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We suggest a numerical procedure for rapid simulation of fretting wear in a contact of two bodies
subjected to tangential oscillations with a small amplitude. The incremental wear in each point of contact
area is calculated using the Reye–Archard–Khrushchov wear criterion. For applying this criterion, the
distributions of pressure and relative displacements of bodies are required. These are calculated using
the method of dimensionality reduction (MDR).

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Fretting wear occurs if two bodies are pressed against each
other and are subsequently subjected to oscillations with small
amplitude. Even if there is no gross slip in the contact, tangential
slip occurs at the border of the contact area leading to wear and
fatigue. Fretting wear was in the past an object of intensive
experimental investigation and theoretical simulation for such
applications as fretting of tubes in steam generators and heat
exchangers (Ko, 1979; Fisher et al., 1995; Lee et al., 2009), joints
in orthopedics (Collier, 1992), electrical connectors (Antler,
1985), and dovetail blade roots of gas turbines (Rajasekaran and
Nowell, 2006; Ciavarella and Demelio, 2001) as well as many oth-
ers. Most theoretical works were concerned with finite element
(Ding et al., 2009; Mohd Tobia et al., 2009) or boundary element
simulations (Lee et al., 2009). Thus in (Ding et al., 2007) a fretting
wear modelling of complex geometries like spline coupling with
finite element modeling was considered. Even while these simula-
tions provided a complete picture of fretting wear, they still
require too much computational time to be implemented as an
interface in larger dynamic simulations. In a conventional finite
element fretting simulation most of the time is wasted not for
the calculation of wear itself but for the solution of the normal
and tangential contact problems of progressively changing profile.
That is why there are a lot of alternative approaches to a full finite
element analysis. Examples of analytical and semi-analytical
approaches were given in Nowell (2010) and Hills et al. (2009).
In the present paper, we suggest to do this step using the method
of dimensionality reduction (Heß, 2012; Popov, 2013; Popov and
Heß, 2013; Popov, 2012). This drastically reduces the time of the
whole simulation.
2. The method of dimensionality reduction

In this section we quickly recapitulate the main rules of the
method of dimensionality reduction (Heß, 2012; Popov and Heß,
2013, 2014a). We consider a contact of a three-dimensional
rotationally symmetric profile z ¼ IðrÞ and an elastic half-space.
The profile is first transformed into a one-dimensional profile
gðxÞ according to the MDR-rule (Heß, 2012; Popov and Heß, 2013)

gðxÞ ¼ xj j
Z xj j

0

I0ðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p ð1Þ

as illustrated in Fig. 1, where I0ðrÞ is a first derivative of IðrÞ.
The reverse transformation is given by the integral

IðrÞ ¼ 2
p

Z r

0

gðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p dx ð2Þ

The profile (1) is pressed to a given indentation depth d into an
elastic foundation consisting of independent springs with spacing
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Fig. 1. The 3-dimensional body of revolution (a); and the corresponding one-dimensional MDR-transformed profile in a contact with the elastic foundation.
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Dx (Fig. 1b) whose normal and tangential stiffness is given by
(Popov and Heß, 2013)

kz ¼ E�Dx

kx ¼ G�Dx
; ð3Þ

where E� is the effective elastic modulus

1
E�
¼ 1� m2

1

E1
þ 1� m2

2

E2
ð4Þ

and G� the effective shear modulus

1
G�
¼ ð2� m1Þ

4G1
þ ð2� m2Þ

4G2
; ð5Þ

E1 and E2 are the Young’s moduli, G1 and G2 the shear moduli of the
indenter and the half -space, and m1 and m2 are their Poisson-ratios.
Note that throughout this paper, we assume that the contacting
materials satisfy the condition of ‘‘elastic similarity’’

1� 2m1

G1
¼ 1� 2m2

G2
ð6Þ

that guarantees the decoupling of the normal and tangential contact
problems (Johnson, 1985). Note that the choice of the spatial step
Dx is arbitrary as long as it is much smaller than all characteristic
length scales of the problem; the solution does not depend on its
choice.

The vertical displacement of an individual spring is given by

uzðxÞ ¼ d� gðxÞ ð7Þ

and the resulting normal force is given by

f zðxÞ ¼ E�Dx d� gðxÞð Þ: ð8Þ

The linear force density is therefore

qzðxÞ ¼
f zðxÞ
Dx
¼ E�uzðxÞ ¼ E� d� gðxÞð Þ: ð9Þ

The contact radius a is determined by the condition

gðaÞ ¼ d: ð10Þ

The total normal force is obtained by integration over all springs in
contact:

FN ¼ 2E�
Z a

0
d� gðxÞð Þdx: ð11Þ

According to the MDR rules, the distribution of normal pressure p in
the initial three-dimensional problem can be calculated using the fol-
lowing integral transformation (Heß, 2012; Popov and Heß, 2013):

pðrÞ ¼ � 1
p

Z 1

r

q0zðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p dx ¼ E�

p

Z a

r

g0ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p dx: ð12Þ
Note that all above results obtained by the MDR, represent exact
solutions of the corresponding three-dimensional problem. As was
shown by Galin (1961), the transformation (1) maps the complete
three-dimensional contact problem to a one-dimensional contact
with an elastic foundation. All three-dimensional properties (as dis-
placements, stresses and so on) can be obtained for the solution of
the linear elastic foundation problem by appropriate integral trans-
formations. This solution is exact and was used later in the well-
known publication by Sneddon (1965). This solution can be general-
ized to all contact problems which can be reduced to the normal
contact problem.

The complete proof for tangential contact can be found in the
book (Popov and Heß, 2014b).

If the indenter is now moved in the tangential direction by uð0Þx ,
the springs in contact will first stick to the indenter thus producing
tangential force f x ¼ kxuð0Þx until this force achieves the critical
value lf z, where l is the coefficient of friction. After this, the tan-
gential force remains constant and equal to lf z while the springs
begin to slide. The same is valid if the movement starts from an
arbitrary stress state of a spring. It either follows the indenter, if
the tangential force is smaller than the critical one or it slides, in
which case the tangential force is equal to the critical value. Thus,
for any incremental change of the tangential displacement the fol-
lowing equations are valid:

DuxðxÞ ¼ Duð0Þx ; if kxuxðxÞj j < lf z

uxðxÞ ¼ � lf zðxÞ
kx

; in the sliding state
: ð13Þ

The sign in the last line of this equation depends on the direction of
movement of the indenter. By following incremental changes in the
indenter position, the absolute tangential displacement can be
determined unambiguously at any location and any point in time.
Therefore, the tangential force will also be determined:

f x ¼ kxuxðxÞ ¼ G�Dx � uxðxÞ: ð14Þ

The tangential force density is equal to

qxðxÞ ¼
f x

Dx
¼ G�uxðxÞ: ð15Þ

Distributions of tangential stresses sðrÞ and displacements uð3DÞ
x ðrÞ

in the initial three-dimensional problem are defined by equations
similar to (2) and (12), (Popov and Heß, 2014b):

uð3DÞ
x ðrÞ ¼ 2

p

Z r

0

uxðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2
p ; ð16Þ

sðrÞ ¼ � 1
p

Z 1

r

q0xðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p ¼ �G�

p

Z 1

r

u0xðxÞdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2
p : ð17Þ
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As it was shown by Cattaneo (1938) and Mindlin (1949) the
tangential contact with Coulomb friction is equivalent to a super-
position of normal contacts. This allows one to apply the MDR to
tangential contacts, whereby the Coulomb law in the one-dimen-
sional image is applied not to stresses but to spring forces. The
exact formal proof of this procedure can be found in Popov and
Heß (2014b, Chapter 18).

Note, that all transformations used in the MDR have an integra-
ble singularity in the definition region. As theoretically predicted in
Hills et al. (2009), the normal and shear stresses will have the same
type of singularities near the edge of the worn region of indenter.
However, due to integrability, this type of singularity does not pose
a serious problem for numerical implementation of the method. In
the developed numerical procedure we apply the regularized algo-
rithm of calculation of pðrÞ and sðrÞ that correctly treats the singu-
larities to avoid instabilities and non-physical oscillations of the
profile of indenter. In numerical procedure, singularities of pðrÞ
and sðrÞ transform to relatively high peaks (seen in Fig. 2c and
Fig. 2d).

3. Calculation of wear

In this paper, we assume for simplicity that both bodies in con-
tact are elastic but only one of them, the indenter, is subjected to
Fig. 2. (a) Development of the shape of an initially parabolic profile due to fretting wear
normalized number of oscillation cycles: (2) ~N ¼ 0:04; (3) ~N ¼ 0:16; (4) ~N ¼ 0:36; (5) ~N ¼
(c) and (d) Development of normal pressure pðr=a0Þ and tangential stress sðr=a0Þ. Both q
wear. We apply the simplest and most broadly used wear equation
stating that the wear volume is proportional to the dissipated
energy and inversely proportional to the hardness r0 of the worn
material. This kind of wear criterion was first proposed by Reye
(1860) and later justified in detail theoretically and experimentally
by for abrasive wear (Khrushchov and Babichev, 1960) and for
adhesive wear (Archard and Hirst, 1956). The local formulation of
this criterion means that the linear change of the three-dimen-
sional profile is given by the equation

DIðrÞ ¼ kwear

r0
sðrÞ Duð3DÞ

x ðrÞ � Duð0Þx

� �
; ð18Þ

where kwear is the dimensionless wear coefficient and symbol D
means the increment of corresponding parameter. No wear occurs
in positions where either the tangential stress or the relative dis-
placement is zero.

The simulation procedure consists of three repeating steps:

1. Using the current three-dimensional profile, the MDR-trans-
formed one-dimensional profile is calculated using Eq. (1).

2. The tangential contact problem is solved using Eqs. (10), (11),
(13), (16), (17).

3. The change of the three-dimensional profile is calculated
according to (18).
. The curve ‘‘1’’ shows the initial profile, further curves correspond to the following
0:64; (6) ~N ¼ 1. (b) Development of the corresponding MDR-transformed profiles.

uantities are normalized by pð0Þ.



Fig. 3. (a) Development of the shape of an initially conical profile due to fretting wear. The curve ‘‘1’’ shows the initial profile, further curves correspond to the following
normalized number of oscillation cycles: (2) ~N ¼ 0:1; (3) ~N ¼ 0:4; (4) ~N ¼ 0:9; (5) ~N ¼ 1:6; (6) ~N ¼ 2:5. (b) Development of the corresponding MDR-transformed profiles.

Fig. 4. (a) Development of the shape of an initially parabolic profile under the constant indentation depth. The curve ‘‘1’’ shows the initial profile, further curves correspond to
the following normalized number of oscillation cycles: (2) ~N ¼ 0:16; (3) ~N ¼ 0:36; (4) ~N ¼ 0:64; (5) ~N ¼ 1:0; (6) ~N ¼ 9. Dotted line shows the analytical estimate of worn
profile of indenter at ‘‘shakedown’’ state. (b) Development of the corresponding MDR-transformed profiles.
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In each step one gets the real three-dimensional profile, its one-
dimensional MDR-image as well as distributions of normal and
tangential stresses.

Let us denote the indentation depth of the initial profile with d0

and the corresponding initial contact radius with a0. All
vertical coordinates will be normalized by d0 and the horizontal
coordinates by a0. Thus, we will use the following dimensionless
variables:

~I ¼ I=d0;
~d ¼ d=d0

~r ¼ r=a0; ~x ¼ x=a0

: ð19Þ

If the indenter oscillates with an amplitude Uð0Þ, then the character-
istic wear volume during one cycle of oscillation will have the order
of magnitude of DI � k

r0

lFN
pa2

0
Uð0Þ; the wear depth of the indenter will

reach the order of magnitude of d0 in a number of cycles

N0 ¼
d0

DI
� pa2

0d0r0

klFNUð0Þ
: ð20Þ

The actual number of cycles will be normalized to this characteristic
value:
~N ¼ N
N0

: ð21Þ

For oscillation amplitudes smaller than ld, the contact area will
be divided into stick and slip areas (Cattaneo, 1938; Mindlin, 1949;
Jäger, 1995; Ciavarella and Hills, 1999). Let us denote the radius of
the stick region by c. Wear will occur only outside this region. In
the absence of gross slip in the whole contact area this will always
lead to a ‘‘shakedown’’ state with no further wear (Ciavarella and
Hills, 1999; Popov, 2014).

4. Simulation examples

In this section, we present simulation results obtained with the
above algorithm for the cases of parabolic and conical profiles as
well as for the initially worn parabolic indenter.

4.1. Parabolic indenter

The initial profile is in this case I0ðrÞ ¼ r2=ð2RÞ, where R is the
radius of curvature; the corresponding one-dimensional MDR-image



Fig. 5. (a) Development of the shape of an initially parabolic indenter with initial wear (blunted tip) due to fretting wear. The curve ‘‘1’’ shows the initial profile, further
curves correspond to the following normalized number of oscillation cycles: (2) ~N ¼ 0:04; (3) ~N ¼ 0:16; (4) ~N ¼ 0:36; (5) ~N ¼ 0:64; (6) ~N ¼ 1:44. (b) Development of the
corresponding MDR-transformed profiles.
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is g0ðrÞ ¼ x2=R. The initial radius of contact is a0 ¼
ffiffiffiffiffiffiffiffi
d0R

p
. The ampli-

tude of the tangential oscillation was chosen in such a way that the
radius of the initial stick region was c ¼ 0:4a0. The development of
the profile of the indenter due to wear with increasing number of
cycles is shown in Fig. 2.

4.2. Conical indenter

The initial profile is in this case I0ðrÞ ¼ r tan h, and the corre-
sponding one-dimensional MDR-image is g0ðrÞ ¼ p

2 xj j tan h. The ini-

tial contact radius is given by a0 ¼ 2
p

d0
tan h. The amplitude of the

tangential oscillation was chosen in such a way that the radius of
the initial stick region was c ¼ 0:4a0. The development of the pro-
file of the indenter due to wear with increasing number of cycles is
shown in Fig. 3.

4.3. Parabolic indenter with constant indentation depth

In order to compare the numerical results of our model with
the exact analytic solution provided in Popov (2014), we
considered also the case where the oscillations are applied under
conditions of the given indentation depth d. We hold an indenta-
tion depth constant during the whole calculation. The initial pro-
file is again I0ðrÞ ¼ r2=ð2RÞ, where R is the radius of curvature; the
corresponding one-dimensional MDR-image is g0ðrÞ ¼ x2=R. The

initial radius of contact is a0 ¼
ffiffiffiffiffiffiffiffi
d0R

p
. The amplitude of

the tangential oscillation was chosen in such a way that the
radius of the initial stick region was c ¼ 0:4a0. The development
of the profile of the indenter due to wear with increasing number
of cycles is shown in Fig. 4.

One can see an excellent coincidence of the analytical solution
of the profile of indenter in ‘‘shakedown’’ state and the profile,
obtained numerically in our model (Fig. 4a, curve 6).

4.4. Parabolic indenter with initial wear

Simulation of the fretting of initially worn parts is the problem
of practical importance. We demonstrate how the method works in
this case, we considered the wear process of a parabolic indenter
with initially worn (blunted) tip (see Fig. 5a). Moreover, the MDR
allows simulation of wear of a body of revolution with an arbitrary
profile.

Compared with finite element simulation, the proposed algo-
rithm is extremely fast: in the examples above approximately
104 cycles were simulated (almost up to the final shakedown state)
and took only 20 s each on a standard PC. The time step in our
simulations was selected from the conditions of stability and
immutability of the algorithm results in a further decrease in the
time step. This selection procedure of allowable time step was
performed for each calculation. The choice of the spacing between
the springs, Dx, was done according to the theorem of Wiener
(1930), stating that the value of the spatial step Dxmax for a task
is defined by the minimum spatial wavelength kmin in the spectral
density of the surface profile and is equal to Dxmax ¼ kmin/2. So, the
spatial step Dx in the task is defined as Dx<¼ kmin/2.

It is interesting to note that the development of the one-dimen-
sional MDR-images appears to be simpler than the development of
the original three-dimensional worn profile. This suggests a
possibility of an (at least approximate) wear formulation directly
in the space of MDR-images. If this would be possible, this would
accelerate the calculation further by several orders of magnitude.
An attempt of such formulation is done in the paper (Li et al.,
2014).

5. Conclusions

We have studied the problem of wear of a rotationally symmet-
ric profile subjected to oscillations with small amplitude. It is well
known that small oscillations lead to the appearance of a sliding
region at the border of the contact area while the inner parts of
the contact area may still stick. Both the sliding configuration
and the wear intensity remain rotationally isotropic during the
whole wear process. This allows solving the corresponding normal
and tangential problems exactly using the method of dimensional-
ity reduction which replaces the three-dimensional contact
problem with a contact problem with an elastic foundation. This
drastically reduces the simulation time compared with conven-
tional finite element simulations. At this time, the described
method is only applicable to rotationally symmetric profiles, but
we are working on its extension to contact with elliptic contact
areas.
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