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In this paper, we consider the problem of elastic materials containing tetrahedron-like inhomogeneities
with spherical polygons as faces. The overall properties are expressed in terms of compliance contribu-
tion tensors calculated for inhomogeneities of different face curvature and elastic properties. The calcu-
lations were performed by two numerical techniques: Finite Element Method (FEM) and Volume Integral
Equation Method (VIEM) combined with mesh-free discretization by Gaussian approximating functions.
Consistency of the results obtained by these methods is observed in most cases. Applicability of replace-
ment relations that predict the contribution to the overall elastic properties of inhomogeneities with
different elastic properties, but the same shape, was analyzed. The replacement relations provide consid-
erably good approximation for “soft” inclusions (Young’s modulus lower than the matrix’) only, in certain
cases wrong approximation trends were observed. It was possible to propose an adjustment tensor for
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the replacement relations which components depend linearly on the face curvature.
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1. Introduction

Inhomogeneities of tetrahedron-like shapes are commonly ob-
served in natural and artificial materials. For example, tetrahedral
(Fig. 1a) or concave tetrahedral (Fig. 1b) nanocrystals are widely
used as catalysts. Concave tetrahedron-like micropores are typical
for geomaterials (Fig. 1c). From Fig. 1c it may also be observed
that such type of micropores can be formed by dense packing of
ellipsoidal particles. For tetrahedron-like inhomogeneities, calcula-
tion of effective properties by homogenization schemes based on
ellipsoidal shapes still present a challenge, especially for the in-
verse problem (Popov et al,, 2018; Trofimov et al., 2018a). Also it
should be noted that to the authors’ best knowledge tetrahedron-
like shapes have never been considered previously for extensive
calculation of their elastic contribution to the overall properties of
the medium.

In this paper, we focus mainly on the study of the contribution
of tetrahedron-like inhomogeneities to the overall elastic prop-
erties of composites. The considered inhomogeneities are shaped
like regular tetrahedrons, but with spherical polygons as faces.
The governing parameter of the shape is the sphericity parameter
p = Ro/Rs (Traxl and Lackner, 2018), where Ry is the distance be-
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tween the center of the tetrahedron and its vertices; Rg is the ra-
dius of the sphere on which the spherical polygons are formed. It
covers both convex (p > 0) and concave shapes (p < 0), see Fig. 2
for examples. The axis x3 coincides with one of the axes of the
tetrahedron, while the axis x; coincides with the projection of an-
other axis of the tetrahedron.

Traditionally, estimation of effective elastic properties is based
on the Eshelby theory (Eshelby, 1961, 1957) where the inhomo-
geneity is considered as ellipsoidal for which analytical solution
is available. Meanwhile, non-ellipsoidal inhomogeneities are widely
presented in many man-made and natural materials for which only
a limited number of analytical solutions are available due to the
complexity of boundary value problem. Most of these results have
been obtained for 2-D shapes using complex variable approach
(see, for example Kachanov et al., 1994) . In 3-D, some results have
been obtained for cracks of irregular shapes (see the review in
Kachanov and Sevostianov, 2018), The toroidal shape was studied
by Argatov and Sevostianov (2011), who approximated the contri-
bution of a thin rigid toroidal inhomogeneity to the overall stiff-
ness. Their result was generalized to the case of a torus of arbi-
trary shape by Krasnitskii et al. (2018). The problem of the effective
conductivity (thermal or electric) of a material containing toroidal
insulating inhomogeneities was addressed by Radi and Sevostianov
(2016).
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Fig. 1. Examples of tetrahedron-like inhomogeneities: (a) tetrahedral Rh nanoparticles (Park et al., 2007), (b) concave tetrahedral Pd nanocrystals (Li et al., 2017), (c) pores

in harzburgite (Wark et al., 2003).
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Fig. 2. Example of tetrahedron-like shapes.

Pure numerical and supplemented with analytical approxima-
tions results for non-ellipsoidal inhomogeneities are also used
to obtain contribution to the effective properties from the sin-
gle inhomogeneity. In the case of concave shapes described an-
alytically, Sevostianov et al. (2008) calculated contribution from
the superspherical pores using the Finite Element Method (FEM).
Based on this data, analytical approximations were built in
Sevostianov and Giraud (2012) and further used to calculate
overall elastic properties of oolitic rock (Sevostianov and Gi-
raud, 2013). This approach, however is based on computational
results taken from Sevostianov et al. (2008) where the accu-
racy and stability of the calculations are rather poor. Recently,
in Chen et al. (2015), authors numerically calculated compli-
ance tensors of superspherical pores and provided analytical ap-
proximations of these tensors using solution for spherical pore.
Since sphere is isotropic, approximations based on it were not
able to account for cubic symmetry of the most superspheri-
cal shapes (except sphere) and, thus, more accurate approxima-
tion was proposed in Trofimov et al. (2018a). Another analyti-
cal concave shape - supersphere of revolution - was considered
by Sevostianov et al. (2016). For the case of 3D irregular pore
shapes in carbon-carbon composites, Drach et al. (2011) used the
FEM to calculate the compliance contribution tensors. Garboczi and
Douglas (2012) developed numerical approximations for intrinsic
bulk and shear moduli in the case of randomly oriented block-
like particles based on finite element calculations and corrected
analytical solution for an ellipsoid. The effects of spherical, cu-
bic, tetrahedral and octahedral particle shapes on the effective
thermoelastic properties of materials with matrix-inclusion topol-
ogy were discussed in Rasool and Bohm (2012). Statistical model
correlating compliance contribution tensors of pore shapes with
their geometrical parameters was proposed in Drach et al. (2014).
Trofimov et al. (2017b) used finite element calculations to analyze
the effect of shape of several representative convex polyhedra on
the overall elastic properties of particle-reinforced composites. The

problem of helical fiber in the context of its waviness and elastic
contrast effect was studied using the FEM (Trofimov et al., 2017a;
Trofimov and Sevostianov, 2017).

An alternative numerical technique to the FEM is the mesh-
free Volume Integral Equation Method (VIEM). The problem is
formulated in terms of volume integral equations for strain and
stress fields in an elastic medium. These equations are dis-
cretized on a regular grid of approximating nodes by the Gaus-
sian functions centered at the nodes. The theory of approxima-
tion by Gaussian and other similar functions was developed by
Maz'ya and Schmidt (2007). This method was first developed by
Kanaun (2009) for homogenization of 2D-materials with inhomo-
geneities of arbitrary shapes; it was adapted for 3D-materials in
Kanaun (2011). Kanaun and Pervago (2011) used this technique for
composites with periodic and random sets of spherical inhomo-
geneities with a step-wise change of the elastic properties. Markov
and Kanaun (2017, 2018) applied the VIEM to the study of interac-
tion of isolated and intersecting planar cracks and spherical inho-
mogeneities.

In our work, we numerically calculate compliance contribution
tensors for geometrically comprehensive set of tetrahedron-like in-
homogeneities covering both convex and concave shapes, for var-
ious combinations of matrix/inhomogeneity properties including
softer and stiffer cases. Results obtained by two numerical tech-
niques: the FEM or the VIEM are compared (similarly to a recent
paper of Trofimov et al., 2018b).

In our work, we also consider the problem of predicting the
change in contribution to the overall elastic properties from in-
homogeneities with identical shapes but different material prop-
erties, the so-called replacement relations. Application of the re-
placement relations for geophysics was first addressed by Gassman
(1951), who proposed to express the bulk modulus K of fully
saturated rock in terms of the elastic properties of dry rock
(see Mavko et al., 2009; Jaeger et al., 2007).This approach was
further developed in the works of Ciz and Shapiro (2007), au-
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thors obtained similar results for shear modulus, and Saxena and
Mavko (2014), who derived replacement relations (they used term
“substitution relations”) for isotropic rocks containing inhomo-
geneities of the same shape, but different elastic constants. In the
context of property contribution tensors, this problem was ad-
dressed by Sevostianov and Kachanov (2007), who derived ex-
plicit relations that are exact for ellipsoids. Recently replacement
relations for thermal conductivities of composite materials hav-
ing different matrices were proposed and verified numerically by
Sevostianov et al. (2018). Application of the replacement rela-
tions to polyhedral inclusions of different shapes was realized by
Trofimov et al. (2017b). In this work, the worst results of applica-
tion of replacement relation were obtained for tetrahedral shape;
however, “smoothing” of the edges improved considerably the re-
sults.

In this paper, the accuracy of replacement relations approxi-
mations for various shape and material combinations is analyzed
and possible analytical functions improving their accuracy are pre-
sented.

2. Elastic properties contribution tensors

For materials containing inhomogeneities, it is possible to
express the effective elastic properties in terms of the so-called
property contribution tensors of an individual inhomogeneity. Such
tensors were first introduced in the context of contributions
of pores and cracks to elastic properties by Horii and Nemat-
Nasser (1983). Later, the concept has been extended to inhomo-
geneities of various shapes and generalized for the other physi-
cal properties (conductivity, thermal expansion, diffusion) in the
works of Sevostianov and Kachanov (2002,2001).

Let us consider an infinite homogeneous elastic medium con-
taining both matrix material and regularly distributed identical iso-
lated inhomogeneities that occupy a volume fraction ¢. Following
the work of Kachanov et al. (1994), the volume-averaged strain
in such medium subjected to a constant external stress field ¢°
in terms of the extra strain Ae due to the presence of inhomo-
geneities takes the form

() =S%:0%+ Ae. (21)

Here SO is the compliance tensor of the matrix and Ae is the
extra strain due to the presence of inhomogeneity; A& can be ex-
pressed as a function of the remotely applied stress o¥:

Ag =¢H: 00, (2.2)

where H is the fourth-rank compliance contribution tensor of the
inhomogeneities normalized by their volume fraction. The tensor
H can be expressed through the following integral (Kanaun and
Levin, 2008)
1
H=-S0 [ C(x) : A(x)dx, (23)
Vi
where C1%(x)=C1 -9, x € V!; C10(x)=0, x¢V!, C° and C! are the
stiffness tensors of the matrix and the inclusions correspondingly,

V! is the volume occupied by a single inclusion. The fourth rank
tensor A(x) is defined as

e(x) =A®X): 0P, (2.4)

where e(x) is the strain field inside the inclusion. It should be
noted that the tensor A(x) depends not only on the elastic prop-
erties, but also on the shape of the inclusion.

In order to calculate the compliance contribution tensor H of a
single inhomogeneity, one has to consider the limit ¢ — 0, i.e.,, an
infinite homogeneous host medium with an isolated inhomogene-
ity subjected to a constant external stress.

Similarly, Eq. (2.1) can be rewritten for the case of applied
strain field €0 (Sevostianov and Kachanov, 1999). In this case, the
volume-averaged stress can be represented as follows:

(0)=C: &%+ Ao. (2.5)

Here Ao is the extra stress due to the presence of the inhomo-
geneity:

Ao =¢N: g% (2.6)

where N is the fourth-rank stiffness contribution tensor of the in-
homogeneities normalized by their volume fraction. The tensor N
can be defined in a similar way to the tensor H (see Eq. (2.3)).

It should be noted that the stiffness and compliance contribu-
tion tensors N and H are interrelated as:

N=-C’:H:C (2.7)

Thus, to evaluate the contribution of an inhomogeneity to the
overall response of a material, one needs to solve the problem of
an infinite elastic medium containing considered inhomogeneity
subjected to constant external stress o or strain &0 field.

The effective compliance tensor S* of a composite material con-
taining multiple inhomogeneities can be expressed as

S =80+ ASFVE, (2.8)

where ASRVE js the total compliance contribution of all the inho-
mogeneities present in a Representative Volume Element (RVE).

In the case of dilute concentrations of inhomogeneities, the
non-interaction scheme is applicable; and ASRVE is found by direct
summation of contributions from all individual inhomogeneities in
the RVE that occupies the volume V:

ASPVE — %Zvﬂ')ﬂ(f), (2.9)
i

where V) and H() are the volume and the compliance contribution
tensor of the ith inhomogeneity, respectively.

When interaction between inhomogeneities cannot be ne-
glected, more advanced techniques should be used, for instance,
the Mori-Tanaka scheme (Benveniste, 1987; Mori and Tanaka,
1973). In the framework of this scheme, contribution of all inho-
mogeneities to the overall compliance of the RVE is given by

-1
ASRVE — [‘1/ Zvﬁ)ﬂw} : [‘1/ SV (s® —s%) 7 HO 1 ¢Jj| ,
(2.10)

where S is the compliance tensor of the material of the ith in-
homogeneity and J is the fourth order unit tensor.

3. Numerical calculation of H-tensor

Due to irregularity of the considered inhomogeneity shapes that
are described in Section 1, only numerical methods are applicable
for the calculation of the H-tensor. In this Section, we discuss nu-
merical solutions obtained by using FEM and VIEM approaches for
individual tetrahedral-like inhomogeneities.

3.1. FEM calculation of H-tensor components of the considered shapes

In the Finite Element Method (FEM) procedure, we calculate
compliance contribution tensor (H) simulating the given particle
geometry in a large volume V subjected to uniform displacement
boundary conditions on 8V: u|, =&%-x. To perform the necessary
steps, we prepare 3D FEM mesh for the analysis by generating the
surface mesh of the particle with approximately hundred thou-
sands of elements in a custom MATLAB script (Trofimov et al.,
2017a).
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a) b
.

Fig. 3. Example of a mesh density of the matrix and tetrahedral-like inhomogeneity
with p=0.25: (a) general view; (b) close-up view of the highlighted region.

The setup with a single shape inside the cubical reference vol-
ume (cube sides are 10 times larger than the diameter of the par-
ticle) is then auto meshed with non-linear tetrahedral 3D elements
(tetra10) due to higher accuracy of results compared to linear ele-
ments (tetra4), see Fig. 3 for mesh density example. Note, that the
choice of the reference volume size used in the analysis is based
on a sensitivity study performed for a particle of spherical shape,
for which an analytical solution is available in the literature.

After the volume mesh is generated, the non-zero components
of compliance contribution tensor (H) are calculated from the post-
processing the results of the set of six load cases: three normal
loadings (in the directions of three global coordinate axes) and
three shear loadings. The procedure is realized using a custom
Python script, as described in Drach et al. (2011). The script starts
with calculating the average stress components within the volume
for each load case:

N
(o), = %Z (a,.y))m VO (G,j=1,2,3k=1,2,..,6) (31)
=1

where (oj)m is the volume average of the stress component ij cal-
culated from the results of the mth load case, (aél))m is the stress

component ij at the centroid of the finite element [ calculated from
the mth load case, V) is the volume of the element [, and N is the
total number of elements in the model. At the next step we obtain
components of compliance contribution tensor as follows:
Honpg = —5© | 70m (b |50
rq mnij (8,91) klpq®
m

(3.2)
where S,(f,fi j are the components of the given matrix compliance
tensor,(es,?l)m and (ai(]?)m are prescribed components of strain and
stress, respectively.

3.2. Mesh-free calculation of H-tensor components of the considered
shapes

In order to calculate the compliance contribution tensor H, we
consider the mesh-free VIEM. We formulate the problem in terms
of integral equations for strain and stress (see, e.g., Kanaun and
Levin, 2008):

& (%) + / Kiju (x - x’)C,}lomn (x’)smn(x’)dx’ = E?j(x), (3.3)

01 (x) — / Sijia (X = X) Sk (X )0 (¥ ) dX’ = 0 (%), (3.4)

where S10(x)=S! -8, x € V!; S10(x)=0, x¢V', S? and S! are the
compliance tensors of the matrix and the inclusions correspond-

{\

Fig. 4. A volume of a medium containing a tetrahedral inclusion covered by a reg-
ular grid of nodes.

ingly. The kernels K(x) and S(x) are calculated from the second
derivative of Green’s function G(x) of the matrix:

Kijin (%) = —=[3;9,G1 (%) ] (3.5)

(i) (kD)’

Sijia () = CyiKimnpq ()Cpgrg = Ciia (0). (3.6)

Here &(x) is Dirac’s delta function. The properties of these ker-
nels were studied by Kanaun (1981) and Kunin (1983).

For discretization of the integral Egs. (3.3) and (3.4), a class of
Gaussian approximation functions is used. Approximate solutions
of Egs. (3.3) and (3.4) are presented in the following forms:

N

gij(x) ~ >y 85?)(p(x —x®), (3.7)
s=1
N

o)~ Y o p(x—x), (3.8)
s=1

where () and o) are unknown values of strain and stress at the
node x) (s = 1, 2, ..., N) of a regular grid that covers a cuboid W,
(Fig. 4) that contains the region V; occupied by the inclusion, N is
the total number of the nodes in W.

The function ¢(x) is a 3D-Gaussian distribution function:

IxP*

1

where h is the grid step, H is a non-dimensional parameter of the
order of 1; for the considered calculations H=2.

After substituting the solutions (3.7) and (3.8) into the integral
Eqgs. (3.3) and (3.4), respectively, we obtain the following systems
of linear equations:

(3.10)

N
() (r.s) ~10(s) o (s) _ ,0(r) _
&j +ZHijleklmnemn_eU ., r=1,...,N
s=1
rs) _ 7., (1) _ 4(s) 10(s) __ 10 ((s) 0(s) _ o0 (4,(s)
i = Hukl(x X ) G _Cijkl(x ) &ij —81']'(" )
(3.11)

N
() (r.s) c10(s) (s) _ ~0(r)
o) = T Summomn =03,

ijkl “klmn ™~ mn

(3.12)

s=1

L) = Ty (x —x©), s28) = 519

ik = i =St (), 0j® = (x),

(3.13)
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The integral operators IT(x) and I'(x) are:

ij (x) = /I<ijkl (x=x)p(x)dx, (3.14)

r,‘jk[ (X) = /Sijkl (X —X’)(p(x’)dx/. (315)

The integrals in (3.14) and (3.15) can be calculated explicitly if
evaluated over the entire 3D-space; this is possible due to the fact
that Gaussian distribution functions decrease very fast (see, e.g.,
Kanaun and Pervago, 2011). Also, the left-hand side matrices of the
systems of linear Eqs. (3.10) and (3.12) have Toeplitz's structure; as
a result, only one row and one column must be stored in computer
memory. For the numerical solution of these systems, only Krylov
subspace iterative methods (Conjugate Gradient, Minimal Residue
or their derivatives) are viable (Kanaun et al., 2013). These methods
require calculation of matrix-vector products at every iteration; for
this calculation the fast Fourier transform technique may be used
(Golub and van Loan, 1996; Kanaun, 2009).

It should also be noted that in the case the Young’s modulus of
the inclusion E! is lower than the Young’s modulus of the matrix
EY, the system (3.10) converges faster than the system (3.12), while
in the case E! is higher than E°, the system (3.12) is more efficient
(Kanaun and Pervago, 2011). This may be explained by the fact that
relatively low values of E! result in a low stress (tending to zero at
E' - 0), while high values of E! result in a low strain (tending to
zero at E' - o).

Once either of two systems, (3.10) or (3.12), is solved, the com-
pliance contribution tensor H may be calculated by the procedure
described in previous Sections.

3.3. Numerical results

In this section we consider tetrahedron-like inhomogeneities
(Fig. 2). The results are given in terms of the sphericity parame-
ter p; the corresponding approximate values of the volume V! of
the unit inhomogeneity (i.e., the distance R from the center of the
inclusion to any of its vertices is unitary) are given in Table 1.

Comparison of calculations of the compliance contribution ten-
sor H by the FEM analysis and by the VIEM is given in Table 2 for

It may be noted that both numerical techniques have
given very close results; in most cases the difference is
less than 2%. Also, the results of both techniques practi-
cally coincide with the exact results for the case of sphere
(Hllll =H3333 = —2.031,Hy133 =Hq1122 =0.693, Hj313=-1.362 for
the rlgld sphere and H1]112H3333=2.0,H]]33 =H1122=—0.477,
Hq313 =1.239 for the spherical pore). Only in the extreme case of
a rigid inclusion of very concave shape (p < —0.2) the difference
is about 10%. Comparison of the results obtained by the two
considered numerical methods for the contrast E/E? that is equal
to 10, 5, 2, 0.5, 0.2, and 0.1 is given in Appendix A.

4. Replacement relations

In this Section, we check the applicability of the replacement
relations to the numerical solutions obtained in the previous Sec-
tion. To improve the quality of calculations, we introduce the so-
called adjustment tensor.

4.1. Replacement relations formulation

The general case of replacement relations (Sevostianov and
Kachanov, 2007) allows one to interrelate the effective compliance
and stiffness tensors of inhomogeneities “A” and “B” of the same
ellipsoidal shape (and embedded into the same matrix) but with
different elastic constants

T H) = (500 - () (a1)
&(Nf;1 ~N') = (=) - (cB-C) (4.2)

Here N4 and Np are the stiffness contribution tensors and Hgx
and Hp are the compliance contribution tensors of inhomogeneities
with material properties “A” and “B”, respectively. Similarly, C* and
CB are the stiffness tensors, S and SB are the compliance tensors
of these inhomogeneities.

In two particular cases, if the material “B” is either absolutely
rigid or represents a pore, the comparison relations take the form:

absolutely rigid inclusions and in Table 3 for pores. For the VIEM, V. 1
: id wi o (Hy! = Hyb) = (81 -5 (4.3)
a uniform node grid with the step h/R=0.01 was used; such node v VA pore) = ) .
grid corresponds approximately to 6 million nodes. For simplicity,
the system of linear Eqs. (3.12) was used for the solution, as testing v )
ive simi F(N;T=NZL) = (¢4 - ) (4.4)
has shown that both systems (3.10) and (3.12) give similar result. A rigid) = :
Table 1
Approximate volume V! of the unit tetrahedron-like inhomogeneity for different values of the pa-
rameter p.
p -03 -025 -02 -015 -01 0 0.25 05 0.75 1
Vi 0135 0184 024 0301 0367 0511 0948 1512 2332 4189
Table 2
Independent components of the compliance contribution tensor Hjy of rigid inhomogeneities.
E'E® - o0
p HE  HER MM HEENHEL, MR HYEYHES,  HEY HUEVHEL, WG HORHE
-0.3 —-5505 —4.868 5685 —4.987 2188 1930 2370  2.053 -3.846 —3.386
-025 -4.834 —4365 —-4972  -4.505 1898 1716 2.032 1783 -3.366  —3.049
-0.2 —4.333 —3.986 —4.436 —4.066 1.682 1.539 1.780 1.602 —3.007 —2.761
-015 -3.956 -3.837 —-4033 -3.923 1520 1477 1591 1531 -2.738  —2671
-0.1 -3.661 -3.652 3719  —3.698 1393 1389 1445 1438 -2.527  -2.507
0 -2954 -2929 -3.005 -2.984 1060  1.051 1096  1.093 —2.022 -1.988
0.25 —2.642 -2616 2645 —2.634 0.955  0.941 0.957  0.949 -1792  -1.798
0.5 -2.321 -2353 2325 -2.365 0.814  0.830 0.821  0.836 -1554 -1.604
0.75 —2129 -2154 2132 -2.160 0732  0.745 0.738  0.749 -1420 -1452
1 -2.030 -2.030 -2030 -2.030 0.693  0.692 0.693  0.692 -1362  -1.361
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Table 3
The same as in Table 2 for pores.
E'/VE® =0

p HE WYY HIRS HEEY HEEY Hi HiEY Hi! HEY  HEE
-03 2.827 2913 2.699 2.786 —0.553 —-0.570 -0.423 —0.480 1.820 1.882
-0.25 2.802 2.863 2.679 2.743 —-0.550 —-0.562 —-0.423 —-0.470 1.804 1.847
-0.2 2.767 2.808 2.650 2.686 —0.545 —0.555 —0.424 —0.469 1.780 1.807
-0.15 2.723 2.750 2.614 2.663 —0.540 —-0.549 -0.425 —0.466 1.750 1.771
-0.1 2.676 2.692 2.574 2.622 —0.535 —-0.541 -0.426 —0.465 1.717 1.735
0 2.597 2.621 2.544 2.601 —0.525 —-0.526 —-0.430 —0.463 1.670 1.715
0.25 2.339 2371 2.287 2.346 —0.504 -0.510 -0.444 —0.464 1.485 1.524
0.5 2.164 2.184 2137 2.168 —0.491 -0.500 —-0.458 —-0.467 1.363 1.385
0.75 2.049 2.064 2.041 2.054 —-0.482 —-0.486 —0.469 —-0.472 1.282 1.293
1 2.002 2.002 2.002 2.002 —0.476 —-0.476 —0.476 —0.476 1.239 1.239

Table 4

Comparison of the component Hyjy; of the compliance contribution tensor calculated by the replacement relation from
an inhomogeneity “B” that is absolutely rigid with the same component calculated by the VIEM method.

EAE®
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)

HRRigid

1111

-0.3 —4.868 -3.129 —2.166 —0.821 0.565 0.984 1142 1.310
-0.25 —4.365 -2.918 —-2.065 -0.807 0.571 1.003 1.167 1.342
-0.2 -3.986 —2.747 -1.979 -0.793 0.578 1.023 1195 1.380
-0.15 -3.837 -2.677 -1.942 —0.788 0.581 1.033 1.209 1.398
-0.1 -3.652 —2.587 —-1.896 -0.780 0.585 1.046 1.226 1421
0 -2.929 —-2.208 -1.686 —-0.743 0.606 1116 1322 1.550
0.25 -2.616 -2.025 -1.578 -0.721 0.622 1.169 1.398 1.656
0.5 -2.353 -1.865 -1.479 —0.700 0.638 1.228 1.483 1777
0.75 -2.154 -1.739 -1.399 —-0.682 0.654 1.286 1.569 1.902
1 -2.030 -1.658 —1.347 —0.669 0.665 1330 1.633 2.002

AH{{EN, %
-03 0.0 42.406 35.807 18.620 —18.161 —35.165 —43.504 —55.047
-0.25 0.0 34.509 30.182 16.613 —16.887 —33.258 —41.744 —53.106
-0.2 0.0 27.240 25.497 14.841 —-15.577 -31.156 —39.190 —50.848
-0.15 0.0 24.242 23.482 14.295 —14.910 -30.360 —37.838 —49.176
-0.1 0.0 22.552 20.910 13.607 —14.204 —29.342 -36.395 —47.226
0 0.0 11.442 12.639 8.404 —-10.889 —24.272 -31.044 —40.838
0.25 0.0 7.987 8.846 5.969 -7.849 -17.853 -22.793 -30.736
0.5 0.0 4.778 5.341 3.680 —4.806 -11.217 —14.146 —19.059
0.75 0.0 2.246 2.496 1.731 -2.010 -4.959 —-5.920 —7.868
1 0.0 0.029 0.067 0.022 —-0.088 -0.134 -0.262 0.003

It should be noted that relations (4.1) and (4.2) are exact only
for inhomogeneities of ellipsoidal shape; however, it was shown by
Chen et al. (2017) that these relations give a good approximation
for non-ellipsoidal convex superspheres as well.

4.2. Numerical results

In the current work, we apply the replacement relations to

tetrahedral-like shapes described in Section 1. First, we consider
absolutely rigid material as the material “B”; we take the com-
pliance contribution tensor H obtained by the VIEM for each
inhomogeneity shape from the Section 3.3. Then we apply the re-
placement relation for the calculation of the tensor H of the inho-
mogeneity “A” of the same shape, for different values of contrast
EAIEQ of Young’s moduli of the matrix and material “A”. Compari-
son of the results obtained for the component Hyq1; of the compli-
ance contribution tensor by using the replacement relation and the
VIEM numerical solution is given in the Table 4; for the compari-
son, we use the AH;%M = (Hs.ﬁg“i‘RP ore _ H}ﬁf"” ) /Hﬁf"” ratios. Here
HSEM and Hg.ﬁ’re are the compliance contribution tensors calcu-
lated by the replacement relation from an inhomogeneity “B” that
is absolutely rigid or represents a pore, correspondingly. The re-
sults for the other independent components of the tensor H appear

in Appendix B; these results follow the same trend as the compo-
nent Hyyqq.

It may be clearly seen that the replacement relation gives ac-
ceptable results for the material “A” stiffer than the matrix in the
case of convex shapes (p > 0), however, for concave shapes the
results differ by a large margin (> 20% in most cases). It is also
important to note that in the case of the material “A” softer than
the matrix results obtained by the replacement relation do not fol-
low the correct trend of the corresponding numerical results; i.e.,
the corresponding component Hyq1; decreases for smaller values of
parameter p, while it should increase.

Similar comparison of the results obtained for the component
Hq111 by using the replacement relation and the numerical solution
in the case where the material “B” represents a pore is given in
the Table 5.

Here one may observe that the replacement relation has given
us much better results for the material “A” softer than the matrix,
the difference between the values is lower than 10% even in the
case of very concave shapes. From the other hand, if the material
“A” is stiffer than the matrix, the results given by the replacement
relation do not follow the correct trend (the results decrease for
smaller p).
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Table 5

The same as in Table 4 for calculation by the replacement relation from an inhomogeneity “B” that

represents a pore.

EAJEC
p oo (rigid) 10 5 0.5 0.2 0.1 0 (void)
Hie
-03 —1.562 -1.332 -1.123 —0.609 0.739 1.669 2185 2913
-025 1578 -1.343 -1131 -0.611 0.735 1.652 2.156 2.863
-0.2 -1.595 -1.356 —-1.140 -0.614 0.732 1.634 2126 2.808
-0.15 -1.613 -1.369 -1.149 -0.617 0.728 1.615 2.093 2.750
-0.1 -1.634 -1.383 -1.160 -0.620 0.724 1.595 2.060 2.692
0 —1.660 —1.402 -1.173 —0.623 0.719 1.570 2.018 2.621
0.25 -1.716 —1.442 —-1.201 —0.631 0.709 1.519 1.933 2.391
0.5 -1.875 —1.552 -1.276 —0.651 0.685 1.412 1.762 2.196
0.75 -1.974 -1.620 -1.321 -0.663 0.672 1.358 1.677 2.064
1 —-2.030 -1.658 -1.347 —0.669 0.665 1.330 1.633 2.002
AHVEM %
-03 —67.908 -39.384 -29.576  -11.995 7100 9.993 8.115 0.0
-025 -63.844 —38.082 28675 11605  7.047 9.952 7.631 0.0
-0.2 —59.981 —37.208 -27.699 —11.135 6.954 9.903 8.127 0.0
-0.15 —57.950 -36.458 -26.928 -10.510 6.667 8.844 7.647 0.0
-0.1 —55.263 -34.465  —26.031 —9.760 6.224 7.771 6.874 0.0
0 —43.322 -29.202  -21.632 —9.049 5.636 6.581 5.260 0.0
0.25 —34.396 -23.115 -17179 -7.278 5.011 6.792 6.768 0.0
0.5 -20.303 -12.775 -9.124 —3.547 2124 2138 1.999 0.0
0.75 —8.336 —4.722 -3.186 -1.081 0.710 0.368 0.596 0.0
1 —0.002 0.029 0.067 0.022 -0.088 -0.134 -0262 0.0

Table 6

Comparison of the component Hy;1; of the compliance contribution tensor calculated by the replace-
ment relation combined with the corresponding adjustment tensor with the same component calcu-

lated by the VIEM method.

EA|E°
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
i Hife
-0.3 —4.868 -2.504 -1.737 —0.661 0.681 1.536 2.009 2913
-025 -4365 -2362 -1675 -0.657  0.679 1.525 1.990 2.863
-0.2 —-3.986 -2249 -1623 -0.653  0.679 1.514 1.969 2.808
-0.15 -3.837 -2.215 -1.610 -0.655 0.677 1.502 1.945 2.750
-0.1 —3.652 —2.164 —1.588 -0.655 0676 1.488 1.921 2.692
0 -2.929 —1.888 —1.443 -0.637  0.676 1.475 1.896 2.621
0.25 -2.616 —-1.819 -1.418 -0.649 0678 1.452 1.848 2391
0.5 -2.353 —1.755 -1.392 -0.659  0.666 1.373 1.713 2.196
0.75 -2.154 -1.711 -1.377 -0.671 0.665 1.343 1.658 2.064
1 -2.030 —1.658 —1.347 -0.669  0.665 1.330 1.633 2.002
AHYEM %
-03 0.0 13.962 8.918 —-4436 1348 1.227 -0.572 00
-025 00 8.888 5.600 -4997  -1136 1.540 -0.682 0.0
-0.2 0.0 4171 2.927 -5.555 0799  1.848 0.162 0.0
-0.15 0.0 2.837 2.325 -4.922  -0.745 1.229 0.049 0.0
-0.1 0.0 2.514 1.301 —4.573 -0.809 0.573 -0296 0.0
0 0.0 -4.688 -3.600 -7.060 -0.658  0.153 -1129 0.0
0.25 0.0 -3.029 -2.181 -4.709 0517 2.081 2.062 0.0
0.5 0.0 -1.374 -0.842 -2366 0595 -0.699 -0806 0.0
0.75 0.0 0.643 0.864 0.134 -0.384 -0.781 -0.564 0.0
1 0.0 0.029 0.067 0.022 -0.088 -0.134 -0.262 0.0

4.3. Adjustment tensors

As it was shown in the previous Section, application of the re-
placement relation did not give us a good approximation to the
numerical results. To improve the quality of the approximation, we
propose two adjustment tensors of8id and «f°e for every consid-
ered shape of the inhomogeneity:

oRigid — gVIEM . (HRRigid)’l, EA/EO > 1. (4.5)

aPore — HVIEM : (HRPore)71 EA/EO <1. (46)

Dependence of the components 1111 of the adjustment ten-
sors on the parameter p is given in Figs. 5 and 6 for “stiff”
(FAJE® > 0) and “soft” (EA/E® < 0) inhomogeneities “A”, respectively.
Other components of the adjustment tensors aRi€d and o' have
shown similar behavior.

Linear regression analysis performed by InfoStat statistical soft-
ware has shown that the dependence of all the non-zero compo-
nents of tensor o on the parameter p may be approximated rea-
sonably well by a linear function (see Figs. 5 and 6). The result-
ing linear approximations of the non-zero components of the ad-
justment tensors ki€ and o for the cases of “stiff’ and “soft”
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Fig. 5. Dependence of the component «y;;; of the adjustment tensor on the parameter p in the case of application of the replacement relation from an inhomogeneity “B”

that is absolutely rigid and inhomogeneity “A” that is “stiff”.
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Fig. 6. The same as in Fig. 5 for inhomogeneity “B” that is represents a pore and inhomogeneity “A” that is “soft”.

inhomogeneities in Voigt notation are:
e (py — R (p) — 0.8808 + 0.1407p,
o (p) = 0.8862 + 0.1341p,

of4 (py = 99 (p) = 0.0415 — 0.0492p,
ofd (p) = R84 (p) = 0.0314 — 0.0391p,
o8 (p) = of4(p) = 0.0291 - 0.0377p,
el (p) = R (p) = 0.8388 + 0.1894p,

a4 (p) = 0.8096 + 0.2155p. (4.7)

i (p) = &g (p) = 0.9352 + 0.0697p,
b (p) = 0.9353 + 0.0682p,

al8"(p) = &l (p) = —0.0112 + 0.0114p,
b2 (p) = af9 (p) = —0.0073 + 0.0064p,
o™ (p) = &l (p) = ~0.0062 +0.0044p,
a3 (p) = ag"(p) = 0.9465 + 0.0584p,
ald(p) = 0.9471 + 0.0576p.
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We have applied the obtained linear approximations of the ad-
justment tensors oR8d and P to improve the results of applica-
tion of the replacement relations as

HRRig‘id* — aRig‘id . HRRig‘id’ EA/EO - 1,

(4.9)

HRPore* — OlPore . HRPore’ EA/EO < 1. (410)

Comparison of the component 1111 of the corrected H-tensors
HRRigidx and HRPorex to the numerical calculations obtained by the
VIEM is given in Table 6. The same comparison for the other inde-
pendent components of the tensors HRRgd* and HRPore* js given in
Appendix C.

It may be noted that the application of the adjustment tensors
afigid and efore has improved the results of application of the re-
placement relations; however, even after the application of these
tensors, the resulting H-tensor HRRid* did not give a good approx-
imation.

5. Conclusions

In this work, we have calculated the individual contribution
tensors of elastic properties for a set of tetrahedron-like inhomo-
geneities with spherical polygons as faces; different values of con-
trast between the inhomogeneity material and the matrix were
considered. For the calculation, two numerical techniques were
applied: FEM and VIEM. Both techniques have shown good cor-
respondence (less than 2% of difference for most cases); consid-
erable divergence was observed only in some extreme cases of
absolutely rigid strongly concave inclusions. The results have
shown that the contribution tensors of tetrahedron-like inhomo-
geneities are transversally isotropic.

The replacement relations were applied for the calculation of
the mentioned contribution tensors for inhomogeneities of the
same shape but different Young’s moduli from the results obtained
for absolutely rigid inhomogeneities and pores. Despite the fact
that the replacement relations are strictly valid only for the case of
ellipsoidal inclusions, we have obtained good correspondence (less
than 10% of difference) in the case of “soft” inclusions, which con-
tributions tensors were calculated from the contribution tensors of
pores of the same shape. In the case of “hard” inclusions, whose
contributions tensors were calculated from the contribution ten-
sors of absolutely rigid ones, the correspondence was much worse.
In the cases, where we have calculated the replacement relations
for “hard” inclusions from the pores and “soft” inclusions from ab-
solutely rigid ones, the results have shown incorrect behavior. It
should be noted that one may expect better results in the case of
different convex polyhedra, for instance, superspheres, due to the
fact that Trofimov et al. (2017b) have obtained the worst corre-
spondence for tetrahedral inclusions.

To improve the results of applicability of the replacement
relations, the so-called adjustment tensors were proposed; the

components of these tensors were linearly dependent on the in-
homogeneity shape parameter p (that is inversely proportional to
the surface curvature of the inhomogeneity). Application of such
tensors allowed us to adjust the results well only in the case of
“soft” inclusions.

Overall, one may conclude that, for tetrahedron-like inclusions,
the replacement relations work reasonably well only in the case
of “soft” inclusions, i.e., which Young’'s modulus is lower that
the matrix’. The error increases, as the inclusion shape becomes
more concave, however, the behavior of this error with respect to
the parameter p is close to linear, as the calculation of the adjust-
ment tensors have shown.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at doi:10.1016/j.ijsolstr.2019.02.020.

Appendix A

In this Appendix we give the calculations of the 5 indepen-
dent constants of the transversally isotropic compliance contribu-
tion tensor H by the two considered numerical techniques: the
FEM and the VIEM.

Tables A1-A5

Table A1l
Component Hqj1; of the compliance contribution tensor calculated by the FEM and
the VIEM.

E'[E°
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)

HERY
-03 —5.505 -2.294 -1623 -0.700 0.679 1488 1977 2.827
—-0.25 -4.834 —-2.262 -1613 -0.699 0.679 1484 1968 2.802
-0.2 —4.333 —-2222 -1599 -0.698 0.678 1478 1954 2.767
-015 -3.956 —-2180 -1583 -0.696 0.677 1471 1938 2.723
-0.1 —-3.661 -2139 -1568 -0.695 0.677 1463 1921 2.676
0 —-2.954 —-1995 -1511 -0.691 0.674 1459 1902 2.597
0.25 —2.642 —-1.868 —-1424 -0.685 0.671 1447 1826 2.339
0.5 -2.321 -1.768 -1386 -0.678 0.670 1396 1.735 2.164
0.75 -2.129 -1.705 -1372 -0.673 0.666 1342 1.658 2.049
1 -2.030 —-1.658 —-1346 -0.667 0.665 1331 1.638 2.001

HYE
-0.3 —4.868 -2197 -1595 -0.692 0.690 1517 2.021 2913
—-0.25 -4.365 -2170 -1586 -0.692 0.687 1502 2.003 2.863
-0.2 —3.986 -2159 -1577 -0.691 0.684 1487 1966 2.808
-015 -3.837 -2154 -1573 -0.689 0.683 1484 1944 2.750
-0.1 —3.652 -2111 -1568 -0.687 0.682 1480 1927 2.692
0 -2.929 —-1.981 -1497 -0.685 0.681 1473 1917 2.621
0.25 -2.616 —-1.876 —-1450 -0.681 0.675 1423 1810 2.391
0.5 —2.353 —-1.780 -1404 -0.675 0.670 1383 1.727 2.196
0.75 —-2.154 -1.700 -1365 -0.670 0.667 1353 1.668 2.064
1 —2.030 —-1.658 -1346 -0.667 0.665 1331 1638 2.002
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Table A2
The same as in Table A1 for the component Hss3s. Table A4
E'JE0 The same as in Table A1 for the component Hyjss3.
— A E'[E®
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
HEE p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
-03 -5685 -2412 -1687 -0712 0.668 1440 1900 2.699 HFEM
-025 -4972 -2370 -1673 -0.711 0.668 1437 1893 2.679 _03 2370 0.857 0578 0229 -0184 -0343 —0402 -0.423
-02 -4436 -2318 -1655 -0.709 0.667 1433 1883 2.650 025 2.032 0.840 0573 0228 -0184 -0.343 -0401 -0.423
-015 -4.033 -2265 -1635 -0707 0.667 1428 1870 2.614 —02 1780 0.821 0566 0227 -0184 -0342 —0400 -0.424
-01 3719  -2213 -1614 -0.705 0.667 1422 1856 2.574 -015 1591 0.800 0558 0227 -0184 -0.342 -0400 -0.425
0 -3.005 -2.051 -1532 -0.696 0666 1421 1840 2.544 —01 1445 0780 0550 0226 -0184 -0.342 -0.399 -0.426
025 -2645 1899 -1447 -0687 0666 1414 1792 2.287 0 1.096 0710 0520 0221 -0185 -0344 —0401 -0.430
0.5 2325 1784 -1400 -0678 0.665 1382 1716 2137 025 0957 0.671 0500 0214 —0187 —-0345 —0402 -0.444
075 -2132 1711 -1377 -0674 0664 1337 1651 2.041 05 0.821 0617 0474 0211 -0187 -0348 —0406 —0.458
1 -2.030 -1658 -1346 -0.667 0.665 1331 1637 2.002 075 0738 0579 0456 0209 -0187 -0.350 -0407 —0.469
HYIEW 1 0.693 0555 0443 0210 -0.188 -0.349 -0412 -0476
03 -4987 -2311 -1624 -0.700 0682 1482 1958 2.786 HY
—025 -4505 -2276 -1624 -0700 0678 1464 1933 2743 —-03 2053 0.791 0559 0225 -0189 -0358 —0.420 -0.480
—02 _4.066 _2246 -1620 -0.700 0.676 1452 1910 2.686 -0.25 1783 0.789 0.556 0.224 -0.188 -0.356 -0.417 -0.470
015 -3.923 -2235 —1620 —0698 0.675 1449 1890 2.663 -02 1602 0.787 0555 0224 -0188 -0.355 -0416 —0.469
-01 3698 -2210 -1605 -0695 0.674 1447 1886 2622 -015 1531 0.785 0554 0224 -0187 -0354 -0413 -0.466
0 -2984  —2031 -1530 -0.693 0674 1445 1874 2.601 -01 1438 0776 0548 0222 -0.187 -0354 -0.412 -0.465
025 -2.634 -1905 -1462 -0.687 0670 1402 1779 2.346 0 1.093 0706 0517 0221 -0187 -0354 -0411 -0463
05 2365 _1797 _1414 -0679 0667 1370 1709 2168 025 0949 0.656 0.494 0218 -0.187 -0350 -0.410 -0.464
075 -2160 -1707 -1370 -0.672 0666 1349 1661 2.054 0.5 0.836 0613 0473 0215 -0187 -0349 -0.409 -0.467
1 ~2.030 _1658 —1347 -0667 0665 1331 1.638 2.002 0.75 0.749 0576 0454 0212 -0187 -0347 -0410 -0.472
1 0.692 0555 0.443 0210 -0188 -0.349 -0412 -0476
Table A3
Th in Table A1 for th t Hia.
e same as in Table or the component Hyp2 Table A5
E'/E® The same as in Table A1 for the component Hyz;s.
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void) E'[E°
HFEM p oo (rigid) 10 5 2 05 02 01 0 (void)
-03 2188 0737 0513 0216 -0195 -0392 -0.480 -0.553 rEn
-0.25 1.898 0730 0511 0216 —0195 —0390 -0.478 —0.550 1313
02 1682 0722 0508 0216 —0195 —0389 —0474 —0545 -03 -3.846 -1394 -1002 -0445 0.448 0989 1307 1820
~015 1520 0712 0505 0215 -0194 —-0387 —0471 —0.540 ‘8'25 ‘g'ggg ‘}‘333 ‘g‘ggi ‘8'332 8'333 8'32? ng }'ggg
-01 1393 0702 0502 0215 -0194 -0384 -0.466 -0.535 e T T Y - : g . g
0 1060 0657 0434 0215 —0193 —0385 —0459 —0525 -015 -2738  -1355 -0989 -0.444 0447 0975 1277 1750
025 0955 0634 0471 0214 —0192 —0375 —0.445 —0.504 80'1 ‘33% ‘}ggg ‘8'323 ‘8'233 8-232 g'ggi Ei; }Z%
05 0.814 0599 0459 0213 -0191 -0363 -0.428 -0.491 e T - e : g . :
075 0732 0571 0450 0212 —0189 —0352 —0416 —0482 025 -1792  -1222 -0928 -0.442 0440 0931 1169 1485
1 0,693 0555 0443 0210 —0188 —0349 —0412 —0476 0.5 -1554 1168 -0913 -0.441 0434 0889 1099 1363
. 075 -1420 -1128 -0.903 -0.440 0429 0.855 1048 1282
Hi 1 -1362  -1106 -0.890 -0.438 0427 0840 1026 1239
-03 1930 0718 0504 0215 -0198 -0.403 -0.492 -0.570 HYIEM
-0.25 1716 0.717 0503 0.215 -0.197 -0.399 -0.486 -0.562 —03 _3.386 ~1370 -0991 -0.446 0454 1.008 1344 1.882
—-02 1539 07130501 0215 -0.197 -0394 -0481 -0.555 —-025 -3.049 1367 -0988 -0445 0452 0996 1321 1847
—0.15 1477 0709 0499 0214 -0.196 -0393 -0480 -0.549 -02 -2761 -1360 -0984 -0.444 0451 0986 1300 1807
-01 1.389 0.697 0494 0.213 -0195 -0.391 -0472 -0.541 —015 -2.671 ~1352 —0980 -0.443 0449 0982 1280 1.771
0 1.051 0.652 0480 0213 0195 -0383 -0462 -0.526 -01 -2507 1338 -0973 -0442 0448 0977 1265 1735
0.25 0.941 0.625 0471 0.212 -0192 -0.374 —-0.447 -0.510 0 -1.988 ~1257 -0.949 —0.440 0447 0972 1261 1715
05 0830 0.595 0459 0211 -0.191 -0363 -0431 -0.500 025 1798 —1216 —-0935 -0440 0440 0926 1172 1524
0.75 0.745 0568 0447 0211 -0.189 -0.356 -0419 -0.486 0.5 ~1.604 ~1168 -0916 -0.439 0435 0.890 1104 1.385
1 0.692 0555 0443 0210 -0.188 -0349 -0412 -0476 075 -1452  -1125 -0.899 -0439 0430 0862 1055 1293
1 -1361  -1106 -0.890 -0.438 0427 0840 1026 1239
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Appendix B

In this Appendix we give the calculations of the four remaining
(besides Hiy11) independent constants of the transversally isotropic
compliance contribution tensor H by the replacement relation
given in Section 4. We consider two calculation variants: we ob-
tain the tensor H considering the inhomogeneity “B” is either rigid
or represents a pore. For the calculations the results obtained by
the VIEM are taken.

Tables B1-B4

Table B1

Component Hss33 of the compliance contribution tensor calculated by the replace-
ment relation from an inhomogeneity “B” that is either absolutely rigid or repre-
sents a pore.

EA/EO
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)

HigEe
-03 —4987 -3177 -2188 -0.824 0.563 0.980 1137 1.303
-0.25 -4.505 -2.984 -2.099 -0.812 0.568 0.993 1154 1325
-02 -4.066 -2.785 -1999 -0.797 0576 1018 1188 1.371
-015 -3.923 -2719 -1965 -0.791 0.579 1.026 1199 1.385
-0.1 —3.698 -2.610 -1.907 -0.782 0.584 1.043 1222 1415
0 -2.984 -2.238 -1704 -0.746 0.604 1108 1311 1.536
0.25 -2.634 -2.037 -1585 -0.723 0.621 1165 1392 1.648
0.5 —2.365 -1.873 -1484 -0.701 0.637 1224 1477 1769
0.75 -2.160 -1.743 -1402 -0.683 0.653 1284 1565 1.897
1 -2.030 -1.658 -1347 -0.669 0.665 1330 1.633 2.002

Hige
-03 -1.604 -1362 -1145 -0.615 0.730 1624 2111 2.786
-0.25 -1.621 -1374 -1153 -0.618 0.727 1.609 2.085 2.743
-02 -1.640 -1388 -1163 -0.621 0.723 1590 2.053 2.686
-015 -1.651 -1395 -1168 -0.622 0.721 1582 2.040 2.663
-01 -1.666 -1407 -1176 -0.624 0.718 1568 2.016 2.622
0 -1.677 -1414 -1181 -0.625 0.717 1561 2.004 2.601
0.25 —1.747 -1463 -1215 -0.635 0.704 1500 1.903 2.346
0.5 —-1.901 -1570 -1.288 -0.654 0.681 1400 1743 2.168
0.75 -1.986 -1628 -1327 -0.664 0.671 1354 1671 2.054
1 -2.030 -1.658 -1347 -0.669 0.665 1330 1.633 2.002
Table B2
The same as in Table B1 for the component Hiz;.

EAJEC
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)

RRigid

1122
-03 1930 1184 0.786 0.271 -0.154 -0.243 -0270 -0.294
-0.25 1716 1095 0.744 0265 -0156 -0.251 -0.280 -0.307
-02 1539 1.016 0.705 0.260 -0.159 -0.257 -0.288 -0.316
-015 1477 0988 0.691 0.258 -0159 -0.259 -0.290 -0.319
-01 1.389 0945 0.669 0.254 -0.161 -0.263 -0.296 -0.327
0 1.051 0.769 0.573 0.238 -0.170 -0.291 -0.333 -0.375
025 0941 0.708 0.538 0.231 -0173 -0.300 -0.344 -0.387
0.5 0.830 0.642 0498 0.223 -0178 -0315 -0.365 -0.413
0.75 0.745 0.589 0465 0.216 -0.184 -0334 -0.390 -0.447
1 0.692 0.555 0.443 0.211 -0188 -0.348 -0.411 -0476

HRPore

1122
-03 0510 0431 0360 0.190 -0.208 -0419 -0.504 -0.570
-0.25 0.516 0435 0363 0.191 -0207 -0415 -0.497 -0.562
-0.2 0.522 0440 0366 0.192 -0.206 -0410 -0.491 -0.555
-0.15 0.530 0.445 0370 0.193 -0205 -0.406 -0.485 -0.549
-01 0.538 0451 0374 0194 -0203 -0400 -0.477 -0.541
0 0.552 0460 0380 0.196 -0.201 -0393 -0.466 -0.526
025 0.566 0470 0387 0.97 -0200 -0390 -0.466 -0.520
0.5 0.627 0.512 0415 0.205 -0193 -0365 -0.433 -0.500
0.75  0.667 0.538 0432 0209 -0190 -0355 -0.420 -0.486
1 0.692 0.555 0443 0.211 -0.188 -0.348 -0.411 -0.476
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Table B3
The same as in Table B1 for the component Hy3s.
FAJEC
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
His
-03  2.053 1234 0809 0274 -0152 -0.239 -0.265 -0.287
-0.25 1783 1122 0.756 0267 -0156 -0.250 -0.279 -0.306
-02 1.602 1.045 0719 0262 -0158 -0.254 -0.284 -0.311
-0.15 1531 1.012 0.703 0259 -0.159 -0.257 -0.287 -0.315
-01 1438 0.969 0.682 0.256 -0.160 -0.260 -0.292 -0.321
0 1.093 0.792 0.586 0.240 -0.169 -0.286 -0.327 -0.366
025 0.949 0.713 0.540 0232 -0173 -0.299 -0.342 -0385
0.5 0.836 0.646 0.500 0.224 -0178 -0.314 -0.363 -0411
0.75  0.749 0.591 0466 0217 -0183 -0.333 -0.389 -0445
0.692 0.555 0.443 0211 -0188 -0.348 -0411 -0476
Hife
-03 0545 0.456 0.378 0.195 -0.201 -0.386 -0.449 -0.480
-0.25 0.553 0.462 0.382 0.196 -0.200 -0.381 -0.441 -0470
-0.2  0.560 0.467 0385 0197 -0199 -0.377 -0437 -0.469
-0.15 0.566 0471 0.388 0.198 -0.198 -0.375 -0.434 -0.466
-01 0572 0475 0391 0199 -0197 -0372 -0431 -0.465
0 0.578 0.479 0394 0200 -0196 -0.369 -0.427 -0.463
025  0.601 0.495 0404 0202 -0194 -0.365 -0.426 -0.464
0.5 0.656 0.532 0428 0.208 -0190 -0.351 -0.410 -0.467
0.75  0.682 0.548 0439 0210 -0188 -0.348 -0410 -0.472
1 0.692 0.555 0.443 0211 -0188 -0.348 -0411 -0476
Table B4
The same as in Table B1 for the component Hi3;s.
EAJEC
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
HRRigid
1313
-03 3386 -2152 -1474 -0.546 0.359 0.614 0.707 0.803
-0.25 -3.049 -2.010 -1406 -0.536 0.364 0.626 0.723 0.824
-02 -2.761 -1.881 -1342 -0.527 0.368 0.640 0.742 0.848
-015 -2.671 -1.839 -1320 -0.523 0.370 0.645 0.748 0.857
-01  -2.507 -1760 -1279 -0.517 0373 0.655 0.762 0.875
0 -1.988 -1520 -1147 -0494 0.386 0.697 0.818 0.950
025 -1.798 -1378 -1.065 -0478 0.397 0.731 0866 1015
0.5 -1.604 -1261 -0.993 -0.463 0407 0769 0.920 1.089
075  —1452 -1165 -0.933 -0.449 0418 0.809 0978 1173
1 -1.361 -1107 -0.895 -0.440 0426 0.839 1.022 1239
HSe
-03  -0.992 -0.849 -0.719 -0.393 0483 1.093 1427 1882
-0.25 -1.002 -0.857 -0.724 -0.394 0481 1.081 1407 1847
-02 -1014 -0.864 -0.730 -0.396 0.478 1.068 1.383 1.807
-015 -1.026 -0.874 -0.736 -0.398 0476 1.055 1362 1771
-01 -1.038 -0.883 -0.743 -0.400 0473 1.042 1341 1735
0 —1.045 -0.888 -0.746 —-0.401 0472 1.035 1329 1715
025 -1.105 -0.931 -0.776 -0.409 0460 0.982 1242 1524
0.5 -1.221 -1.012 -0.832 -0424 0443 0905 1122 1385
075 -1303 -1.067 -0.869 -0.434 0433 0.864 1.060 1293
1 -1.361 -1107 -0.895 -0.440 0426 0.839 1.022 1239




12

Appendix C

A. Markov, A. Trofimov and S. Abaimov et al./ International Journal of Solids and Structures 167 (2019) 1-13

In this Appendix we give the calculations of the four remaining
(besides 1111) independent constants of the transversally isotropic
tensors HRRigidx and HRPorex,

Tables C1-C4

Table C1

Calculation of the component Hss3; of the compliance contribution tensor calcu-
lated by the replacement relation combined with the corresponding adjustment

tensor.
EAJE°
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
RRigid "
HSE g
-03 -4.987 -2.588 -1.786 -0.675 0.671 1492 1938 2.786
-0.25 -4.505 -2458 -1.732 -0.672 0.670 1483 1921 2.743
-02 -4.066 -2317 -1665 -0.666 0.669 1471 1.898 2.686
-015 -3.923 -2.285 -1653 -0.667 0.670 1469 1893 2.663
-01  -3.698 -2214 -1620 -0.666 0.669 1461 1.878 2.622
0 —2.984 -1937 -1476 -0.647 0.673 1465 1.880 2.601
0.25 -2.634 -1845 -1437 -0.656 0.672 1432 1817 2.346
0.5 -2.365 -1772 -1404 -0.664 0.662 1360 1.693 2.168
0.75 —-2.160 -1719 -1383 -0.674 0.663 1338 1.651 2.054
1 -2.030 -1.658 -1347 -0.667 0.665 1331 1.638 2.002
Table C2
The same as in Table C1 for the component Hyjp,.
FAJEO
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
igid .
His HifSe
-03 2188 0.870 0.572 0193 -0.199 -0.404 -0.489 -0.553
-0.25 1.898 0.815 0.549 0.192 -0.199 -0.401 -0.483 -0.550
-0.2 1.682 0.766 0.528 0.191 -0.198 -0397 -0.477 -0.545
-0.15 1520 0.756 0.525 0.193 -0.197 -0393 -0472 -0.540
-01 1393 0.733 0.516 0193 -0.196 -0.388 -0.465 -0.535
0 1.060 0.611 0453 0.186 -0.195 -0382 -0.455 -0.525
025  0.955 0.605 0.458 0.196 -0.195 -0.382 -0.458 -0.504
0.5 0.814 0.587 0455 0.203 -0.190 -0.360 -0.428 -0.491
075  0.732 0.574 0453 0.210 -0.189 -0.353 -0.418 -0.482
1 0.693 0.555 0.443 0.210 -0.188 -0349 -0412 -0.476
Table C3
The same as in Table C1 for the component Hyjss.
EAIE®
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
igids .
HE Hizze
-03 2370 0.967 0.630 0.210 -0.188 -0.362 -0.423 -0.423
-0.25 2.032 0.886 0.594 0.207 -0.187 -0.359 -0417 -0423
-02 1780 0.835 0.572 0.206 -0.187 -0.356 -0.414 -0.424
-0.15 1591 0.818 0.566 0.206 -0.186 -0.355 -0.413 -0.425
-01 1445 0.793 0.555 0.206 -0.186 -0.353 -0411 -0.426
0 1.096 0.660 0.487 0.198 -0.186 -0.352 -0.409 -0.430
025  0.957 0.630 0476 0.204 -0.187 -0353 -0413 -0.444
0.5 0.821 0.603 0466 0.209 -0.186 -0.344 -0.403 -0.458
075  0.738 0.582 0459 0.214 -0.187 -0.346 -0.408 -0.469
1 0.693 0.555 0.443 0.210 -0.188 -0.349 -0.412 -0.476

Table C4
The same as in Table C1 for the component Hi3js.
EAJE?
p oo (rigid) 10 5 2 0.5 0.2 0.1 0 (void)
RRigid« HRPores

1313 1313
-03 -3.386 -1.603 -1.098 -0407 0449 1016 1327 1.882

-0.25 -3.049 -1519 -1.063 -0.405 0449 1008 1312 1847

—02 -2761 —1442 -1029 -0404 0447 0999 1294 1807
-015 -2671 -1429 -1026 -0407 0447 0990 1278 1771
-01 -2507 -1387 -1008 —0.407 0.445 0981 1262 1735
0 -1988  —1231 -0.929 -0.400 0.447 0980 1259 1715
025 -1798  -1190 -0920 -0.413 0442 0944 1194 1524
0.5 -1604 1157 -0911 -0.425 0432 0.883 1095 1385
075 -1452  -1131 -0.906 -0436 0429 0856 1050 1.293
1 -1361  -1106 -0.890 -0.438 0427 0840 1026 1239
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