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Abstract

The planar problem of a two-pulley belt drive is revisited with account for
large transverse deflections due to gravity and frictional contact between the
pulleys and the belt, which is modelled as an extensible string. An existing
mixed Eulerian-Lagrangian finite element model is extended to simulate the
quasistatic, non-stationary motion of the system, where the method of aug-
mented Lagrangian multipliers is adopted for contact treatment, which relies
on the penalty regularisation to iteratively update the contact tractions. To
validate the numerical results, a semi-analytic solution of the steady state is
developed based on belt creep theory. In a comparative study numerical and
semi-analytic steady state solutions are verified. The transient evolution of
the contact state during quasistatic, non-stationary motion is studied with
the finite element scheme.

Keywords: Belt drive mechanics, Mixed Eulerian Lagrangian kinematics,

Structural finite elements, Belt creep theory, Dry friction contact

1. Introduction

From the standpoint of structural mechanics axially moving structures
are peculiar systems, because the governing equations are readily available

in Lagrangian description, but constraints are imposed at fixed points in
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space rather than at material points. Closed loop belt drive systems are an
important sub-category of axially moving structures and find widespread use
in numerous applications.

Here, we revisit the benchmark problem of a two-pulley belt drive, pre-
viously considered in [26], and further extend the therein proposed mixed
Eulerian—Lagrangian (abbreviated as E.L. in the following) finite element
framework. In contrast to conventional Lagrangian finite element methods,
these elements feature a spatial parametrisation of field variables utilizing
a geometric contour coordinate. The corresponding finite element nodes
then reside at fixed points of this spatial coordinate and may only move
in the transverse direction, while material particles keep travelling through
the mesh in axial direction. This mixed kinematic description resembles
arbitrary Lagrangian—Eulerian formulations (ALE), which are for example
traditionally used in the simulation of metal forming processes [21]. Con-
trary to classic ALE strategies the E.L.-approach avoids frequent re-meshing
by direct treatment of the problem in the mixed coordinate domain. Note
that the idea of deformable Eulerian meshes has also proven to be efficient
in the analysis of fluid-structure interactions [7].

Pure material type finite element formulations are still applicable [4, 12],
but constraints then have to be imposed at travelling material points, which
induces numerical difficulties. See [15] for a comparative study of mixed
versus classic finite element formulations on the example of the quasistatic
transient motion of a simple two-pulley belt drive, or [20] for a comparison of
different finite element strategies by means of the so called sliding spaghetti
problem.

In recent years, the mixed kinematic formulation has been frequently ap-
plied in the construction of finite elements for axially moving beams or strings
[16, 23] and extensions to axially moving plates are available as well [21, 24].
Contrary to [15], where transverse deformations and bending stiffness were

disregarded, the finite element model first reported in [26] deals with large



deflections of a possibly slackly mounted belt on two rigid pulleys in the field
of gravity with account of both axial and bending stiffness. The presented
solutions were however limited to the frictionless, static problem of the belt
hanging on the two pulleys. In an effort to extend this formulation, the cur-
rent contribution aims to simulate the time evolution of motion. Following
a simple time stepping strategy the belt is carried from the previously ob-
tained, frictionless equilibrium over to a steady state, for which the spatial
configuration of the moving belt remains unchanged, while material particles
keep travelling through this stationary deflected state. The discrete sequence
of intermediate states then represents the transition process from the initial
static equilibrium to the final steady state motion.

The pulley angular velocities are prescribed, which is convenient in the
displacement-based finite element framework, and the time evolution is mod-
elled as a quasistatic process that ignores non-stationary inertia effects. Hence,
full dynamics of the problem are out of the scope of the present contribution
and we refer to [11] for a study of small perturbations of the stationary mo-
tion as well as [25], which considers transient motion of a simple belt drive
with an idealised friction model. Moreover, see [22] and the more recent
study [6] for stability analyses of axially moving structures.

The frictional contact of solids remains an important research topic con-
cerned with both the development of appropriate theoretical models [13] as
well as their consistent implementation in numerical schemes [17, 28]. Here,
we assume Coulomb dry friction for the power transmission and refer to [9]
for an alternative treatment utilizing a spring-damper model. The consistent
account for distributed frictional contact in the mixed finite element frame-
work is a novel result. The contact state is resolved discretely at individual
integration points, which allows for an unrestricted development of distinct
stick and slip zones in the course of motion. The corresponding constraints
are enforced by means of the so-called method of augmented Lagrange mul-

tipliers [19], which relies on the penalty regularisation method to iteratively



update Lagrange multiplier estimates for the contact forces. As previously
reported in [26], this strategy cannot be used in problems with bending stiff-
ness, which is why we return to the simpler model of an extensible string for
the belt in the present contribution.

In addition to the finite element treatment of the benchmark example, in
Section 3 we propose a novel semi-analytic strategy designed to compute the
steady state solution of the same problem. Using numerical integration rou-
tines we obtain practically converged results that serve as reference values in
the comparison to stationary finite element solutions. Similar derivations and
solution strategies corresponding to the creep-theory of an extensible string
can be found in the literature. An exact solution for the steady motion of an
extensible string, which is easily extendable to multi-pulley belt drive sys-
tems is presented in [18]. The effect of bending stiffness on the steady motion
problem of a two-pulley belt drive is studied in [10]. However, the authors
of the last reference employ certain simplifications, which lead to string-like
equations in the contact regions and effectively alleviate the provision for
bending effects. Here, we disregard bending effects completely and, contrary
to the above references, take gravity into account. This extension allows for
large transverse deflections in the string model, which are absent in tradi-
tional studies [1, 18] that focus on power transmission problems. However,
inclusion of gravity is essential when simulating slackly mounted structures
such as: steel conveyor belts, timing belts or cable cars; see also [3], which
studies the setting of a shear-deformable belt on two pulleys with emphasis

on the influence of gravity.

2. Mixed Eulerian—Lagrangian finite element procedure

We revisit the problem of a simple two-pulley belt drive, depicted in
Figure 1. The belt is modelled as an extensible string. The pulleys’ centre
to centre distance is H, both have the same radius R, but may rotate with

different constant angular velocities w; and wy. In addition the gravitational



Figure 1: Finite element model; mixed finite element mesh and spatial parametrisation of
the position vector r in the compound coordinate o

force acts downwards in opposite direction of j, which is part of the fixed
Cartesian system [¢, j].

The picture further illustrates the mixed Eulerian—Lagrangian description
that utilizes the compound spatial coordinate o for parametrisation of the
position vector 7. The planar basis [t, n] rotates with = just like the basis
[y, ng| does with the vector g, which traces the circumference of 0. The
mixed kinematic description prohibits axial motion of finite element nodal
points and thus, contrary to conventional finite elements, enables locally
refined meshes, such as the one shown in Figure 1.

As a consequence of the quasistatic strategy, the explicit time dependence
of unknowns may be ignored in most circumstances. However, treating tan-
gential contact kinematics with velocities rather than finite differences is
more concise and insightful. For this reason, we will formally consider vari-

ables to be time dependent.

2.1. Variational form and energy contributions

In the time-discretised framework the solution for a single time step cor-

responds to a stationary point of the Lagrangian L:

5L - 5U + 5‘/gravity + 5‘/contact - 5T = 07 (1>



which involves the strain energy U, the gravity potential Vi avity, the contact
potential Vioneacs as well as the kinetic energy 7. Note that (1) is a direct
consequence of Hamilton’s principle applied for quasistatic processes, see also
9, 27]. In general, we seek the time evolution of motion as a sequence of
solutions to (1). In this regard, the limitation to a quasistatic treatment
means that we cannot account for full transient dynamics. More precisely,
only such inertia contributions that persist in the stationary state can be
included and are contained in the term 07". As it is not meaningful to account
for only this part of inertia effects when simulating the transient process, we

distinguish between two kinds of finite element analyses:

o FESy: finite element simulation of the transient process that approaches

a steady state with full disregard of inertia contributions (67" = 0),

o FESt: finite element simulation with inclusion of 7T seeking just the

corresponding stationary solution.

In both cases the same time-stepping strategy is used. However, for FES, the
obtained time sequence of states has a physical meaning, whereas for FESy
the time ¢ merely plays the role of a homotopy parameter in an iteration
procedure for the steady state solution.

Any one of the energies introduced in (1) is written as an integral with
respect to the material arc coordinate s € [0, syay| of the rod. The contact
potential will be covered later in Subsection 2.3 and the other contributions

are

Smax b Smax 1 Smax
U:/ §€2d8, ‘/gravity:/ Gy ds, T:§/ v-vpds.
0 0 0

(2)
In the latter two formulas the specific gravitational force G = p g, as mass per
unit material length p times gravitational constant g, the vertical coordinate
of a material point y and the material velocity v appear. The elastic strain

energy U of the extensible string depends on the Green axial strain € with



a corresponding stiffness coefficient b. We introduce a shorthand for the
material derivatives 0s(...) = J(...)/0s to formulate the strain relation

€ =

% (Osr - 05T — 1) . (3)
Consequently, the finite element formulation needs to at least ensure continu-
ity of first order derivatives 0,7. To fulfil this requirement in the compound
coordinate regime of o, we have to employ nonlinear finite element approxi-
mations in the degrees of freedom, see [26].

In the E.L.-framework the spatial coordinate o € [0, 0yax| parametrises
the material line by means of a suitable transformation s = s(o, t). Cor-
responding mixed finite elements typically make use of an additional trans-
formation o = o (§) to a local coordinate & € [—1, 1]. The total energies
are then obtained through summation over finite element contributions. The
transformation steps of a single integral quantity to the finite element model

can thus be written as

Smax Omax 1
E:/ e(s,t) d3:/ e(o,t) 805(10:2/ e(&,t) 0,5 0o dE,
0 0 0 /-1
(4)

where e serves as a placeholder for the material density of a single energy com-
ponent £ = {U, Vgavity, Veontact, L'} in different descriptions. The integra-
tion ranges Smax and opyax denote the total material and geometric lengths, re-
spectively. The element-wise integrals are computed using Gauss-quadrature
formulas with three integration points.

For numerical solution of equation (1) we adopt a pure Newton-Raphson
algorithm that relies on the linearisation of dL with respect to the finite
element nodal unknowns. Although analytical derivation of second order
derivatives of L is still manageable for the problem at hand, they are more

conveniently approximated numerically using finite differences.



2.2. Mixed finite element kinematics

We refer to [26] for an elaborate discussion on the adopted mixed finite
element kinematics and here repeat some important features. As illustrated

in Figure 1, the position vector may be written in the form
r(o,t) =g (o) +v(ot) ng(o) . ()

Aside from the spatial contour coordinate o, we further introduce a transverse
coordinate v that represents the distance of a given point from the line g in
direction n,. Since we are parametrising a one-dimensional, material line the
transverse displacement itself needs to be treated as a function of the axial
coordinate v = v (o, t).

In order to follow the movement of a particular material point s in the
E.L.-formulation, the material coordinate becomes an additional unknown,

which can be obtained indirectly by means of a material displacement s as
s(o,8) =X (0 +5(0, 1)) . (6)

Here, A\ = Spax/0max is defined as the ratio of total lengths meaning that
A > 1 corresponds to slackly spanned belts with presumably large deforma-
tions, whereas A < 1 indicates greater pre-tension and smaller deflections. In
the above equation A just compensates for the different coordinate lengths
of o and s. By avoidance of using the material coordinate s directly as an
unknown, it is easy to treat the looping condition at the endless belt connect-
ing point where s and ¢ experience jumps by Spax and op.x, but 5 remains
continuous with § (0, t) = 5 (Omax, t)-

We now aim to compute the sliding velocity (or the relative displacement
w in a time discretised sense), which is the main kinematic quantity that
characterises the frictional behaviour of a given integration point. In this re-

gard, we introduce shorthands for the material (total) and the spatial (local)



time derivative

5 () a(éi.) , at:a(a'"> , (7)

s=const t o=const

and state that the total time derivative of the material coordinate s = s (o, t)
is zero

aOtS = 8158 + 808 80150' =0. (8)

The material particle velocity follows to
80tr:v:tg (1+av) 80ta+ng('§ty, 9)

where « represents the absolute value of the non-smooth derivative of the
normal vector n, defined as
0 .. Cartesian region of o
@ = [0my| = o (10)
1/R .. polar region of o

It enables simultaneous treatment of the entire domain of o using (9). Any
point in contact at the beginning of a step is presumed to remain in contact.
Therefore, the material velocity in outward pointing normal direction n of a
point on the pulley surface has to vanish. We recall v from (9) and project

onto the local basis vectors {t, n}

'v~t:tg~t(1+au)8ota+ng~t80t1/ (11a)
'v-n:tg-n(l—i-ow)80t0+ng-n80tV:0. (11Db)

We use the second equation to substitute (‘iy in the first one and, after some

transformations, end up with

(12)



If we assume a sufficiently large penalty factor for normal contact, the radial
displacement v practically vanishes in the polar domain. Moreover, a = 0

holds in the Cartesian regime and the above relation further simplifies to

—(9,55
N — 13
Y Dps (ng M)’ (13)
with dyo = —0;s/0,s according to (8). Now, computation of the sliding

velocity Oyu is a simple matter of subtraction with the tangential velocity of

the corresponding pulley
—Rw, (14)

where the appropriate angular velocity w = {wi, we} has to be inserted.
Finally, direct time discretization of local time derivatives with a finite time

step At results in the tangential relative displacement

As

N Ops (Mg - M)

— RwAt. (15)
The material coordinate increment As and 0,s may be easily described as
functions of the nodal unknowns and the dot-product of normal vectors de-
pends on ¢ alone, provided that the belt is congruent with the outer contour
of the pulley.

The following remark solely applies to finite element simulations of the
type FES7, and is also significant for the semi-analytic treatment of station-
ary motion in Section 3: For the special case of steady state motion the main

kinematic unknowns take the form
v=v(o), s(ot)=S(o)+ct. (16)

These conditions ensure that the spatial configuration of the belt remains

fixed with 7 = r (0), while material is transported through this stationary

10



deflected state at a constant rate 0;s = const = c¢. The particular distri-
bution of material particles S (o) along the deformed line does not change
with respect to time and neither do the strains as a consequence. These
characteristics of steady state motion are emphasized in the literature [5, 14]
and the second condition of (16) is sometimes used to perform a coordinate
transformation [18]. With the above relation (8) for o the velocity for the

stationary state becomes

—C

0,5

v = [ty (1+av)+n,0,v] . (17)
In particular, the spatial time derivative 0, vanishes in this case. As we
are merely interested in the steady state solution when performing a FESy
analysis, it is sufficient to use the above simplified formula to evaluate the
kinetic energy. However, since ¢ and 0,5 (o) are attributes of the stationary
state and thus not known in advance, we need to provide approximations.
For 0,5 (o) we simply take the latest result and for ¢ the arithmetic mean of

all integration point velocities is used

0,5(0) = 0,8(0,t), c=

1
3 Nl

(zzats & t>) R

el =1

where N, denotes the number of elements in the model and &; are the local
integration point coordinates with a total of three per element. Both approx-

imations approach their final results as the time integration progresses.

2.3. Contact modelling

This section covers the novel implementation of Coulomb dry friction
contact in the existing mixed finite element framework. The pulleys are
treated as rigid, analytical bodies, i.e. the contact pairing is rigid body with
deformable structure. In general, solid body contacts may be formulated as
constrained variational problems or variational inequalities. The accompa-

nying constraints are the impenetrability condition and the Coulomb friction

11



criterion, which may be written in the form of Kuhn-Tucker conditions, see
[19, 28]. The impenetrability condition ensures that the deformable body
may never penetrate the rigid counterpart. In the present case this requires
the penetration depth of the belt into the pulley to remain zero; v = 0.
Moreover, the Coulomb criterion requires the friction state to reside within

or at most on the friction cone; formally expressed as
O =|r|—pmwn<0. (19)

It compares the absolute value of the tangential tractions 7, to the maximum
transferable friction force given as a product of normal contact pressure and
friction coefficient p, which is used for both sliding and sticking friction.
Naturally, for sliding friction ® = 0 holds and for sticking ® < 0 applies.

Traditionally, these contact constraints are accounted for either by intro-
duction of Lagrange multipliers or via a penalty regularisation strategy. The
here proposed scheme originates from a proper combination of both strategies
also known as augmented Lagrangian multiplier method, see [19]. Basically,
it aims to solve the Lagrangian multiplier problem through iterative solution
of the simpler-to-solve penalty regularisation equivalent.

In the present context, proper contact treatment requires definition of
contact penalty potentials and contact state update procedures. The poten-
tials are needed to compute contributions to the system of equations during a
Newton iteration, whereas the update scheme specifies how to adapt the con-
tact state based on the solution data available. To accomplish these tasks, we
first need to specify both contact tractions in the non-material finite element
model: For the pure penalty approach, the impenetrability constraint is no
longer strictly enforced, but rather approximated by punishing any penetra-
tion v of the belt into the pulley surface with a high factor Py. This idea is
modified just slightly in the augmented Lagrangian approach

TN:)\N+PN720- (20)

12



Here Ay stands for the present Lagrange multiplier estimate and Py~ is
the classic penalty part. Naturally, the normal contact pressure is strictly
positive, and any point that produces a negative result is not in contact at
all. This also implies that even negative values of the penetration depth have
to be considered, which correspond to the belt lifting off of the pulley surface
just slightly, such that (20) remains positive. The update procedure in the

sense of the augmented strategy is a simple fixpoint iteration scheme
AN & AN+ Py (21)

Upon convergence the penetration depth + vanishes at which point the La-
grange multiplier estimate becomes exact.

The implementation of the augmented scheme for frictional contact is
more complicated as it has to deal with both sliding and sticking states, yet

the basic expression for the tangential traction is equally simple
Tj_:)\J_+PJ_U. (22)

The Lagrange multiplier estimator for frictional contact is A and the penalty
component consists of another penalty stiffness P, and the relative, tangen-
tial displacement w according to (15). We call 77 the auxiliary traction,
because its purpose is threefold. Firstly, it is used to evaluate the Coulomb
friction criterion ®, replacing 7, in (19), to determine a point’s frictional
contact state. Secondly, it equals the actual tangential traction in case of
= 77. And lastly, it defines the sliding

direction in case of slipping motion

stick, formally written as 7|,

, (23)

where e = +1 indicates forward sliding, meaning that belt points overtake

their counterparts on the pulley surface, and e = —1 corresponds to sliding in

13



normal contact  sticking friction  sliding friction

criterion AN+ Pxy >0 d <0 b >0
actual traction ™ = An + Pxn 7y T =T] TL =€euTN
update procedure AN — TN A T
with 77 =M+ Piu, @ =lri|—pr, o=k

TL

Table 1: Augmented Lagrangian treatment of contacts; contact state criteria, actual trac-
tion values and update routines

opposite direction.! Having deduced the direction of relative movement the
sliding tangential traction becomes 7 L|shp = e 7. This measure guarantees
that sliding friction states indeed reside on the friction cone ® = 0, whereas
evaluation of ® with the auxiliary traction 77 may even produce results
® > 0, failing the Coulomb criterion. Hence, a point is considered sticking
if evaluation of (19) with 77 leads to ® < 0 and treated as slipping if ® > 0
holds. In analogy to (21) we define another iterative update scheme for the

Lagrange multiplier estimate A

AL 7 with 7|4 =71, 71|slip:€/“'N~ (24)
The whole augmented Lagrangian procedure for both normal and frictional
contact is summarised in Table 1, featuring the contact state criteria, the
computation of tractions and the update procedures for Lagrange multiplier

estimates.

11t is worth noting that calling 77 and all its relatives “tangential tractions” is some-
what misleading from a physical standpoint, because the real tractions always act in
opposite direction of the relative motion. Here, as (23) suggests, the so-called tangential
tractions and the sliding velocities point in the same direction.

14



The contact state is resolved discretely at Gaussian integration points
in the finite element model and consequently a corresponding set of contact
data is stored for every single point: We need to keep track of the Lagrange
multiplier estimates Ay and A\ ;. In addition, the current value of ® is mem-
orised as a contact state identifier. The contact state update procedures are
invoked once per time step.

To conclude the derivation it remains to specify the contact penalty po-
tential Viontact, Whose variation can be split into two contributions, one at-

tributed to the normal contact forces and one to the friction forces
Smax ° Smax °
5VN:/ TN5’7 dS, §VJ_:/ TJ_(SU dS, (25)
0 0

where we have introduced the material variation operator 5 in analogy to
the total time derivative (7) to emphasize that v and u are to be varied at
fixed material coordinates s; see [23] for an in-depth discussion on the topic
of total and local variations of fields. For it to equal the just introduced

variational form, the normal contact potential must read

Smax 1
W = / (/\N v+ 3 Py 72> ds, (26)
0

which is a simple extension of the pure penalty version presented in [26].

Analogously, the friction potential in case of stick reads

Smax 1
Vi stick = / ()\J_ U+ 5 Py UQ) ds, (27)
0

but the expression for the sliding potential is less obvious

Smax T
Vi gy = / BTN | s (28)
0 Py

Its rather complicated appearance is a consequence of the fact that the sliding

15



direction e is not prescribed. To show the equivalence with (25) one merely
needs to compute the variation of the above formula. The usual integral
transformation rules (4) apply to the just introduced components of the

contact potential.

3. Semi-analytical treatment of stationary motion

In order to validate the finite element results, we derive and integrate a
boundary value problem for the belt drive at steady state motion. We revisit
belt creep theory with the usual prerequisites, namely: We assume Coulomb
friction in the contact regimes and model the belt as an extensible string.
Stationary inertia effects are considered.

The deduced boundary value problem is similar to those reported in [10]
and [18] with the exception that gravity is taken into account. Furthermore,
not the geometric arc coordinate, but a Cartesian spatial coordinate x is used
for parametrisation in the free span region, see Figure 2, which is closely
related to the one used in the finite element model, compare Figure 1.

We recall that, in accordance with (16), the sought for steady state mo-
tion is characterized by a “frozen” deformation state through which material
particles are transported at a constant rate d;s = ¢, which is to be deter-
mined as part of the solution. The boundary conditions for the whole system
may be categorised into numerous, local matching conditions and a single,
global closing condition. The latter, which may also be denoted as looping
condition, demands that the total material length of the whole belt equals
the specified one, namely s,,... Now, in an effort to ease the solution process
we first disregard the closing condition, which enables us to prescribe the
material transport rate ¢ as an additional parameter and, more importantly,
allows to divide the whole boundary value problem into individually solvable
sub-problems. Later, we can iteratively fulfil the remaining closing condition
by means of a root problem for the correct value of ¢ and thereby obtain

the steady state solution of the complete belt drive. This procedure is eas-

16



Figure 2: Semi-analytical model for a single belt segment consisting of one sticking AB,
one sliding BC and one free span region CD; Cartesian reference frame [, j]; piecewise
spatial parametrisation with the coordinates ¢ and x

ily extendible to multi-pulley belt drives and we refer to [10, 18] for similar
strategies.

The method is demonstrated on the example of a two-pulley drive and
we begin by dividing the closed belt into two individual segments. The
first segment consists of the left pulley contact region and the lower free
span, whereas the second one comprises the right pulley contact zone and
the upper free span. Since governing equations and boundary conditions for
both segments look alike, it is sufficient to focus on a single one, and thus
only the first segment is depicted in Figure 2. We further distinguish three
distinct regions of this segment: one sticking AB, one sliding BC and one
free span region CD. To make the formulation more suitable for multi-pulley
drives, the pulleys may now have different radii R;. The centre to centre
distance is H and the angular velocities w; are again prescribed, which is
simpler than specification of corresponding transmitted moments. Contrary
to the finite element model, we place the Cartesian coordinate frame [z, j|
in the centre of the corresponding, left pulley.

For completeness we need to remark that some minor provisions have

17



to be made to guarantee that the here deduced equations hold for the sec-
ond belt segment as well. Firstly, a different Cartesian basis needs to be
introduced, which sits in the centre of the opposite, right pulley with the
horizontal unit vector pointing from right to left and the vertical unit vector
pointing downwards, such that if we rotated the drive about 180° the situa-
tion for the second segment would look just like the one shown in Figure 2,
the only difference being that the gravity G then acts in the opposite direc-
tion. Therefore, we would have to change the sign of every instance of G in
the upcoming formulas. Lastly, we would have to switch the indices of pulley
parameters { Ry, w1} <> {Ra, wa}.

After these preliminaries, let us focus solely on the first belt segment for
the rest of this section. As Figure 2 suggests, two spatial coordinates, the
angle ¢ and the position z in direction ¢, are used to parametrise the position
vector r in any one of the three solution regions. Specifically, the coordinate
x is used for parametrisation in the free span region, whereas the angle ¢
applies to the sticking and the sliding region. The tangential unit vector ¢

and the outward-pointing unit vector n are also written as functions of ¢

t = —isin(p) + g cos(yp) , t'=-ny (29a)
n = icos(p) + jsin(p) , n =ty. (29b)

In contrast to the mixed finite element description with one circumfer-
ential coordinate o, compare Figure 1, the sizes of the polar and Cartesian
coordinate domains are no longer fixed, but depend on the actual positions
of the touching points A, C and D. The second point B marks the tran-
sition from the sticking to the sliding region. We introduce corresponding
angles 1o to 1p, which are measured against the horizontal direction # just
like ¢, to mathematically describe these positions. For the sub-problem of
the first belt segment at hand only the three constants ¥, ¥¢ and ¥p are

regarded unknown, but 1, formally belongs to the adjacent segment and is

18



thus considered to be a given parameter. This is due to the fact that the
touching point A of the belt segment under consideration coincides with the
run-up point D of the second segment and vice versa. Thus, if we use Roman
numerals to index the individual segments, we can formulate constraints at

each transition point of the two segments

wAIA: 1131—77 E:wllj_ﬂ'a (3())

where a constant offset by 7 is introduced due to Cartesian system of the
segment II being rotated by 180°. We will later discover that the angle 1o
is merely needed to set the origin of the segment-wise material coordinate
s. The actual value of 1o is thus insignificant for the solution in a single
segment, but important when it comes to the formulation of the closing
condition in Subsection 3.4.

The governing equations of the underlying planar theory of extensible

strings in Lagrangian form read [5]

95 (Qt)+g=pw (31a)
Q=be (31b)
€= % (I*—1) (31c)
with Q=TQ, T =|dr. (31d)

The balance of linear momentum (31a) connects the axial force () (no trans-
verse forces in a string model) and the distributed forces g to the inertia terms
on the right side, with p being the mass per material length and w denoting
the acceleration. For comparison purposes, we again use the Green strain
measure €, which is directly connected to the stretch I' and proportional to
its conjugate force Q with the tensile stiffness b. This new force quantity
is related to the actual axial force that appears in the balance equation by

Q=T0Q, see [25] for a brief comparison and [8] for an in-depth discussion
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on the topic of strain measures in beam theory.

We will in the following address each solution region (stick, slip, free span)
of the depicted belt segment separately and finally formulate the closing
condition to conclude the system of equations for the belt drive as a whole.
In an effort to write equations more concisely, we will use I" extensively in the
upcoming expressions, but regard Q as a major unknown. Both are directly
related through the constitutive equation (31b) and the thereby deduced

replacement rules read

o

I —1/149 _ Y
Ty T

(32)

3.1. Sticking friction region

Provision of the constant material transport rate d;s = ¢ allows full deter-
mination of the solution in the sticking region. When assuming full contact

between belt and pulley, the position vector and its material derivative, with
the help of (29b), follow to

r=Rin, 0, =R 0pt. (33)

Next, we write the material coordinate as s = s(ip, t), compute its first

derivatives

Oss = 1= 0,505 (34a)
(is =0=0,s 80tg0 +c, (34b)

and make immediate use of (34a) to substitute dsp in (33) when computing
the stretch
['= 0| =Ry (0,8)" . (35)

The pure sticking contact in the considered region forces the belt to move to-

gether with the pulley surface. Therefore, the corresponding material points
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travel with the same angular velocity, which translates to ('igp = wy. Using
this relation we evaluate (34b) further taking (35) into account and conclude

that the stretch in the sticking region is constant,

Rywy

= = const . (36)

C

Moreover, this expression effectively sets a range for plausible values of ¢,
because the belt must not move backwards and fulfilment of I' > 1 to keep
the belt under tension requires ¢ € [—R; wy, 0]. As a consequence, the axial

force, according to (31b), is constant as well,

(I'* — 1) = const. (37)

| S

Q=

To compute the material arc coordinate s we rearrange and integrate (35),
choosing the time dependent integration constant such that the expression
fits the steady state form (16)

s=—1 (p—9a)+et. (38)

To allocate the position of s = 0 we simply set s (¢4, 0) = 0, indicating that
the segment’s material length s originates at 1.

For the sake of completeness we further evaluate the balance equation
(31a) to deduce the contact forces. The acceleration reduces to the cen-
tripetal part w = —R; w} n since material elements cannot be accelerated in
tangential direction when sticking. The gravitational force G acts in oppo-
site direction of 7 in the current setting, and the contact forces consist of the
tangential traction 7, and the normal contact pressure 7y > 0, such that the

distributed load can be written as

qg= (1. —Gcos(p)) t+ (7n — Gsin(y)) . (39)
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With 0s¢p = I'/ Ry to substitute in (29a) the material derivative of the axial

force reads

@@ﬁj:PQ&t:—(EiQ>n. (40)
Ry

Finally, we obtain the contact forces after evaluation of the balance equation

and projection onto the tangential and normal direction

rz .
7. = Gcos(p) , TN:R—Q—pleijGsin(go) : (41)
1

3.2. Sliding friction region

The sliding friction portion of the contact zone is again parametrised with
¢. Hence, formulas (33) still hold in this region and the definition of the
stretch (35) now serves as a differential equation for the material coordinate

S

Ry
Qos = T 5 (42)
which further defines the transformation of material derivatives
_1 r
Os = 059 0p = (0ps)” 0, = = Oy - (43)
1

However, as a material particle may now travel at a different speed than
the corresponding point on the pulley (34b) can only be rearranged for later

substitution

0 T
Op = ——c. 44
tP R c ( )

The distributed forces can still be written in the form of (39) and after some
derivations we obtain the material derivative of the axial force

L 3T2-1 . QT2

0.(Qt) = 0,Q 5 —t—p—n. (45)
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We differentiate the position vector r twice with respect to time to compute

the acceleration

A g )
9,Qc t—l—(rc) n

w=@¢%>:&GTd%:b& i

(46)
One has to make use of the constitutive relations (31b) and (32), substitute
the derivatives of unit vectors according to (29) with ds¢p = I'/ Ry and replace
Op with (44) to arrive at the above formulas (45) and (46) in their presented
form. After insertion into the balance equation and projection onto mn, we

derive the contact forces with the help of the Coulomb friction criterion

F2

™= g <Q - /?C2> + G'sin(p) (47a)
e (47h)

Here the friction coefficient p is to be interpreted as a signed quantity. The
sign depends on the direction of sliding motion. In case of forward sliding
motion it is negative and otherwise positive. One can either prescribe the
direction of sliding motion assuming backward sliding on driving and forward
sliding on driven pulleys or determine it by comparison of belt and pulley

velocities
sign () = sign <w1 - 5#,0) : (48)

Substitution of 7, in the balance equation and projection onto t yields the

sought for differential equation for Q

A (3F2—1 pc?

0,Q T —le) + 7. —Gceos(p) =0. (49)

If ¢ and estimates for the angles 15 and g are provided, we can compute
the solution in a single sliding region by integration of an initial value problem
with the ODEs (49) and (42) for the axial force Q and the coordinate s,

respectively. The corresponding initial conditions just demand continuity of
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{Q, s} at the transition point ¢ = 1y between sticking and slipping region.

3.3. Free span region

In accordance with Figure 2, we write the position vector of particles and

its first material derivative in the free span region as
r=xt+y(x,t)j, O0r=0sxt+05y7. (50)

In full analogy to (34a) we derive an equivalent transformation rule for the

Cartesian parametrisation of the material coordinate s = s (z, t)
0T = ((915)_1 ) (51)

With this in mind, we can rewrite the material derivative of the position

vector as dyr = 't and compare its Cartesian components with (50)

—1

Ocs = [sin(p)’

0,y = —cot(p) . (52)
Consequently, the transformation of material derivatives becomes
Js = (—I'sin(p)) 0, . (53)

The vector of distributed forces now lacks the contact forces and we deduce

the remaining components of the balance equation in a similar fashion

g =—Gcos(p) t —Gsin(p) n (54a)
0. (Qt) = (—ax@sm@o) ”T‘l) t4 (0,000 sin(e) n  (50)
w — ( . 2 sin(p)

—0,Q T) t+ (0o IPsin(p)) n. (54c)

24



After insertion in the balance equation, evaluation of tangential and normal

components and some rearrangements we obtain
0o (Q I?—pc? F2> =G (55a)

2 2
2,0 (—3F2 ! +”bc ) = G eot(y) | (55b)

which concludes the system of ODEs (52) and (55) for {s, y, ¢, @}. Notice-
ably, the angle ¢, previously used for parametrisation in the contact domain,
is considered a major unknown in the free span region.

To integrate the corresponding boundary value problem in the free span
region for a given transport rate ¢, we need to define seven conditions to
determine the four integration constants for the system of ODEs as well as the
unknown angles {¢p, ¢, ¥p}. In this respect, we simply demand continuity
for {s, y, ¢, Q} at the run-off point C and for {y, ¢, Q} at the run-up point
D, which marks the transition to the sticking zone on the opposite pulley.
Since the matching conditions at C depend on the solution in the sliding
region, the initial value problem for the sliding part needs to be solved each
time the boundary conditions for the free span require evaluation. On the
other hand, calculation of the right side conditions at D is a simple task,
because the solutions in the sticking regions are known in advance for a

given value of c.

3.4. Iterative solution of the boundary value problem

To obtain the solution for a single belt segment, we rely on the standard
purpose solvers ode45 and bvp4c as implemented in the software Matlab for
the numerical integration of the initial and boundary value problems. To
make the problem with unknown boundaries accessible to the collocation
solver, we first need to transform it to a system with fixed boundaries in a
normalised coordinate & € [0, 1]. This well known strategy involves coordi-

nate conversions of the form ¢ = ¢(§) and = = x(§) that are quite similar to
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the ones introduced for s and we refer to [2, 10] for applications of the same
technique.

To construct an appropriate initial guess for the unknown fields and con-
stants we replicate the deflection-less configuration of the belt that resembles
the classic case of a tight belt (A < 1) without gravity. To specify this initial
guess, let us assume equal pulleys (R; = Ry = R) for simplicity; the required
adaptions for R; # R, are straightforward. In this special case the transition
point angles are approximated as ¥y = 7/2, g = 7 and ¢ = Yp = 37/2,
where 1 is assumed to split the contact zone in half. The vertical deflection
y = —R and the angle ¢ = 37/2 are constant, whereas the material coordi-
nate s and the force Q are interpolated linearly between their two values at

Cand D

s©=slo+He, Q=0 +(Q -0 )s 69

As outlined before, the values at C are obtained through integration of the
initial value problem in the sliding region. The interpolation for the material
coordinate s ignores the stretching of the string. Evidently, seeking a steady-
state solution starting from this basic initial configuration might fail in cases
with very large transverse deflections (A > 1). Then an iterative approach
is in order with the length-ratio A serving as homotopy parameter. Finally,
equation (36) evaluated for I" & 1/ provides a solid initial guess for c.

To complete the solution procedure for the whole belt drive, it remains to
formulate the closing condition as a root problem for the appropriate material
transport rate c¢: The material coordinate s of a single belt segment is strictly
growing from the start A to the end D. For the stationary state the same
amount of material is contained between these interval borders at any time
such that the segment’s material length can be computed as the difference
of material coordinates at these two points. The total length of the belt is a

sum of the lengths of its individual segments, which is used to formulate the

26



geometry Ry =R, =0.15 H=2 A=1.0
material b=12.5 p=0.03
pulleys uw=0.4 w; = 10 ws = 9.8

Table 2: SI values of the benchmark problem; the gravity constant is g = 9.81

closing condition

Smax = Z (S|D - 8‘A>i7 (57)

i=I,11
where Roman numerals are used once again to denote the individual seg-
ments. Since s|, equals (38) for ¢ = 15 the above equation can be further

simplified to

smax = ) (slp —ct)’, (58)

i=T, 11

which demonstrates mass continuity in the considered control volume, be-
cause, for the above relation to hold at all times, the same amount of material
entering at point A of a segment must exit at D. The constraint (58) is re-
ferred to as “compatibility condition” in [18] and ensures that the found
solution indeed corresponds to a belt with the specified length s, in the
undeformed state. Hence, the adopted strategy resembles a shooting method
trying to find the appropriate value of ¢ such that the above condition is met.

A simple secant method is used to iteratively solve this root problem.

4. Results and comparison

We consider the model parameters given in Table 2, which correspond to
a slackly mounted extensible string moving at moderate speed. All quantities
are presented in the SI system of units. The gravitational constant is assumed
to be g = 9.81 and the pulleys rotate in counter-clockwise direction. The
angular velocities are high enough that stationary inertia effects are visible,

but far from being dominant.
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Figure 3 presents two deformed configurations of the belt obtained with
the FES, type of analysis, i.e. stationary inertia effects are neglected. The
used mesh is refined in the contact regions and has a total number of 1090
elements. This discretisation level is too fine to plot, but the distribution of
nodal points along the contour coordinate o is simply more dense than the one
presented in Figure 1. The depicted state for ¢ = 0 corresponds to the initial,
frictionless static equilibrium and ¢ — oo indicates the steady state as a final
result of the intermediate transition process. During this transient phase
sliding friction regions evolve originating from the run-off points, where the
belt loses contact with a pulley and enters the successive free-span region.
Moreover, material is continuously rearranged from the upper span to the
lower span leading to a tightening of the former and relaxation of the latter.

We forgo printing an analogous graphic for the simulation with inclusion
of inertia effects (FESt), because the differences are very subtle and the
two graphics would be almost indistinguishable. Instead we present some
numeric data in the two Tables 3 and 4 corresponding to the FES, and the
FESt analysis, respectively. Each Table displays some characteristic values
of the steady state obtained with both the finite element scheme as well as
by numeric integration of the boundary value problem (BVP). The relative
error measures show the reached accuracy of the finite element simulations
in comparison to the quasi-converged results of the semi-analytic solutions.
Both the transverse deflections v and the axial strains € are evaluated at the
middle point of the lower span, as indicated in Figure 3. In contrast to the
first three columns in the Tables, which are given in SI units, the sticking
region and the sliding region size, Aty and Atdgyp,, are presented in degrees
for convenience. The driving moment M can be computed as a line integral

over distributed moments, which are attributed to the tangential tractions
1 e

MFES = —Z/ TLRﬁgsagodﬁ, MBVP = / T R&ps d(p (59)

el -1 ¥

A
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For the finite element version we obviously have to restrict the sum to ele-
ments in contact with the driving pulley in order to avoid contributions from
the opposite, driven side. The corresponding element integrals are again
transformed to Gaussian quadratures and the stored Lagrangian multiplier
estimates are used to evaluate 7, at each integration point. The sign change
in front again stems from the fact that the finite element tangential tractions
point in opposite direction of the physical ones.

Overall, the finite element results correspond well to the practically con-
verged, numerical integration of the boundary value problem. The contact
region angles, Aty and Ay, are the least accurate quantities, because
the accuracy of contact resolution is limited by the distance of adjacent inte-
gration points. Improved results may be obtained with further refinement of
the contact domain at expense of computation time. As one would expect,
inclusion of stationary inertia effects induces higher strains, increases driving
torque as well as transverse deflections in the slack span and decreases the
contact domain size.

Figure 4 presents some additional results for the specified parameter set,
inertia effects being neglected (FESy). The steady state distribution of ax-
ial strains is shown in the left diagram. The vertical bars encapsulate the
contact regions on both pulleys. As predicted by the analytic considera-
tions, € remains constant in the sticking regions and, in obvious resemblance
with classic creep-theory solutions, the strain transition in the sliding regions
(from tight to slack for the driving side or vice versa for the driven side) is
essentially linear. The strain variation in the free span region is entirely at-
tributed to the influence of the gravitational force. The graph on the right
side of Figure 4 demonstrates mesh convergence of the proposed finite ele-
ment scheme on the example of the axial strain evaluated at the middle of
the lower span. Convergence is fast reaching accurate results with slightly
over 100 elements, but not monotonous. In fact, the absolute value of the er-

ror measure had to be taken, because finite element evaluations for different
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Figure 3: Initial and final steady state configurations of the belt drive as obtained with
the FES( analysis

v € M Asttick A¢Slip
BVP, 0.395 39 0.03231  0.03530 101.1610°  58.0764°
FES, 0.395 36 0.03231  0.03530 101.7040°  57.4195°
1— 2B 7722e—5 —6.069e—5 3.321e—5 —5.369e—3 1.131e—2

ITBVP

Table 3: Comparing finite element results to reference values obtained through numeric
integration of the steady state boundary value problem; parameters taken from Table 2;
stationary inertia effects are ignored (FESy)

v € M A7v/}stick AwSIip
BVP, 0.41323  0.03569 0.035 86 98.7960°  59.2447°
FESt 0.41327  0.03569 0.03591 99.4665°  58.5714°
— ZEES 1 052e—4 7.636e—5 —1.442e—3 —6.787e—3 1.136e—2

TBVP

Table 4: Comparing finite element results to reference values obtained through numeric
integration of the steady state boundary value problem; parameters taken from Table 2;
taking stationary inertia effects into account (FESt)
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Figure 4: Steady state distribution of axial strains over o (left) and finite element mesh
convergence of € at the middle of the lower span compared to the semi-analytic results
(right); no account for inertia effects (FESy)

discretisation levels oscillate around the converged semi-analytic result grad-
ually decreasing the amplitude with increasing number of elements. It comes
as no surprise that convergence is not monotonous for the steady state, since
even the frictionless static solution shows the same behaviour [26]. Aside
from the total number of finite elements used, the chosen placement of nodal
points determines the reachable accuracy of a particular model. Hence, per-
formance could probably be increased further through improved placement
of nodal points. The ability to use refined meshes for axially moving struc-
tures without ever having to remesh the model is an important advantage of
the mixed E.L.-type of elements over conventional ones. The latter are prac-
tically condemned to use equally spaced, fine meshes throughout the whole
model in order to ensure sufficient resolution of the contact domain when
material nodes travel in axial direction.

Figure 5 is devoted to the time evolution of the contact region at the
driving pulley, which was simulated with the FES, type of analysis. The left
graphic displays the development of the axial strains € at the two touching
points that encapsulate the contact domain. The dashed curve corresponds
to the point of first contact, where the belt adheres to the pulley surface
approaching it from the upper, tight span. The solid line relates to the point

of contact loss, from where the belt enters the lower, slack span region. In
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Figure 5: Time evolution of strains at touching points and contact region size in degrees
at the left driving pulley; no account for inertia effects (FESg)

the course of time simulation these bordering points move slowly along the
pulley contour, gradually decreasing the total size of the contact domain,
which is depicted in the right picture given in degrees. Naturally, strains in
the point adjacent to the tight span region increase with respect to time and
the opposite holds true for the point preceding the slack span region.

The magnified detail picture on the left demonstrates that the graph is
in fact not smooth, but shows a zig-zag like behaviour with decreasing fre-
quency. The same holds true for the development of the contact region size
in the right diagram. These effects are again a consequence of the discrete
resolution of contact states at element integration points. Due to their finite
distance the shrinking of the contact zone can only be resolved discretely.
The corresponding peaks in the evolution of strains occur due to a change
in the load distribution as a consequence of single integration points loos-
ing contact instantaneously. The frequency of such oscillations is high in
the early stages of the simulation but decreases continuously as the belt
slowly approaches its stationary contour motion. A higher degree of smooth-
ness could again be achieved by further refining finite element meshes in the
prospective contact zones, which would minimize integration point distances.

Nevertheless, the depicted graphs are quite smooth already and free of other
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spurious oscillations, which typically arise in conventional finite element sim-
ulations [15].

5. Conclusion

The planar, static, E.L.-finite element model, previously introduced in
[26], has been successfully extended to simulate the quasistatic, transient
motion of a simple two-pulley belt drive. Gravity is taken into account and
stationary inertia effects may be considered as well. The simulation starts
from a previously acquired, frictionless equilibrium position and the following
transient phase finally leads into stationary contour motion, characterised by
a fixed spatial configuration through which material particles keep travelling
at constant mass transport rate. During this process the pulleys rotate with
constant speeds w; and transfer their rotary motion to the belt by means of
Coulomb dry friction contact.

A major part of the present contribution is devoted to the appropriate
implementation of frictional contact in the existing finite element framework.
In this regard, a variant of the augmented Lagrangian treatment is proposed.
This strategy is based on the simple penalty method, which is extended with
an iterative update of stored Lagrange multiplier estimates for normal and
tangential contact tractions. Presently, the finite element simulations are
limited to the simpler model of an extensible string, as the inclusion of bend-
ing effects proves a difficult task due to concentrated contact interactions at
the touching points that inhibit the augmented Lagrangian contact treatment
26].

The mixed kinematic approach features finite element parametrisation
in a compound, spatial coordinate o, which consists of polar and Cartesian
domains. In this description, nodal points may only travel in transverse
direction, while material is transported through the mesh in axial direction.
It is advantageous compared to classic Lagrangian type finite elements due

to:

33



« contact resolution at fixed integration points in space, which promotes

convergence of contact state data,

o the ability to use refined meshes in the contact zones or particular

regions of interest,

« suppression of spurious oscillations by prohibiting the motion of nodal

points in axial direction,

» easy identification of steady states by time independence of nodal de-

flection variables.

In addition, the steady state solution is reproduced semi-analytically by
numeric integration of the corresponding boundary value problem. The ex-
amined analytic problem of an extensible string enqueues in a series of similar
models available in the literature. Its account for the influence of gravity is
a novel feature with particular importance for the considered problem of a
slackly spanned belt. Optionally, stationary inertia effects can be included
as well, which are negligible at low speeds but recognisable for the medium
velocity case studied.

Considering a particular benchmark example, the obtained finite element
results for the stationary state correspond well to the semi-analytic reference
computations. The steady state strain distribution in the contact region
bears close resemblance with classic belt-creep theory and strain variations
in the free span regions relate to the account for gravity. Investigating time
evolution of strains at the bordering points of a contact region, we obtain
essentially smooth curves with minor oscillatory discontinuities. The latter
are a consequence of the discrete contact resolution at individual integration
points in conjunction with the continuous movement of the contact zone
border during transient motion and are thus inherent to the proposed finite
element scheme.

In conclusion, the present contribution clearly demonstrates the capa-

bility of the proposed finite element framework to simulate quasistatic belt
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drive motion, but it also leaves some potential research topics for the future,

such as:

 the extension of the analytic model to a true beam with non-zero bend-

ing stiffness,

o the improvement of the contact model to allow for augmented La-

grangian treatment for problems with bending stiffness,

o a method to directly obtain steady state solutions in the finite element

framework without the need to run through the whole transient process.
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