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Hamilton’s principle is the variational principle for dynamical systems, and it has been widely used in
mathematical physics and engineering. However, it has a critical weakness, termed end-point constraints,
which means that in the weak form, we cannot use the given initial conditions properly. By utilizing a
mixed formulation and sequentially assigning initial conditions, this paper presents a novel extended
framework of Hamilton’s principle for continuum dynamics, to resolve such weakness. The primary
applications lie in an elastic and a J2-viscoplastic continuum dynamics. The framework is simple, and ini-
tiates the development of a space–time finite element method with the proper use of initial conditions.
Non-iterative numerical algorithms for both elasticity and J2-viscoplasticity are presented.
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1. Introduction

Hamilton (1834, 1835) formulated a variational method for
dynamics, based upon the concept of stationary action, with action
represented as the integral over time of the Lagrangian of the
system. Despite its origin in conservative particle dynamics,
Hamilton’s principle has broad applicability (see Bretherton,
1970; Gossick, 1967; Landau and Lifshitz, 1975; Slawinski, 2003;
Tiersten, 1967). For continuum dynamics, the action consists of a
space–time integral for the Lagrangian density, and the stationarity
of this action provides the equations of motion as its Euler–
Lagrange equation. Thus, Hamilton’s principle provides the theo-
retical basis for studying the dynamic behavior of materials in
space–time. However, there are two main difficulties.

The first one is called the end-point constraints, which imply
that the positions of the dynamical system are known at the begin-
ning and at the end of the time interval. Considering that the
primary objective in studying dynamical systems is to investigate
how the system evolves in the future, the assumption that the
position of the system at the end of a time interval is known is
not appropriate. The second one is the restriction to conservative
systems. Extending Hamilton’s principle to embrace non-conserva-
tive systems requires another functional, Rayleigh’s dissipation
(Rayleigh, 1877), apart from a Lagrangian. While this is not a true
variational method in a strict mathematical sense, it provides an
appropriate framework to accommodate non-conservative
systems (Biot, 1955; Marsden and Rat�iu, 1994).

Limiting our perspective within the application of a space–time
finite element to dynamical systems, we can find original ideas in
Argyris and Scharpf (1969) and Fried (1969). Since then, many
other formulations (e.g., Hughes and Hulbert, 1988; Hughes and
Marsden, 1978; Hulbert, 1992; Hulbert and Hughes, 1990; Jamet,
1978; John, 1977; Johnson, 1987; Johnson et al., 1984; Peters and
Izadpanah, 1988) have been proposed and successfully imple-
mented for engineering problems. However, finite-element meth-
ods in the temporal domain are still less popular that the
classical time integration schemes, such as finite differences, New-
mark, and Runge–Kutta have dominated. Furthermore, the finite-
element methods in time suggested so far have had difficulty.
The most common finite element methods in time are based on
the time-discontinuous Galerkin’s method (TDG: see Cannarozzi
and Mancuso, 1995; Chien et al., 2003; Hughes and Hulbert,
1988; Hulbert, 1992; Li and Wiberg, 1996). However, there are
inherent difficulties, such as (i) proper use of the initial conditions,
(ii) freedom from the interference of the upwind information with
respect to time, and (iii) the use of iterative algorithms due to the
weak satisfaction of the initial conditions at each time-step. For
example, Bottasso (1997) suggested bi-discontinuous and singly
discontinuous temporal finite-element methods, where the time-
boundary conditions (end-point constraints) are satisfied a priori,
while allowing the momentum to have discontinuity at the begin-
ning and at the end of a time interval (the bi-discontinuous meth-
od), or to have discontinuity at the beginning of a time interval (the
singly discontinuous method).
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The main objective of the present work is to present a simple
extension of Hamilton’s principle to circumvent the first difficulty
in continuum dynamics as well as the initiation of a space–time
finite element method with the proper use of the initial conditions.

The remainder of the paper is organized as follows. In Section 2,
the classical variational approach of Hamilton’s principle is
reviewed with single-degree-of-freedom oscillators as canonical
examples. Section 3 presents the extended framework of Hamil-
ton’s principle to resolve the initial condition issues, and this is
applied to elastic and J2-viscoplastic continuum dynamics. As we
shall see, in each case, the new framework recovers all the govern-
ing differential equations along with the specified initial and
boundary conditions. Section 4 is devoted to the numerical
implementation of the new framework, where a space–time
finite-element methodology is discussed. There, we also present
non-iterative numerical algorithms for both elasticity and J2-visco-
plasticity. Finally, the work is summarized and conclusions are
drawn in Section 5.

2. Classical variational approaches

2.1. Hamilton’s principle

Consider the harmonic oscillator displayed in Fig. 1, consisting
of a mass m and linear spring having constant stiffness k. Let uðtÞ
represent the displacement of the mass from its equilibrium posi-
tion, while

vðtÞ ¼ _uðtÞ ð1Þ

denotes its velocity with the superposed dot indicating a derivative
with respect to the time t.

The initial value problem associated with this system has the
differential equation of motion

m€uþ ku ¼ 0 ð2Þ

with the initial conditions

uð0Þ ¼ u0; _uð0Þ ¼ v0 ð3Þ

Based upon a classical variational approach (e.g., Calkin, 1996;
Fox, 1987; Gel’fand et al., 2000; Goldstein, 1980; Lanczos, 1970),
we can define the Lagrangian L for this system as

Lðu; _u; tÞ ¼ Tð _u; tÞ � Uðu; tÞ ð4Þ

where kinetic energy T and elastic strain energy U are given by

Tð _u; tÞ ¼ 1
2

m½ _uðtÞ�2 ð5Þ

and

Uðu; tÞ ¼ 1
2

k½uðtÞ�2 ð6Þ

The functional action A for the fixed time interval from t0 to t is
written
Fig. 1. Harmonic oscillator.
Aðu; _u; tÞ ¼
Z t

t0

Lðu; _u; sÞ ds ð7Þ

By the stationarity of the action, the first variation of (7) is

dA ¼ �d
Z t

t0

Lðu; _u; sÞds ¼ 0 ð8Þ

or

dA ¼ �
Z t

t0

@L
@ _u

d _uþ @L
@u

du
� �

ds ¼ 0 ð9Þ

and finally

dA ¼ �
Z t

t0

½m _ud _u� kudu�ds ¼ 0 ð10Þ

Performing integration by parts to the first term in (10) leads to

dA ¼
Z t

t0

½m€uþ ku�duds� ½m _udu�tt0
¼ 0 ð11Þ

Following Hamilton (1834), in order to recover the governing
equation of motion, we must invoke the condition of zero variation
at the beginning and end of the time interval

duðt0Þ ¼ 0; duðtÞ ¼ 0 ð12Þ

Then, (11) changes into

dA ¼
Z t

t0

½m€uþ ku�duds ¼ 0 ð13Þ

After allowing arbitrary variations du between the end-points
ðt0; tÞ, we can recover the governing Eq. (2) for the harmonic oscil-
lator from the stationarity of the action A. We can also derive (2) by
invoking the Euler–Lagrange equation

d
dt

@L
@ _u
� @L
@u
¼ 0 ð14Þ

In either way, however, the time-boundary conditions (12)
rather than the initial conditions (3) are used and this restriction
is called the end-point constraints.

2.2. Rayleigh’s dissipation

Rayleigh (1877) introduced a separate functional to account for
non-conservative systems within the framework of Hamilton’s
principle. To illustrate this approach, let us consider the damped
oscillator in Fig. 2, where the equation of motion and the initial
conditions are

m€uþ c _uþ ku ¼ 0 ð15Þ

and

uð0Þ ¼ u0; _uð0Þ ¼ v0 ð16Þ

The Rayleigh’s dissipation u for this system is defined as
Fig. 2. Damped oscillator.



Fig. 3. Particle motion.
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uð _u; tÞ ¼ 1
2

c½ _uðtÞ�2 ð17Þ

with the Lagrangian specified in (4)–(6).
The action itself can no longer be written in explicit form, and

the first variation of A is defined as

dA ¼ �d
Z t

t0

Lðu; _u; sÞdsþ
Z t

t0

@uð _u; sÞ
@ _u

duds ¼ 0 ð18Þ

Then, from (11) and (12), we have

dA ¼ �
Z t

t0

½m _ud _u� kudu�dsþ
Z t

t0

½c _u�duds ¼ 0 ð19Þ

After applying integration by parts on the first term and end-point
constraints (12), we recover the equation of motion (15) for the
damped oscillator as the Euler–Lagrange equation.

While this approach is valid for arriving at the proper governing
differential equation of motion, it is not completely satisfactory as
a variational statement. In particular, the first variation of the dis-
sipation (18) enters in an ad hoc manner.

3. Extended framework

To overcome the first difficulty in Hamilton’s principle, Borri
and Bottasso (1993) suggest a general framework that correctly ac-
counts for initial conditions within a displacement-based ap-
proach. In their approach, (i) displacement and momentum are
primary variables, and (ii) the time-boundary conditions (end-
point constraints) are satisfied a priori with weak satisfaction of
momentum at the time-boundary. As we shall see in this Section,
the new framework takes a somewhat opposite procedure to (ii)
in such a general framework. Also, it utilizes a mixed formulation
that has a number of computational and theoretical benefits.

3.1. The new perspective

The extension of Hamilton’s principle emanates from noticing
the flaws in Hamilton’s principle, while viewing it sequentially as
follows:

1. Define a Lagrangian: the dynamical system properties are
defined.

2. Define an action: fix the time-window for the considered
time duration.

3. Invoke stationary action dA ¼ 0: consider all the cases
where the dynamic system evolves arbitrarily from the ini-
tial to final time.

4. Enforce end-point constraints: find the dynamic evolution
where the system has the known initial and final position.

Such a sequential viewpoint for Hamilton’s principle is valid, as
examined through (4)–(13) for a harmonic oscillator.

Within this sequential viewpoint, Hamilton’s principle assigns
end-point constraints to the dynamical system during the last step.
Also, it considers all the dynamic evolution cases where the system
has arbitrary (multiple) displacement and velocity at the initial and
final time.

Thus, we may correctly account for the initial value problem in
Hamilton’s principle, if Hamilton’s principle has the framework

1. Define a Lagrangian.
2. Define an action.
3. Invoke stationary action dANEW ¼ 0: consider only the cases

where the dynamical system evolves uniquely (but unspec-
ified) from the initial to final time.

4. Assign the given initial conditions.
In other words, we extend the action variation as dANEW , and
assign the given initial values to it. The last assigning process also
has a sequence, and this is discussed next with a trivial example.

Consider a free particle whose mass is m and that moves on a
frictionless surface with velocity _uðtÞ, as in Fig. 3.

In the absence of a potential, the Lagrangian is simply equal to
the kinetic energy

Lð _u; tÞ ¼ 1
2

m½ _uðtÞ�2 ð20Þ

The action of this system for time duration ½0; T� is written

A ¼
Z T

0
Lð _u; sÞds ð21Þ

In the new extended framework, we define the action variation
for (21) as

dANEW ¼ �d
Z T

0
Lð _u; sÞdsþ ½m v̂T dûT �m v̂0 dû0� ¼ 0 ð22Þ

to confine our focus to the unique dynamic evolution cases from
unspecified value ðv̂0; û0Þ at the initial and ðv̂T ; ûTÞ at the final time.

The additional closed bracket terms in (22) are nothing but the
counterparts to the terms without end-point constraints in
Hamilton’s principle, and only the known initial values v0 and u0

are sequentially assigned to the undetermined reserved initial
conditions v̂0 and û0.

That is, (22) could be changed into

dANEW ¼ �
Z T

0

@L
@ _u

d _uþ @L
@u

du
� �

dsþ m v̂T dûT �m v̂0 dû0½ �

¼ 0

¼
Z T

0

d
dt

@L
@ _u

� �
� @L
@u

� �
duds� @L

@ _u
du

� �T

0

þ m v̂T dûT �m v̂0 dû0½ �
¼ 0 ð23Þ

and each term of closed brackets is matched as

@L
@ _u
ð0Þ ¼ m v̂0; duð0Þ ¼ dû0;

@L
@ _u
ðTÞ ¼ m v̂T ; duðTÞ ¼ dûT ð24Þ

With (24), we can only consider the unique evolution cases for a
particle motion.

Next, the unspecified initial value v̂0 is assigned to the given ini-
tial value

v̂0 ¼ v0 ð25Þ

and successively, the unspecified initial value û0 has the given ini-
tial value

dû0 ¼ du0 ¼ 0 or u0 is given ð26Þ

The subsequent zero-valued term (26) needs not appear explic-
itly in the new action variation, so that the new definition (22)
with the sequential assigning process (25) and (26) can properly
account for the initial value problems. It should be noted that the
sequential assigning process takes somewhat opposite procedure
to the previous framework by Borri and Bottasso (1993). In their
framework, end-point constraints (displacement boundary condi-
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tions) are satisfied before the momentum boundary conditions
(velocity boundary conditions) are applied while the new frame-
work sequentially assigns the initial velocity and the initial dis-
placement. Thus, compared to the previous framework, the new
framework takes opposite procedure in assigning the initial
conditions.

The extended framework is explained pictorially in Fig. 4, with a
comparison to the original framework of Hamilton’s principle. To
emphasize that only the known initial conditions are used, while
leaving the final values uniquely unknown, the circle (displace-
ment) and the tangent line (velocity) at each end are shown in dif-
ferent ways. There, the unique dynamic evolution is represented as
Fig. 4. Graphical view of the extended f
a solid-line while the multiple dotted lines represent that the tra-
jectory of a particle is not unique.

3.2. Extension to continuum dynamics

Recent work by Sivaselvan and Reinhorn (2006), Lavan et al.
(2009), Sivaselvan et al. (2009), Apostolakis and Dargush (2012,
2013) perceive a dynamical system as a collection of Euler–La-
grange equations in state variables, where each state variable such
as displacements, internal stresses, and other variables can be trea-
ted uniformly with the adoption of a mixed Lagrangian formula-
tion. Here, we continue along these lines, but propose a new
ramework for Hamilton’s principle.
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framework for continuum dynamics. The main objective here is to
show how the extended framework can recover all the governing
equations, with compatible initial and boundary conditions for
an elastic and a viscoplastic continuum.

3.2.1. An elastic continuum
In the extended framework of Hamilton’s principle, the action

for the elastic continuum dynamics within the time duration
½0; T� is defined as

A ¼
Z T

0

Z
X

ldXdsþ
Z T

0
V ds ð27Þ

where, the Lagrangian density l and the applied force potential V
are given by

l ¼ 1
2
q _ui _ui þ

1
2

Aijkl
_Jij

_Jkl � _Jij eij ð28Þ

and

V ¼
Z

X
f̂ i uidXþ

Z
Ct

t̂i uidC ð29Þ

In (28) and (29), q is the mass density and Aijkl is the elastic con-
stitutive tensor inverse to Dijkl, the usual constitutive tensor for an
anisotropic elastic medium, while JijðtÞ ¼

R t
0 rijðsÞds is an impulse

of stress tensor rij, and eij is the strain tensor. Also, f̂ i and t̂i repre-
sent the known body force density and the known traction of an
elastic continuum occupying X in space, respectively. Here, the
boundary conditions are defined such that Cu [ Ct ¼ C and
Cu \ Ct ¼ ;.

The new action variation for elastodynamics is defined in terms
of the generalized displacement field ui and the generalized stress
field _Jijð¼ rijÞ as

dANEW ¼ �d
Z T

0

Z
X

l dXds� d
Z T

0
V dsþ

Z
X
½q v̂ i dûi�T0dX ¼ 0 ð30Þ

As in the previous particle example, (30) is defined by adding all the
counterparts to the terms without end-point constraints in Hamil-
ton’s principle, and confining them to a unique but undetermined
value at the initial and final time.

By substituting (28) and (29) into (30), (30) is written

dANEW ¼ �
Z T

0

Z
X
½q _ui d _ui þ Aijkl

_Jij d _Jkl � eij d_Jij � _Jij deij�dXds

�
Z

X

Z T

0
f̂ i dui dsdX�

Z
Ct

Z T

0
t̂i dui dsdC

þ
Z

X
½q v̂ i dûi�T0dX

¼ 0 ð31Þ

After performing all of the temporal and spatial integration-by-
parts operations on (31), we have

dANEW ¼
Z T

0

Z
X
ðq €ui � _Jij;j � f̂ iÞdui dXds

þ
Z T

0

Z
X
ðAijkl

€Jij � _eklÞ dJkl dXds

þ
Z

X
½ðekl � Aijkl

_JijÞdJkl�
T

0dX

þ
Z T

0

Z
C

ti dui dCds�
Z T

0

Z
Ct

t̂i dui dCds

þ
Z

X
½q v̂ i dûi � q _ui dui�T0dX ¼ 0 ð32Þ

While performing a spatial integration by parts on the term _Jijdeij in
(31), we make use of the symmetry of stresses _Jij and the Cauchy
definition of surface traction, where ti ¼ _Jijnj.
To satisfy dANEW ¼ 0 in (32), we have not only the governing dif-
ferential equations, representing linear momentum balance and
elastic constitutive behavior, respectively

q €ui � _Jij;j � f̂ ¼ 0; Aijkl
€Jij � _ekl ¼ 0 ð33Þ

but also the compatibility equation at the initial and final time

ekl � Aijkl
_Jij ¼ 0 ð34Þ

More importantly, the new action variation (30) uses all the
pertinent initial/boundary conditions in the last two lines of (32).
That is, by expressing the displacement of an elastic continuum
ui as a function of position vector ~x and time t as ui ¼ uið~x; tÞ, we
can see that the given initial velocity condition

_uið~x;0Þ ¼ v̂ ið~x;0Þ ¼ v ið~x;0Þ ð35Þ

and successively the given initial displacement condition

uið~x;0Þ ¼ ûið~x;0Þ ¼ uið~x;0Þ ð36Þ

are properly used in the last line of (32).
Also, we have the boundary conditions

ti ¼ bti on Ct ð37Þ

and

duið~̂x; tÞ ¼ 0 or uið~̂x; tÞ ¼ ~uið~̂x; tÞ on Cu ð38Þ

in the fourth line of (32). In (38), ~uið~̂x; tÞ is the given displacement
boundary condition at the specified location ~̂x.

3.2.2. A viscoplastic continuum
By applying Rayleigh’s dissipation function to this framework,

we can also account for non-conservative dynamical systems.
Here, the Duvaut and Lions viscoplasticity (1976), where the dissi-
pation function or flow potential that depends on the stress only
through the J2 invariant, is considered.

As described in Lubliner (1990) and Simo and Hughes (1998)
well, the dissipation function of viscoplasticity, incorporating the
Mises yield criterion and a J2 flow potential, can be expressed in
terms of a Macaulay bracket h�i as

u ¼ 1
2g

ffiffiffiffi
J2

p
� rYffiffiffi

3
p

� �2

ð39Þ

where rY and g represent the yield stress and viscosity,
respectively.

This dissipation function is included in the new action variation
for the time duration ½0; T� asZ T

0

Z
X

_evp
kl ¼

@u
@Skl
¼ @u
@J2

@J2

@Skl
¼ 1

2g

ffiffiffiffi
J2

p
� rYffiffi

3
p

D E
ffiffiffiffi
J2

p Skl

24 35dDkl dXds ð40Þ

In (40), Skl and dDkl represent the deviatoric stress tensor, and the
first variation of deviatoric impulse tensor, respectively. Also, the
notation _evp

kl represents the rate-dependent plasticity or viscoplastic
strain rate. The reason for introducing the first variation of deviator-
ic impulse dDkl in (40) is that Rayleigh’s method uses the first vari-
ation having less than one time differentiation value of the main
variable in the dissipation potential. This was already examined in
(18) for the damped oscillator.

However, whether using the first variation of deviatoric impulse
tensor dDkl, or the first variation of impulse dJkl in (40), does not
make any difference, because the differentiation of the dissipation
function with respect to the deviatoric stress ðthat is; @u=@SklÞ and
the differentiation of the dissipation function with respect to the
stress ð@u=@rklÞ are the same:

@u
@rkl

¼ @u
@J2

@J2

@rkl
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where;
@J2

@rkl
¼
@ 1

2 Sij Sij
	 

@rkl

¼
@ rij � 1

3 rmm dij
	 


@rkl
Sij

¼ dik djl �
1
3

dmk dml dij

� �
Sij ¼ Skl �

1
3

dkl Sii ¼ Skl ð41Þ

Thus, we can freely use dDkl or dJkl in (40).
Combining the Rayleigh dissipation function (39) and its varia-

tional term (40), we define the new action variation for a viscoplas-
tic continuum as

dANEW ¼ �d
Z T

0

Z
X

ldXds� d
Z T

0
V dsþ

Z T

0

Z
X
½ _evp

kl �dJkl dXds

þ
Z

X
½q v̂ i dûi�T0dX�

Z
X
½êvp

kl dJkl�
T
0dX

¼ 0 ð42Þ

where êvp
kl represents the viscoplastic strain.

In terms of the mixed variables, such as ui and Jij, the governing
differential equations for the viscoplastic continuum can be
written

q €ui � _Jij;j � f̂ i ¼ 0; Aijkl
€Jij � _ekl þ _evp

kl ¼ 0 ð43Þ

where they represent the equations of motion and rate-compatibil-
ity, respectively, valid at any time t . Note that the rate-compatibil-
ity equation Aijkl

€Jij � _ekl þ _evp
kl ¼ 0 is equivalent to the equation

_rij � Dijkl ð _ekl � _evp
kl Þ ¼ 0 with the usual elastic constitutive tensor

Dijkl.
Our objective is to show how the new action variation (42)

recovers all of these governing relations (43) as the Euler–Lagrange
equations for the viscoplastic continuum.

By substituting (28) and (29) into (42), (42) is written

dANEW ¼ �
Z T

0

Z
X
½q _ui d _ui þ Aijkl

_Jij d_Jkl � eij d_Jij � _Jij deij�dXds

�
Z

X

Z T

0
f̂ i dui dsdX�

Z
Ct

Z T

0
t̂i dui dsdC

þ
Z

X
½q v̂ i dûi�T0dXþ

Z T

0

Z
X
½ _evp

kl �dJkl dXds

�
Z

X
½êvp

kl dJkl�
T
0dX

¼ 0 ð44Þ

After applying temporal and spatial integration-by-parts to
(44), we have

dANEW ¼
Z T

0

Z
X
ðq €ui � _Jij;j � f̂ iÞdui dXdsþ

Z T

0

Z
X
ðAijkl

€Jij � _ekl

þ _evp
kl ÞdJkl dXdsþ

Z
X
½ðekl � Aijkl

_Jij � êvp
kl ÞdJkl�

T

0
dX

þ
Z T

0

Z
C

ti dui dCds�
Z T

0

Z
Ct

t̂i dui dCds

þ
Z

X
½q v̂ i dûi � q _ui dui�T0dX

¼ 0 ð45Þ

In (45), we can explicitly have not only the governing differen-
tial equations (43) from the first two lines, but also the compatibil-
ity equation (the underlined terms). Furthermore, as in an elastic
continuum, the new definition (44) uses all the pertinent initial/
boundary conditions for a viscoplastic continuum, in the last two
lines of (45).
3.3. Discussion of the extended framework

So far, we have shown how dANEW ¼ 0 in the new framework
finds the true dynamic evolution for elastic and viscoplastic contin-
uum. Theoretically, dANEW ¼ 0 holds because

1. It only considers unique dynamic evolution cases of the system,
where the initial conditions are unspecified.

2. Among these unique cases, the true trajectory of the system is
identified with sequentially assigning the known initial
conditions.

Physically, this extends the principle of virtual work to dynam-
ics in a mixed variational sense. For elastodynamics, by interpret-
ing the first variations ðdui; dJklÞ as virtual fields, and the
independent field variables ðui; JijÞ as real fields in (32), the Eq.
(32) provides not only the equilibrium, but also the initial/bound-
ary conditions and rate-compatibility/compatibility equations at
the same time. Also, Eq. (45) can be viewed as the extension of
the principle of virtual work in viscoplastic continuum dynamics
with proper strong forms (43) and initial/boundary conditions
(35)–(38).

The framework can be numerically implemented through
applying a space–time Galerkin’s finite element. For elasticity, Eq.
(31), which is equivalent to (32), provides the balanced continuity
equation, since both ui and Jkl in the real and virtual fields have C0

time continuity, while ui and Jkl in the real and virtual fields have
C0 and C�1 space continuity. Also, Eq. (44) provides the balanced
continuity equation for the dynamics of a viscoplastic continuum.
4. A space–time finite element method from the extended
framework

The implementation of space–time finite elements in the con-
text of the extended framework is somewhat particular. The
important issues are (i) the identification of the primary fields to
use proper initial conditions, and (ii) numerical efficiency from
the inherent disadvantage of mixed formulation. As we shall see
in this Section, we resolve the first issue (i) by making the velocity
at each time-end satisfy subsequent space–time continuity
requirements. Also, to alleviate numerical efficiency somehow,
(ii) we allow the mixed time-step algorithm, where the unknown
velocity at the end of each time step cannot appear until the last
time step.
4.1. Numerical implementation

By adopting Cartesian coordinates, each integration in (31) for
elasticity can be written in vector and matrix form as:

J ¼

@x
@n

@y
@n

@z
@n

@x
@g

@y
@g

@z
@g

@x
@f

@y
@f

@z
@f

2664
3775

��������
�������� ð46Þ

where ðx; y; zÞ and ðn;g; fÞ represent the global coordinate and nat-
ural coordinate. Also, the Jacobian determinant for each face of a
certain element is written as Jf in INT4.

The integrations in the above tables are quite similar to those in
the usual finite-element formulation, except that the independent
fields, such as fduig ¼ b dux duy duz cT and
fdJijg ¼ b dJxx dJyy dJzz dJyz dJzx dJxy cT , are functions of both
space and time. Here, f�g and b�c represent column vector and
row vector, respectively.
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The constitutive matrix ½Aijkl� in INT 6 is symmetric, and can rep-
resent isotropic or anisotropic material properties. For isotropic
materials, ½Aijkl� is written
1
E � t

E � t
E 0 0 0

� t
E

1
E � t

E 0 0 0
� t

E � t
E

1
E 0 0 0

0 0 0 1
G 0 0

0 0 0 0 1
G 0

0 0 0 0 0 1
G

26666666664

37777777775
ð47Þ

where E is the Young’s modulus, t is the Poisson’s ratio and G is the
shear modulus. The shear modulus can be expressed in terms of the
Young’s modulus and Poisson’s ratio as G ¼ E

2ð1þtÞ.

4.1.1. Numerical approximation of each field with the new notation
To avoid complication in the discretizing process while apply-

ing Galerkin’s method to space–time, the new notations are delib-
erately contrived. That is, the notations related to the space of an
independent field are placed at the right side, and those related
to the time of an independent field are placed at the left side. In
addition, the upper notations represent nodal values, and the lower
notations represent approximation. For example, the space–time
displacement field for the time duration ½tr�1; tr � of a certain ele-
ment is approximated by
ui�rui ¼
1
h
btr � t � tr�1 þ tc

r�1ui
rui

� 


¼ 1
h
btr � t � tr�1 þ tc

X
p

ðNpr�1up
i ÞX

p

ðNprup
i Þ

8><>:
9>=>; ð48Þ

where h ¼ tr � tr�1.
In (48), the linear shape function in time is adopted to satisfy

the least temporal continuity requirements C0, whereas the shape
functions in space Np are not specified. No spatial element is spec-
ified to show the numerical implementation scheme of the new
method in general.

Consequently, _ui in the time duration ½tr�1; tr � is approximated
by

_ui � r _ui ¼
1
h
b�1 1c

r�1ui

rui

( )
¼ 1

h
b�1 1c

X
p

ðNpr�1up
i ÞX

p

ðNprup
i Þ

8>><>>:
9>>=>>; ð49Þ

Similarly, Jij and Cauchy’s stress _Jij in the time duration ½tr�1; tr�
are approximated by

Jij � rJij ¼
1
h
btr � t � tr�1 þ tc

r�1Jij
r Jij

� 

¼ 1

h
btr � t � tr�1 þ tc

r�1Jfpgij
rJfpgij

( )
ð50Þ

and

_Jij � r
_Jij ¼

1
h
b�1 1c

r�1Jij
r Jij

( )
¼ 1

h
b�1 1c

r�1Jfpgij

rJfpgij

8<:
9=; ð51Þ

Since Jij requires C�1 space-continuity, letting Jij have a representa-
tive value at a point in an element may be enough. The expression
fpg in (50) and (51) is used for consistency, and can be regarded as a
dummy expression at this moment.
For viscoplasticity, the deviatoric stress Skl in (40) could be
numerically discretized by introducing deviatoric impulse Dkl. That
is, Dkl is written

DklðtÞ ¼ JklðtÞ �
1
3

JmmðtÞdkl ð52Þ

Then, the deviatoric stress Skl for the time duration ½tr�1; tr � is
approximated by

Skl ¼ _Dkl � r
_Dkl ¼

1
h
b�1 1c

r�1Dkl

rDkl

( )
¼ 1

h
b�1 1c

r�1Dfpgkl

rDfpgkl

( )
ð53Þ

where the relation between rDfpgkl and r Jfpgkl is also valid as (52) at any
discrete time tr .

Similarly, by replacing the real field nodal values in (48)–(51)
with the virtual nodal values, each virtual field (continuity bal-
anced to real fields) can be approximated.

With the approximation of (48)–(53) in both the real and virtual
fields in Tables 1 and 2, we subsequently approximate v̂ i at each
time-end (INT 5 in Table 1) with the consideration of C�1 time con-
tinuity/C0 space continuity. This approach does not violate any
continuity requirement of velocity, since the velocity in the inte-
grand _ui is subsequently approximated with the C�1 time continu-
ity requirement following the C0 time continuity requirement on
the displacement field and approximated with C0 space continuity
requirement following the C0 space continuity requirement on the
displacement field. Similarly, we approximate the viscoplastic
strain êvp

kl (INT9 in Table 2) by the representative value êvpfpg
kl . An

initial version of this approach using low-order discrete time for-
mulations leads toward development of higher-order time-step-
ping methods with much care about the initial conditions
including impact problems in the future (see Farhat et al., 2003;
Lorcher et al., 2007; Gassner et al., 2008; Petersen et al., 2009).

4.1.2. Implementation scheme for each space–time element
With the approximation scheme above, we can directly inte-

grate individual space–time integration in Tables 1 and 2 firstly
for the temporal domain by using Fubini’s theorem. For example,
doing the time-integration first for INT1 after substituting (49) into
INT1 yields

INT1 : �q
h

�
Z

Vn

X
m

Nmðdrum
i � dr�1um

i Þ
( )T X

p

Npðrup
i �

r�1up
i Þ

( )
JdVn

ð54Þ

Similarly, doing the time-integration first on the other integra-
tions in Tables 1 and 2 yields

INT2 :
1
2

�
Z

Vn

X
m

Bm drum
i þ dr�1um

i

� �( )T

rJfpgij �
r�1Jfpgij

n o
J dVn ð55Þ

INT3 : � h
2

Z
Vn

X
m

Nmðdr�1um
i þ drum

i Þ
( )T

r f̂ m
i

n o
J dVn ð56Þ

INT4 : � h
2

Z
Cn

X
f

X
a

Faðdr�1ua
i þ drua

i Þ
( )T

r t̂ai
� �

Jf dCn ð57Þ

INT5 : q
Z

Vn

X
m

Nmðdrum
i Þ

( )T

frv̂p
i g�

X
m

Nmðdr�1um
i Þ

( )T

fr�1v̂p
i g

24 35JdVn

ð58Þ



Table 1
Integrations for elastodynamics.

Integrations Description

INT1: �
R tr

tr�1

R
Vn

qfd _uigTf _uigJdVnds Kinetic energy

INT2:
R tr

tr�1

R
Vn
fdeijgTf_JijgJdVnds Work conjugate variation

INT3: �
R tr

tr�1

R
Vn
fduigTff̂ igJdVnds Body force

INT4: �
R tr

tr�1

R
Ct

P
f fduigTft̂igJf

� �
dCnds Traction: the Jacobian is defined for each face

INT5:
R

Vn
½fdûig

Tfqv̂ ig�
tr

tr�1
JdVn

Initial/final momentum density

INT6: �
R tr

tr�1

R
Vn
fd_Jklg

T ½Aijkl�f_JijgJdVnds Constitutive relation

INT7:
R tr

tr�1

R
Vn
fd_Jijg

TfeijgJdVnds Work conjugate variation

With Table 1, the additional integrations that account for J2-viscoplasticity in (44) are given.
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INT6 : �1
h

drJfmgkl � dr�1Jfmgkl

� �n oT
½Aijkl� rJfpgij �

r�1Jfpgij

� �n oZ
Vn

J dVn

ð59Þ
INT7 :
1
2

Z
Vn

drJfmgij � dr�1Jfmgij

n oT X
p

Bpfrup
i þ

r�1up
i g

( )
JdVn ð60Þ
INT8 : drJfmgkl þ dr�1Jfmgkl

n oT

DuðrDfmgkl ; r�1Dfmgkl Þ
n o

ð61Þ
INT9 : � fdrJfmgkl g
T r êvpfpg

kl

n o
� fdr�1Jfmgkl g

T r�1êvpfpg
kl

n oh i Z
Vn

JdVn

ð62Þ

In (55)–(62), Bm and Fa represent the strain–displacement ma-
trix and the shape functions at each face of an element, respec-
tively. Also, DuðrDfmgkl ; r�1Dfmgkl Þ is defined as

Du rDfmgkl ; r�1Dfmgkl

� �
¼ V

2
1

2g
1� rYffiffiffiffiffiffi

rJ2

p ffiffiffi
3
p

* +
rDfmgkl �

r�1Dfmgkl

n o
ð63Þ

Afterwards, the numerical integration for spatial integral can be
used as for the usual finite-element methods. That is, the coeffi-
cients of the discrete virtual fields such as drum

i ; d
r�1um

i

	 

in (54)

and drJfmgkl ; dr�1Jfmgkl

� �
in (59) are obtained by various numerical

integration methods, such as Newton–Cotes and Gaussian
cubature.

So far, it has been shown how each integration in drA could be
discretized into drA by applying Galerkin’s method to space–time.
That is, dA ¼ 0 for the time duration ½0; T� is written

dA ¼ 0)
XN

r¼1

drA ¼ 0 �!
Time integration; first

Numerical integration for space

XN

r¼1

drA

¼ 0) drA ¼ 0 ð64Þ

where the entire time duration ½0; T� is divided equally into N dura-
tions (tn ¼ nh), and drA (the discrete version of drA) consist of all the

discrete variables dr�1um
i ; d

rum
i ; d

r�1Jfmgkl ; drJfmgkl

� �
and

r�1up
i ;

rup
i ;

r�1v̂p
i ;

rv̂p
i ;

r�1Jfpgij ; rJfpgij ; r f̂ p
i ;

r t̂p
i

� �
:

Table 2
Additional integrations for viscoplasticity.

Integrations

INT8:
R tr

tr�1

R
Vn
fdJklg

Tf _evp
kl gJdVnds

INT9: �
R

Vn
½fdJklg

Tfêvp
kl g�

tr

tr�1
JdVn

In Tables 1 and 2, an isoparametric formulation for space is used, and
By making each coefficient of virtual fields
dr�1um

i ; d
rum

i ; d
r�1Jfmgkl ; drJfmgkl

� �
zero in drA, we have one time-step

method as

½C�fxunknownsg ¼ fbg ð65Þ

where, fxunknownsg ¼ brU; rV̂ ; r JcT and fbg consists of the known val-

ues r�1up
i ;

r�1v̂p
i ;

r�1Jfpgij ; r f̂ p
i ;

r t̂p
i

� �
. Here, block row vectors,

rU ¼ frup
i g

T , rV̂ ¼ frv̂p
i g

T , and rJ ¼ frJfpgij g
T

are used.
However, we propose a mixed-step algorithm with the consid-

eration of numerical efficiency. The critical point is how to deal
with the unknown frv̂p

i g. In the mixed-step method, frv̂p
i g appears

only in the last time step. This is obtained by collecting the coeffi-

cients of the virtual fields separately as d0um
i ; d0Jfmgkl

� �
,

dkum
i ; dkJfmgkl

� �
, and dNum

i ; d
NJfmgkl

� �
, where k is the integer running

from 1 to N � 1. That is, the stationarity of the action dA ¼ 0 is
viewed as

dA ¼ 0)
XN

r¼1

drA ¼ 0) d0Aþ
XN�1

k¼1

dkAþ dNA ¼ 0) d0A

¼ 0; dkA ¼ 0; dNA ¼ 0 ð66Þ

where drA is only composed of the relevant virtual fields
drum

i ; drJfmgkl

� �
.

Then, a matrix equation for each space–time element is written

½D�fxunknownsg ¼ fcg ð67Þ

where fxunknownsg ¼ brU; rJcT .
Note that in (67), fcg differs from the first time element, and the

other time elements. That is, fcgin the first time element consists

of the known values 0up
i ;

0v̂p
i ;

0Jfpgij ; 1 f̂ p
i ;

1 t̂p
i

� �
, and fcg in the other

time element (rth-element) consists of the known values
r�2up

i ;
r�2Jfpgij ; r�1 f̂ p

i ;
r�1 t̂p

i ;
r�1up

i ;
r�1Jfpgij ; r f̂ p

i ;
r t̂p

i

� �
.

With this mixed-step method, we have an additional matrix
equation for fNv̂p

i g at the last time step N as

½L� Nv̂p
i

� �
¼ fqg ð68Þ

where fqg consists of the known values
N�1up

i ;
N�1Jfpgij ; Nup

i ;
NJfpgij ; Nþ1 f̂ p

i ;
Nþ1 t̂p

i

� �
.

Description

Rate-compatibility relation

Viscoplastic strain came from Rayleigh’s dissipation

J represents the Jacobian determinant given.
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Such a mixed-step method also makes it easier to zone the ma-
trix ½D�, and provides the displacement-based space–time finite
element method, as in Fig. 5.

In Fig. 5, the block matrices ½DUJ � and ½DJU � have the relation

½DUJ � ¼ �½DJU �T ð69Þ

which came from the integration by parts property in the temporal
domain (compare (55)–(60)).

Also, the block matrices ½DUU � and ½DJJ� are given by

½DUU � ¼
1
h
½M� ð70Þ

and

½DJJ � ¼
V
h
½Aijkl� ð71Þ

where ½M� and V represent the consistent mass matrix and the vol-
ume of an element, respectively.
4.2. Numerical algorithm for elasticity

By identifying the stiffness-like matrix ½D̂i� for each element, the
global matrix ½D̂� for elasticity in Fig. 5 can be established as follow-
ing a conventional finite element method (see Bathe, 1996; Cook
et al., 1989; Hughes (2000); Strang and Fix (1973)). That is, the
usual ID array for defining the equation numbers, the IEN array
for relating the local node numbers to the global node numbers,
and the LM array for connectivity in a conventional finite element
method are still valid.

The algorithm for elasticity in the new method is given by

Step 1. Identify ID, IEN, LM arrays.
Step 2. Identify ½D̂i� and nĉi

� �
for each element as in Fig. 5.

Step 3. Establish the global matrix equation by using the LM array
as ½D̂�bnUcT ¼ fnĉg.
Step 4. Solve global bnUcT .
Step 5. Recover each element’s impulses fnJig by the relevant
fnuig, as
fnJig ¼ ½Di
JJ �
�1
fncJg � ½Di

JJ�
�1
½Di

JU �fnuig:
Step 6. Update nþ1ĉ
� �

, and return to step 2 until the final step.
Fig. 5. Displacement-based space–time finite element method.
4.3. Numerical algorithm for viscoplasticity

4.3.1. Block matrix equations for each time-step
To have the mixed-step algorithm for viscoplasticity, the coeffi-

cients of Du 1Dfmgkl ; 0Dfmgkl

� �
for the first time step, and those of

Du kDfmgkl ; k�1Dfmgkl

� �
þ Du kþ1Dfmgkl ; kDfmgkl

� �
for the kth time step, must

be added to the block matrix ½DJJ� in Fig. 5.
By substituting (52) into (63), Du kDfmgkl ; k�1Dfmgkl

� �
can be ex-

pressed as DuðkJfmgkl ; k�1Jfmgkl Þ:

Du kJfmgkl ; k�1Jfmgkl

� �
¼ V

2

� 1
2g

1� rYffiffiffiffiffiffi
kJ2

p ffiffiffi
3
p

* + 2
3 � 1

3 � 1
3 0 0 0

� 1
3

2
3 � 1

3 0 0 0
� 1

3 � 1
3

2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

26666664

37777775

kJfmgxx � k�1Jfmgxx
kJfmgyy � k�1Jfmgyy
kJfmgzz � k�1Jfmgzz
kJfmgyz � k�1Jfmgyz
kJfmgxz � k�1Jfmgxz
kJfmgxy � k�1Jfmgxy

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
ð72Þ

Define the matrix ½kS� as

½kS� ¼ ðkCÞ½S� ð73Þ

where, kC and ½S� are given by

kC ¼ V
2

1
2g

1� rYffiffiffiffiffiffi
kJ2

p ffiffiffi
3
p

* +
ð74Þ

and

½S� ¼

2
3 � 1

3 � 1
3 0 0 0

� 1
3

2
3 � 1

3 0 0 0
� 1

3 � 1
3

2
3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2666666664

3777777775
ð75Þ

Then, a matrix equation for the rth time-steps is given by

DUU DUJ

DJU DJJ þ rS

� �
rU; rJb cT ¼

rcU

rcJ þ rSbr�1JcT
� 


ð76Þ

In (76), note that the known vector components cU and cJ at the
first time-step and the other time-steps are different from each
other, as fcg in (67).

4.3.2. Non-iterative algorithm
In (76), the block matrix rS remains unknown due to the

unspecified coefficient rC. Here, these are specified.
Consider a viscoplastic element, where rY and g in (74) are

specified. Suppose the element does not experience any viscoplas-
tic behavior at the rth time-step, then, every time-step solution is
obtained by

DUU DUJ

DJU DJJ

� �
rU; rJb cT ¼

rcU

rcJ

� 

ð77Þ

Now, turn to (76) and (77). This time, consider the matrix con-
densation for impulses. Then, the elastic assumed solution brJEcT in
(77) is written

½DE�brJEcT ¼ frbg ð78Þ

where, ½DE� and frbg are given by

½DE� ¼ ½DJJ� � ½DJU �½DUU ��1½DUJ� ð79Þ

and

frbg ¼ frcJg � ½DJU �½DUU ��1frcUg ð80Þ
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Similarly, the viscoplastic solution brJvpcT in (76) is written

½DP �brJvpcT ¼ frbþ ðrCÞ½S�br�1JcTg ð81Þ

where ½DP � is

½DP � ¼ ½DE� þ ðrCÞ½S� ð82Þ

Substituting the relations (78) and (82) into (81) gives

brJvpcT ¼ brJEcT � ðrCÞ½DE��1½S�brJvp � r�1JcT ð83Þ

Subtracting br�1JcT from both sides in (83), and pre-multiplying
1
h ½S�, yields

I þ ðrCÞSD�1
E

h i
frSvpg ¼ frSEg ð84Þ

where frSvpg and frSEg represent the viscoplastic deviatoric stress,
and the elastic assumed deviatoric stress at the rth discrete time,
respectively. Also, ½I� is an identity matrix.

In (84), let us take the general solution form of frSvpg in terms of
the unknown parameter a:

frSvpg ¼ afrSEg ð85Þ

Then, r J2 in (74) is now written in terms of the elastic assumed J2

invariant r JE
2 as

rJ2 ¼ a2rJE
2 ð86Þ

By substituting (85) into (84), we have

½ð1� aÞI � aðrCÞSD�1
E �frSEg ¼ f0g ð87Þ

By introducing the rank 1 matrix R1 as

R1 ¼ b1 1 1 1 1 1c ð88Þ

and pre-multiplying R1 with (87), the unknown parameter a is eval-
uated by

a ¼ C1 þ bXC2

C1 þ XC2
ð89Þ

where C1, C2, X, and b are

C1 ¼ ½R1�frSEg; C2 ¼ ½R1�½S�½DE��1frSEg; X ¼ V
4g

; b

¼ rYffiffiffi
3
p ffiffiffiffiffiffi

rJE
2

q ð90Þ

After finding a, the coefficient rC ¼ V
2

1
2g 1� rY

a
ffiffiffiffiffi
r JE

2

p ffiffi
3
p

� �
is identi-

fied explicitly so that Eq. (76) can be specified.
Thus, the displacement-based finite element algorithm for

viscoplasticity could be obtained as follows:

Step 1. Identify ID, IEN, LM arrays.
Fig. 6. The Bingham
Step 2. Identify the assumed elastic matrix ½D̂i� and fr ĉig for each
element.

Step 3. Establish the global matrix equation by using the LM array
as ½D̂�brUcT ¼ fr ĉg.

Step 4. Solve global brUcT .
Step 5. Recover each element’s impulses frJig by using the rele-

vant fruig, as frJig ¼ ½Di
JJ�
�1
frcJg � ½Di

JJ�
�1
½Di

JU �fruig.
Step 6. Find the assumed elastic deviatoric stress frSig and the

assumed elastic J2 invariant, rJi
2 by frSig ¼ 1

h ½S�frJi � r�1Jig
and rJi

2 ¼ frSig
T
frSig.

Step 7. Check the criterion.
–Norton m
(a) If all the elements have rJi
2 <

1
3 r

2
Y : brUcT and frJig are

solutions.
(b) If one of the elements (suppose, the kth element) has

rJk
2 >

1
3 r

2
Y :
odel
(i) Find a from (89) for the kth element
(ii) Find kCfrom (74) for the kth element
(iii) Modify ½Dk

JJ � ¼ ½D
k
JJ � þ ðkCÞ½S�

(iv) Establish ½D̂k�frukg ¼ fr ĉkg, where

½D̂k� ¼ ½Dk
UU � � ½D

k
UJ �½D

k
JJ �
�1
½Dk

JU � and

fr ĉkg ¼ frck
Ug � ½D

k
UJ �½D

k
JJ �
�1
frck

J þ ðkCÞ½S�fr�1Jkgg
(v) Establish the global matrix equation

½D̂P�brUcT ¼ fr ĉPg with the LM array and solve it.
Step 8. Update frþ1ĉg, and return to step 2 until the final time step.

While deriving the algorithm for viscoplasticity, the most criti-
cal point is to take the deviatoric viscoplastic stress form as Eq.
(85). This comes from the notion that (1) the method implicitly
deals with a stress field and (2) the elastic assumed deviatoric
stress nSE gives the direction of the viscoplastic deviatoric stress.
For example, the direction of the viscoplastic stress in the Bing-
ham-Norton model could be decided by the elastic assumed stress,
as in Fig. 6.

Then, considering that the stress solution (84) in the new meth-
od is implicitly associated with the unknown invariant nJ2, the gen-
eral solution form (85) can be adopted for the viscoplastic
deviatoric stress.

4.4. Numerical properties of the new method

4.4.1. Dependent initial condition
In the new method, the initial value, 0Jfpgij in each element, must

be identified as in (67). This can only be carried out at a global le-
vel, where the true model is dynamically analyzed before the ini-
tial time.

The momentum balance equation in a region of a body at the
initial time is written
.
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q v̂ ið0Þ � Jij;jð0Þ � ĵið0Þ ¼ 0 ð91Þ

where ĵið0Þ is the impulse of the body force density f̂ i evaluated at
time zero by

ĵið0Þ ¼
Z 0

�1
f̂ iðsÞds ð92Þ

while q v̂ ið0Þ and Jij;jð0Þ are the given initial momentum density, and
the initial internal impulse of the body. In (92), ð�1; 0Þ is used to
represent that this is the time interval before the initial time we
are considering.

Then, by integrating (91) over the volume of a body, we haveZ
X
½qv̂ ið0Þ � Jij;jð0Þ � ĵið0Þ�dX ¼ 0

�!Divergence

Theorem

Z
C

Jijð0ÞnjdC ¼
Z

X
½qv̂ ið0Þ � ĵið0Þ�dX

�!Multiply

ni

Z
C

Jijð0ÞnjnidC ¼
Z

X
½qv̂ ið0Þ � ĵið0Þ�nidX

ð93Þ

where ni and njrepresent the tangential vector and normal vector to
a boundary of a given body.

At the last step in (93), the initial condition Jijð0Þ of a body could
be analytically identified by the given initial momentum, and the
impulse of the body force density. That is, Jijð0Þ is dependent, and
can be found by dynamically analyzing the true model (a body) be-
fore the initial time. Spatially distributing Jijð0Þ to 0Jfpgij in each ele-
ment completes the initial condition issues in the new method.

As far as dealing with the initially static continuum, the initial
impulse in each element is zero ð0Jfpgij ¼ 0Þ, because we have
ĵið0Þ ¼ 0 without an inertia effect.

It should be noted that to identify 0Jfpgij analytically, we need to
allow C0 spatial continuity for Jij, as in (91). Thus, we may need
shape functions Np to discretize Jij, and this is another reason to
use the curly bracket in (50).

4.4.2. Unique solutions
The new method for both elastic and viscoplastic continuum

yields a unique solution for every time step. For elastic continuum,
the solution for every time step is

½½DUU � þ ½DJU �T ½DJJ��1½DJU ��bnUEcT ¼ fnĉg ð94Þ

While deriving (94), we use the relation (69).
As in (47) and (71), the matrix ½DJJ� is positive definite if t– 1

2.
Thus, ½DJJ��1 is always positive definite. Also, the matrix ½DUU � is
symmetric and positive definite by (70).

Thus, the left-side matrix in (94) is also symmetric and positive
definite so the elastic solution bnUEcT is unique for every time-step.

For viscoplasticity, the solution for every time step is

½½DUU � þ ½DJU �T ½DJJ þ nS��1½DJU ��bnUvpcT ¼ fnĉg ð95Þ

In (95), the matrix ½DJJ þ nS� is symmetric positive definite since
½DJJ � is symmetric positive definite, and ½nS� is symmetric positive
semi-definite. Subsequently, the left-side matrix in (95) is sym-
metric and positive definite, so the viscoplastic solution bnUvpcT

in (95) is unique.

5. Conclusions

By using the extended framework, Hamilton’s principle can ac-
count for compatible initial conditions to the strong form properly.
As its canonical applications, we show how the new formulation
recovers all the governing differential equations along with the
pertinent initial and boundary conditions for an elastic and a visco-
plastic continuum. The framework is quite simple: the action var-
iation is newly defined by adding the counterparts to the terms
without the end-point constraints in Hamilton’s principle, which
confines a dynamical system to evolve uniquely from start to
end. Interpreting these additional terms as sequentially assigning
the known initial values completes this formulation.

It is not a complete variational method, since it still requires the
Rayleigh’s dissipation for a non-conservative process and it cannot
define the functional action explicitly. However, it achieves a the-
oretical unification of a finite element method in space–time with
the proper use of the initial conditions.

Based on the extended framework, we also present the numer-
ical algorithms for an elastic and a viscoplastic continuum. The
method is developed sequentially by (i) applying Galerkin’s meth-
od to space–time with the new notations, (ii) directly integrating
on a temporal domain, (iii) then, numerically integrating on a spa-
tial domain, (iv) adopting the mixed-step algorithm for numerical
efficiency, and (v) using the matrix condensation for the displace-
ment-based finite element method. For both elasticity and visco-
plasticity, the developed numerical method can (i) use the given
initial/boundary conditions properly, and (ii) have a non-iterative
algorithm that yields unique solutions.

We consider here the development of an extension framework
of Hamilton’s principle for continuum dynamics. Clearly, however,
the extension framework is quite simple and general, and can be
readily applied to different kinds of problems. We anticipate that
the extension framework developed here will provide an interest-
ing foundation for them. In addition, it is expected that the method
presented here will provide insights into the development of vari-
ous space–time elements.
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