w� $ ð5aÞ

constitutive equation : s ¼ Lc ð5bÞ

equilibrium equation : $sT ¼ 0 ð5cÞ

where the superscript ‘‘T’’ denotes transpose.
From Eqs. (5a), (5b), (5c), the generalized displacement satisfies

the following Laplace’s equation:

$2w ¼ 0 ð6Þ

where $2 ¼ @2

@x2
1
þ @2

@x2
2

� �
is the Laplacian operator.Therefore, the gen-

eralized displacement w can be formulated by three potentials
ff1ðzÞ; f2ðzÞ; f3ðzÞg with a vector form f(z), and from Eqs. (5a), (5b),
(5c), the generalized stress s and the resultant force T can be formu-
lated as:

w ¼ 1
2
½f ðzÞ þ f ðzÞ� ð7aÞ

s1 � is2 ¼ Lf 0ðzÞ ð7bÞ
T ¼
Z B

A
sndS ¼ 1

2i
L½f ðzÞ � f ðzÞ�BA ð7cÞ

where, z = x1 + ix2 is a complex variable, the over bar denotes the
complex conjugate, the prime denotes the derivative with respect
to z, ½��BA denotes the difference of the values of the bracketed func-
tion from point A to point B.

3. Eigenfunction expansion-variational method

Now extend the eigenfunction expansion-variational method
(EEVM) (Yan et al., 2011) to cover the anti-plane magnetoelectro-
elastic coupling problem for composites with a generally doubly
periodic fiber array.

3.1. Eigenfunction expansion of the complex potentials

As shown in Fig. 1((c)–(e)), a typical unit cell of a three-phase
fiber composite is divided into three regions occupied, respectively,
by a fiber, a coating (interphase) and a surrounding matrix. Sub-
scripts/Superscripts ‘‘f’’, ‘‘c’’ and ‘‘m’’ refer to the fiber, coating
and matrix, respectively. R0 and R are the radius of the fiber and
the external radius of the coating, respectively.

The complex potential ff(z) in the fiber region can be expanded
into a Taylor series, fc(z) in the coating region and fm(z) in the ma-
trix region can be expanded into Laurent series,

f f ðZÞ ¼
X1
n¼1

Cð1Þn Z2n�1 ð8aÞ

f cðZÞ ¼
X1
n¼1

Cð2Þn Z�ð2n�1Þ þ
X1
n¼1

Cð3Þn Z2n�1 ð8bÞ

f mðZÞ ¼
X1
n¼1

Cð4Þn Z�ð2n�1Þ þ
X1
n¼1

Cð5Þn Z2n�1 ð8cÞ

where Cð1Þn ; Cð2Þn ;Cð3Þn ;Cð4Þn and Cð5Þn are complex coefficient vectors.
Due to the centrosymmetry of the unit cell, only the odd terms in
Eqs. (8a), (8b), (8c) remain.



P. Yan et al. / International Journal of Solids and Structures 50 (2013) 176–185 179
The continuity conditions of the generalized resultant force T
and the generalized displacement w across the fiber-coating and
coating-matrix interfaces:

T f ¼ Tc; wf ¼ wc at jzj ¼ R0 ð9aÞ

Tc ¼ Tm; wc ¼ wm at jzj ¼ R ð9bÞ

can provide four sets of equations with respect to five sets of un-
known complex coefficients Cð1Þn ;Cð2Þn ; Cð3Þn ;Cð4Þn and Cð5Þn :

Cð1Þn ¼ Cð3Þn þ �Cð2Þn R�2ð2n�1Þ
0

Lf C
ð1Þ
n ¼ LcðCð3Þn � �Cð2Þn R�2ð2n�1Þ

0 Þ
Cð3Þn þ �Cð2Þn R�2ð2n�1Þ ¼ Cð5Þn þ �Cð4Þn R�2ð2n�1Þ

LcðCð3Þn � �Cð2Þn R�2ð2n�1ÞÞ ¼ LmðCð5Þn � �Cð4Þn R�2ð2n�1ÞÞ

8>>>>><
>>>>>:

ð10Þ

Only one set of independent unknown complex coefficients
(choose Cð5Þn ) remains. By solving Eq. (10), one obtains the relation
between Cð4Þn and Cð5Þn :

Cð4Þn ¼ gnR4n�2 �Cð5Þn ð11Þ

where

gn ¼ I þ ðI þ L�1
c LmÞ�1gfcðL

�1
c Lm � IÞn2n�1

h i�1
½ðI

þ L�1
c LmÞ�1gfcðI þ L�1

c LmÞn2n�1 þ gcm� ð12Þ

n ¼ R2
0=R2 ð13Þ

gfc ¼ ðLf þ LcÞ�1ðLc � Lf Þ ð14Þ

gcm ¼ ðLc þ LmÞ�1ðLm � LcÞ ð15Þ

and I is the 3 � 3 identity matrix. From Eqs. (8c) and (11), the eigen-
function expansion of the complex potential fm(z) can be written as:

fmðzÞ ¼
X1
n¼1

gnR4n�2 �Cð5Þn z�ð2n�1Þ þ Cð5Þn z2n�1 ð16Þ

It is worth noting that the parameter matrix gn in Eq. (16) con-
tains all the parameters of the constituent properties and the rela-
tive volume fraction of the interphase.

The remaining work is to determine one set of unknown coeffi-
cients, Cð5Þn , which can be completed by using the periodic bound-
ary conditions of the unit cell.

3.2. Periodicity conditions and variational functional for a unit cell

Consider the three-phase fiber composite with a doubly peri-
odic microstructure as shown in Fig. 1(b). d1 and d2 denote two
fundamental periods. For the magnetoelectroelastic behavior
considered here, the generalized displacement is doubly quasi-
periodic and the generalized stress is doubly periodic.

Due to the periodicity of the microstructure and the magneto-
electroelastic field, unit cells are picked out for analysis. Three
kinds of typical unit cells: parallelogram unit cell, staggered rect-
angular unit cell, six-sided Voronoi unit cell, are selected as shown
in Fig. 1(c)–(e). The parallelogram unit cell has two couples of
opposite edges along the two fundamental periods respectively,
hence indicates the double periodicity directly; the staggered rect-
angular unit cell has two geometric parameters (the side length ra-
tio and relative staggered distance) which can directly show the
variation of the doubly periodic microstructure, and will be used
later; the six-sided Voronoi unit cell can cover the largest fiber vol-
ume fraction, hence can be used to analyze the extreme cases of fi-
bers nearly touching each other. The boundaries of each unit cell
can be divided into @Vþ ¼

P
s@Vþs and @V� ¼

P
s@V�s , where s = 1,
2 in Fig. 1(c) and s = 1, 2, 3 in Fig. 1(d) and (e). By a proper transla-
tion ps, the boundary @V�s will coincide with the boundary @Vþs ,
where p1 = d1 and p2 = d2 in Fig. 1(c) and p1 = d1, p2 = d2 and
p3 = d2 � d1 in Fig. 1(d) and (e). The periodic boundary conditions
of a unit cell can be written as:

wsþ �ws� ¼ hcips

tsþ þ ts� ¼ 0

�
ð17Þ

where hci denotes the average of the generalized strain c over a unit
cell; t(=sn) denotes the generalized boundary stress consisting of
the boundary stress, electrical displacement and magnetic induc-
tion; n denotes the unit normal vector on the boundary; the quan-
tities with superscripts ‘‘s�’’ and ‘‘s+’’ are corresponding to taking
values from @V�s and @Vþs , respectively.

By using the Lagrangian multiplier method, the periodic bound-
ary conditions (17) of a unit cell can be incorporated into the func-
tional for the magnetoelectroelastic issue under consideration. The
stationary condition of the function (Yan et al., 2011) is:

X
s

Z
@Vþs

dtsþ � ðwsþ �ws�ÞdS�
X

s

Z
@Vþs

ðtsþ þ ts�Þ � dws�dS

¼
X

s

Z
@Vþs

dtsþ � hcipsdS ð18Þ

This stationary condition is applicable to unit cells in any shape,
and from any periodic microstructure, whatever the symmetry.

3.3. Determination of the unknown coefficients

Substituting Eq. (16) into Eqs. (7a), (7b), (7c), and taking an
appropriate truncation, the expansions of the generalized stresses,
displacement, boundary stress and resultant force can be written
as:

si ¼
X2N

n¼1

LmsðnÞi Xn; w ¼
X2N

n¼1

wðnÞXn; t ¼
X2N

n¼1

LmtðnÞXn;
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X2N

n¼1

LmT ðnÞXn i ¼ 1;2 ð19Þ

where
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(
ð20aÞ
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1
2½Ið2n�2N�1Þ�z2n�2N�2þgn�NR4n�4N�2ð1�2nþ2NÞz�2nþ2N � Nþ1�n�2N

(

ð20bÞ
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� 1
2i½�Ið2n�2N�1Þ�z2n�2N�2þgn�NR4n�4N�2ð1�2nþ2NÞz�2nþ2N � Nþ1�n�2N

(

ð20cÞ

wðnÞ ¼
1
2 ½Iz2n�1 þ gnR4n�2�z1�2n� 1 � n � N
1
2 ½I�z2n�2N�1 þ gn�NR4n�4N�2z1�2nþ2N� N þ 1 � n � 2N

(

ð20dÞ

tðnÞ ¼ sðnÞn 1 � n � 2N ð20eÞ

T ðnÞ ¼
1
2i ½Iz2n�1 � gnR4n�2�z1�2n�BA 1 � n � N
1
2i ½�I�z2n�2N�1 þ gn�NR4n�4N�2z1�2nþ2N�BA N þ 1 � n � 2N

(

ð20fÞ

If the unit cell shapes and boundary conditions are simultaneously
axisymmetric, the expansions (Eqs. (20a)–(20f) can be reduced as



Table 1
Magnetoelectroelastic materials properties.

BaTiO3 CoFe2O4 Terfenol-D

C44 (GPa) 43 45.3 13.6
e15 (C/m2) 11.6 0 0
j11 (nF/m) 11.2 0.08 0.05
q15 (N/Am) 0 550 108.3
l11 (10�6 N/A2) 5 590 5.4
a11 (10�12 Ns/VC) 0 0 0
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listed in (Yan et al., 2011). The substitution of Eq. (19) into the sta-
tionary condition (18) yields the following linear algebraic
equations:X2N

m¼1

AnmXm ¼ Bn n ¼ 1;2; . . . ;2N ð21aÞ

where

Anm ¼
X

s

Z
@Vþs

ðtsþ
ðnÞÞ

T Lmðwsþ
ðmÞ �ws�

ðmÞÞdS

�
X

s

Z
@Vþs

ðws�
ðnÞÞ

T Lmðtsþ
ðmÞ þ ts�

ðmÞÞdS ð21bÞ

Bn ¼
X

s

Z
@Vþs

ðtsþ
ðnÞÞ

T LmðhcipsÞdS ¼
X

s

ðT sþ
ðnÞÞ

T LmðhcipsÞ ð21cÞ

tsþ
ðnÞ;w

sþ
ðmÞ and T sþ

ðnÞ denote taking the values of t(n), w(m) and T(n) from
@Vþs , respectively; and the quantities with the superscript ‘‘s�‘‘ are
corresponding to taking values from @V�s . As all the parameters of
the constituent properties and the relative volume fraction of the
interphase are packed into the parameter matrix gn, the present
solutions are in unified form for various of two-phase and three
phase magnetoelectroelastic fiber composites.

4. Effective magnetoelectroelastic moduli

The effective magnetoelectroelastic moduli of a composite, Le
ij,

are calculated on the average fields over a unit cell (Nemat-Nasser
and Hori, 1999), that is

hsii ¼ Le
ijhcji i; j ¼ 1;2 ð22Þ

where hsii is the average generalized stress, which can be calculated
by the following formula:

hsii ¼
1
V

Z
V
sidV ¼ 1

V

X
s

T sþps
i ð23Þ

Ts+ is the generalized resultant force on the boundary @Vþs , V is the
volume of the unit cell. The implementing procedure is that the
periodic boundary conditions (17) with a given average generalized
strain hcji are prescribed for the unit cell, and then the average gen-
eralized stress hsii is solved for calculating the effective moduli.
From Eqs. (19), (21a), (21b), (21c), and (23) the average generalized
stress can be calculated by

hsii ¼ Lm
1
V

X2N

n¼1

X2N
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X
s

T sþ
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s
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ðA�1Þnm

X
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s
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By comparing Eq. (22) and Eq. (24), one obtains

Le
ij ¼ Lm

1
V

X2N

n¼1

X2N
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X
s
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i

 !
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s
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which is in unified from for composites with different fiber arrays.
When the term number N of the eigenfunction expansion is large
enough, the series solutions of the effective moduli will approach
the exact ones.

For a composite with a generally periodic array of fibers, the
overall magnetoelectroelastic behavior in two directions may be
coupled, and a general form of the effective moduli is

Le
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Ce
55 ee

15 qe
15

ee
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ð26Þ
For a composite with a square or hexagonal array of fibers,
according to the symmetry, the overall magnetoelectroelastic
behavior exhibits transverse isotropy, that is

Le
11 ¼ Le

22; Le
12 ¼ Le

21 ¼ 0 ð27Þ

Let Le ¼ Le
11 ¼ Le

22 for a transversely isotropic composite.
5. Numerical examples and discussions

We have obtained a unified series solution by using the eigen-
function expansion-variational method (EEVM) for the effective
magnetoelectroelastic moduli of three-phase fiber composites with
doubly periodic microstructures. First, the validity and efficiency of
the present solution are verified. Second, by using the present solu-
tion, the influences of the volume fraction, permutation and the
choice of the constituent phases on the effective magnetoelectric
moduli are investigated. Finally, the influence of the fiber distribu-
tion and the distribution-induced anisotropy of the effective mag-
netoelectric moduli are discussed.

Three typical materials composing the magnetoelectroelastic
composites are cited in the calculation, whose properties are listed
in Table 1.

5.1. Validity and efficiency

To verify the validity and efficiency of the present series solu-
tion, convergence analysis is conducted. Consider three fiber ar-
rays, i.e., square array (d1 = |d1|{1,0}, d2 = |d1|{0,1}), hexagonal
array (d1 = |d1|{1,0}, d2 = |d1|{cos60�, sin60�}), and a generally dou-
bly periodic array (d1 = |d1|{1,0}, d2 = 1.2|d1|{cos75�, sin75�}); and a
relatively high volume fraction k ¼ 0:6 (k is the fiber volume frac-
tion for a two-phase composite and is the total fraction of the fiber
and interphase for a three-phase composite). The variations of the
effective magnetoelectroelastic moduli with the term number N of
the eigenfunction expansion are listed in Tables 2–5. A rapid con-
vergence of the present solution is observed.

In Tables 2 and 3, a two-phase composite (fiber/matrix =
BaTiO3/CoFe2O4) and a three-phase composite (fiber/interphase/
matrix = BaTiO3/Terfenol-D/CoFe2O4,R0/R = 4/5) with a square fiber
array are considered, respectively. The results of the effective mag-
netoelectroelastic moduli (Ce

44; e
e
15;je

11; q
e
15;le

11; a
e
11) are in good

agreement with those predicted by Kuo (2011). In Table 4, a
three-phase composite (BaTiO3/Terfenol-D/CoFe2O4,R0/R = 4/5)
with a hexagonal fiber array is considered, and it is observed that
the results converge more rapidly than those for a square fiber ar-
ray. To the best of our knowledge, neither analytical nor numerical
results of effective magnetoelectroelastic moduli of three-phase
composites with a hexagonal fiber array were reported.

In Table 5, a three-phase composite (BaTiO3/Terfenol-D/CoFe2O4,
R0/R = 4/5) with a generally doubly periodic fiber array is considered.
In such a general case, there exist two coupling magnetoelectric coef-
ficients (ae

12 and ae
21) besides two main magnetoelectric coefficients

(ae
11 and ae

22), which shows the composite is anisotropic. Since for
the same general fiber array, three kinds of typical unit cells: par-
allelogram unit cell, staggered rectangular unit cell and six-sided



Table 2
Variation of the effective magnetoelectroelastic moduli with the term number N of
the eigenfunction expansion and a comparison with those predicted by Kuo (2011),
for a two-phase composite (BaTiO3/CoFe2O4) with the square fiber array
(d1 = |d1|{1, 0}, d2 = |d1|{0,1}) and BaTiO3 volume fraction k ¼ 0:6 .

N BaTiO3/CoFe2O4 (Square array)

Ce
44

(GPa)
ee

15

(C/m2)
je

11

(nF/m)
qe

15

(N/Am)
le

11

(10�6 Ns2/C2)
�ae

11

(10�12 Ns/VC)

1 50.78 0.2768 0.3544 163.4 178.7 5.562
3 50.79 0.2596 0.3379 130.7 143.8 5.987
5 50.79 0.2587 0.3370 128.1 141.1 6.019
7 50.79 0.2588 0.3371 128.0 141.0 6.020
9 50.79 0.2588 0.3371 128.0 141.0 6.020
Kuo 50.8 0.255 0.337 128 140 6.03

Table 3
Variation of the effective magnetoelectroelastic moduli with the term number N of
the eigenfunction expansion and a comparison with those predicted by Kuo (2011),
for a three-phase composite (BaTiO3/Terfenol-D/CoFe2O4) with the square fiber array
(d1 = |d1|{1, 0}, d2 = |d1|{0,1}), a total volume fraction of BaTiO3 and Terfenol-D
k ¼ 0:6, and a relative radius of BaTiO3 fiber R0/R = 4/5 .

N BaTiO3/Terfenol-D/CoFe2O4 (Square array)

Ce
44

(GPa)
ee

15

(C/m2)
je

11

(nF/m)
qe

15

(N/Am)
le

11

(10�6 Ns2/C2)
�ae

11

(10�12 Ns/VC)

1 37.14 0.06011 0.1466 206.1 178.8 67.59
3 37.05 0.05821 0.1438 178.4 144.0 61.28
5 37.04 0.05807 0.1436 176.3 141.4 60.63
7 37.04 0.05807 0.1436 176.2 141.3 60.59
9 37.04 0.05807 0.1436 176.2 141.2 60.59
Kuo 37.0 0.0599 0.147 175 140 63.0

Table 4
Variation of the effective magnetoelectroelastic moduli with the term number N of the
eigenfunction expansion for a three-phase composite (BaTiO3/Terfenol-D/CoFe2O4)
with the hexagonal fiber array (d1 = |d1|{1,0}, d2 = |d1|{cos60�, sin60�}), a total
volume fraction of BaTiO3 and Terfenol-D k ¼ 0:6, and a relative radius of BaTiO3

fiber R0/R = 4/5 .

N BaTiO3/Terfenol-D /CoFe2O4 (Hexagonal array)

Ce
44

(GPa)
ee

15

(C/m2)
je

11

(nF/m)
qe

15

(N/Am)
le

11

(10�6 Ns2/C2)
�ae

11

(10�12 Ns/VC)

1 37.07 0.05838 0.1441 191.2 160.4 64.67
3 37.05 0.05794 0.1430 184.0 151.4 63.44
5 37.05 0.05794 0.1430 184.1 151.4 63.46
7 37.05 0.05794 0.1435 184.0 151.4 63.45
9 37.05 0.05794 0.1435 184.0 151.4 63.45

Table 5
Variation of the effective magnetoelectroelastic moduli with the term number N of
the eigenfunction expansion for a three-phase composite (BaTiO3/Terfenol-D/CoFe2-

O4) with a generally doubly periodic fiber array (d1 = |d1|{1, 0}, d2 = 1.2|d1|
{cos75�, sin75�}), a total volume fraction of BaTiO3 and Terfenol-D k ¼ 0:6, and a
relative radius of BaTiO3 fiber R0/R = 4/5 .

N Magnetoelectric coefficients: 10�12 Ns/VC (BaTiO3/Terfenol-D/CoFe2O4)

Parallelogram unit cell Staggered
rectangular unit cell

Voronoi unit cell

�ae
11 �ae

22 �ae
12 �ae

11 �ae
22 �ae

12 �ae
11 �ae

22 �ae
12

1 70.82 63.98 �1.996 68.62 63.40 0.2642 69.53 61.73 0.6479
3 68.74 55.63 0.2091 68.76 55.00 0.6091 68.68 54.54 0.4027
5 68.60 53.70 0.1971 68.60 53.54 0.1579 68.62 53.39 0.1251
7 68.60 53.32 0.1793 68.62 78.53 0.9441 68.60 53.22 0.1506
9 68.60 53.30 0.1780 68.60 53.19 0.1524 68.60 53.20 0.1536
11 68.60 53.17 0.1511 68.60 53.18 0.1521 68.60 53.18 0.1520
13 68.60 53.18 0.1520 68.60 53.18 0.1520 68.60 53.18 0.1520
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Voronoi unit cell (Fig. 1(c)–(e)), can be picked out for calculation,
the corresponding results can be compared and verified with
each other. With the increasing of the term number N, a perfect
agreement is reached, which demonstrates a good self-consistency
of the present unified solution.

5.2. Influences of the volume fraction, permutation and choice of the
phases

The prime concern about magnetoelectroelastic composites is
to obtain the maximum magnitude of the effective magnetoelectric
coefficients, which can be reached by optimizing the volume
fraction, permutation and choice of the constituent phases. There
are one piezoelectric phase (BaTiO3) and two piezomagnetic
phases (CoFe2O4 and Terfenol-D) in Table 1 to choose from. For
cylindrical fiber composites shown in Fig. 1, it should be noted that
the largest allowable fiber volume fraction is 0.785 for a square fi-
ber array, and 0.906 for a hexagonal fiber array, and 1 for an ideal-
ized even fiber distribution in the Mori-Tanaka estimation (Wang
and Pan, 2007).
5.2.1. Two-phase composites
The effective magnetoelectric coefficient (ae

11 ¼ ae
22) versus the

fiber volume fraction is depicted in Fig. 2(a) and b for the two-
phase composites: BaTiO3/CoFe2O4 and Terfenol-D/BaTiO3, respec-
tively. The present series solutions for a square fiber array and a
hexagonal fiber array are compared with the Mori-Tanaka estima-
tion as well. From Fig. 2(a) for composite BaTiO3/CoFe2O4, it is seen
that jae

11j reaches the maximum at a high fiber volume fraction
(k ¼ 0:76 for the square array, 0.84 for the hexagonal array and
0.86 for the Mori-Tanaka estimation), and then decreases rapidly
with the BaTiO3 fiber volume fraction increasing before the fibers
contact together. In this case the stationary value of jae

11j is also
the absolute maximum as usually depicted. The Mori-Tanaka esti-
mation is closer to results for the hexagonal fiber array. From
Fig. 2(b) for composite Terfenol-D/BaTiO3, it is seen that, with
the Terfenol-D fiber volume fraction increasing, the jae

11j first in-
creases and reaches a local maximum (stationary value), then de-
creases slightly, finally increases rapidly till fibers contact
together. In this case, there is another local maximum of jae

11j at
the end point (fibers contact) besides the stationary value, and
the stationary value is not the absolute maximum for the square
fiber array. It is seen that for a small fiber volume fraction, the re-
sults by the present method are in agreement with those by the
Mori-Tanaka method. However, for a large fiber volume fraction,
interactions between fibers are strong and then the influence of
the fiber distribution is significant, the Mori-Tanaka method fails
to predict the correct results and the present method is required.

The Mori-Tanaka method accounts for the interaction of fibers
only in a statistical sense, thus the fiber volume fraction can ap-
proach 1. In fact, the maximum allowable fiber volume fractions
are 0.785 for a square array of cylindrical fibers and 0.906 for a
hexagonal array, respectively. At the maximum allowable fiber vol-
ume fraction, the matrix still exists, thus the effective magneto-
electric coefficient is usually not zero. Moreover, when fibers
contact together at the maximum fiber volume fraction, the matrix
is separated by the fibers, the continuous phase and the dispersive
phase are reversed. Near such a reversal point, a sudden change of
the magnetoelectric coefficient may happen. For a hexagonal fiber
array, the volume fraction of matrix is very low (0.094, less than
0.1) when fibers contact, thus such a sudden change is weak. In
Fig. 2(b), the jae

11j of the composite Terfenol-D/BaTiO3 increases
sharply when fibers almost contact together. From this phenome-
non it can be reasoned that the jae

11j of the composite BaTiO3/
Terfenol-D may be much larger than that of the composite
Terfenol-D/BaTiO3, which will be verified in Fig. 3.

Motivated by the different phenomena revealed in Fig. 2(a) and
(b), in order to investigate the influence of the permutation and
choice of the phases, a comparison of four kinds of two-phase com-
posites is depicted in Fig. 3 for a hexagonal fiber array. It is seen
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Fig. 2. Effective magnetoelectric coefficient (ae
11 ¼ ae

22) of the two-phase composites
versus the fiber volume fraction: a comparison of the present series solutions
(EEVM) for a square fiber array and a hexagonal fiber array, with the Mori-Tanaka
estimation (Wang and Pan, 2007). (a) BaTiO3/CoFe2O4; (b) Terfenol-D/BaTiO3.
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22) of the three-phase compos-
ites ((R0/R)2 = 1/2) versus the total volume fraction of the fiber and interphase for a
hexagonal fiber array: a comparison of six kinds of three-phase composites
composed of CoFe2O4, BaTiO3 and Terfenol-D in different permutations.
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that the maximum of jae
11j of the composite BaTiO3/Terfenol-D

(ae
11 ¼ �232:6� 10�12Ns=VC at k ¼ 0:88) is at least one order larger

than that of Terfenol-D/BaTiO3. Therefore, besides the choice of the
phases, the influence of the permutation can also be significant.

5.2.2. Three-phase composites
In Fig. 4, the effective magnetoelectric coefficient (ae

11 ¼ ae
22) of

the three-phase composites ((R0/R)2 = 1/2) versus the total volume
fraction of the fiber and interphase are depicted for a hexagonal fiber
array. A comparison of six kinds of three-phase composites com-
posed of CoFe2O4, BaTiO3 and Terfenol-D in different permutations
is also made. It is seen that the maximum of jae

11j of the three-phase
composite CoFe2O4/BaTiO3/Terfenol-D (ae

11 ¼ �512:2� 10�12Ns=VC
at k ¼ 0:86) is the largest, which is much larger those of the
two-phase composites composed of any two of CoFe2O4, BaTiO3

and Terfenol-D. It is also interesting to note that, the composite Ter-
fenol-D/BaTiO3/CoFe2O4 has a positive ae

11, while the other three-
phase composites and all the two-phase composites have a negative
one.

To reach the maximum of jae
11j by optimizing the volume fraction

of phases, the effective magnetoelectric coefficient (ae
11 ¼ ae

22) ver-
sus the total volume fraction k and the square of radius ratio (R0/
R)2 are depicted for a hexagonal fiber array, in Fig. 5(a) for three-
phase composites CoFe2O4/BaTiO3/Terfenol-D and in Fig. 5(b) for
Terfenol-D/BaTiO3/CoFe2O4, respectively. It is seen from Fig. 5(a)
that the maximum magnitude (ae

11 ¼ �862:3� 10�12Ns=VC at
k ¼ 0:84 and (R0/R)2 = 0.88) is about four times as large as that of
the two-phase composite BaTiO3/Terfenol-D in Fig. 3. In Fig. 5(b),
there are two extrema of the magnitude with the variation of the
phase volume fractions: a positive ae

11 (102.5 � 10�12 Ns/VC) is
reached at k ¼ 0:62 and (R0/R)2 = 0.78; a negative ae

11

(�6.988 � 10�12 Ns/VC) is at k ¼ 0:84 and (R0/R)2 = 0. There exists
a curve about k and (R0/R)2 dividing the positive value area and the
negative, at which ae

11 is zero. That is, at such values of k and (R0/
R)2 the overall magnetoelectric effect disappears though local mag-
netoelectric effect may still exist.

It is seen from Fig. 5(b) that the sign of the effective magneto-
electric coefficient of the composite Terfenol-D/BaTiO3/CoFe2O4

changes according to the volume fraction of constituents. This phe-
nomenon can be observed at both low and high fiber volume frac-
tions, thus it can also be predicted by other methods. Motivated by
this, a comparison of the present results with those predicted by
generalized self-consistent model (GSCM) (derived from that for
plane problems presented by Tong et al., 2008) is made, as shown
in Fig. 6. It is seen that the present series solutions (EEVM) are in
good agreement with the GSCM. Especially, at a relatively low fiber
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volume faction (k ¼ 0:3) three curves almost totally coincide with
each other. Interestingly, all curves meet at a point, where the
effective magnetoelectric coefficient is zero. It is worth noting that
for the anti-plane magnetoelectroelastic coupling problem under
consideration, the results predicted by GSCM are equal to those
predicted by Mori-Tanaka method.

5.3. Influence of the volume fraction and interphase on interfacial
stresses

Another concern about magnetoelectroelastic composites is the
strength. Stress concentration at the interface is one of the key
factors which lead to the failure of composites. Especially, accord-
ing to above discussions, the magnetoelectric coefficient reaches
the extremum usually at a relatively high fiber volume fraction,
where the interaction between fibers is strong. Thus the influence
of the volume fraction and interphase on interfacial stresses will be
investigated.

Now prescribe a macro-field condition: only the average stress
over a unit cell hs13i– 0, while hs23i as well as the other compo-
nents of the average generalized stress are zero. The stress concen-
tration factor (SCF) at the interface is defined as smax

13 =hs13i, where
smax
13 is the maximum stress s13 at the interface between matrix and

interphase. It is worth noting that for the cases of extremely soft
fibers (holes) or extremely rigid fibers at an extremely low volume
fraction, the SCF approaches 2.

In Fig. 7, the stress concentration factor (SCF) smax
13 =hs13i of the

three-phase composites mentioned in Fig. 5(a) and (b) (CoFe2O4/
BaTiO3/Terfenol-D and Terfenol-D/BaTiO3/CoFe2O4,R0/R = 0.9) ver-
sus the volume fraction k is depicted. As for the influence of the
volume fraction, it is seen from Fig. 7 that for the composite Terfe-
nol-D/BaTiO3/CoFe2O4 the SCF increases all along with the increase
of the volume faction, whereas for the composite CoFe2O4/BaTiO3/
Terfenol-D it first decreases slightly then increases. As for the influ-
ence of the permutation of the phases, it is seen that at a relatively
high volume fraction the SCF of the composite Terfenol-D/BaTiO3/
CoFe2O4 is much larger than that of the composite CoFe2O4/BaTiO3/
Terfenol-D. As for the influence of the fiber array, it is seen that at a
relatively high volume fraction the SCF for a square fiber array is
much larger than that for a hexagonal fiber array. Therefore, con-
sidering the strength of the composites, a hexagonal fiber array is
more appropriate. For a hexagonal fiber array, the SCF of the com-
posite CoFe2O4/BaTiO3/Terfenol-D is always less than 1.6 even at
an extremely high volume fraction k ¼ 0:9, and the SCF of the com-
posite Terfenol-D/BaTiO3/CoFe2O4 is less than 2 even when the vol-
ume fraction k reaches 0.8.

In Fig. 8, the stress concentration factor (SCF) smax
13 =hs13i of the

two kinds of three-phase composites (CoFe2O4/BaTiO3/Terfenol-D
and Terfenol-D/BaTiO3/CoFe2O4) versus the relative thickness
(R � R0)/R of the interphase is depicted. It is seen from Fig. 8 that
with the increase of (R � R0)/R the SCF of the composite CoFe2O4/
BaTiO3/Terfenol-D almost remains unchanged, whereas the SCF
of the composite Terfenol-D/BaTiO3/CoFe2O4 first decreases to near
1 then increases slightly.

5.4. Influence of the fiber distribution: distribution-induced anisotropy

The magnetoelectroelastic fiber composites discussed above as
well as in the existing researches are almost all the ones with a
square fiber array (Camacho-Montes et al., 2009; Espinosa-Almeyda
et al., 2011; Kuo, 2011; Kuo and Pan, 2011) or a hexagonal fiber
array (Espinosa-Almeyda et al., 2011) or a statistically even fiber
distribution (Wang and Pan, 2007), whose effective magnetoelectric
moduli are transversely isotropic, that is ae

11 ¼ ae
22; a

e
12 ¼ ae

21 ¼ 0. For
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13 =hs13i at the interface of the three-phase
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two volume fractions k ¼ 0:6 and k ¼ 0:8, respectively.
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Fig. 9. A generally doubly periodic fiber array parameterized with two parameters:
side length ratio l2/l1 and relative staggered distance Dl1/l1 of the staggered
rectangular unit cell.
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gered distance Dl1/l1. (a) Side length ratio l2/l1 = 1 and k ¼ 0:7; (b) side length ratio
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3
p

=2 and k ¼ 0:6.
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composites with a generally periodic array of fibers, the effective
magnetoelectric moduli can be anisotropic, the overall magneto-
electroelastic behaviors in two directions are coupled as stated in
Eq. (26). To investigate such anisotropy induced by the general fiber
arrays, a generally doubly periodic fiber array is parameterized with
two parameters: side length ratio l2/l1 and relative staggered dis-
tance Dl1/l1 of the staggered rectangular unit cell, as shown in Fig. 9.

In Fig. 10(a) and (b), the effective magnetoelectric coefficients
(ae

11; a
e
22; a

e
12) of the anisotropic three-phase composite (CoFe2O4/

BaTiO3/Terfenol-D, R0/R = 0.9) versus the relative staggered dis-
tance Dl1/l1 are depicted for two cases: l2/l1 = 1, k ¼ 0:7 and
l2=l1 ¼

ffiffiffi
3
p

=2; k ¼ 0:6, respectively. It should be noted that the vol-
ume fraction keeps unchanged and only the fiber distribution var-
ies with Dl1/l1 varying. The cases l2/l1 = 1, Dl1/l1 = 0 and
l2=l1 ¼

ffiffiffi
3
p

=2, Dl1/l1 = 1/2 are corresponding to two special sym-
metric arrays: square array and hexagonal array, respectively;
while the cases l2/l1 = 1, Dl1/l1 = 1/2 and l2=l1 ¼

ffiffiffi
3
p

=2, Dl1/l1 = 0
are corresponding to two general symmetric arrays: rhombic array
and rectangular array, respectively. It is seen from Fig. 10(a) and
(b) that for above four symmetric arrays the coupling magneto-
electric coefficient ae

12 ¼ 0. With the transformation of the fiber
distributions from the special symmetric arrays to the general
symmetric arrays, ae

12 reaches its maximum magnitude in the mid-
dle of the process and its sign is variable, one of the main magne-
toelectric coefficients (ae

11 and ae
22) increases while another

decreases. The maximum magnitude of the coupling magnetoelec-
tric coefficient is about one order smaller than the magnitude of
the main magnetoelectric coefficients.
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6. Conclusions

With the aid of the matrix notation, the anti-plane magneto-
electroelastic coupling problem is formulated as same as the
anti-plane piezoelectric coupling problem. And then the eigenfunc-
tion expansion-variational method (EEVM) is extended to solve
such a problem. Series solutions for the effective magnetoelectro-
elastic moduli are presented, which are in a unified form for gener-
ally periodic fiber arrays, different unit cell shapes as well as
different constituent properties, and are applicable for high volume
fraction of fibers.

With the present series solution, it is found that the effective
magnetoelectric coefficient of a two-phase composite may have
two local extrema rather than only one extremum predicted by
the Mori-Tanaka method. For a small fiber volume fraction, the re-
sults by the present method are in agreement with those by the
Mori-Tanaka method. However, for a large volume fraction, the
Mori-Tanaka method fails to predict the correct results and the
present method is required. By optimizing the volume fraction,
permutation and the choice of the constituent phases, the maxi-
mum magnitude of the effective magnetoelectric coefficient of a
three-phase composite can be much larger than that of any of
the two-phase composites, and the sign of the magnetoelectric
coefficient can be changed, which is not observed in a two-phase
composite.

For composites with a generally periodic array of fibers, the
effective magnetoelectric moduli can be anisotropic. There exist
two coupling magnetoelectric coefficients besides the two main
coefficients. The maximum magnitude of the coupling magneto-
electric coefficient is about one order smaller than the magnitude
of the main magnetoelectric coefficients.
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