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a b s t r a c t 

In this paper, we consider the problem of elastic materials containing tetrahedron-like inhomogeneities 

with spherical polygons as faces. The overall properties are expressed in terms of compliance contribu- 

tion tensors calculated for inhomogeneities of different face curvature and elastic properties. The calcu- 

lations were performed by two numerical techniques: Finite Element Method (FEM) and Volume Integral 

Equation Method (VIEM) combined with mesh-free discretization by Gaussian approximating functions. 

Consistency of the results obtained by these methods is observed in most cases. Applicability of replace- 

ment relations that predict the contribution to the overall elastic properties of inhomogeneities with 

different elastic properties, but the same shape, was analyzed. The replacement relations provide consid- 

erably good approximation for “soft” inclusions (Young’s modulus lower than the matrix’) only, in certain 

cases wrong approximation trends were observed. It was possible to propose an adjustment tensor for 

the replacement relations which components depend linearly on the face curvature. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Inhomogeneities of tetrahedron-like shapes are commonly ob-

erved in natural and artificial materials. For example, tetrahedral

 Fig. 1 a) or concave tetrahedral ( Fig. 1 b) nanocrystals are widely

sed as catalysts. Concave tetrahedron-like micropores are typical

or geomaterials ( Fig. 1 c). From Fig. 1 c it may also be observed

hat such type of micropores can be formed by dense packing of

llipsoidal particles. For tetrahedron-like inhomogeneities, calcula-

ion of effective properties by homogenization schemes based on

llipsoidal shapes still present a challenge, especially for the in-

erse problem ( Popov et al., 2018; Trofimov et al., 2018a ). Also it

hould be noted that to the authors’ best knowledge tetrahedron-

ike shapes have never been considered previously for extensive

alculation of their elastic contribution to the overall properties of

he medium. 

In this paper, we focus mainly on the study of the contribution

f tetrahedron-like inhomogeneities to the overall elastic prop-

rties of composites. The considered inhomogeneities are shaped

ike regular tetrahedrons, but with spherical polygons as faces.

he governing parameter of the shape is the sphericity parameter

p = R 0 / R S ( Traxl and Lackner, 2018 ), where R 0 is the distance be-
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ween the center of the tetrahedron and its vertices; R S is the ra-

ius of the sphere on which the spherical polygons are formed. It

overs both convex ( p ≥ 0) and concave shapes ( p < 0), see Fig. 2

or examples. The axis x 3 coincides with one of the axes of the

etrahedron, while the axis x 1 coincides with the projection of an-

ther axis of the tetrahedron. 

Traditionally, estimation of effective elastic properties is based

n the Eshelby theory ( Eshelby, 1961, 1957 ) where the inhomo-

eneity is considered as ellipsoidal for which analytical solution

s available. Meanwhile, non-ellipsoidal inhomogeneities are widely

resented in many man-made and natural materials for which only

 limited number of analytical solutions are available due to the

omplexity of boundary value problem. Most of these results have

een obtained for 2-D shapes using complex variable approach

see, for example Kachanov et al., 1994 ) . In 3-D, some results have

een obtained for cracks of irregular shapes (see the review in

achanov and Sevostianov, 2018 ), The toroidal shape was studied

y Argatov and Sevostianov (2011) , who approximated the contri-

ution of a thin rigid toroidal inhomogeneity to the overall stiff-

ess. Their result was generalized to the case of a torus of arbi-

rary shape by Krasnitskii et al. (2018) . The problem of the effective

onductivity (thermal or electric) of a material containing toroidal

nsulating inhomogeneities was addressed by Radi and Sevostianov

2016) . 

https://doi.org/10.1016/j.ijsolstr.2019.02.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2019.02.020&domain=pdf
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Fig. 1. Examples of tetrahedron-like inhomogeneities: (a) tetrahedral Rh nanoparticles ( Park et al., 2007 ), (b) concave tetrahedral Pd nanocrystals ( Li et al., 2017 ), (c) pores 

in harzburgite ( Wark et al., 2003 ). 

Fig. 2. Example of tetrahedron-like shapes. 
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Pure numerical and supplemented with analytical approxima-

tions results for non-ellipsoidal inhomogeneities are also used

to obtain contribution to the effective properties from the sin-

gle inhomogeneity. In the case of concave shapes described an-

alytically, Sevostianov et al. (2008) calculated contribution from

the superspherical pores using the Finite Element Method (FEM).

Based on this data, analytical approximations were built in

Sevostianov and Giraud (2012) and further used to calculate

overall elastic properties of oolitic rock ( Sevostianov and Gi-

raud, 2013 ). This approach, however is based on computational

results taken from Sevostianov et al. (2008) where the accu-

racy and stability of the calculations are rather poor. Recently,

in Chen et al. (2015) , authors numerically calculated compli-

ance tensors of superspherical pores and provided analytical ap-

proximations of these tensors using solution for spherical pore.

Since sphere is isotropic, approximations based on it were not

able to account for cubic symmetry of the most superspheri-

cal shapes (except sphere) and, thus, more accurate approxima-

tion was proposed in Trofimov et al. (2018a) . Another analyti-

cal concave shape – supersphere of revolution – was considered

by Sevostianov et al. (2016) . For the case of 3D irregular pore

shapes in carbon-carbon composites, Drach et al. (2011) used the

FEM to calculate the compliance contribution tensors. Garboczi and

Douglas (2012) developed numerical approximations for intrinsic

bulk and shear moduli in the case of randomly oriented block-

like particles based on finite element calculations and corrected

analytical solution for an ellipsoid. The effects of spherical, cu-

bic, tetrahedral and octahedral particle shapes on the effective

thermoelastic properties of materials with matrix-inclusion topol-

ogy were discussed in Rasool and Böhm (2012) . Statistical model

correlating compliance contribution tensors of pore shapes with

their geometrical parameters was proposed in Drach et al. (2014) .

Trofimov et al. (2017b) used finite element calculations to analyze

the effect of shape of several representative convex polyhedra on

the overall elastic properties of particle-reinforced composites. The
roblem of helical fiber in the context of its waviness and elastic

ontrast effect was studied using the FEM ( Trofimov et al., 2017a;

rofimov and Sevostianov, 2017 ). 

An alternative numerical technique to the FEM is the mesh-

ree Volume Integral Equation Method (VIEM). The problem is

ormulated in terms of volume integral equations for strain and

tress fields in an elastic medium. These equations are dis-

retized on a regular grid of approximating nodes by the Gaus-

ian functions centered at the nodes. The theory of approxima-

ion by Gaussian and other similar functions was developed by

az’ya and Schmidt (2007) . This method was first developed by

anaun (2009) for homogenization of 2D-materials with inhomo-

eneities of arbitrary shapes; it was adapted for 3D-materials in

anaun (2011) . Kanaun and Pervago (2011) used this technique for

omposites with periodic and random sets of spherical inhomo-

eneities with a step-wise change of the elastic properties. Markov

nd Kanaun (2017, 2018) applied the VIEM to the study of interac-

ion of isolated and intersecting planar cracks and spherical inho-

ogeneities. 

In our work, we numerically calculate compliance contribution

ensors for geometrically comprehensive set of tetrahedron-like in-

omogeneities covering both convex and concave shapes, for var-

ous combinations of matrix/inhomogeneity properties including

ofter and stiffer cases. Results obtained by two numerical tech-

iques: the FEM or the VIEM are compared (similarly to a recent

aper of Trofimov et al., 2018b ). 

In our work, we also consider the problem of predicting the

hange in contribution to the overall elastic properties from in-

omogeneities with identical shapes but different material prop-

rties, the so-called replacement relations. Application of the re-

lacement relations for geophysics was first addressed by Gassman

1951) , who proposed to express the bulk modulus K of fully

aturated rock in terms of the elastic properties of dry rock

see Mavko et al., 2009; Jaeger et al., 2007 ).This approach was

urther developed in the works of Ciz and Shapiro (2007) , au-
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hors obtained similar results for shear modulus, and Saxena and

avko (2014) , who derived replacement relations (they used term

substitution relations”) for isotropic rocks containing inhomo-

eneities of the same shape, but different elastic constants. In the

ontext of property contribution tensors, this problem was ad-

ressed by Sevostianov and Kachanov (2007) , who derived ex-

licit relations that are exact for ellipsoids. Recently replacement

elations for thermal conductivities of composite materials hav-

ng different matrices were proposed and verified numerically by

evostianov et al. (2018) . Application of the replacement rela-

ions to polyhedral inclusions of different shapes was realized by

rofimov et al. (2017b) . In this work, the worst results of applica-

ion of replacement relation were obtained for tetrahedral shape;

owever, “smoothing” of the edges improved considerably the re-

ults. 

In this paper, the accuracy of replacement relations approxi-

ations for various shape and material combinations is analyzed

nd possible analytical functions improving their accuracy are pre-

ented. 

. Elastic properties contribution tensors 

For materials containing inhomogeneities, it is possible to

xpress the effective elastic properties in terms of the so-called

roperty contribution tensors of an individual inhomogeneity. Such

ensors were first introduced in the context of contributions

f pores and cracks to elastic properties by Horii and Nemat-

asser (1983) . Later, the concept has been extended to inhomo-

eneities of various shapes and generalized for the other physi-

al properties (conductivity, thermal expansion, diffusion) in the

orks of Sevostianov and Kachanov (20 02,20 01) . 

Let us consider an infinite homogeneous elastic medium con-

aining both matrix material and regularly distributed identical iso-

ated inhomogeneities that occupy a volume fraction φ. Following

he work of Kachanov et al. (1994) , the volume-averaged strain

n such medium subjected to a constant external stress field σ0 

n terms of the extra strain �ε due to the presence of inhomo-

eneities takes the form 

 

ε 〉 = S 0 : σ 0 + �ε. (2.1) 

Here S 0 is the compliance tensor of the matrix and �ε is the

xtra strain due to the presence of inhomogeneity; �ε can be ex-

ressed as a function of the remotely applied stress σ0 : 

ε = ϕH : σ 0 , (2.2)

here H is the fourth-rank compliance contribution tensor of the

nhomogeneities normalized by their volume fraction. The tensor

 can be expressed through the following integral ( Kanaun and

evin, 2008 ) 

 = −S 0 
1 

V 

1 

∫ 
V 1 

C 

10 ( x ) : A ( x ) dx, (2.3)

here C 

10 ( x ) = C 

1 − C 

0 , x ∈ V 

1 ; C 

10 ( x ) = 0, x �∈ V 

1 , C 

0 and C 

1 are the

tiffness tensors of the matrix and the inclusions correspondingly,

 

1 is the volume occupied by a single inclusion. The fourth rank

ensor A ( x ) is defined as 

 ( x ) = A ( x ) : σ 0 , (2.4)

here ε ( x ) is the strain field inside the inclusion. It should be

oted that the tensor A ( x ) depends not only on the elastic prop-

rties, but also on the shape of the inclusion. 

In order to calculate the compliance contribution tensor H of a

ingle inhomogeneity, one has to consider the limit ϕ → 0, i.e., an

nfinite homogeneous host medium with an isolated inhomogene-

ty subjected to a constant external stress. 
Similarly, Eq. (2.1) can be rewritten for the case of applied

train field ε 0 ( Sevostianov and Kachanov, 1999 ). In this case, the

olume-averaged stress can be represented as follows: 

 

σ 〉 = C 

0 : ε 0 + �σ. (2.5) 

Here �σ is the extra stress due to the presence of the inhomo-

eneity: 

σ = ϕN : ε 0 , (2.6) 

here N is the fourth-rank stiffness contribution tensor of the in-

omogeneities normalized by their volume fraction. The tensor N

an be defined in a similar way to the tensor H (see Eq. (2.3) ). 

It should be noted that the stiffness and compliance contribu-

ion tensors N and H are interrelated as: 

 = −C 

0 : H : C 

0 . (2.7)

Thus, to evaluate the contribution of an inhomogeneity to the

verall response of a material, one needs to solve the problem of

n infinite elastic medium containing considered inhomogeneity

ubjected to constant external stress σ0 or strain ε 0 field. 

The effective com pliance tensor S ∗ of a com posite material con-

aining multiple inhomogeneities can be expressed as 

 

∗ = S 0 + �S RV E , (2.8) 

here �S RVE is the total compliance contribution of all the inho-

ogeneities present in a Representative Volume Element (RVE). 

In the case of dilute concentrations of inhomogeneities, the

on-interaction scheme is applicable; and �S RVE is found by direct

ummation of contributions from all individual inhomogeneities in

he RVE that occupies the volume V : 

S RV E = 

1 

V 

∑ 

i 

V 

(i ) H 

(i ) , (2.9) 

here V 

( i ) and H 

( i ) are the volume and the compliance contribution

ensor of the i th inhomogeneity, respectively. 
When interaction between inhomogeneities cannot be ne-

lected, more advanced techniques should be used, for instance,
he Mori-Tanaka scheme ( Benveniste, 1987; Mori and Tanaka,
973 ). In the framework of this scheme, contribution of all inho-
ogeneities to the overall compliance of the RVE is given by 

S RV E = 

[ 

1 

V 

∑ 

i 

V (i ) H 

(i ) 

] 

: 

[ 

1 

V 

∑ 

i 

V (i ) 
(
S (i ) − S 0 

)−1 
: H 

(i ) + ϕJ 

] −1 

, 

(2.10) 

where S ( i ) is the compliance tensor of the material of the i th in- 

omogeneity and J is the fourth order unit tensor. 

. Numerical calculation of H-tensor 

Due to irregularity of the considered inhomogeneity shapes that

re described in Section 1 , only numerical methods are applicable

or the calculation of the H -tensor. In this Section, we discuss nu-

erical solutions obtained by using FEM and VIEM approaches for

ndividual tetrahedral-like inhomogeneities. 

.1. FEM calculation of H-tensor components of the considered shapes

In the Finite Element Method (FEM) procedure, we calculate

ompliance contribution tensor ( H ) simulating the given particle

eometry in a large volume V subjected to uniform displacement

oundary conditions on ∂V : u | ∂V = ε 0 ·x . To perform the necessary

teps, we prepare 3D FEM mesh for the analysis by generating the

urface mesh of the particle with approximately hundred thou-

ands of elements in a custom MATLAB script ( Trofimov et al.,

017a ). 
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Fig. 3. Example of a mesh density of the matrix and tetrahedral-like inhomogeneity 

with p = 0.25: (a) general view; (b) close-up view of the highlighted region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A volume of a medium containing a tetrahedral inclusion covered by a reg- 

ular grid of nodes. 
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The setup with a single shape inside the cubical reference vol-

ume (cube sides are 10 times larger than the diameter of the par-

ticle) is then auto meshed with non-linear tetrahedral 3D elements

(tetra10) due to higher accuracy of results compared to linear ele-

ments (tetra4), see Fig. 3 for mesh density example. Note, that the

choice of the reference volume size used in the analysis is based

on a sensitivity study performed for a particle of spherical shape,

for which an analytical solution is available in the literature. 

After the volume mesh is generated, the non-zero components

of compliance contribution tensor ( H ) are calculated from the post-

processing the results of the set of six load cases: three normal

loadings (in the directions of three global coordinate axes) and

three shear loadings. The procedure is realized using a custom

Python script, as described in Drach et al. (2011 ). The script starts

with calculating the average stress components within the volume

for each load case: 〈
σi j 

〉
m 

= 

1 

V 

N ∑ 

l=1 

(
σ (l) 

i j 

)
m 

· V 

(l) , (i, j = 1 , 2 , 3 ; k = 1 , 2 , ..., 6) (3.1)

where 〈 σ ij 〉 m 

is the volume average of the stress component ij cal-

culated from the results of the m th load case, ( σ (l) 
i j 

) m 

is the stress

component ij at the centroid of the finite element l calculated from

the m th load case, V 

( l ) is the volume of the element l , and N is the

total number of elements in the model. At the next step we obtain

components of compliance contribution tensor as follows: 

H mnpq = −S (0) 
mni j 

[ 

(σ 0 
i j 
) 

m 

−
〈
σi j 

〉
m 

(ε 0 
kl 
) 

m 

] 

S (0) 
klpq 

, (3.2)

where S (0) 
mni j 

are the components of the given matrix compliance

tensor, (ε 0 
kl 
) m 

and (σ 0 
i j 
) m 

are prescribed components of strain and

stress, respectively. 

3.2. Mesh-free calculation of H-tensor components of the considered 

shapes 

In order to calculate the compliance contribution tensor H , we

consider the mesh-free VIEM. We formulate the problem in terms

of integral equations for strain and stress (see, e.g., Kanaun and

Levin, 2008 ): 

ε i j ( x ) + 

∫ 
K i jkl 

(
x − x ′ 

)
C 10 

klmn 

(
x ′ 
)
ε mn 

(
x ′ 
)
dx ′ = ε 0 i j ( x ) , (3.3)

σi j ( x ) −
∫ 

S i jkl 

(
x − x ′ 

)
S 10 

klmn 

(
x ′ 
)
σmn 

(
x ′ 
)
dx ′ = σ 0 

i j ( x ) , (3.4)

where S 10 ( x ) = S 1 − S 0 , x ∈ V 

1 ; S 10 ( x ) = 0, x �∈ V 

1 , S 0 and S 1 are the

compliance tensors of the matrix and the inclusions correspond-
ngly. The kernels K ( x ) and S ( x ) are calculated from the second

erivative of Green’s function G ( x ) of the matrix: 

 i jkl ( x ) = −
[
∂ i ∂ k G jl ( x ) 

]
( i j ) ( kl ) 

, (3.5)

 i jkl ( x ) = C 0 i jkl K mnpq ( x ) C 
0 
pqkl − C 0 i jkl δ( x ) . (3.6)

Here δ( x ) is Dirac’s delta function. The properties of these ker-

els were studied by Kanaun (1981 ) and Kunin (1983 ). 

For discretization of the integral Eqs. (3.3) and ( 3.4 ), a class of

aussian approximation functions is used. Approximate solutions

f Eqs. (3.3) and ( 3.4 ) are presented in the following forms: 

 i j ( x ) ≈
N ∑ 

s =1 

ε ( s ) 
i j 

ϕ 

(
x − x (s ) 

)
, (3.7)

i j ( x ) ≈
N ∑ 

s =1 

σ ( s ) 
i j 

ϕ 

(
x − x (s ) 

)
, (3.8)

here ε ( s ) and σ( s ) are unknown values of strain and stress at the

ode x ( s ) ( s = 1, 2, …, N ) of a regular grid that covers a cuboid W ,

 Fig. 4 ) that contains the region V 1 occupied by the inclusion, N is

he total number of the nodes in W . 

The function ϕ( x ) is a 3D-Gaussian distribution function: 

 ( x ) = 

1 

( πH ) 
3 / 2 

exp 

(
− | x | 2 

H h 

2 

)
, (3.9)

here h is the grid step, H is a non-dimensional parameter of the

rder of 1; for the considered calculations H = 2. 

After substituting the solutions ( 3.7 ) and ( 3.8 ) into the integral

qs. (3.3) and ( 3.4 ), respectively, we obtain the following systems

f linear equations: 

 

(r) 
i j 

+ 

N ∑ 

s =1 


( r,s ) 
i jkl 

C 
10 ( s ) 
klmn 

ε ( s ) mn = ε 0 ( r ) 
i j 

, r = 1 , . . . , N (3.10)

(r,s ) 
i jkl 

= 
i jkl 

(
x (r) − x (s ) 

)
, C 

10 ( s ) 
i jkl 

= C 10 
i jkl 

(
x (s ) 

)
, ε 0 ( s ) 

i j 
= ε 0 i j 

(
x (s ) 

)
, 

(3.11)

(r) 
i j 

−
N ∑ 

s =1 

�( r,s ) 
i jkl 

S 
10 ( s ) 
klmn 

σ ( s ) 
mn = σ 0 ( r ) 

i j 
, (3.12)

(r,s ) 
i jkl 

= �i jkl 

(
x (r) − x (s ) 

)
, S 

10 ( s ) 
i jkl 

= S 10 
i jkl 

(
x (s ) 

)
, σ 0 ( s ) 

i j 
= σ 0 

i j 

(
x (s ) 

)
, 

(3.13)
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The integral operators �( x ) and �( x ) are: 

i jkl ( x ) = 

∫ 
K i jkl 

(
x − x ′ 

)
ϕ 

(
x ′ 
)
dx ′ , (3.14) 

i jkl ( x ) = 

∫ 
S i jkl 

(
x − x ′ 

)
ϕ 

(
x ′ 
)
dx ′ . (3.15) 

The integrals in ( 3.14 ) and ( 3.15 ) can be calculated explicitly if

valuated over the entire 3D-space; this is possible due to the fact

hat Gaussian distribution functions decrease very fast (see, e.g.,

anaun and Pervago, 2011 ). Also, the left-hand side matrices of the

ystems of linear Eqs. (3.10) and ( 3.12 ) have Toeplitz’s structure; as

 result, only one row and one column must be stored in computer

emory. For the numerical solution of these systems, only Krylov

ubspace iterative methods (Conjugate Gradient, Minimal Residue

r their derivatives) are viable ( Kanaun et al., 2013 ). These methods

equire calculation of matrix-vector products at every iteration; for

his calculation the fast Fourier transform technique may be used

 Golub and van Loan, 1996; Kanaun, 2009 ). 

It should also be noted that in the case the Young’s modulus of

he inclusion E 1 is lower than the Young’s modulus of the matrix

 

0 , the system ( 3.10 ) converges faster than the system ( 3.12 ), while

n the case E 1 is higher than E 0 , the system ( 3.12 ) is more efficient

 Kanaun and Pervago, 2011 ). This may be explained by the fact that

elatively low values of E 1 result in a low stress (tending to zero at

 

1 → 0), while high values of E 1 result in a low strain (tending to

ero at E 1 → ∞ ). 

Once either of two systems, ( 3.10 ) or ( 3.12 ), is solved, the com-

liance contribution tensor H may be calculated by the procedure

escribed in previous Sections. 

.3. Numerical results 

In this section we consider tetrahedron-like inhomogeneities

 Fig. 2 ). The results are given in terms of the sphericity parame-

er p ; the corresponding approximate values of the volume V 

1 of

he unit inhomogeneity (i.e., the distance R from the center of the

nclusion to any of its vertices is unitary) are given in Table 1 . 

Comparison of calculations of the compliance contribution ten-

or H by the FEM analysis and by the VIEM is given in Table 2 for

bsolutely rigid inclusions and in Table 3 for pores. For the VIEM,

 uniform node grid with the step h / R = 0.01 was used; such node

rid corresponds approximately to 6 million nodes. For simplicity,

he system of linear Eqs. (3.12) was used for the solution, as testing

as shown that both systems ( 3.10 ) and ( 3.12 ) give similar result. 
Table 1 

Approximate volume V 1 of the unit tetrahedron-like

rameter p . 

p −0.3 −0.25 −0.2 −0.15 −0.1 

V 1 0.135 0.184 0.24 0.301 0.367 

Table 2 

Independent components of the compliance contribution tensor H ijkl

E 1 / E 0 → ∞ 

p H FEM 
1111 H V IEM 

1111 H FEM 
3333 H V IEM 

3333 H 
GA 
3333 H FEM 

1122 

−0.3 −5.505 −4.868 −5.685 −4.987 2.188 

−0.25 −4.834 −4.365 −4.972 −4.505 1.898 

−0.2 −4.333 −3.986 −4.436 −4.066 1.682 

−0.15 −3.956 −3.837 −4.033 −3.923 1.520 

−0.1 −3.661 −3.652 −3.719 −3.698 1.393 

0 −2.954 −2.929 −3.005 −2.984 1.060 

0.25 −2.642 −2.616 −2.645 −2.634 0.955 

0.5 −2.321 −2.353 −2.325 −2.365 0.814 

0.75 −2.129 −2.154 −2.132 −2.160 0.732 

1 −2.030 −2.030 −2.030 −2.030 0.693 
It may be noted that both numerical techniques have

iven very close results; in most cases the difference is

ess than 2%. Also, the results of both techniques practi-

ally coincide with the exact results for the case of sphere

 H 1111 = H 3333 = −2.031, H 1133 = H 1122 = 0.693, H 1313 = −1.362 for

he rigid sphere and H 1111 = H 3333 = 2.0, H 1133 = H 1122 = −0.477,

 1313 = 1.239 for the spherical pore). Only in the extreme case of

 rigid inclusion of very concave shape ( p ≤ −0.2) the difference

s about 10%. Comparison of the results obtained by the two

onsidered numerical methods for the contrast E 1 / E 0 that is equal

o 10, 5, 2, 0.5, 0.2, and 0.1 is given in Appendix A . 

. Replacement relations 

In this Section, we check the applicability of the replacement

elations to the numerical solutions obtained in the previous Sec-

ion. To improve the quality of calculations, we introduce the so-

alled adjustment tensor. 

.1. Replacement relations formulation 

The general case of replacement relations ( Sevostianov and

achanov, 2007 ) allows one to interrelate the effective compliance

nd stiffness tensors of inhomogeneities “A” and “B” of the same

llipsoidal shape (and embedded into the same matrix) but with

ifferent elastic constants 

V 1 

V 

(
H 

−1 
A 

− H 

−1 
B 

)
= 

(
S A − S 0 

)−1 −
(
S B − S 0 

)−1 
, (4.1) 

V 1 

V 

(
N 

−1 
A 

− N 

−1 
B 

)
= 

(
C 

A − C 

0 
)−1 −

(
C 

B − C 

0 
)−1 

. (4.2) 

Here N A and N B are the stiffness contribution tensors and H A 

nd H B are the compliance contribution tensors of inhomogeneities

ith material properties “A” and “B”, respectively. Similarly, C 

A and

 

B are the stiffness tensors, S A and S B are the compliance tensors

f these inhomogeneities. 

In two particular cases, if the material “B” is either absolutely

igid or represents a pore, the comparison relations take the form:

V 1 

V 

(
H 

−1 
A 

− H 

−1 
pore 

)
= 

(
S A − S 0 

)−1 
, (4.3) 

V 1 

V 

(
N 

−1 
A 

− N 

−1 
rigid 

)
= 

(
C 

A − C 

0 
)−1 

. (4.4) 
 inhomogeneity for different values of the pa- 

0 0.25 0.5 0.75 1 

0.511 0.948 1.512 2.332 4.189 

 

of rigid inhomogeneities. 

H V IEM 
1122 H 

GA 
1122 H FEM 

1133 H V IEM 
1133 H 

GA 
1133 H FEM 

1313 H V IEM 
1313 H 

GA 
1313 

1.930 2.370 2.053 −3.846 −3.386 

1.716 2.032 1.783 −3.366 −3.049 

1.539 1.780 1.602 −3.007 −2.761 

1.477 1.591 1.531 −2.738 −2.671 

1.389 1.445 1.438 −2.527 −2.507 

1.051 1.096 1.093 −2.022 −1.988 

0.941 0.957 0.949 −1.792 −1.798 

0.830 0.821 0.836 −1.554 −1.604 

0.745 0.738 0.749 −1.420 −1.452 

0.692 0.693 0.692 −1.362 −1.361 
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Table 3 

The same as in Table 2 for pores. 

E 1 / E 0 = 0 

p H FEM 
1111 H V IEM 

1111 H FEM 
3333 H V IEM 

3333 H FEM 
1122 H V IEM 

1122 H FEM 
1133 H V IEM 

1133 H FEM 
1313 H V IEM 

1313 

−0.3 2.827 2.913 2.699 2.786 −0.553 −0.570 −0.423 −0.480 1.820 1.882 

−0.25 2.802 2.863 2.679 2.743 −0.550 −0.562 −0.423 −0.470 1.804 1.847 

−0.2 2.767 2.808 2.650 2.686 −0.545 −0.555 −0.424 −0.469 1.780 1.807 

−0.15 2.723 2.750 2.614 2.663 −0.540 −0.549 −0.425 −0.466 1.750 1.771 

−0.1 2.676 2.692 2.574 2.622 −0.535 −0.541 −0.426 −0.465 1.717 1.735 

0 2.597 2.621 2.544 2.601 −0.525 −0.526 −0.430 −0.463 1.670 1.715 

0.25 2.339 2.371 2.287 2.346 −0.504 −0.510 −0.4 4 4 −0.464 1.485 1.524 

0.5 2.164 2.184 2.137 2.168 −0.491 −0.500 −0.458 −0.467 1.363 1.385 

0.75 2.049 2.064 2.041 2.054 −0.482 −0.486 −0.469 −0.472 1.282 1.293 

1 2.002 2.002 2.002 2.002 −0.476 −0.476 −0.476 −0.476 1.239 1.239 

Table 4 

Comparison of the component H 1111 of the compliance contribution tensor calculated by the replacement relation from 

an inhomogeneity “B” that is absolutely rigid with the same component calculated by the VIEM method. 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid 
1111 

−0.3 −4.868 −3.129 −2.166 −0.821 0.565 0.984 1.142 1.310 

−0.25 −4.365 −2.918 −2.065 −0.807 0.571 1.003 1.167 1.342 

−0.2 −3.986 −2.747 −1.979 −0.793 0.578 1.023 1.195 1.380 

−0.15 −3.837 −2.677 −1.942 −0.788 0.581 1.033 1.209 1.398 

−0.1 −3.652 −2.587 −1.896 −0.780 0.585 1.046 1.226 1.421 

0 −2.929 −2.208 −1.686 −0.743 0.606 1.116 1.322 1.550 

0.25 −2.616 −2.025 −1.578 −0.721 0.622 1.169 1.398 1.656 

0.5 −2.353 −1.865 −1.479 −0.700 0.638 1.228 1.483 1.777 

0.75 −2.154 −1.739 −1.399 −0.682 0.654 1.286 1.569 1.902 

1 −2.030 −1.658 −1.347 −0.669 0.665 1.330 1.633 2.002 

�H V IEM 
1111 , % 

−0.3 0.0 42.406 35.807 18.620 −18.161 −35.165 −43.504 −55.047 

−0.25 0.0 34.509 30.182 16.613 −16.887 −33.258 −41.744 −53.106 

−0.2 0.0 27.240 25.497 14.841 −15.577 −31.156 −39.190 −50.848 

−0.15 0.0 24.242 23.482 14.295 −14.910 −30.360 −37.838 −49.176 

−0.1 0.0 22.552 20.910 13.607 −14.204 −29.342 −36.395 −47.226 

0 0.0 11.442 12.639 8.404 −10.889 −24.272 −31.044 −40.838 

0.25 0.0 7.987 8.846 5.969 −7.849 −17.853 −22.793 −30.736 

0.5 0.0 4.778 5.341 3.680 −4.806 −11.217 −14.146 −19.059 

0.75 0.0 2.246 2.496 1.731 −2.010 −4.959 −5.920 −7.868 

1 0.0 0.029 0.067 0.022 −0.088 −0.134 −0.262 0.003 
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It should be noted that relations ( 4.1 ) and ( 4.2 ) are exact only

for inhomogeneities of ellipsoidal shape; however, it was shown by

Chen et al. (2017) that these relations give a good approximation

for non-ellipsoidal convex superspheres as well. 

4.2. Numerical results 

In the current work, we apply the replacement relations to

tetrahedral-like shapes described in Section 1 . First, we consider

absolutely rigid material as the material “B”; we take the com-

pliance contribution tensor H obtained by the VIEM for each

inhomogeneity shape from the Section 3.3 . Then we apply the re-

placement relation for the calculation of the tensor H of the inho-

mogeneity “A” of the same shape, for different values of contrast

E A / E 0 of Young’s moduli of the matrix and material “A”. Compari-

son of the results obtained for the component H 1111 of the compli-

ance contribution tensor by using the replacement relation and the

VIEM numerical solution is given in the Table 4 ; for the compari-

son, we use the �H 

V IEM 

i jkl 
= ( H 

RRigid,RPore 

i jkl 
− H 

V IEM 

i jkl 
) / H 

V IEM 

i jkl 
ratios. Here

H 

RRigid 

i jkl 
and H 

RPore 
i jkl 

are the compliance contribution tensors calcu-

lated by the replacement relation from an inhomogeneity “B” that

is absolutely rigid or represents a pore, correspondingly. The re-

sults for the other independent components of the tensor H appear
n Appendix B ; these results follow the same trend as the compo-

ent H 1111 . 

It may be clearly seen that the replacement relation gives ac-

eptable results for the material “A” stiffer than the matrix in the

ase of convex shapes ( p > 0), however, for concave shapes the

esults differ by a large margin ( > 20% in most cases). It is also

mportant to note that in the case of the material “A” softer than

he matrix results obtained by the replacement relation do not fol-

ow the correct trend of the corresponding numerical results; i.e.,

he corresponding component H 1111 decreases for smaller values of

arameter p , while it should increase. 

Similar comparison of the results obtained for the component

 1111 by using the replacement relation and the numerical solution

n the case where the material “B” represents a pore is given in

he Table 5 . 

Here one may observe that the replacement relation has given

s much better results for the material “A” softer than the matrix,

he difference between the values is lower than 10% even in the

ase of very concave shapes. From the other hand, if the material

A” is stiffer than the matrix, the results given by the replacement

elation do not follow the correct trend (the results decrease for

maller p ). 
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Table 5 

The same as in Table 4 for calculation by the replacement relation from an inhomogeneity “B” that 

represents a pore. 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RPore 
1111 

−0.3 −1.562 −1.332 −1.123 −0.609 0.739 1.669 2.185 2.913 

−0.25 −1.578 −1.343 −1.131 −0.611 0.735 1.652 2.156 2.863 

−0.2 −1.595 −1.356 −1.140 −0.614 0.732 1.634 2.126 2.808 

−0.15 −1.613 −1.369 −1.149 −0.617 0.728 1.615 2.093 2.750 

−0.1 −1.634 −1.383 −1.160 −0.620 0.724 1.595 2.060 2.692 

0 −1.660 −1.402 −1.173 −0.623 0.719 1.570 2.018 2.621 

0.25 −1.716 −1.442 −1.201 −0.631 0.709 1.519 1.933 2.391 

0.5 −1.875 −1.552 −1.276 −0.651 0.685 1.412 1.762 2.196 

0.75 −1.974 −1.620 −1.321 −0.663 0.672 1.358 1.677 2.064 

1 −2.030 −1.658 −1.347 −0.669 0.665 1.330 1.633 2.002 

�H V IEM 
1111 , % 

−0.3 −67.908 −39.384 −29.576 −11.995 7.100 9.993 8.115 0.0 

−0.25 −63.844 −38.082 −28.675 −11.605 7.047 9.952 7.631 0.0 

−0.2 −59.981 −37.208 −27.699 −11.135 6.954 9.903 8.127 0.0 

−0.15 −57.950 −36.458 −26.928 −10.510 6.667 8.844 7.647 0.0 

−0.1 −55.263 −34.465 −26.031 −9.760 6.224 7.771 6.874 0.0 

0 −43.322 −29.202 −21.632 −9.049 5.636 6.581 5.260 0.0 

0.25 −34.396 −23.115 −17.179 −7.278 5.011 6.792 6.768 0.0 

0.5 −20.303 −12.775 −9.124 −3.547 2.124 2.138 1.999 0.0 

0.75 −8.336 −4.722 −3.186 −1.081 0.710 0.368 0.596 0.0 

1 −0.002 0.029 0.067 0.022 −0.088 −0.134 −0.262 0.0 

Table 6 

Comparison of the component H 1111 of the compliance contribution tensor calculated by the replace- 

ment relation combined with the corresponding adjustment tensor with the same component calcu- 

lated by the VIEM method. 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid∗
1111 

H RPore ∗
1111 

−0.3 −4.868 −2.504 −1.737 −0.661 0.681 1.536 2.009 2.913 

−0.25 −4.365 −2.362 −1.675 −0.657 0.679 1.525 1.990 2.863 

−0.2 −3.986 −2.249 −1.623 −0.653 0.679 1.514 1.969 2.808 

−0.15 −3.837 −2.215 −1.610 −0.655 0.677 1.502 1.945 2.750 

−0.1 −3.652 −2.164 −1.588 −0.655 0.676 1.488 1.921 2.692 

0 −2.929 −1.888 −1.443 −0.637 0.676 1.475 1.896 2.621 

0.25 −2.616 −1.819 −1.418 −0.649 0.678 1.452 1.848 2.391 

0.5 −2.353 −1.755 −1.392 −0.659 0.666 1.373 1.713 2.196 

0.75 −2.154 −1.711 −1.377 −0.671 0.665 1.343 1.658 2.064 

1 −2.030 −1.658 −1.347 −0.669 0.665 1.330 1.633 2.002 

�H V IEM 
1111 , % 

−0.3 0.0 13.962 8.918 −4.436 −1.348 1.227 −0.572 0.0 

−0.25 0.0 8.888 5.600 −4.997 −1.136 1.540 −0.682 0.0 

−0.2 0.0 4.171 2.927 −5.555 −0.799 1.848 0.162 0.0 

−0.15 0.0 2.837 2.325 −4.922 −0.745 1.229 0.049 0.0 

−0.1 0.0 2.514 1.301 −4.573 −0.809 0.573 −0.296 0.0 

0 0.0 −4.688 −3.600 −7.060 −0.658 0.153 −1.129 0.0 

0.25 0.0 −3.029 −2.181 −4.709 0.517 2.081 2.062 0.0 

0.5 0.0 −1.374 −0.842 −2.366 −0.595 −0.699 −0.806 0.0 

0.75 0.0 0.643 0.864 0.134 −0.384 −0.781 −0.564 0.0 

1 0.0 0.029 0.067 0.022 −0.088 −0.134 −0.262 0.0 

4
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.3. Adjustment tensors 

As it was shown in the previous Section, application of the re-

lacement relation did not give us a good approximation to the

umerical results. To improve the quality of the approximation, we

ropose two adjustment tensors αRigid and αPore for every consid-

red shape of the inhomogeneity: 

Rigid = H 

V IEM : 
(
H 

RRigid 
)−1 

, E A / E 0 > 1 , (4.5)

Pore = H 

V IEM : 
(
H 

RPore 
)−1 

, E A / E 0 < 1 . (4.6)
Dependence of the components 1111 of the adjustment ten-

ors on the parameter p is given in Figs. 5 and 6 for “stiff”

 E A / E 0 > 0) and “soft” ( E A / E 0 < 0) inhomogeneities “A”, respectively.

ther components of the adjustment tensors αRigid and αPore have

hown similar behavior. 

Linear regression analysis performed by InfoStat statistical soft-

are has shown that the dependence of all the non-zero compo-

ents of tensor α on the parameter p may be approximated rea-

onably well by a linear function (see Figs. 5 and 6 ). The result-

ng linear approximations of the non-zero components of the ad-

ustment tensors αRigid and αPore for the cases of “stiff” and “soft”
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Fig. 5. Dependence of the component α1111 of the adjustment tensor on the parameter p in the case of application of the replacement relation from an inhomogeneity “B”

that is absolutely rigid and inhomogeneity “A” that is “stiff”. 

Fig. 6. The same as in Fig. 5 for inhomogeneity “B” that is represents a pore and inhomogeneity “A” that is “soft”. 

 

α

α

α

α

α

α

α  
inhomogeneities in Voigt notation are: 

αRigid 
11 ( p ) = αRigid 

22 ( p ) = 0 . 8808 + 0 . 1407 p, 

αRigid 
33 ( p ) = 0 . 8862 + 0 . 1341 p, 

αRigid 
12 ( p ) = αRigid 

21 ( p ) = 0 . 0415 − 0 . 0492 p, 

αRigid 
13 ( p ) = αRigid 

23 ( p ) = 0 . 0314 − 0 . 0391 p, 

αRigid 
31 ( p ) = αRigid 

32 ( p ) = 0 . 0291 − 0 . 0377 p, 

αRigid 
44 ( p ) = αRigid 

55 ( p ) = 0 . 8388 + 0 . 1894 p, 

αRigid 
( p ) = 0 . 8096 + 0 . 2155 p. (4.7)
66 
Pore 
11 ( p ) = αPore 

22 ( p ) = 0 . 9352 + 0 . 0697 p, 

Pore 
33 ( p ) = 0 . 9353 + 0 . 0682 p, 

Pore 
12 ( p ) = αPore 

21 ( p ) = −0 . 0112 + 0 . 0114 p, 

Pore 
13 ( p ) = αPore 

23 ( p ) = −0 . 0073 + 0 . 0064 p, 

Pore 
31 ( p ) = αPore 

32 ( p ) = −0 . 0062 + 0 . 0044 p, 

Pore 
44 ( p ) = αPore 

55 ( p ) = 0 . 9465 + 0 . 0584 p, 

Pore 
66 ( p ) = 0 . 9471 + 0 . 0576 p. (4.8)
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We have applied the obtained linear approximations of the ad-

ustment tensors αRigid and αPore to improve the results of applica-

ion of the replacement relations as 

 

RRigid ∗ = αRigid : H 

RRigid , E A / E 0 > 1 , (4.9)

 

RPore ∗ = αPore : H 

RPore , E A / E 0 < 1 . (4.10)

Comparison of the component 1111 of the corrected H -tensors

 

RRigid ∗ and H 

RPore ∗ to the numerical calculations obtained by the

IEM is given in Table 6 . The same comparison for the other inde-

endent components of the tensors H 

RRigid ∗ and H 

RPore ∗ is given in

ppendix C . 

It may be noted that the application of the adjustment tensors
Rigid and αPore has improved the results of application of the re-

lacement relations; however, even after the application of these

ensors, the resulting H -tensor H 

RRigid ∗ did not give a good approx-

mation. 

. Conclusions 

In this work, we have calculated the individual contribution

ensors of elastic properties for a set of tetrahedron-like inhomo-

eneities with spherical polygons as faces; different values of con-

rast between the inhomogeneity material and the matrix were

onsidered. For the calculation, two numerical techniques were

pplied: FEM and VIEM. Both techniques have shown good cor-

espondence (less than 2% of difference for most cases); consid-

rable divergence was observed only in some extreme cases of

bsolutely rigid strongly concave inclusions. The results have

hown that the contribution tensors of tetrahedron-like inhomo-

eneities are transversally isotropic. 

The replacement relations were applied for the calculation of

he mentioned contribution tensors for inhomogeneities of the

ame shape but different Young’s moduli from the results obtained

or absolutely rigid inhomogeneities and pores. Despite the fact

hat the replacement relations are strictly valid only for the case of

llipsoidal inclusions, we have obtained good correspondence (less

han 10% of difference) in the case of “soft” inclusions, which con-

ributions tensors were calculated from the contribution tensors of

ores of the same shape. In the case of “hard” inclusions, whose

ontributions tensors were calculated from the contribution ten-

ors of absolutely rigid ones, the correspondence was much worse.

n the cases, where we have calculated the replacement relations

or “hard” inclusions from the pores and “soft” inclusions from ab-

olutely rigid ones, the results have shown incorrect behavior. It

hould be noted that one may expect better results in the case of

ifferent convex polyhedra, for instance, superspheres, due to the

act that Trofimov et al. (2017b) have obtained the worst corre-

pondence for tetrahedral inclusions. 

To improve the results of applicability of the replacement

elations, the so-called adjustment tensors were proposed; the
omponents of these tensors were linearly dependent on the in-

omogeneity shape parameter p (that is inversely proportional to

he surface curvature of the inhomogeneity). Application of such

ensors allowed us to adjust the results well only in the case of

soft” inclusions. 

Overall, one may conclude that, for tetrahedron-like inclusions,

he replacement relations work reasonably well only in the case

f “soft” inclusions, i.e., which Young’s modulus is lower that

he matrix’. The error increases, as the inclusion shape becomes

ore concave, however, the behavior of this error with respect to

he parameter p is close to linear, as the calculation of the adjust-

ent tensors have shown. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ijsolstr.2019.02.020 . 

ppendix A 

In this Appendix we give the calculations of the 5 indepen-

ent constants of the transversally isotropic compliance contribu-

ion tensor H by the two considered numerical techniques: the

EM and the VIEM. 

Tables A1 –A5 

able A1 

omponent H 1111 of the compliance contribution tensor calculated by the FEM and 

he VIEM. 

E 1 / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H FEM 
1111 

−0.3 −5.505 −2.294 −1.623 −0.700 0.679 1.488 1.977 2.827 

−0.25 −4.834 −2.262 −1.613 −0.699 0.679 1.484 1.968 2.802 

−0.2 −4.333 −2.222 −1.599 −0.698 0.678 1.478 1.954 2.767 

−0.15 −3.956 −2.180 −1.583 −0.696 0.677 1.471 1.938 2.723 

−0.1 −3.661 −2.139 −1.568 −0.695 0.677 1.463 1.921 2.676 

0 −2.954 −1.995 −1.511 −0.691 0.674 1.459 1.902 2.597 

0.25 −2.642 −1.868 −1.424 −0.685 0.671 1.447 1.826 2.339 

0.5 −2.321 −1.768 −1.386 −0.678 0.670 1.396 1.735 2.164 

0.75 −2.129 −1.705 −1.372 −0.673 0.666 1.342 1.658 2.049 

1 −2.030 −1.658 −1.346 −0.667 0.665 1.331 1.638 2.001 

H V IEM 
1111 

−0.3 −4.868 −2.197 −1.595 −0.692 0.690 1.517 2.021 2.913 

−0.25 −4.365 −2.170 −1.586 −0.692 0.687 1.502 2.003 2.863 

−0.2 −3.986 −2.159 −1.577 −0.691 0.684 1.487 1.966 2.808 

−0.15 −3.837 −2.154 −1.573 −0.689 0.683 1.484 1.944 2.750 

−0.1 −3.652 −2.111 −1.568 −0.687 0.682 1.480 1.927 2.692 

0 −2.929 −1.981 −1.497 −0.685 0.681 1.473 1.917 2.621 

0.25 −2.616 −1.876 −1.450 −0.681 0.675 1.423 1.810 2.391 

0.5 −2.353 −1.780 −1.404 −0.675 0.670 1.383 1.727 2.196 

0.75 −2.154 −1.700 −1.365 −0.670 0.667 1.353 1.668 2.064 

1 −2.030 −1.658 −1.346 −0.667 0.665 1.331 1.638 2.002 

https://doi.org/10.1016/j.ijsolstr.2019.02.020
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Table A2 

The same as in Table A1 for the component H 3333 . 

E 1 / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H FEM 
3333 

−0.3 −5.685 −2.412 −1.687 −0.712 0.668 1.440 1.900 2.699 

−0.25 −4.972 −2.370 −1.673 −0.711 0.668 1.437 1.893 2.679 

−0.2 −4.436 −2.318 −1.655 −0.709 0.667 1.433 1.883 2.650 

−0.15 −4.033 −2.265 −1.635 −0.707 0.667 1.428 1.870 2.614 

−0.1 −3.719 −2.213 −1.614 −0.705 0.667 1.422 1.856 2.574 

0 −3.005 −2.051 −1.532 −0.696 0.666 1.421 1.840 2.544 

0.25 −2.645 −1.899 −1.447 −0.687 0.666 1.414 1.792 2.287 

0.5 −2.325 −1.784 −1.400 −0.678 0.665 1.382 1.716 2.137 

0.75 −2.132 −1.711 −1.377 −0.674 0.664 1.337 1.651 2.041 

1 −2.030 −1.658 −1.346 −0.667 0.665 1.331 1.637 2.002 

H V IEM 
3333 

−0.3 −4.987 −2.311 −1.624 −0.700 0.682 1.482 1.958 2.786 

−0.25 −4.505 −2.276 −1.624 −0.700 0.678 1.464 1.933 2.743 

−0.2 −4.066 −2.246 −1.620 −0.700 0.676 1.452 1.910 2.686 

−0.15 −3.923 −2.235 −1.620 −0.698 0.675 1.449 1.890 2.663 

−0.1 −3.698 −2.210 −1.605 −0.695 0.674 1.447 1.886 2.622 

0 −2.984 −2.031 −1.530 −0.693 0.674 1.445 1.874 2.601 

0.25 −2.634 −1.905 −1.462 −0.687 0.670 1.402 1.779 2.346 

0.5 −2.365 −1.797 −1.414 −0.679 0.667 1.370 1.709 2.168 

0.75 −2.160 −1.707 −1.370 −0.672 0.666 1.349 1.661 2.054 

1 −2.030 −1.658 −1.347 −0.667 0.665 1.331 1.638 2.002 

Table A3 

The same as in Table A1 for the component H 1122 . 

E 1 / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H FEM 
1122 

−0.3 2.188 0.737 0.513 0.216 −0.195 −0.392 −0.480 −0.553 

−0.25 1.898 0.730 0.511 0.216 −0.195 −0.390 −0.478 −0.550 

−0.2 1.682 0.722 0.508 0.216 −0.195 −0.389 −0.474 −0.545 

−0.15 1.520 0.712 0.505 0.215 −0.194 −0.387 −0.471 −0.540 

−0.1 1.393 0.702 0.502 0.215 −0.194 −0.384 −0.466 −0.535 

0 1.060 0.657 0.484 0.215 −0.193 −0.385 −0.459 −0.525 

0.25 0.955 0.634 0.471 0.214 −0.192 −0.375 −0.445 −0.504 

0.5 0.814 0.599 0.459 0.213 −0.191 −0.363 −0.428 −0.491 

0.75 0.732 0.571 0.450 0.212 −0.189 −0.352 −0.416 −0.482 

1 0.693 0.555 0.443 0.210 −0.188 −0.349 −0.412 −0.476 

H V IEM 
1122 

−0.3 1.930 0.718 0.504 0.215 −0.198 −0.403 −0.492 −0.570 

−0.25 1.716 0.717 0.503 0.215 −0.197 −0.399 −0.486 −0.562 

−0.2 1.539 0.713 0.501 0.215 −0.197 −0.394 −0.481 −0.555 

−0.15 1.477 0.709 0.499 0.214 −0.196 −0.393 −0.480 −0.549 

−0.1 1.389 0.697 0.494 0.213 −0.195 −0.391 −0.472 −0.541 

0 1.051 0.652 0.480 0.213 −0.195 −0.388 −0.462 −0.526 

0.25 0.941 0.625 0.471 0.212 −0.192 −0.374 −0.447 −0.510 

0.5 0.830 0.595 0.459 0.211 −0.191 −0.363 −0.431 −0.500 

0.75 0.745 0.568 0.447 0.211 −0.189 −0.356 −0.419 −0.486 

1 0.692 0.555 0.443 0.210 −0.188 −0.349 −0.412 −0.476 

Table A4 

The same as in Table A1 for the component H 1133 . 

E 1 / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H FEM 
1133 

−0.3 2.370 0.857 0.578 0.229 −0.184 −0.343 −0.402 −0.423 

−0.25 2.032 0.840 0.573 0.228 −0.184 −0.343 −0.401 −0.423 

−0.2 1.780 0.821 0.566 0.227 −0.184 −0.342 −0.400 −0.424 

−0.15 1.591 0.800 0.558 0.227 −0.184 −0.342 −0.400 −0.425 

−0.1 1.445 0.780 0.550 0.226 −0.184 −0.342 −0.399 −0.426 

0 1.096 0.710 0.520 0.221 −0.185 −0.344 −0.401 −0.430 

0.25 0.957 0.671 0.500 0.214 −0.187 −0.345 −0.402 −0.4 4 4 

0.5 0.821 0.617 0.474 0.211 −0.187 −0.348 −0.406 −0.458 

0.75 0.738 0.579 0.456 0.209 −0.187 −0.350 −0.407 −0.469 

1 0.693 0.555 0.443 0.210 −0.188 −0.349 −0.412 −0.476 

H V IEM 
1133 

−0.3 2.053 0.791 0.559 0.225 −0.189 −0.358 −0.420 −0.480 

−0.25 1.783 0.789 0.556 0.224 −0.188 −0.356 −0.417 −0.470 

−0.2 1.602 0.787 0.555 0.224 −0.188 −0.355 −0.416 −0.469 

−0.15 1.531 0.785 0.554 0.224 −0.187 −0.354 −0.413 −0.466 

−0.1 1.438 0.776 0.548 0.222 −0.187 −0.354 −0.412 −0.465 

0 1.093 0.706 0.517 0.221 −0.187 −0.354 −0.411 −0.463 

0.25 0.949 0.656 0.494 0.218 −0.187 −0.350 −0.410 −0.464 

0.5 0.836 0.613 0.473 0.215 −0.187 −0.349 −0.409 −0.467 

0.75 0.749 0.576 0.454 0.212 −0.187 −0.347 −0.410 −0.472 

1 0.692 0.555 0.443 0.210 −0.188 −0.349 −0.412 −0.476 

Table A5 

The same as in Table A1 for the component H 1313 . 

E 1 / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H FEM 
1313 

−0.3 −3.846 −1.394 −1.002 −0.445 0.448 0.989 1.307 1.820 

−0.25 −3.366 −1.383 −0.999 −0.445 0.448 0.986 1.300 1.804 

−0.2 −3.007 −1.370 −0.994 −0.445 0.447 0.981 1.290 1.780 

−0.15 −2.738 −1.355 −0.989 −0.4 4 4 0.447 0.975 1.277 1.750 

−0.1 −2.527 −1.340 −0.984 −0.4 4 4 0.446 0.968 1.263 1.717 

0 −2.022 −1.258 −0.950 −0.4 4 4 0.445 0.954 1.248 1.670 

0.25 −1.792 −1.222 −0.928 −0.442 0.440 0.931 1.169 1.485 

0.5 −1.554 −1.168 −0.913 −0.441 0.434 0.889 1.099 1.363 

0.75 −1.420 −1.128 −0.903 −0.440 0.429 0.855 1.048 1.282 

1 −1.362 −1.106 −0.890 −0.438 0.427 0.840 1.026 1.239 

H V IEM 
1313 

−0.3 −3.386 −1.370 −0.991 −0.446 0.454 1.008 1.344 1.882 

−0.25 −3.049 −1.367 −0.988 −0.445 0.452 0.996 1.321 1.847 

−0.2 −2.761 −1.360 −0.984 −0.4 4 4 0.451 0.986 1.300 1.807 

−0.15 −2.671 −1.352 −0.980 −0.443 0.449 0.982 1.280 1.771 

−0.1 −2.507 −1.338 −0.973 −0.442 0.448 0.977 1.265 1.735 

0 −1.988 −1.257 −0.949 −0.440 0.447 0.972 1.261 1.715 

0.25 −1.798 −1.216 −0.935 −0.440 0.440 0.926 1.172 1.524 

0.5 −1.604 −1.168 −0.916 −0.439 0.435 0.890 1.104 1.385 

0.75 −1.452 −1.125 −0.899 −0.439 0.430 0.862 1.055 1.293 

1 −1.361 −1.106 −0.890 −0.438 0.427 0.840 1.026 1.239 
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Table B3 

The same as in Table B1 for the component H 1133 . 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid 
1133 

−0.3 2.053 1.234 0.809 0.274 −0.152 −0.239 −0.265 −0.287 

−0.25 1.783 1.122 0.756 0.267 −0.156 −0.250 −0.279 −0.306 

−0.2 1.602 1.045 0.719 0.262 −0.158 −0.254 −0.284 −0.311 

−0.15 1.531 1.012 0.703 0.259 −0.159 −0.257 −0.287 −0.315 

−0.1 1.438 0.969 0.682 0.256 −0.160 −0.260 −0.292 −0.321 

0 1.093 0.792 0.586 0.240 −0.169 −0.286 −0.327 −0.366 

0.25 0.949 0.713 0.540 0.232 −0.173 −0.299 −0.342 −0.385 

0.5 0.836 0.646 0.500 0.224 −0.178 −0.314 −0.363 −0.411 

0.75 0.749 0.591 0.466 0.217 −0.183 −0.333 −0.389 −0.445 

1 0.692 0.555 0.443 0.211 −0.188 −0.348 −0.411 −0.476 

H RPore 
1133 

−0.3 0.545 0.456 0.378 0.195 −0.201 −0.386 −0.449 −0.480 

−0.25 0.553 0.462 0.382 0.196 −0.200 −0.381 −0.441 −0.470 

−0.2 0.560 0.467 0.385 0.197 −0.199 −0.377 −0.437 −0.469 

−0.15 0.566 0.471 0.388 0.198 −0.198 −0.375 −0.434 −0.466 

−0.1 0.572 0.475 0.391 0.199 −0.197 −0.372 −0.431 −0.465 

0 0.578 0.479 0.394 0.200 −0.196 −0.369 −0.427 −0.463 

0.25 0.601 0.495 0.404 0.202 −0.194 −0.365 −0.426 −0.464 

0.5 0.656 0.532 0.428 0.208 −0.190 −0.351 −0.410 −0.467 

0.75 0.682 0.548 0.439 0.210 −0.188 −0.348 −0.410 −0.472 

1 0.692 0.555 0.443 0.211 −0.188 −0.348 −0.411 −0.476 

Table B4 

The same as in Table B1 for the component H 1313 . 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid 
1313 

−0.3 −3.386 −2.152 −1.474 −0.546 0.359 0.614 0.707 0.803 

−0.25 −3.049 −2.010 −1.406 −0.536 0.364 0.626 0.723 0.824 

−0.2 −2.761 −1.881 −1.342 −0.527 0.368 0.640 0.742 0.848 

−0.15 −2.671 −1.839 −1.320 −0.523 0.370 0.645 0.748 0.857 

−0.1 −2.507 −1.760 −1.279 −0.517 0.373 0.655 0.762 0.875 

0 −1.988 −1.520 −1.147 −0.494 0.386 0.697 0.818 0.950 

0.25 −1.798 −1.378 −1.065 −0.478 0.397 0.731 0.866 1.015 

0.5 −1.604 −1.261 −0.993 −0.463 0.407 0.769 0.920 1.089 

0.75 −1.452 −1.165 −0.933 −0.449 0.418 0.809 0.978 1.173 

1 −1.361 −1.107 −0.895 −0.440 0.426 0.839 1.022 1.239 

H RPore 
1313 

−0.3 −0.992 −0.849 −0.719 −0.393 0.483 1.093 1.427 1.882 

−0.25 −1.002 −0.857 −0.724 −0.394 0.481 1.081 1.407 1.847 

−0.2 −1.014 −0.864 −0.730 −0.396 0.478 1.068 1.383 1.807 

−0.15 −1.026 −0.874 −0.736 −0.398 0.476 1.055 1.362 1.771 

−0.1 −1.038 −0.883 −0.743 −0.400 0.473 1.042 1.341 1.735 

0 −1.045 −0.888 −0.746 −0.401 0.472 1.035 1.329 1.715 

0.25 −1.105 −0.931 −0.776 −0.409 0.460 0.982 1.242 1.524 

0.5 −1.221 −1.012 −0.832 −0.424 0.443 0.905 1.122 1.385 

0.75 −1.303 −1.067 −0.869 −0.434 0.433 0.864 1.060 1.293 

1 −1.361 −1.107 −0.895 −0.440 0.426 0.839 1.022 1.239 
ppendix B 

In this Appendix we give the calculations of the four remaining

besides H 1111 ) independent constants of the transversally isotropic

ompliance contribution tensor H by the replacement relation

iven in Section 4 . We consider two calculation variants: we ob-

ain the tensor H considering the inhomogeneity “B” is either rigid

r represents a pore. For the calculations the results obtained by

he VIEM are taken. 

Tables B1 –B4 

able B1 

omponent H 3333 of the compliance contribution tensor calculated by the replace- 

ent relation from an inhomogeneity “B” that is either absolutely rigid or repre-

ents a pore. 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid 
3333 

−0.3 −4.987 −3.177 −2.188 −0.824 0.563 0.980 1.137 1.303 

−0.25 −4.505 −2.984 −2.099 −0.812 0.568 0.993 1.154 1.325 

−0.2 −4.066 −2.785 −1.999 −0.797 0.576 1.018 1.188 1.371 

−0.15 −3.923 −2.719 −1.965 −0.791 0.579 1.026 1.199 1.385 

−0.1 −3.698 −2.610 −1.907 −0.782 0.584 1.043 1.222 1.415 

0 −2.984 −2.238 −1.704 −0.746 0.604 1.108 1.311 1.536 

0.25 −2.634 −2.037 −1.585 −0.723 0.621 1.165 1.392 1.648 

0.5 −2.365 −1.873 −1.484 −0.701 0.637 1.224 1.477 1.769 

0.75 −2.160 −1.743 −1.402 −0.683 0.653 1.284 1.565 1.897 

1 −2.030 −1.658 −1.347 −0.669 0.665 1.330 1.633 2.002 

H RPore 
3333 

−0.3 −1.604 −1.362 −1.145 −0.615 0.730 1.624 2.111 2.786 

−0.25 −1.621 −1.374 −1.153 −0.618 0.727 1.609 2.085 2.743 

−0.2 −1.640 −1.388 −1.163 −0.621 0.723 1.590 2.053 2.686 

−0.15 −1.651 −1.395 −1.168 −0.622 0.721 1.582 2.040 2.663 

−0.1 −1.666 −1.407 −1.176 −0.624 0.718 1.568 2.016 2.622 

0 −1.677 −1.414 −1.181 −0.625 0.717 1.561 2.004 2.601 

0.25 −1.747 −1.463 −1.215 −0.635 0.704 1.500 1.903 2.346 

0.5 −1.901 −1.570 −1.288 −0.654 0.681 1.400 1.743 2.168 

0.75 −1.986 −1.628 −1.327 −0.664 0.671 1.354 1.671 2.054 

1 −2.030 −1.658 −1.347 −0.669 0.665 1.330 1.633 2.002 

able B2 

he same as in Table B1 for the component H 1122 . 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid 
1122 

−0.3 1.930 1.184 0.786 0.271 −0.154 −0.243 −0.270 −0.294 

−0.25 1.716 1.095 0.744 0.265 −0.156 −0.251 −0.280 −0.307 

−0.2 1.539 1.016 0.705 0.260 −0.159 −0.257 −0.288 −0.316 

−0.15 1.477 0.988 0.691 0.258 −0.159 −0.259 −0.290 −0.319 

−0.1 1.389 0.945 0.669 0.254 −0.161 −0.263 −0.296 −0.327 

0 1.051 0.769 0.573 0.238 −0.170 −0.291 −0.333 −0.375 

0.25 0.941 0.708 0.538 0.231 −0.173 −0.300 −0.344 −0.387 

0.5 0.830 0.642 0.498 0.223 −0.178 −0.315 −0.365 −0.413 

0.75 0.745 0.589 0.465 0.216 −0.184 −0.334 −0.390 −0.447 

1 0.692 0.555 0.443 0.211 −0.188 −0.348 −0.411 −0.476 

H RPore 
1122 

−0.3 0.510 0.431 0.360 0.190 −0.208 −0.419 −0.504 −0.570 

−0.25 0.516 0.435 0.363 0.191 −0.207 −0.415 −0.497 −0.562 

−0.2 0.522 0.440 0.366 0.192 −0.206 −0.410 −0.491 −0.555 

−0.15 0.530 0.445 0.370 0.193 −0.205 −0.406 −0.485 −0.549 

−0.1 0.538 0.451 0.374 0.194 −0.203 −0.400 −0.477 −0.541 

0 0.552 0.460 0.380 0.196 −0.201 −0.393 −0.466 −0.526 

0.25 0.566 0.470 0.387 0.197 −0.200 −0.390 −0.466 −0.520 

0.5 0.627 0.512 0.415 0.205 −0.193 −0.365 −0.433 −0.500 

0.75 0.667 0.538 0.432 0.209 −0.190 −0.355 −0.420 −0.486 

1 0.692 0.555 0.443 0.211 −0.188 −0.348 −0.411 −0.476 
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Table C4 

The same as in Table C1 for the component H 1313 . 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid∗
1313 

H RPore ∗
1313 

−0.3 −3.386 −1.603 −1.098 −0.407 0.449 1.016 1.327 1.882 

−0.25 −3.049 −1.519 −1.063 −0.405 0.449 1.008 1.312 1.847 

−0.2 −2.761 −1.442 −1.029 −0.404 0.447 0.999 1.294 1.807 

−0.15 −2.671 −1.429 −1.026 −0.407 0.447 0.990 1.278 1.771 

−0.1 −2.507 −1.387 −1.008 −0.407 0.445 0.981 1.262 1.735 

0 −1.988 −1.231 −0.929 −0.400 0.447 0.980 1.259 1.715 

0.25 −1.798 −1.190 −0.920 −0.413 0.442 0.944 1.194 1.524 
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Appendix C 

In this Appendix we give the calculations of the four remaining

(besides 1111) independent constants of the transversally isotropic

tensors H 

RRigid ∗ and H 

RPore ∗. 

Tables C1 –C4 

Table C1 

Calculation of the component H 3333 of the compliance contribution tensor calcu-

lated by the replacement relation combined with the corresponding adjustment

tensor. 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid∗
3333 

H RPore ∗
3333 

−0.3 −4.987 −2.588 −1.786 −0.675 0.671 1.492 1.938 2.786 

−0.25 −4.505 −2.458 −1.732 −0.672 0.670 1.483 1.921 2.743 

−0.2 −4.066 −2.317 −1.665 −0.666 0.669 1.471 1.898 2.686 

−0.15 −3.923 −2.285 −1.653 −0.667 0.670 1.469 1.893 2.663 

−0.1 −3.698 −2.214 −1.620 −0.666 0.669 1.461 1.878 2.622 

0 −2.984 −1.937 −1.476 −0.647 0.673 1.465 1.880 2.601 

0.25 −2.634 −1.845 −1.437 −0.656 0.672 1.432 1.817 2.346 

0.5 −2.365 −1.772 −1.404 −0.664 0.662 1.360 1.693 2.168 

0.75 −2.160 −1.719 −1.383 −0.674 0.663 1.338 1.651 2.054 

1 −2.030 −1.658 −1.347 −0.667 0.665 1.331 1.638 2.002 

Table C2 

The same as in Table C1 for the component H 1122 . 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid∗
1122 

H RPore ∗
1122 

−0.3 2.188 0.870 0.572 0.193 −0.199 −0.404 −0.489 −0.553 

−0.25 1.898 0.815 0.549 0.192 −0.199 −0.401 −0.483 −0.550 

−0.2 1.682 0.766 0.528 0.191 −0.198 −0.397 −0.477 −0.545 

−0.15 1.520 0.756 0.525 0.193 −0.197 −0.393 −0.472 −0.540 

−0.1 1.393 0.733 0.516 0.193 −0.196 −0.388 −0.465 −0.535 

0 1.060 0.611 0.453 0.186 −0.195 −0.382 −0.455 −0.525 

0.25 0.955 0.605 0.458 0.196 −0.195 −0.382 −0.458 −0.504 

0.5 0.814 0.587 0.455 0.203 −0.190 −0.360 −0.428 −0.491 

0.75 0.732 0.574 0.453 0.210 −0.189 −0.353 −0.418 −0.482 

1 0.693 0.555 0.443 0.210 −0.188 −0.349 −0.412 −0.476 

Table C3 

The same as in Table C1 for the component H 1133 . 

E A / E 0 

p ∞ (rigid) 10 5 2 0.5 0.2 0.1 0 (void) 

H RRigid∗
1133 

H RPore ∗
1133 

−0.3 2.370 0.967 0.630 0.210 −0.188 −0.362 −0.423 −0.423 

−0.25 2.032 0.886 0.594 0.207 −0.187 −0.359 −0.417 −0.423 

−0.2 1.780 0.835 0.572 0.206 −0.187 −0.356 −0.414 −0.424 

−0.15 1.591 0.818 0.566 0.206 −0.186 −0.355 −0.413 −0.425 

−0.1 1.445 0.793 0.555 0.206 −0.186 −0.353 −0.411 −0.426 

0 1.096 0.660 0.487 0.198 −0.186 −0.352 −0.409 −0.430 

0.25 0.957 0.630 0.476 0.204 −0.187 −0.353 −0.413 −0.4 4 4 

0.5 0.821 0.603 0.466 0.209 −0.186 −0.344 −0.403 −0.458 

0.75 0.738 0.582 0.459 0.214 −0.187 −0.346 −0.408 −0.469 

1 0.693 0.555 0.443 0.210 −0.188 −0.349 −0.412 −0.476 
0.5 −1.604 −1.157 −0.911 −0.425 0.432 0.883 1.095 1.385 

0.75 −1.452 −1.131 −0.906 −0.436 0.429 0.856 1.050 1.293 

1 −1.361 −1.106 −0.890 −0.438 0.427 0.840 1.026 1.239 
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