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A linear sampling method for an elastic half-space is developed to reconstruct fluctuations in the wave-
field. The starting point of the formulation is the near-field equation that was also used by Baganas et al.
(2006). Instead of examining the norm of the solution of the near-field equation, we define a solvability
index in order to obtain the spatial distribution of the amplitude of the solvability index and thus describe
the location of the fluctuations. A numerical method for the evaluation of the index is also provided for a
simplified algorithm; this method is based on a projection theorem for a Hilbert space and a singular
value decomposition. Numerical calculations were performed, and the results validated the efficiency
of the proposed method for reconstructing the fluctuations of a wavefield.
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1. Introduction

Inverse scattering analysis has a long history due to its inherent
interest, as well as its applications in the fields of geophysical
exploration, site characterization, medical imaging, nondestructive
testing, and many other areas. Colton and Kress (1998) surveyed
and reported a vast number of articles on inverse scattering anal-
yses of acoustic and electromagnetic wave propagation. During
the past ten years, many significant articles in this field have been
published. For example, Guzina et al. (2003) used the regularized
boundary integral equation method to solve the problem of map-
ping underground cavities. Pelekanos et al. (2004) presented a con-
trast source inversion method in a 2D elastic wavefield. Campman
et al. (2006) formulated a method to estimate the wavefield that
would have been measured if there were no near-receiver hetero-
geneities. Gélis et al. (2007) carried out a 2D full elastic waveform
inversion using the Born and Rytov approximations. Romdhane
et al. (2011) applied a 2D full waveform inversion to a shallow
structure with complex topography. The authors’ research group
also presented a fast method for solving a volume integral equation
(Touhei, 2009, 2011; Touhei et al., 2009) and applied it to an
inverse scattering analysis (Touhei et al., 2014).

Among the various methods for the inverse scattering analysis,
a linear sampling method, presented by Colton and Kirsch (1996),
reconstructs the supports of the scatterers by tracing the norm of
the solution of the far-field equation without information about
the type of boundary conditions on the scatterers. A factorization
method, presented by Kirsch (2011), reconstructs the support of
scatterers by decomposing the far-field operator and examining
its range, instead of solving the far-field equation. Colton and
Kirsch (1996) used a linear sampling method with a 2D scalar
Helmholtz equation for the far-field equation, but Fata and
Guzina (2004) proposed a linear sampling method that uses the
near-field equation. They provided the mathematical details of
the near-field equation and then used it to analyze the reconstruc-
tion of cavities embedded in a 3D elastic half-space. Baganas et al.
(2006) extended the method of the near-field equation to the
inverse transmission problem of an elastic half-space. Guzina and
Madyarov (2007) used a linear sampling method to reconstruct
scatterers in piecewise-homogeneous domains. The authors’
research group also used a linear sampling approach to evaluate
the location and spatial spread of the fluctuations, and we ensured
the accuracy of the reconstructed amplitudes by using the fast vol-
ume integral equation method (Touhei et al., 2014). In that paper,
we presented only a brief outline of our method and its results, and
a detailed description of the method and numerical results were
left as an area of future work.

The purpose of the present article is to provide a detailed math-
ematical description of our method for evaluating the location and
spatial spread of fluctuations in an elastic half-space and to provide
numerical examples. The inversion equation used in this article is
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the near-field equation, which was also used by Fata and Guzina
(2004) and Baganas et al. (2006). Instead of using the divergence
properties of the near-field equation, we developed a solvability
index for the equation; the spatial distribution of the fluctuations
corresponds to the spatial distribution of the amplitude of the solv-
ability index.

The organization of this paper is as follows.
In order to develop the concept of the solvability index of the

near-field equation, we review the basic results of Fata and
Guzina (2004) and Baganas et al. (2006), and we employ a method
for the factorization of the operator (Kirsch, 2011). Using these
results, we present the mathematical properties of the solvability
index. Next, we present a method for evaluating the solvability
index; this method is based on a projection theorem for a Hilbert
space. After providing the formulation for the inverse scattering
analysis, several numerical examples are presented to show the
accuracy of this method. The intended application of the present
method is to detect the spatial spreads of localized fluctuations
in homogeneous background structures with high-velocity waves;
an example of this is S waves with a velocity of 1 km/s.

2. Theoretical Formulation

2.1. Definition of the problem and the basic equation

Fig. 1 shows the wave problem defined in this article. The wave-
field is a 3D elastic half-space in which there are fluctuations in
contrast to a homogeneous background structure. On the free sur-
face of the wavefield, there are both source and observation sur-
faces, which are denoted by C1 and C2, respectively. Distributed
loads are applied to C1 so that incident waves are scattered, and
these are observed at C2. The problem defined in this article is as
follows:

Definition of the problem We consider using information from
the distributed loads at C1 and the observed scattered waves at C2

to reconstruct the spatial spread and the location of the
fluctuations.

As shown in Fig. 1, a Cartesian coordinate system is employed to
express the wavefield; the vertical axis is denoted by x3. A spatial
point in the wavefield is expressed as

x ¼ ðx1; x2; x3Þ 2 R2 � Rþ ¼ R3
þ ð1Þ

where the subscript index indicates the component of the Cartesian
coordinate system. The free boundary of the elastic half-space,
denoted by B, is at x3 ¼ 0. In the following, the summation conven-
tion is applied to the subscript indexes describing the Cartesian
coordinate system. Using the summation convention, the scalar
product of wavefunctions is defined as follows:

ui; wið ÞL2ðCkÞ ¼
Z

Ck

u�i ðxÞwiðxÞdCkðxÞ; ui;wi 2 L2ðCkÞ ð2Þ

where k takes 1 or 2. The L2 norm is defined as the scalar product,
which is represented in the following form:
Fig. 1. Wave problem considered in this article.
kuik
2
L2ðCkÞ ¼ ui; uið ÞL2ðCkÞ

ð3Þ

The Lamé constants and the mass density that characterize the
wavefield are expressed as

kðxÞ ¼ k0 þ ~kðxÞ
lðxÞ ¼ l0 þ ~lðxÞ
qðxÞ ¼ q0 þ ~qðxÞ; ðx 2 R3

þÞ
ð4Þ

where k0;l0 are the background Lamé constants, and q0 is the mass
density. Their respective fluctuations are ~k, ~l, and ~q. The fluctua-
tions are assumed to be characterized as

~kðxÞ; ~lðxÞ; ~qðxÞ 2 C1
0ðR3

þÞ ð5Þ

We define the support of the fluctuations E such that

E ¼ supp ~kðxÞ [ supp ~lðxÞ [ supp ~qðxÞ ð6Þ

and we let @E express the boundary of E. Namely, E can be expressed
by

E ¼ Eo [ @E ð7Þ

where Eo is the set of internal points of E. In addition, we assume
that the complementary set of E, denoted by Ec , is connected. In
addition, the free boundary B and the fluctuated regions are
disjoint:

E \ B ¼ ; ð8Þ

The time dependency is assumed to be expðixtÞ, where x is the
circular frequency, and t is the time. Based on the time depen-
dency, the governing equation and boundary condition for the
wavefield are

Lijð@ÞwjðxÞ ¼ �Nijð@; xÞwjðxÞ

njðxÞTijkð@ÞwkðxÞ ¼
siðxÞ x 2 C1 � B

0 x 2 B n C1

� ð9Þ

where wj is the displacement field (total wavefield), si is the dis-
tributed load at C1, and Lij;Nij, and Tijk are the following differential
operators:

Lijð@Þ ¼ ðk0 þ l0Þ@i@j þ dijl0@k@k þ dijq0x
2 ð10Þ

Nijð@; xÞ ¼ ~kðxÞ þ ~lðxÞ
� �

@i@j þ dij ~lðxÞ@k@k þ @i
~kðxÞ

� �
@j

þ dij @k ~lðxÞð Þ@k þ @j ~lðxÞ
� �

@i þ dij ~qðxÞx2 ð11Þ

Tijkð@; xÞ ¼ lðxÞdik@j þ lðxÞdjk@i þ kðxÞdij@k ð12Þ

Note that dij is the Kronecker delta, @j is the partial differential oper-
ator, njðxÞ is the normal vector of the boundary at the point x, and
the subscript indicates the component of the coordinate system.
The Green’s function for the background structure of the wavefield
is important in the formulation, as well as in the numerical calcula-
tions; this function is defined as

Lijð@xÞGjkðx; yÞ ¼ �dikdðx� yÞ
njðxÞT ð0Þijk ð@xÞGklðx; yÞ ¼ 0; ðx 2 BÞ

ð13Þ

where x; y 2 R3
þ are the field and source points for the Green’s func-

tion, @x denotes the differential operator for the field point, dð�Þ is
the Dirac delta function, and Gijð�; �Þ is the Green’s function. Note

that Tð0Þijk is the differential operator defined by

Tð0Þijk ð@Þ ¼ l0dik@j þ l0djk@i þ k0dij@k ð14Þ

We will use the spectral form of the Green’s function (Touhei,
2009) for the numerical examples in this article; this is given by
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Gijðx; yÞ ¼
ZZ

R2

X
n2rp

Kikðn; xÞK�jkðn; yÞ
l0n

2
3 � q0x2 þ i�

dn1dn2 þ
ZZ

R2

Z 1

nr

�
Kikðn; xÞK�jkðn; yÞ
l0n

2
3 � q0x2 þ i�

dn3dn1dn2 ð15Þ

where Kij is an eigenfunction (Touhei, 2009), n is a point in the
wavenumber space:

n ¼ ðn1; n2; n3Þ 2 R3
þ ð16Þ

and

nr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
2

q
ð17Þ

In addition, rp in Eq. (15) is the subset in the wavenumber space R3
þ

related to the Rayleigh wave mode that can be defined by

rp ¼ fn 2 R3
þ j FðnÞ ¼ 0g ð18Þ

where FðnÞ is the Rayleigh function (Aki and Richards, 2002) defined
by

FðnÞ ¼ ð2n2
r � n2

3Þ
2 � 4n2cm ð19Þ

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

r � ðcT=cLÞ2n2
3

q
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

r � n2
3

q
ð20Þ

Note that cT and cL are, respectively, the velocities of the S and P
waves in the background structure. Note that in the following dis-
cussion, we will use the subset of the wavenumber space R3

þ
defined by

rc ¼ fn 2 R3
þ j n3 > nrg ð21Þ
2.2. Review of the basic results of the near-field equation

The following is the near-field equation that has a central role in
the formulation of this article:Z

C1

GðsÞij ðx; yÞsjðyÞdC1ðyÞ ¼ Gijðx; zÞaj; x 2 C2; sj 2 L2ðC1Þ
� �

ð22Þ

where GðsÞij ðx; yÞ is the scattered tensor describing the scattered
wavefield as a function of x that is due to a unit point force applied
to a point y, z is the probing point, and aj is the force vector applied
to the probing point. The near-field equation and its basic proper-
ties were introduced and proved by Fata and Guzina (2004) and
Baganas et al. (2006). Their results, in part, are also used in this arti-
cle and will be shown later in the form of Lemmas 1 and 2. The task
of this section is a review of these basic results in accordance with
the notation used in this article.

The incident wavefield due to the distributed load sj 2 L2ðC1Þ
can be expressed as

uiðxÞ ¼
Z

C1

Gijðx; yÞsjðyÞdC1ðyÞ; ðx 2 R3
þ n C1Þ ð23Þ

where ui denotes the incident wavefield. By means of the scattered
tensor, the scattered wavefield due to the distributed load sj can be
expressed as

uðsÞi ðxÞ ¼
Z

C1

GðsÞij ðx; yÞsjðyÞdC1ðyÞ; ðx 2 R3
þÞ ð24Þ

It is also possible to interpret uðsÞi as the scattered wavefield due to
the incident wave ui (Baganas et al., 2006). The total wavefield is the
sum of the incident wave and the scattered wave in the following
form:

wiðxÞ ¼ uiðxÞ þ uðsÞi ðxÞ ð25Þ
which satisfies the Lippmann–Schwinger equation:

wiðxÞ ¼ uiðxÞ þ
Z

E
Gijðx; yÞNjkð@; yÞwkðyÞdy; ðx 2 R3

þÞ ð26Þ

For the interior of the fluctuated region E, the total wavefield can
also be expressed in terms of Green’s formula:

wiðxÞ ¼ uiðxÞ þ
Z

E
Gijðx; yÞNjkð@; yÞwkðyÞd EðyÞ

�
Z
@E
ð wjðyÞ � ujðyÞ
� �

Pijðx; yÞ

� pjðw; yÞ � pð0Þj ðu; yÞ
� �

Gijðx; yÞÞdsðyÞ; ðx 2 EoÞ ð27Þ

where

pð0Þi ðu; xÞ ¼ njðxÞT ð0Þijk ð@ÞukðxÞ
piðw; xÞ ¼ lim

x2Eo!@E
njðxÞTijkð@; xÞwkðxÞ

Pijðx; yÞ ¼ nkðyÞTð0Þjkmð@yÞGimðx; yÞ

ð28Þ

For the derivation of Eq. (27), the representation of the incident
wavefield inside E

uiðxÞ ¼
Z
@E

Gijðx; yÞpð0Þj ðu; yÞ � Pijðx; yÞujðyÞ
� �

dsðyÞ; x 2 Eo ð29Þ

is used. It can be readily seen that Eq. (27) is equivalent to the fol-
lowing boundary value problem in E:

Lijð@ÞujðxÞ ¼ 0; ðx 2 EoÞ ð30Þ

Lijð@ÞwjðxÞ þ Nijð@; xÞwjðxÞ ¼ 0; ðx 2 EoÞ ð31Þ

wiðxÞ � uiðxÞ ¼ f iðxÞ; ðx 2 @EÞ ð32Þ

piðw; xÞ � pð0Þi ðu; xÞ ¼ hiðxÞ; ðx 2 @EÞ ð33Þ

which is known as an interior transmission problem, where f i and hi

are the trace of functions for the scattered wavefield:

f iðxÞ ¼ uðsÞi ðxÞj@E

hiðxÞ ¼ njðxÞTð0Þijk ð@Þu
ðsÞ
k ðxÞj@E

ð34Þ

The following lemma is the characterization of the near-field
equation in terms of the interior transmission problem, which
was proved by Baganas et al. (2006).

Lemma 1. Let z 2 Eo be fixed. The integral equation for the 1st kind
(22) possesses the solution sj 2 L2ðC1Þ if and only if there exists a
solution pair ui and wi given by
Lijð@xÞujðxÞ ¼ 0; ðx 2 EoÞ ð35Þ

Lijð@xÞwjðxÞ þ Nijð@x; xÞwjðxÞ ¼ 0; ðx 2 EoÞ ð36Þ

wiðxÞ � uiðxÞ ¼ Gijðx; zÞaj; ðx 2 @EÞ ð37Þ

piðw; xÞ � pð0Þi ðu; xÞ ¼ njðxÞTð0Þijk ð@xÞGklðx; zÞal; ðx 2 @EÞ ð38Þ

where ui is the incident wavefield expressed by Eq. (23).

Lemma 1 shows that Eq. (22) is solvable if and only if a pair of
functions ui and wi solves the interior transmission problem of Eqs.
(35)–(37). The problem that arises from this lemma is whether Eq.
(23) can express the incident wave ui for the pair of functions
ðui;wiÞ that solves the interior transmission problem.

For this problem, Fata and Guzina (2004) proved that the set of
incident wavefields spanned by sj 2 L2ðC1Þ in Eq. (23) is dense in a
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space of the solutions of the homogeneous Navier equation in E

with respect to the H1ðEÞ norm:

ui � Sijsj

�� ��
H1ðEÞ < �

0 ð39Þ

where ui is the solution of the homogeneous Navier equation in E
and

Sijsj
� �

ðxÞ ¼
Z

C1

Gijðx; yÞsjðyÞdC1ðyÞ ð40Þ

Application of the trace theorem to Eq. (39) leads to:

kv ikH1=2ð@EÞ < c1�0 pð0Þi ðv; �Þ
��� ���

H�1=2ð@EÞ
< c1�0 ð41Þ

where

v iðxÞ ¼ uiðxÞ � Sijsj
� �

ðxÞ ð42Þ

and c1 is a positive constant. In addition, we can define a bounded
linear operator B mapping from the boundary data of the homoge-
neous Navier equation in E to the scattered waves at the observa-
tion surface:

B : H1=2ð@EÞ � H�1=2ð@EÞ 3 ui;p
ð0Þ
i ðu; �Þ

� �
�!uðsÞi 2 L2ðC2Þ ð43Þ

Then, due to the boundness of the operator B, we have the following
for a positive constant M > 0:

B v i ; pð0Þi ðv ; �Þ
� ���� ���

L2ðC2Þ
6M v ik k2

H1=2ð@EÞ þ pð0Þi ðv ; �Þ
��� ���2

H�1=2ð@EÞ

	 
1=2

6

ffiffiffi
2
p

c1M�0

ð44Þ

At this point, we should recall that for the near-field equation, the
scattered wavefield is represented by

uðsÞi ðxÞ ¼ Gijðx; zÞaj; ðx 2 Ec; z 2 EoÞ ð45Þ

as a result of the incident wavefield ui. Therefore, we have the
following:

B v i;p
ð0Þ
i ðv ;�Þ

� �
¼Gijðx;zÞaj�

Z
C1

GðsÞij ðx;yÞsjðyÞdC1ðyÞ; ðx2C2Þ ð46Þ

From this, Baganas et al. (2006) showed the following:

Lemma 2. Let z 2 Eo be fixed. Then, 8� > 0, there exists
sjð�; �Þ 2 L2ðC1Þ such thatZ

C1

GðsÞij ð�; yÞsjðy; �ÞdC1ðyÞ � Gijð�; zÞaj

����
����

L2ðC2Þ
< � ð47Þ

For simplicity, in the following, we will express the near-field
equation as follows:

Fijsj
� �

ðxÞ ¼ Gijðx; zÞaj ð48Þ

where F is the near-field operator defined by

Fijsj
� �

ðxÞ :¼
Z

C1

GðsÞij ðx; yÞsjðyÞdC1ðyÞ; x 2 C2; sj 2 L2ðC1Þ
� �

ð49Þ

Eqs. (26) and (48) and Lemma 2 constitute the basis of the following
formulation. Unlike the standard linear sampling method, we will
not use the divergence properties of the solution of the near-field
equation.

2.3. Definition of the solvability index for the near-field equation

In this article, instead of solving Eq. (48), we introduce the fol-
lowing characteristic function:

/ðzÞ ¼ inf
sj2L2ðC1Þ

Gijð�; zÞaj � Fijsj
� �

ð�Þ
�� ��

L2ðC2Þ
ð50Þ
Roughly speaking, the mathematical meaning of the function is

/ðzÞ ¼ 0 when Eq: ð48Þ is solvable
/ðzÞ > 0 when Eq: ð48Þ is not solvable

�
ð51Þ

and as a result of the above properties, we will call /ðzÞ the solvabil-
ity index. In this section, we will investigate the properties of the
solvability index by considering an application of a factorization
of the operator (Kirsch, 2011).

First, let us express the kernel of the near-field operator by
using the Lippmann–Schwinger equation:

GðsÞij ðx;yÞ¼
Z

E
Gikðx;zÞNklð@z;zÞGljðz;yÞdEðzÞ

þ
Z

E
Gikðx;zÞNklð@z;zÞGðsÞlj ðz;yÞdEðzÞ; ðx2C2;y2C1Þ ð52Þ

According to Eq. (52), when the Born approximation is valid for the
wavefield, the kernel of the near-field operator can be simplified to

GðsÞij ðx;yÞ¼
Z

E
Gikðx;zÞNklð@z;zÞGljðz;yÞdEðyÞ; ðx2C2;y2C1Þ ð53Þ

which leads directly to the factorization of the near-field operator in
the following form:

Fij ¼WikN kl Ulj ð54Þ

where

Uljf j

� �
ðzÞ ¼

Z
C1

Gljðz; yÞf jðyÞdC1ðyÞ; z 2 E; f j 2 L2ðC1Þ
� �

ð55Þ

N klulð ÞðzÞ ¼ Nklð@z; zÞulðzÞ; z 2 E;u 2 C1ðEÞð Þ ð56Þ

Wikgkð ÞðxÞ ¼
Z

E
Gikðx; zÞgkðzÞdEðzÞ; x 2 C2; gj 2 L2ðEÞ

� �
ð57Þ

Even when the Born approximation is not valid, the factoriza-
tion of the near-field operator is possible. Due to the Lippmann–
Schwinger equation, the scattered wavefield can be expressed as

uðsÞi ðxÞ ¼
Z

E
Gijðx; zÞNjkð@z; zÞ uðsÞk ðzÞ þ ukðzÞ

� �
dEðzÞ ð58Þ

Therefore, let us define an operator Mjk as follows:

Mjkuk

� �
ðzÞ :¼ Njkð@z; zÞ uðsÞk ðzÞ þ ukðzÞ

� �
; us

k;uk 2 C1ðEÞ ð59Þ

Then, the near-field operator can be decomposed as

Fij ¼WikMkl Ulj ð60Þ

Next, we investigate the following integral equation:Z
E

Gijðx; yÞgjðyÞdEðyÞ ¼ Gijðx; zÞaj; ðgj 2 L2ðEÞ; x 2 EcÞ ð61Þ

When z 2 Ec , it is clear that we cannot find a solution gj to Eq. (61),
since the right-hand side of the equation is unbounded, while the
left-side of the equation is bounded. Even for this case, let us
assume that

Gijð�; zÞaj �
Z

E
Gijð�; yÞgjðyÞdEðyÞ

����
����

L2ðC2Þ
¼ 0; ðz 2 EcÞ ð62Þ

can be established.
Then, based on the discussion by Fata and Guzina (2004) for the

use of Holmgren’s uniqueness theorem (Colton, 1980), the follow-
ing equation holds:Z

E
Gijðx; yÞgjðyÞdEðyÞ ¼ Gijðx; zÞaj; ðz 2 Ec; x 2 Ec n VdðzÞÞ ð63Þ
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where VdðzÞ is the neighborhood of z such that

VdðzÞ ¼ fx 2 R3
þ j jx� zj < dg ð64Þ

It is clear that Eq. (63) has no solutions. As a result, we obtain

8gj 2 L2ðEÞ; Gijð�; zÞaj �
Z

E
Gijð�; yÞgjðyÞdEðyÞ

����
����

L2ðC2Þ
> 0; ðz 2 EcÞ

ð65Þ

which shows

Gijð�; zÞaj R ran W ðz 2 EcÞ ð66Þ

where ran W denotes the range of the operator W. We can see that

ran F � ran W ð67Þ

Therefore,

8sj 2 L2ðC1Þ; Gijð�; zÞaj � Fijsj
� �

ð�ÞðyÞ
�� ��

L2ðC2Þ
> 0; ðz 2 EcÞ ð68Þ

and as a result

/ðzÞ ¼ inf
sj2L2ðC1Þ

Gijð�; zÞaj � FijðsjÞ
� �

ð�Þ
�� ��

L2ðC2Þ
> 0; ðz 2 EcÞ ð69Þ

Based on Lemma 2 and Eq. (69), we have the following theorem:

Theorem 1. The solvability index has the following properties:

/ðzÞ ¼ 0; ðz 2 EoÞ ð70Þ

/ðzÞ > 0; ðz 2 EcÞ ð71Þ

The concept of the physical meaning of the solvability index is
shown in Fig. 2. The scattered waves are from the fluctuations.
Theorem 1 shows that Green’s function from the probing point
inside the fluctuation can be well approximated by the scattered
waves due to the distributed load at C2. As a result, we have
/ðzÞ ¼ 0. On the other hand, when the probing point is outside
the region of a fluctuating wavefield, the paths of the Green’s func-
tion and the scattered waves will be different. Therefore, the
approximation is not possible, and as a result, /ðzÞ > 0.
2.4. Singular value decomposition of the near-field operator for
evaluating the solvability index

In general, evaluation of the infimum of a functional is not an
easy task. For the solvability index defined by Eq. (50), however,
we can use a simplified evaluation method. The purpose of this
section is to formulate this evaluation method. According to the lit-
erature (for example, Akhiezer and Glazman, 1981), it can be read-
ily seen from Eq. (50) that /ðzÞ denotes the distance between the
function Gijðx; zÞaj and the range of the operator F, which is a sub-
space of the Hilbert space L2ðC2Þ. The orthogonal decomposition of
L2ðC2Þ is also possible by means of the operator F:

L2ðC2Þ ¼ ran F � ker F�; ðker F�Þ? ¼ ran F
� �

ð72Þ

where F� is the adjoint operator for F and satisfies

wi; Fijuj

� �
L2ðC2Þ

¼ F�ijwi;uj

� �
L2ðC1Þ

; wi 2 L2ðC2Þ; ui 2 L2ðC1Þð Þ

ð73Þ

ker F� is defined by

ker F� ¼ fwi 2 L2ðC2Þ j F�ijwj ¼ 0g ð74Þ

and ran F is the closure of the range of the operator F.
Now, let us define the projection

P : L2ðC2Þ �! ran F ð75Þ
according to the orthogonal decomposition shown in Eq. (72). Then,
based on the projection theorem for a Hilbert space (Akhiezer and
Glazman, 1981), we can evaluate the solvability index as follows:

/ðzÞ ¼ Gijð�; zÞaj � PijGjkð�:zÞak
� �

ðxÞ
�� ��

L2ðC2Þ
ð76Þ

Therefore, the task of evaluating the infimum of the norm has been
replaced by the task of constructing this projection. The geometrical
aspects of the evaluation of the solvability index are shown in Fig. 3.

Construction of the projection in this way is possible due to the
singular value decomposition of the operator. As in the literature
(Colton and Kress, 1998), let us define the singular value problem
as follows:

Fiju
ðnÞ
j ¼ hnw

ðnÞ
i ; F�ikw

ðnÞ
i ¼ hnuðnÞk ; ðn ¼ 1;2; . . .Þ ð77Þ

where ðhn;uðnÞi ;wðnÞi Þ;n 2 N is the singular system of the operator F.
Note that the singular value problem defined by Eq. (77) can also be
written as

F�ikFijuðnÞj ¼ h2
nu
ðnÞ
k ð78Þ

wðnÞi ¼
1
hn

Fiju
ðnÞ
j ; ðn ¼ 1;2; . . .Þ ð79Þ

from which the orthogonality relationship of the singular value sys-
tem is derived. Since the set of the singular values are the nonzero
values of hn, the orthogonality relationship of the singular system
can be expressed as

uðnÞi ;uðmÞi

� �
L2ðC1Þ

¼ dnm

wðnÞi ;wðmÞi

� �
L2ðC2Þ

¼ dnm

ð80Þ

It has been shown (Colton and Kress, 1998) that

f i ¼
X1
n¼1

wðnÞj ; f j

� �
L2ðC2Þ

wðnÞi ; 8f i 2 ran F ð81Þ

when

X1
n¼1

1
h2

n

jðwðnÞj ; f jÞj
2
<1 ð82Þ

According to Eq. (81), fwðnÞi g
1
n¼1 is an orthonormal basis that spans

the range of the closure of the operator F. Therefore, the represen-
tation of the projection defined by Eq. (75) becomes

Pijf j

� �
ðxÞ ¼

X1
n¼1

wðnÞj ; f j

� �
L2ðC2Þ

wðnÞi ðxÞ; 8f j 2 L2ðC2Þ
� �

ð83Þ

At this point, we must consider a treatment for an ill-posed
problem. It is known that an ill-posed problem will be confronted
when solving the 1st kind of Fredholm equation, such as the
near-field equation. In such a case, a regularization scheme is
required. When the singular values for the operator are known, it
is possible to use the spectral cutoff as the regularization scheme
(Colton and Kress, 1998). According to the Picard theorem
(Colton and Kress, 1998), the solution of Eq. (48) is expressed by

si ¼
X1
n¼1

1
hn

wðnÞj ; f j

� �
uðnÞi ð84Þ

when f i 2 ran F and Eq. (82) is fulfilled. According to the literature
(Colton and Kress, 1998), when the spectral cutoff is applied as
the regularization scheme, the solution to Eq. (48) is

si ¼
X

hn>hm

1
hn

wðnÞj ; f j

� �
uðnÞi ð85Þ



Fig. 2. Paths of scattered waves and Green’s functions from the probing points.

Fig. 3. Conceptual view of the solvability index.

Fig. 4. Target model with two box-shaped fluctuations.
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Note that this expression of the solution to Eq. (85) neglects the
contribution from the eigenfunctions for which the singular values
are less than hm. As in Eq. (85), the expression of the projection for
which the spectral cutoff has been applied is

Pijf j

� �
ðxÞ ¼

X
hn>hm

wðnÞj ; f j

� �
L2ðC2Þ

wðnÞi ðxÞ; 8f j 2 L2ðC2Þ
� �

ð86Þ

We are now able to solve Eq. (76) by using the singular value
decomposition of the projection. In the next section, the necessity
of the regularization scheme will also be discussed.

In addition, we must take into account the fact that the ampli-
tude of the Green’s function strongly depends on the depth of the
point source. Therefore, the excitation force at the probing point is
adjusted as follows:

kGijðx; zÞajkL2ðC2Þ ¼ 1 ð87Þ
Table 1
Case studies for the source surface.

Case Grid points Reference

Case s1 9 Fig. 5(a)
Case s2 36 Fig. 5(b)
Case s3 49 Fig. 5(c)
Case s4 64 Fig. 5(d)
3. Numerical examples

3.1. Inversion of two box-shaped inclusions

3.1.1. Analysis of model
In the first numerical example, we will reconstruct the location

and spatial spread of the fluctuations due to two box-shaped inclu-
sions, as shown in Fig. 4. The two box-shaped fluctuations are both
embedded at a depth of 5 km, and they are in the form of cubes
with a side length of 3 km. For the background structure of the
wavefield, the velocities of the S and P waves are set at 1 km/s
and 2 km/s, respectively, and the mass density is 2 g/cm3. The fluc-
tuations are defined as follows:

~kðxÞ ¼ 0:1vQ ðxÞ GPa;
~lðxÞ ¼ 0:1vQ ðxÞ GPa;

~qðxÞ ¼ 0 g=cm3

ð88Þ

where vQ is the characteristic function defined as

vQ ðxÞ ¼
1 x 2 Q

0 x R Q

�
ð89Þ
and Q is the each of the boxed regions. Note that the function for the
fluctuations is in the class C1

0, as was shown in the theoretical for-
mulation. When performing numerical calculations, however, this
restriction is relaxed due to the introduction of a discretized grid.
The kernel of the near-field operator used in this section is based
on the Born approximation. The wavefields are calculated using a
fast method for solving the volume integral equation (Touhei,
2011).

As can be seen in Fig. 4, the source and observation surfaces are
both set just above the region of the fluctuations. The excitation
frequency of the source is 1 Hz. We performed numerical calcula-
tions to examine the effect on the accuracy of the reconstruction
results when there was an increase in the grid density of the
source, which is related to an increase in the range of the scattered
tensor. We considered four cases (case s1 to case s4), each with a
different model for a surface source; the definitions of the cases,
including the location and number of the source points, are sum-
marized in Table 1 and Fig. 5(a)–(d). For the observation surface,
the location of the observation grids is shown in Fig. 6; the grid
contains one hundred points. A triaxial point source was applied
at each grid point of the source, and the three components of the
scattered waves are observed at each grid point on the observation
surface. In order to take into account the effects of the triaxial point
force, we modified the solvability index defined by Eq. (76) as
follows:

/ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

l¼1

Gijð�; zÞadjl � aPijGjkð�; zÞdkl

� �
ðxÞ

�� ��2
L2ðC2Þ

vuut ð90Þ
3.1.2. Results of the singular value decomposition
Fig. 7(a)–(d) show the distribution of the singular values for the

scattered tensor for cases s1 to s4, respectively. In each case, the
largest singular values were approximately 1:0� 10�3. On the
other hand, when the number of point sources increased, the low-
est singular value approached zero. The increase in the number of
point sources reflects the fact that the scattered tensor itself is a



Fig. 5. Locations and numbers of point sources at the source surface.

Fig. 6. Location of the observation grid points at the observation surface.
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compact operator, and so its singular values converge to zero. As
mentioned above, the spectral cutoff method is a way to regularize
an ill-posed problem, such as this inverse scattering analysis. In the
following numerical examples, however, all of the singular values
obtained from the analysis were included when constructing the
projection Pij, which is the map from L2ðC2Þ to ran F.
3.1.3. Results of reconstructing the fluctuations
Fig. 8(a)–(d) show the horizontal spatial distribution at a depth

of 5 km for the solvability index for cases s1 to s4, respectively. The
spatial spreads of each of the solvability indices were normalized
so that the maximum amplitude was equal to unity. In the figures,
the boxed areas (green lines) indicate the fluctuations of the target
model. It can be clearly seen from Fig. 8(a)–(d) that the areas in
which the solvability index has a low amplitude are strongly corre-
lated with the fluctuations. The effects of an increase in the surface
point sources can also be recognized in the reconstruction of the
fluctuations. This means that it is not very easy to distinguish fluc-
tuations from ghosts in case s1, but it is easy to do so in case s4.
Furthermore, Fig. 8(d), which shows case s4, clearly shows that
the low-amplitude areas of the solvability index are in good agree-
ment with the spatial spread of the fluctuations of the target
model.

Fig. 9(a)–(d) show the spatial spread of the solvability indices in
the vertical plane at x2 ¼ 3 km; we used this to investigate the
accuracy of the reconstructions in the vertical direction. In
Fig. 9(a)–(d), the border of the target area is indicated by green
lines. The improvement in accuracy due to an increase in the num-
ber of point sources can be seen here, as well as in Fig. 8(a)–(d).

As mentioned above, the spectral cutoff method was not used to
regularize these numerical examples. In spite of this, we were able
to accurately reconstruct the fluctuations due to an increase in the
point sources.
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Fig. 7. Properties of the singular values for cases s1–s4.

Fig. 8. Reconstruction of the fluctuations in the horizontal plane at a depth of 5 km.
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3.1.4. Effects of random noise in the scattered waves when
reconstructing the fluctuations

In the previous numerical examples, the effects of random noise
were not included in the analysis of the observed scattered waves,
but we will do this here. Fig. 10 shows the effects of random noise
on the reconstructed results in a horizontal plane at a depth of
x3 ¼ 5 km for case s4. The level of noise is defined as the ratio of
the L2 norms of the noise and the scattered waves, which are
10% and 20%, respectively. Fig. 11 also shows the effects of random
noise at the vertical plane of x2 ¼ 3 km for case s4. We did not
employ a regularization scheme when investigation these effects.
According to Figs. 10 and 11, the presence of the random noise
reduces the contrast of the amplitude and the area in which the
solvability index has a low amplitude. Even in this situation, when
the random noise is at the 20% level, it is almost possible to esti-
mate the fluctuation.
3.1.5. Distribution of the norm of the solution to the near-field
equation

The standard linear sampling method examines the spatial dis-
tribution of the norm of the solution to the inversion equation.
Therefore, for the present problem, it is also important to examine
the spatial distribution of the norm of the solution to the near-field
equation in order to compare it with the spatial distribution of the
solvability index. Fig. 12 shows the distribution of the norm of the
solution for case s4. The solution of the near-field equation shown
there is the result due to Eq. (84), in which the spectral cutoff was
not applied; this was done to allow for comparison with the spatial
distribution of the solvability index. In addition, the effects of the
random noise were not considered. According to Fig. 12, the areas
in which the norm of the solution has a lower amplitude corre-
spond to the areas in which there are fluctuations. The standard
linear sampling method uses the divergence of the solution of
the inversion equation outside the scattering objects. Therefore,
the tendency of the spatial distribution of the norm of the solution
Fig. 9. Reconstruction of the fluctuation
shown in Fig. 12 agrees with the properties of the linear sampling
method. However, in the results, there are many ghosts around the
target. One of the reasons for this may be that we did not use a reg-
ularization scheme; further investigation is necessary. At present,
it can be said that the method based on the solvability index is free
from these ghosts, even when regularization is not employed.
3.2. Reconstruction of scattered box-shaped fluctuations

3.2.1. Analysis of the model
In the next example, we reconstruct the fluctuations of a more

complex target model. Here, the target model consists of several
cube-shaped inclusions; the sides of the cube are each equal to
1 km. An overhead view of the fluctuation model is shown in
Fig. 13. The cubes were placed at depths of from 2 km to 7 km
and within a horizontal range of 5 km2. The background structure
of the wavefield and the amplitude of the fluctuations were the
same as in the previous numerical examples. The source and obser-
vation surfaces were set above the fluctuations, as shown in Fig. 14.
The observation grid was 13� 13, and the source grid was 7� 7.
The source grid was distributed such that the incident waves could
be observed over a wider area, and the observation grid was made
more dense in order to gather information about the scattered
waves in a narrower area. A triaxial force excitation was also
employed here, and the excitation frequency was 1 Hz.
3.2.2. Reconstruction of the fluctuations at the horizontal planes
Prior to showing the results of the reconstructed fluctuations,

we will discuss Fig. 15, which shows the results of the singular
value analysis. The singular values are in the range from
2:0� 10�3 to 2:0� 10�5, which is almost the same as in the previ-
ous analysis. Again, we did not apply a spectral cutoff. Note that all
of the singular values were used to construct the projection in
order to evaluate the solvability index.
s in the vertical plane at x2 ¼ 3 km.



Fig. 10. Effects of random noise on the reconstruction of the fluctuation at a depth of x3 ¼ 5 km.

Fig. 11. Effects of random noise on the reconstruction of the fluctuation at a depth of x2 ¼ 3 km.

Fig. 12. Distribution of the norm of the solution of the near-field equation.

Fig. 13. Overhead view of the locations of the box-shaped fluctuations.
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The reconstructed fluctuations at the horizontal planes are
shown in Fig. 16(a)–(d); the depths of the horizontal planes are
from 2 km to 7 km. For each result, the border of the fluctuations
is indicated by solid green lines. It can be seen in Fig. 16(a)–(c) that
the reconstructed fluctuations are in agreement with the target
model at depths of from 2 km to 5 km. On the other hand, we
see in Fig. 16(d) that at a depth of 7 km, it is difficult to distinguish
the fluctuations from the ghosts. Therefore, at greater depths, it
becomes difficult to distinguish between ghosts and targets. This
may be due to the amount of information in the scattered tensor
about the scattered waves from the deep regions. To improve the
accuracy of the reconstruction in deep regions, the source and



Fig. 14. Observation and source grids on the relevant surfaces.

Fig. 15. Singular value decomposition.

Fig. 16. Reconstruction of the fluctu
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observation surfaces will require readjustments to catch more
information about the fluctuations in deep regions; this is left as
a future task.

3.2.3. Reconstruction of the fluctuations at the vertical planes
Fig. 17(a)–(d) show the results of the reconstruction of the fluc-

tuations in the vertical planes. All of the results shown in
Fig. 17(a)–(d) indicate that the targets and the areas in which the
solvability index has a low amplitude are in good agreement.
Furthermore, in general, those areas that are taller than the target
become clearer as the target nears the free surface. Therefore, as
can be seen in Fig. 17(b), which shows the reconstruction of a deep
part of the wavefield, the low-amplitude area of the solvability
index is not very clear around the target, and its amplitude is com-
parable with that of the ghosts; this leads to the difficulty dis-
cussed above regarding Fig. 16(d).
ations at the horizontal planes.



Fig. 17. Reconstruction of the fluctuations at the vertical planes.
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4. Conclusions

In this study, we have developed a linear sampling method for
reconstructing the fluctuations in an elastic half-space. In order to
detect the fluctuations, we developed a solvability index for the
near-field equation. According to the formulation, the amplitude
of the solvability index corresponds to the spatial spread and loca-
tion of the fluctuations of the wavefield. We also performed a com-
prehensive evaluation of the solvability index, which is based on a
projection theorem for a Hilbert space and the singular value
decomposition of the scattered tensor. Several numerical experi-
ments revealed that an increase in the number of grid points for
the source improves the accuracy of the reconstructions. In addi-
tion, the proposed method was also found to be applicable to a
rather complex model of the fluctuations. In the numerical calcula-
tions, it was not necessary to use a spectral cutoff in order to obtain
the reconstructed fluctuations.
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