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Abstract

Within a framework of the three-dimensional (3D) piezoelectricity, we present asymptotic formulations of functionally
graded (FG) piezoelectric cylindrical shells under cylindrical bending type of electromechanical loads using the method of
perturbation. Without loss of generality, the material properties are regarded to be heterogeneous through the thickness
coordinate. Afterwards, they are further specified to be constants in single-layer homogeneous shells and to obey an iden-
tical exponent-law in FG shells. The transverse normal load and normal electric displacement (or electric potential) are,
respectively, applied on the lateral surfaces of the shells. The cylindrical shells are considered to be fully simple supports
at the edges in the circumferential direction and with a large value of length in the axial direction. The present asymptotic
formulations are applied to several benchmark problems. The coupled electro-elastic effect on the structural behavior of
FG piezoelectric shells is evaluated. The influence of the material property gradient index on the variables of electric and
mechanical fields is studied.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since numerous articles have reported that laminated piezoelectric structures often produce interfacial
stress concentration and large value of residual thermal stresses at the interfaces between elastic and piezoelec-
tric layers as they are subjected to a variety of electro-thermo-mechanical loads (Heyliger, 1997; Kapuria et al.,
1997; Chen et al., 1999; Wang and Zhong, 2003). That fact due to a sudden change of material properties
occurring at the interfaces between two dissimilar materials may limit the lifetime of this conventional type
of intelligent or smart structures.

In recent years, a new class of functionally graded (FG) piezoelectric materials has been widely used as
intelligent or smart structures in the engineering applications. Unlike a sudden change of material properties
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in laminated piezoelectric structures, the material properties of FG structures are gradually changed and
dependent upon the composition of the constituent materials. Since the interfacial stresses in the FG piezoelec-
tric plates and shells change smoothly, the aforementioned drawbacks in laminated piezoelectric structures are
reduced.

Recently, several researchers have worked on determination of exact solutions of FG piezoelectric plates
and shells due to the increasing usage of FG materials. Ramirez et al. (2006a) presented an approximately
three-dimensional (3D) solution for the coupled static analysis of FG piezoelectric plates using a discrete layer
approach. Two types of FG materials have been considered in their analysis where the through-the-thickness
distributions of material properties are taken as the power-law and quadratic functions. Based on the state
space approach, Zhong and Shang (2003, 2005) presented an exact 3D analysis for a FG piezoelectric plate
under electro-thermo-mechanical loads. The material properties have been assumed to obey the same expo-
nent-law dependence on the thickness coordinate. The influence of the power of the assumed exponent func-
tion on the structural behavior has been examined. Based on the Stroh-like formalism, Lu et al. (2006) studied
the similar static problem of FG piezoelectric plates. The appropriate range of thin plate theories has been
discussed on a basis of their 3D solutions. Several exact 3D solutions for a variety of coupled electro-mechan-
ical problems have also been presented. The free vibration problems of laminated circular piezoelectric plates
and discs and laminated magneto-electro-elastic plates have been studied by Heyliger and Ramirez (2000) and
Ramirez et al. (2006b). Based on the pseudo-Stroh formalism, Pan (2001) presented exact solutions for the
static analysis of linearly magneto-electro-elastic, simply supported, multilayered rectangular plates. The
pseudo-Stroh formalism has also been applied for the exact analysis of FG and layered magneto-electro-elastic
plates by Pan and Han (2005).

The cylindrical bending problems of orthotropic and laminated piezoelectric structures have been used
as the benchmark problems to assess a newly proposed 3D or 2D analysis (Ray et al., 1992; Heyliger and
Brooks, 1996; Dumir et al., 1997; Chen et al., 1996). It has been concluded that the assumption for the
linear variations of deformations and electric potential across the thickness coordinate may lead to the
satisfactory results for the structural behavior as the ratio of length-to-thickness is larger than six (Ray
et al., 1992).

After a close literature survey, we have realized that there are two approaches, the transfer matrix method
(or so-called the propagator matrix method) and power series method, commonly used for the exact analysis
of single-layer homogeneous, multilayered and FG elastic and piezoelectric structures. An alternative analyt-
ical approach, the asymptotic approach, has been proposed for the previous subjects by Wu and his colleagues
(1996, 2002, 2005, 2005, 2006). The 3D asymptotic formulations for the static, dynamic, buckling and nonlin-
ear analyses of laminated elastic or piezoelectric shells have been developed. It has been shown that the asymp-
totic solutions are accurate and the rate of convergence is rapid in comparison with the accurate results
available in the literature.

Since the asymptotic approach may account for an arbitrary function of material property through the
thickness, we extend its application to exact cylindrical bending analysis of FG piezoelectric shells. Based
on the generalized Hamilton’s principle, Tiersten (1969) indicated that there are two possibilities for electric
loading conditions on the lateral surfaces (i.e., either normal electric displacement or electric potential is
prescribed). Hence, we aim at developing two different asymptotic formulations corresponding to the cases
of prescribed normal electric displacement and electric potential, respectively. Afterwards, these two
asymptotic formulations are applied for several benchmark problems of single-layer homogeneous and FG
piezoelectric shells.
2. Basic equations of 3D piezoelectricity

A FG orthotropic piezoelectric cylindrical shell with a large value of length is considered and shown in
Fig. 1. The cylindrical coordinates system with variables x,h, r is used and located on the middle surface of
the shell. 2h and R stand for the total thickness and the curvature radii to the middle surface of the shell,
respectively. The radial coordinate r is also represented as r = R + f where f is the thickness coordinate mea-
sured from the middle surface of the shell.
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Fig. 1. The dimension and coordinate system for a cylindrical shell with a very long length.
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The constitutive equations valid for the nature of symmetry class of piezoelectric material are given by
ri ¼ cijej � ekiEk; ð1Þ
Dk ¼ ekjej þ gklEl; ð2Þ
where ri, ej denote the contracted notation for the stress and strain components, respectively. Dk and Ek de-
note the components of electric displacement and electric fields, respectively. The indices i and j range from 1
to 6, and k and l range from 1 to 3. cij, eij and gij are the elastic, piezoelectric and dielectric coefficients, respec-
tively, relative to the geometrical axes of the cylindrical shell. The material properties are considered as het-
erogeneous through the thickness (i.e., cij(f), eij(f) and gij(f)).

In the cases of cylindrical bending problems, all the field variables must be the functions of circumferential
and thickness coordinates only, not the axial coordinate. Hence, all the relative derivatives of the field vari-
ables with respect to the axial coordinate will be identical to zero in the present formulation.

The strain–displacement relations are given by
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in which ux,uh and ur are the displacement components; oi = o/oi (i = h,r).
The stress equilibrium equations without body forces are given by
sxh;h þ sxr þ rsxr;r ¼ 0; ð4Þ
rh;h þ rshr;r þ 2shr ¼ 0; ð5Þ
shr;h þ rrr;r þ rr � rh ¼ 0: ð6Þ
The charge equation of the FG piezoelectric material without electric charge density is
$ �D ¼ 0; ð7Þ

where $ stands for the del operator, the symbol of Æ denotes the inner product of vectors and D is the electric
displacement vector.
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The relations between the electric field and electric potential are
E ¼ �$U; ð8Þ
where E denotes the electric field vector and U is the electric potential.
The boundary conditions of the problem are specified as follows:
On the lateral surfaces the transverse load �q�r ðhÞ and normal electric displacement �D�r ðhÞ (or electric poten-

tial �U�ðhÞ) are prescribed,
½ sxr shr rr � ¼ ½ 0 0 �q�r ðhÞ � on r ¼ R� h; ð9Þ
either Dr ¼ �D�r ðhÞ or U ¼ U�ðhÞ on r ¼ R� h: ð10Þ
The edge boundary conditions for the suitably grounded, simply supported shells (Fig. 1) are
rh ¼ ux ¼ ur ¼ U ¼ 0 at h ¼ 0 and h ¼ ha; ð11Þ
where ha denotes the angle between two edges.
According to Eqs. (1)–(8), it is listed that there are 22 basic equations of the 3D piezoelectricity. For a 3D

analysis, we must determine the aforementioned 22 unknown variables satisfying the basic equations (Eqs.
(1)–(8)) in the shell domain, the boundary conditions at outer surfaces (Eqs. (9) and (10)) and at the edges
(Eq. (11)). Apart from the existingly analytical approaches, we aim at developing the asymptotic formulations
for the 3D analysis of FG piezoelectric cylindrical shells under two different electric loads (i.e., prescribed nor-
mal electric displacement cases and prescribed electric potential cases).
3. Nondimensionalization

A set of dimensionless coordinates and elastic field variables are defined as
x1 ¼ x=R 2; x2 ¼ h= 2; x3 ¼ f=h and r ¼ Rþ f;

u1 ¼ ux=R 2; u2 ¼ uh=R 2; u3 ¼ ur=R;

r1 ¼ rx=Q; r2 ¼ rh=Q; s12 ¼ sxh=Q;

s13 ¼ sxr=Q 2; s23 ¼ shr=Q 2; r3 ¼ rr=Q22; ð12a–dÞ
where 22 = h/R; Q denotes a reference elastic moduli.
Two different sets of dimensionless electric field variables are defined as
D1 ¼ Dx=2ðj�1Þe; D2 ¼ Dh=2ðj�1Þe; D3 ¼ Dr=e;

/ ¼ Ue=2jRQ; ð13a–bÞ
where e denotes a reference piezoelectric moduli. In the present formulations, the superscript j is taken as zero
that corresponds to the analysis where the normal electric displacement and mechanical load are prescribed on
the lateral surfaces; whereas j = 2 corresponds to the analysis where the electric potential and mechanical load
are prescribed on the lateral surfaces.

To simplify the manipulation of the whole mathematic system, we select transverse stresses (sxr,shr, rr), elas-
tic displacements (ux,uh,ur), normal electric displacement (Dr) and electric potential (U) as primary field vari-
ables. The other variables are secondary field variables and can be expressed in terms of primary field
variables.

By eliminating the secondary field variables from Eqs. (1)–(8), and then introducing the set of dimensionless
coordinates and variables (Eqs. (12) and (13)) in the resulting equations, we can rewrite the basic equations in
the form of:
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u3;3 ¼ �22�a2u2;2 � 22�a2u3 þ 24~gr3 þ 22~eD3; ð14Þ
u1;3 ¼ 22~s55s13; ð15Þ
u2;3 ¼ �u3;2 þ 22ð1� x3o3Þu2 þ 22~s44s23 þ 24ðx3~s44Þs23 � 2jð~s44~e24Þ/;2; ð16Þ
D3;3 ¼ �2jD2;2 � 22ð1þ x3o3ÞD3; ð17Þ
s13;3 ¼ ��Q66u1;22 � 22ð1þ x3o3Þs13; ð18Þ
s23;3 ¼ ��Q22u2;22 � �Q22u3;2 � 22ð2þ x3o3Þs23 � 22~a2r3;2 � ~b2D3;2; ð19Þ
r3;3 ¼ �Q22u2;2 þ �Q22u3 � s23;2 � 22ð�~a2 þ 1þ x3o3Þr3 þ ~b2D3; ð20Þ
/;3 ¼ �2ð2�jÞ�b2u2;2 � 2ð2�jÞ�b2u3 þ 2ð4�jÞ~er3 � 2ð2�jÞ~cD3; ð21Þ
where the superscript j in Eqs. (16), (17) and (21) represents two different electric loading cases, namely the
prescribed normal electric displacement cases (j = 0) and prescribed electric potential cases (j = 2). In addition,
âi ~ai �ai½ �T ¼ e33e3i þ g33ci3
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The secondary field variables, such as in-surface stresses and electric displacements, can be expressed in terms
of the primary variables as follows:
r1 ¼ �Q12u2;2 þ �Q12u3 þ 22~a1r3 þ ~b1D3; ð22Þ
r2 ¼ �Q22u2;2 þ �Q22u3 þ 22~a2r3 þ ~b2D3; ð23Þ
s12 ¼ �Q66u1;2; ð24Þ
D1 ¼ 2ð2�jÞ~s55~e15s13; ð25Þ

D2 ¼ 2ð2�jÞ~s44~e24s23 � ~s44~e2
24 þ

g22Q
e2

� ��
ch

� �
/;2: ð26Þ
The dimensionless form of boundary conditions of the problem are given as follows:
On the lateral surface the transverse load and normal electric displacement are prescribed,
½ s13 s23 r3 � ¼ ½ 0 0 �q�3 ðx2Þ � on x3 ¼ �1; ð27Þ

either D3 ¼ �D�3 ðx2Þ on x3 ¼ �1ðj ¼ 0Þ; or / ¼ /�ðx2Þ on x3 ¼ �1ðj ¼ 2Þ; ð28Þ
where �q�3 ¼ �q�r =Q22; �D�3 ¼ �D�r =e; /� ¼ U�e=22RQ.
At the edges, the following quantities are satisfied:
r1 ¼ u1 ¼ u3 ¼ / ¼ 0 at x2 ¼ 0 and x2 ¼ ha=
ffiffiffiffiffiffiffiffi
h=R

p
: ð29Þ
4. Asymptotic expansions

Since Eqs. (14)–(21) contain terms involving only even powers of 2, we therefore asymptotically expand the
primary variables in the powers 22 as given by
f ðx2; x3;2Þ ¼ f ð0Þðx2; x3Þ þ 22f ð1Þðx2; x3Þ þ 24f ð2Þðx2; x3Þ þ � � � : ð30Þ
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4.1. Prescribed normal electric displacement cases (j = 0)

Substituting Eq. (30) into Eqs. (14)–(21), letting j = 0 and collecting coefficients of equal powers of �, we
obtain the following sets of recurrence equations for various order problems.

4.1.1. The leading-order problem

After performing nondimensionalization and asymptotic expansion manipulation, we obtain the basic dif-
ferential equations for the leading-order problem given by
uð0Þ3 ;3 ¼ 0; ð31Þ
/ð0Þ;3 ¼ 0; ð32Þ
uð0Þ1 ;3 ¼ 0; ð33Þ
uð0Þ2 ;3 ¼ �uð0Þ3 ;2 � ð~s44~e24Þ/ð0Þ;2; ð34Þ

Dð0Þ3 ;3 ¼ �Dð0Þ2 ;2 ¼ ~s44~e2
24 þ

g22Q
e2

� �
=ch

� �
/ð0Þ;22; ð35Þ

sð0Þ13 ;3 ¼ �Q66uð0Þ1 ;22; ð36Þ
sð0Þ23 ;3 ¼ �Q22uð0Þ2 ;22 � Q22uð0Þ3 ;2 � ~b2Dð0Þ3 ;2; ð37Þ
rð0Þ3 ;3 ¼ Q22uð0Þ2 ;2 þ Q22uð0Þ3 � sð0Þ23 ;2 þ ~b2Dð0Þ3 : ð38Þ
The transverse loads and normal electric displacement at the lateral surfaces are given as
½ sð0Þ13 sð0Þ23 sð0Þ3
� ¼ ½ 0 0 q�3 � on x3 ¼ �1; ð39Þ

Dð0Þ3 ¼ D�3 ðx2Þ on x3 ¼ �1: ð40Þ
At the edges, the following quantities are satisfied:
rð0Þ2 ¼ uð0Þ1 ¼ uð0Þ3 ¼ /ð0Þ ¼ 0 at x2 ¼ 0 and x2 ¼ ha=
ffiffiffiffiffiffiffiffi
h=R

p
: ð41Þ
4.1.2. The higher-order problems

The basic differential equations for the higher-order problems are obtained and given by
uðkÞ3 ;3 ¼ �a2uðk�1Þ
2 ;2 � a2uðk�1Þ

3 þ ~eDðk�1Þ
3 þ ~grðk�2Þ

3 ; ð42Þ
/ðkÞ;3 ¼ �b2uðk�1Þ

2 ;2 � �b2uðk�1Þ
3 � ~cDðk�1Þ

3 þ ~erðk�2Þ
3 ; ð43Þ

uðkÞ1 ;3 ¼ ~s55s
ðk�1Þ
13 ; ð44Þ

uðkÞ2 ;3 ¼ �uðkÞ3 ;2 � ð~s44~e24Þ/ðkÞ;2 þ ð1� x3o3Þuðk�1Þ
2 þ ~s44s

ðk�1Þ
23 þ ðx3~s44Þsðk�2Þ

23 ; ð45Þ
DðkÞ3 ;3 ¼ �DðkÞ2 ;2 � ð1þ x3o3ÞDðk�1Þ

3

¼ ~s44~e2
24 þ

g22Q
e2

� ��
ch

� �
/ðkÞ;22 � ð~s44~e24Þsðk�1Þ

23 ;2 � ð1þ x3o3ÞDðk�1Þ
3 ; ð46Þ

sðkÞ13 ;3 ¼ �Q66uðkÞ1 ;22 � ð1þ x3o3Þsðk�1Þ
13 ; ð47Þ

sðkÞ23 ;3 ¼ �Q22uðkÞ2 ;22 � Q22uðkÞ3 ;2 � ~b2DðkÞ3 ;2 � ð2þ x3o3Þsðk�1Þ
23 � ~a2r

ðk�1Þ
3 ;2; ð48Þ

rðkÞ3 ;3 ¼ Q22uðkÞ2 ;2 þ Q22uðkÞ3 � sðkÞ23 ;2 þ ~b2DðkÞ3 � ð�~a2 þ 1þ x3o3Þrðk�1Þ
3 : ð49Þ
The transverse loads and electric normal displacement at the lateral surfaces are given as
½ sðkÞ13 sðkÞ23 sðkÞ3 � ¼ ½ 0 0 0� on x3 ¼ �1; ð50Þ
DðkÞ3 ¼ 0 on x3 ¼ �1: ð51Þ
At the edges, the following quantities are satisfied:
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rðkÞ2 ¼ uðkÞ1 ¼ uðkÞ3 ¼ /ðkÞ ¼ 0 at x2 ¼ 0 and x2 ¼ ha=
ffiffiffiffiffiffiffiffi
h=R

p
: ð52Þ
It is noted that the secondary variables for various orders can be expressed in terms of the primary variables of
lower-order using Eqs. (22)–(26) with j = 0. For brevity, these expressions are omitted.

4.2. Prescribed electric potential cases (j = 2)

Substituting Eq. (30) into Eqs. (14)–(21), letting j = 2 and collecting coefficients of equal powers of �, we
obtain the following sets of recurrence equations corresponding to various order problems.

4.2.1. The leading order problem

The basic differential equations for the leading-order problem given by
/ð0Þ;3 ¼ �b2uð0Þ2 ;2 � �b2uð0Þ3 � ~cDð0Þ3 ; ð53Þ
uð0Þ2 ;3 ¼ �uð0Þ3 ;2; ð54Þ
Dð0Þ3 ;3 ¼ 0; ð55Þ
The other basic equations related to the first derivative of primary field variables (uð0Þ1 ; uð0Þ3 ; sð0Þ13 ; s
ð0Þ
23 ; r

ð0Þ
3 Þ with

respect to the thickness coordinate remain identical to those equations in the cases of prescribed normal elec-
tric displacement (i.e., Eqs. (31), (33) and (36)–(38)).

The prescribed transverse loads on the lateral surfaces are expressed in the same form as Eq. (39). In addi-
tion, electric potential is prescribed as
/ð0Þ ¼ /�ðx2Þ on x3 ¼ �1: ð56Þ

The edge conditions remain the same as those in the cases of prescribed normal electric displacement (Eq. (41)).

4.2.2. The higher-order problems

The basic differential equations for the higher-order problems are obtained and given by
/ðkÞ;3 ¼ ��b2uðkÞ2 ;2 � �b2uðkÞ3 � ~cDðkÞ3 þ ~erðk�1Þ
3 ; ð57Þ

uðkÞ2 ;3 ¼ �uðkÞ3 ;2 � ð~s44~e24Þ/ðk�1Þ;2 þ ð1� x3o3Þuðk�1Þ
2 þ ~s44s

ðk�1Þ
23 þ ðx3~s44Þsðk�2Þ

23 ; ð58Þ
DðkÞ3 ;3 ¼ �Dðk�1Þ

2 ;2 � ð1þ x3o3ÞDðk�1Þ
3

¼ �~s44~e24s
ðk�1Þ
23 ;2 þ ~s44~e2

24 þ
g22Q

e2

� ��
ch

� �
/ðk�1Þ;22 � ð1þ x3o3ÞDðk�1Þ

3 ; ð59Þ
The other differential equations are the same as Eqs. (42), (44) and (47)–(49).
The prescribed transverse loads on the lateral surfaces are in the same form as Eq. (50) and the electric

potential is given as
/ðkÞ ¼ 0 on x3 ¼ �1: ð60Þ

The edge conditions remain the same as those in the cases of prescribed normal electric displacement (Eq.
(52)).

Again, the secondary variables for various orders can be expressed in terms of the primary variables of
lower-order using Eqs. (22)–(26) with j = 2.

5. Successive integration

5.1. Prescribed normal electric displacement cases (j = 0)

5.1.1. The leading-order problem

Examination of the sets of asymptotic equations, it is found that the analysis can be carried on by integrat-
ing those equations through the thickness direction. We therefore integrate Eqs. (31)–(34) to obtain



C.-P. Wu, Y.-S. Syu / International Journal of Solids and Structures 44 (2007) 6450–6472 6457
uð0Þ3 ¼ u0
3ðx2Þ; ð61Þ

/ð0Þ ¼ /0ðx2Þ; ð62Þ
uð0Þ1 ¼ u0

1ðx2Þ; ð63Þ
uð0Þ2 ¼ u0

2ðx2Þ � x3u0
3;2 � ~E24

00ðx3Þ/0;2; ð64Þ
where u0
1; u

0
2; u

0
3 and /0 represent the displacements and electric potential on the middle surface;

~Ekl
00ðx3Þ ¼

R x3

0 ð~sll~eklÞdg.
By observation from Eq. (64), it is noted that the in-surface displacement at the leading-order level is depen-

dent on the electric potential. Based on the previous study, we may consider Eqs. (61)–(64) as the generalized
kinematics assumptions for the cylindrical bending analysis of thin piezoelectric shells under prescribed nor-
mal electric displacement.

Proceeding to derive the governing equations for the leading-order, we successively integrate Eqs. (35)–(38)
through the thickness with using the lateral boundary conditions on x3 = �1 (Eqs. (39) and (40)) to yield
Dð0Þ3 ¼ D�3 þ
Z x3

�1

~s44~e2
24 þ

g22Q
e2

� �
1

ch

� �
dg

� �
/0;22

¼ D�3 þ D0
3 ð65Þ

sð0Þ13 ¼ �
Z x3

�1

Q66 dg

� �
u0

1;22; ð66Þ

sð0Þ23 ¼ �
Z x3

�1

Q22ðu0
2;22 � gu0

3;222 � ~E24
00/

0;222Þ þ Q22u0
3;2 þ ~b2ðD�3 ;2 þ D0

3;2Þ
� �

dg; ð67Þ

rð0Þ3 ¼ q�3 þ
Z x3

�1

½Q22ðu0
2;2 � gu0

3;22 � ~E24
00/

0;22Þ þ Q22u0
3 þ ~bðD�3 þ D0

3Þ�dg

þ
Z x3

�1

ðx3 � gÞ½Q22ðu0
2;222 � gu0

3;2222 � ~E24
00/

0;2222Þ þ Q22u0
3;22 þ ~bðD�3 ;22 þ D0

3;22Þ�dg: ð68Þ
After imposing the lateral boundary conditions on x3 = 1, we obtain the governing equations for the lead-
ing order problem as follows:
K11u0
1 ¼ 0; ð69Þ

K22u0
2 þ K23u0

3 þ K24/
0 ¼ ~F 32D�3 ;2; ð70Þ

K32u0
2 þ K33u0

3 þ K34/
0 ¼ qþ3 � q�3 � ~F 32D�3 þ ~H 32D�3 ;22; ð71Þ

K44/
0 ¼ Dþ3 � D�3 ; ð72Þ
in which
K11 ¼ �A66o22;

K22 ¼ �A22o22;

K23 ¼ B22o222 � A22o2;

K24 ¼ ðE24
22 � ~F 24

32Þo222;

K32 ¼ �B22o222 þ A22o2;

K33 ¼ D22o2222 � 2B22o22 þ A22;

K34 ¼ ðG24
22 � ~H 24

32Þo2222 � ðE24
22 � ~F 24

32Þo22;

K44 ¼ F 24o22;

Âij
~Aij

Aij

2
4

3
5 ¼

Z 1

�1

Q̂ij
~Qij

Qij

2
4

3
5dx3;

B̂ij
~Bij

Bij

2
4

3
5 ¼

Z 1

�1

x3

Q̂ij
~Qij

Qij

2
4

3
5dx3;
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D̂ij

~Dij

Dij

2
64

3
75 ¼

Z 1

�1

x2
3

Q̂ij

~Qij

Qij

2
64

3
75dx3;

Êkl
ij

~Ekl
ij

Ekl
ij

2
664

3
775 ¼

Z 1

�1

Q̂ij

~Qij

Qij

2
64

3
75
Z x3

0

ð~sll~eklÞdgdx3;

F̂ 24
3i

~F 24
3i

F 24
3i

2
64

3
75 ¼

Z 1

�1

b̂i

~bi

bi

2
64

3
75
Z x3

�1

1

ch

� �
~s44~e2

24 þ
g22Q

e2

� �
dgdx3;

F̂ 3i

~F 3i

F 3i

2
64

3
75 ¼

Z 1

�1

b̂i

~bi

bi

2
64

3
75dx3;

F̂ kl

~F kl

F kl

2
64

3
75 ¼

Z 1

�1

~sll~e2
kl þ

gkkQ
e2

� � ch

1

1=ch

2
64

3
75dx3;

Ĝkl
ij

~Gkl
ij

Gkl
ij

2
664

3
775 ¼

Z 1

�1

x3

Q̂ij

~Qij

Qij

2
64

3
75
Z x3

0

ð~sll~eklÞdgdx3;

Ĥ 24
3i

~H 24
3i

H 24
3i

2
64

3
75 ¼

Z 1

�1

x3

b̂i

~bi

bi

2
64

3
75
Z x3

�1

1

ch

� �
~s44~e2

24 þ
g22Q

e2

� �
dgdx3;

Ĥ 3i

~H 3i

H 3i

2
64

3
75 ¼

Z 1

�1

x3

b̂i

~bi

bi

2
64

3
75dx3:
Solutions of Eqs. (69)–(72) must be supplemented with the edge boundary conditions (Eq. (41)) to constitute a
well-posed boundary value problem. Once u0

1; u
0
2; u

0
3 and /0 are determined, the leading-order solutions of

other variables of electric and mechanical fields can be obtained by Eqs. (61)–(68).

5.1.2. The higher-order problems

Proceeding to order 22k (k = 1, 2, 3, etc) and integrating Eqs. (42)–(45) through the thickness coordinate,
we readily obtain
uðkÞ3 ¼ uk
3ðx2Þ þ u3kðx2; x3Þ; ð73Þ

/ðkÞ ¼ /kðx2Þ þ u4kðx2; x3Þ; ð74Þ
u
ðkÞ
1 ¼ uk

1ðx2Þ; ð75Þ
uðkÞ2 ¼ uk

2ðx2Þ � x3uk
3;2 � ~E24

00ðx3Þ/k
;2 þ u2kðx2; x3Þ; ð76Þ
where uk
1; uk

2 uk
3 and /k represent the modifications to the elastic displacements and electric potential on the

middle surface; u2k, u3k and u4k are the relevant functions.
After integrating Eqs. (46)–(49) through the thickness with using Eqs. (73)–(76) and the lateral boundary

conditions (Eqs. (50) and (51)), we obtain the governing equations for higher-order problems as follows:
K11uk
1 ¼ 0; ð77Þ

K22uk
2 þ K23uk

3 þ K24/
k ¼ f2kðx2; 1Þ; ð78Þ

K32uk
2 þ K33uk

3 þ K34/
k ¼ f3kðx2; 1Þ þ

of2kðx2; 1Þ
ox2

; ð79Þ

K44/
k ¼ f4kðx2; 1Þ; ð80Þ
where f2k, f3k and f4k are the nonhomogenous terms and they can be calculated from the lower-order solutions.
With the appropriate edge boundary conditions (Eq. (52)), we can readily obtain the higher-order modifi-

cations (i.e., uk
1; uk

2 uk
3 and /k) using the same solution methodology as used in the leading-order problem.

Afterwards, the higher-order modifications of other field variables can be obtained by Eqs. (46)–(49) and Eqs.
(73)–(76).

It is noted that the governing equations of higher-order problems are the same as those equations of the
leading-order problem except for the nonhomogenous terms. In view of the recursive property, a solution
methodology applied for solving the leading-order problem can be repeatedly applied for solving the
higher-order problems. Hence, the present asymptotic solutions can be obtained in a hierarchic manner.
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5.2. Prescribed electric potential cases (j = 2)

5.2.1. The leading-order problem

Following the similar derivation in the previous cases of applied normal electric displacement and perform-
ing successive integration to those basic differential equations through the thickness direction (Eqs. (31), (33),
(54) and (55)), we obtain
uð0Þ3 ¼ u0
3ðx2Þ; ð81Þ

uð0Þ1 ¼ u0
1ðx2Þ; ð82Þ

uð0Þ2 ¼ u0
2ðx2Þ � x3u0

3;2; ð83Þ

Dð0Þ3 ¼ D0
3ðx2Þ; ð84Þ
where u0
1; u0

2; u0
3 and D0

3 represent the displacements and normal electric displacement on the middle
surface.

Eqs. (81)–(84) may be regarded as the generalized kinematics assumptions for the cylindrical bending anal-
ysis of thin piezoelectric shells under prescribed electric potential.

By integrating the basic differential equations relative to the transverse stresses (Eqs. (36)–(38)) and electric
potential (Eq. (53)) through the thickness and using Eqs. (81)–(84) and the lateral boundary conditions on
x3 = �1 (Eqs. (39) and (56)), we obtain
/ð0Þ ¼ /� �
Z x3

�1

b2 u0
2;2 � gu0

3;22


 �
þ b2u0

3 þ ~cD0
3

h i
dg; ð85Þ

sð0Þ13 ¼ �
Z x3

�1

Q66dg

� �
u0

1;22; ð86Þ

sð0Þ23 ¼ �
Z x3

�1

Q22 u0
2;22 � gu0

3;222


 �
þ Q22u0

3;2 þ ~b2D0
3;2

h i
dg; ð87Þ

rð0Þ3 ¼ �q�3 þ
Z x3

�1

Q22 u0
2;2 � gu0

3;22


 �
þ Q22u0

3 þ ~bD0
3

h i
dg

þ
Z x3

�1

ðx3 � gÞ Q22 u0
2;222 � gu0

3;2222


 �
þ Q22u0

3;22 þ ~bD0
3;22

h i
dg: ð88Þ
After imposing the lateral boundary conditions on x3 = 1, we obtain the governing equations for the lead-
ing-order problem as follows:
K11u0
1 ¼ 0; ð89Þ

K22u0
2 þ K23u0

3 þ L24D0
3 ¼ 0; ð90Þ

K32u0
2 þ K33u0

3 þ L34D0
3 ¼ qþ3 � q�3 ; ð91Þ

L42u0
2 þ L43u0

3 þ L44D0
3 ¼ /þ � /�; ð92Þ
in which Kij are defined as previous in the cases of prescribed normal electric displacement, and
L24 ¼ �~F 32o2;

L34 ¼ � ~H 32o22 þ ~F 32;

L42 ¼ ��F 32o2;

L43 ¼ H 32o22 � F 32;

L44 ¼ �E0;

E0 ¼
Z 1

�1

~cdx3:



6460 C.-P. Wu, Y.-S. Syu / International Journal of Solids and Structures 44 (2007) 6450–6472
Solutions of Eqs. (89)–(92) must be supplemented with the edge boundary conditions (Eq. (41)) to constitute a
well-posed boundary value problem. Once u0

1; u0
2; u0

3 and D0
3 are determined, the leading-order solutions of

other variables of electric and mechanical fields can be obtained from Eqs. (81)–(88).

5.2.2. The higher-order problems

Proceeding to order 22k (k = 1, 2, 3, etc.) and integrating Eqs. (42), (44), (58) and (59) through the thickness
coordinate, we readily obtain
uðkÞ3 ¼ uk
3ðx2Þ þ w3kðx2; x3Þ; ð93Þ

DðkÞ3 ¼ Dk
3ðx2Þ þ w4kðx2; x3Þ; ð94Þ

uðkÞ1 ¼ uk
1ðx2Þ; ð95Þ

uðkÞ2 ¼ uk
2ðx2Þ � x3uk

3;2 þ w2kðx2; x3Þ; ð96Þ
where uk
1; uk

2 uk
3 and Dk

3 represent the modifications to the elastic displacements and electric potential on the
middle surface; w2k, w3k and w4k are the relevant functions.

After integrating the basic differential equations (Eqs. (47)–(49) and (57)) through the thickness with using
Eqs. (93)–(96) and the lateral boundary conditions (Eqs. (50) and (60)), we obtain the governing equations for
higher-order problems as follows:
K11uk
1 ¼ 0; ð97Þ

K22uk
2 þ K23uk

3 þ L24/
k ¼ g2kðx2; 1Þ; ð98Þ

K32uk
2 þ K33uk

3 þ L34Dk
3 ¼ g3kðx2; 1Þ þ

og2kðx2; 1Þ
ox2

; ð99Þ

L42uk
2 þ L43uk

3 þ L44Dk
3 ¼ g4kðx2; 1Þ; ð100Þ
where g2k, g3k and g4k are the nonhomogenous terms and they can be calculated from the lower-order
solutions.

With the appropriate edge boundary conditions (Eq. (52)), the higher-order modifications (i.e., uk
1; uk

2 uk
3

and Dk
3Þ can be readily obtained using the same solution methodology as used in the leading-order problem.

Afterwards, the higher-order modifications of other field variables can be obtained from Eqs. (47)–(49), (57)
and (93)–(96).
6. Applications to benchmark problems

The benchmark problems of simply-supported, functionally graded piezoelectric cylindrical shells under
lateral electromechanical loads (Fig. 2) are studied using the present asymptotic formulations.

The electromechanical loads acting on lateral surface of the shell (f = h) are considered and expressed by
the Fourier series in the dimensionless form of
qþr ðx2Þ ¼
X1
n¼1

qn sin ~nx2; ð101Þ

Dþr ðx2Þ ¼
X1
n¼1

Dn sin ~nx2; ð102Þ

/þðx2Þ ¼
X1
n¼1

/n sin ~nx2; ð103Þ
where ~n ¼ n=
ffiffiffiffiffiffiffiffi
h=R

p
and n is a positive integer.

The applications of the present asymptotic formulations to various piezoelectric cylindrical shells under
previous two cases of electromechanical loads are detailed described as follows.



 a single-layer shell a multilayered shell a functionally graded shell 
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Fig. 2. The geometry and coordinates of a typical cross section of a cylindrical strip.
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6.1. Prescribed normal electric displacement cases (j = 0)

The governing equations of the leading-order problem (Eqs. (69)–(72)) can be readily solved by
letting
u0
1 ¼

X1
n¼1

u0
1n sin ~nx2; ð104Þ

u0
2 ¼

X1
n¼1

u0
2n cos ~nx2; ð105Þ

u0
3 ¼

X1
n¼1

u0
3n sin ~nx2; ð106Þ

/0 ¼
X1
n¼0

/0
n sin ~nx2: ð107Þ
Substituting Eqs. (104)–(107) into Eqs. (69)–(72) gives
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k11 0 0 0

0 k22 k23 k24

0 k32 k33 k34

0 0 0 k44

2
6664

3
7775

u0
1n

u0
2n

u0
3n

/0
n

8>>><
>>>:

9>>>=
>>>;
¼

0

0

qn

Dn

8>>><
>>>:

9>>>=
>>>;
; ð108Þ
where kij are the relevant coefficients.
The elastic displacement u0

1n u0
2n; u0

3n and electric potential /0
n can be determined from Eq. (108). Once

u0
1n; u0

2n u0
3n and /0

n are determined, the 20-order solution can be obtained from Eqs. (61)–(68). The summation
signs would be dropped for brevity in the following derivation.

Carrying on the solution to higher-order (22k-order, k = 1, 2, 3, etc.), we find that the nonhomogeneous
terms for fixed values of n in the 22k-order equations are
f2kðx2; 1Þ ¼ ~f 2kð1Þ cos ~nx2; ð109Þ
f3kðx2; 1Þ ¼ ~f 3kð1Þ sin ~nx2; ð110Þ
f4kðx2; 1Þ ¼ ~f 4kð1Þ sin ~nx2: ð111Þ
In view of the recurrence of the equations, the 22k-order solution can be obtained by letting
uk
1 ¼ uk

1n sin ~nx2; ð112Þ
uk

2 ¼ uk
2n cos ~nx2; ð113Þ

uk
3 ¼ uk

3n sin ~nx2; ð114Þ
/k ¼ /k

n sin ~nx2: ð115Þ
Substituting Eqs. (109)–(111) and Eqs. (112)–(115) into Eqs. (77)–(80) gives
k11 0 0 0

0 k22 k23 k24

0 k32 k33 k34

0 0 0 k44

2
6664

3
7775

uk
1n

uk
2n

uk
3n

/k
n

8>>><
>>>:

9>>>=
>>>;
¼

:0
~f 2kð1Þ

~f 3kð1Þ � ~n~f 2kð1Þ
~f 4kð1Þ

8>>><
>>>:

9>>>=
>>>;
: ð116Þ
Following the similar solution process of the leading-order level, we obtain the modifications of generalized
kinematics variables uk

1n; uk
2n; uk

3n and /k
n for the higher-order problems. Afterwards, the 22k-order corrections

are determined using Eqs. (46)–(49) and Eqs. (73)–(76). It is shown that the solution process can be repeatedly
applied for various order problems and the asymptotic solutions can be obtained in a hierarchic manner.

6.2. Prescribed electric potential cases (j = 2)

The governing equations of the leading-order problem (Eqs. (89)–(92)) can be also solved by letting u0
1; u0

2

and u0
3 be in the same forms as Eqs. (104)–(106) and
D0
3 ¼

X1
n¼1

D0
3n sin ~nx2: ð117Þ
Substituting Eqs. (104)–(106) and (117) into Eqs. (89)–(92) gives
k11 0 0 0

0 k22 k23 l24

0 k32 k33 l34

0 l42 l43 l44

2
6664

3
7775

u0
1n

u0
2n

u0
3n

D0
3n

8>>><
>>>:

9>>>=
>>>;
¼

0

0

qn

/n

8>>><
>>>:

9>>>=
>>>;
; ð118Þ
where lij are the relevant coefficients; kij are the same as those in Eq. (108).
The elastic displacement u0

1n u0
2n; v0

3n and electric displacement D0
3n can be obtained by solving the simulta-

neously algebraic equations (118). Once they are determined, the 20-order solution can be obtained from Eqs.
(81)–(88). Again, the summation signs would be dropped for brevity in the following derivation.
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Carrying on the solution to higher-order (22k-order, k = 1, 2, 3, etc.), we find that the nonhomogeneous
terms for fixed values of n in the 22k-order equations are
g2kðx2; 1Þ ¼ ~g2kð1Þ cos ~nx2; ð119Þ
g3kðx2; 1Þ ¼ ~g3kð1Þ sin ~nx2; ð120Þ
g4kðx2; 1Þ ¼ ~g4kð1Þ sin ~nx2: ð121Þ
In view of the recurrence of the equations, the 22k-order solution can be obtained by letting uk
1; uk

2 and uk
3 be in

the same forms as Eqs. (112)–(114) and
Dk
3 ¼ Dk

3n sin ~nx2: ð122Þ
Substituting Eqs. (112)–(114) and (122) into Eqs. (97)–(100) gives
k11 0 0 0

0 k22 k23 l24

0 k32 k33 l34

0 l42 l43 l44

2
6664

3
7775

uk
1n

uk
2n

uk
3n

Dk
3n

8>>><
>>>:

9>>>=
>>>;
¼

0

~g2kð1Þ
~g3kð1Þ � ~n~g2kð1Þ

~g4kð1Þ

8>>><
>>>:

9>>>=
>>>;
: ð123Þ
By solving the system of algebraic equations (123), we may obtain the modifications of generalized kinematics
variables uk

1n; uk
2n; uk

3n and Dk
3n for the higher-order problems. Afterwards, the 22k-order corrections are deter-

mined using Eqs. (47)–(49), (57) and (93)–(96). Again, it is shown that the solution process can be repeatedly
applied for various order problems and the asymptotic solutions can be obtained in a hierarchic manner.

7. Illustrative examples

In illustrative examples, we consider four cases of electromechanical loads as follows:
For the cases of prescribed electric potential (j = 2), we consider
Case 1: qþr ¼ q0 sin
p
ha

h

� �
¼ N=m2; q�r ¼ 0 N=m2; Uþ ¼ 0 V; U� ¼ 0 V: ð124Þ

Case 2: qþr ¼ 0 N=m2; q�r ¼ 0 N=m2; Uþ ¼ /0 sin
p
ha

h

� �
V; U� ¼ 0 V: ð125Þ
For the cases of prescribed normal electric displacement (j = 0), we consider
Case 3: qþr ¼ q0 sin
p
ha

h

� �
¼ N=m2; q�r ¼ 0 N=m2; Dþr ¼ 0 C=m2

; D�r ¼ 0 C=m2
: ð126Þ

Case 4: qþr ¼ 0 N=m2; q�r ¼ 0 N=m2; Dþr ¼ D0 sin
p
ha

h

� �
C=m2

; D�r ¼ 0 C=m2
: ð127Þ
Since the material is considered as heterogeneous through the thickness coordinate in the present asymptotic
formulations, we evaluate the structural behavior of two types of piezoelectric cylindrical shells by assuming
appropriate material property variations through the thickness coordinate as follows:

Type 1-single-layer piezoelectric cylindrical shells.
For a Type 1 shell, the material properties are assumed as homogeneous, independent upon the thickness

coordinate, and are given by
mijðfÞ ¼ mij; ð128Þ
where mij = cij, eij and gij.
Type 2-functionally graded piezoelectric shells.
For a Type 2 shell, the material properties are assumed to obey the identical exponent-law varied exponen-

tially with the thickness coordinate and are given by
mij ¼ mðbÞij ea½ðfþhÞ=2h�; ð129Þ
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where the superscript b in the parentheses denotes the bottom surface; a is the material property gradient index
which represents the degree of the material gradient along the thickness and can be determined by the values
of the material properties at the top and bottom surfaces, i.e.,
a ¼ ln
mðtÞij

mðbÞij

; ð130Þ
where the superscript t in the parentheses denotes the top surface. ln(z) denotes the natural logarithm function
of z which is the inverse of the exponential function, ez. A typical exponential function ea[(f+h)/2h] used for
material properties in the present analysis, is sketched in Fig. 3 where a is taken as the values of �3.0,
�1.5, 0, 1.5, 3, respectively.
7.1. Single-layer piezoelectric cylindrical shells

For comparison purpose, the present asymptotic formulations are applied to the cylindrical bending anal-
ysis of simply-supported, single-layer homogeneous piezoelectric cylindrical shells in Tables 2 and 3. The shells
are considered to be composed of polyvinyledence fluoride (PVDF) polarized along the radial direction. The
elastic, piezoelectric and dielectric properties of PVDF material are given in Table 1. The loading conditions
on lateral surfaces are considered as Cases 1 and 2 with q0 = �1 N/m2 and /0 = �1 V (Eqs. (124) and (125)),
respectively, in Tables 2 and 3. The dimensionless variables are denoted as the same forms of those in the ref-
erence (Dumir et al., 1997). For loading conditions of Case 1 in Table 2 where the mechanical load is applied
with free electric potential on the lateral surfaces of the shells, the dimensionless variables are denoted as
ðuh; urÞ ¼
100Y r

2hS4jq0j
ðuh; urÞ;

ðrx; rh; rr; shrÞ ¼ ðrx=S2; rh=S2; rr; shr=SÞ=jq0j;
ðDh;DrÞ ¼ ðDh;DrÞ=jd1jSjq0j ð131a–dÞ
/ ¼ jd1jY r/=2 hS2jq0j;
and S = R/2h, Yr = 2.0 GPa, d1=�30 · 10�12CN�1.
For loading conditions of Case 2 in Table 3 where the electric potential is applied with free tractions on the

lateral surfaces of the shells, the dimensionless variables are denoted as
2

h

heα +

h
ζ
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Fig. 3. Variation of normalized material properties along the thickness coordinate in the FG piezoelectric shells.



Table 1
Elastic, piezoelectric and dielectric properties of piezoelectric materials

Moduli PVDT (Dumir et al., 1997) PZT-4 (Vel et al., 2004)

c11 (GPa) 3.0 138.499
c22 3.0 138.499
c33 3.0 114.745
c12 1.5 77.371
c13 1.5 73.643
c23 1.5 73.643
c44 0.75 25.6
c55 0.75 25.6
c66 0.75 30.6
e24 (C/m2) 0.0 12.72
e15 0.0 12.72
e31 �0.15e�02 �5.2
e32 0.285e�01 �5.2
e33 �0.51e�01 15.08
g11 (F/m) 0.1062e�09 1.306e�08
g22 0.1062e�09 1.306e�08
g33 0.1062e�09 1.151e�08
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ðuh; urÞ ¼
100

jd1jSj/0j
ðuh; urÞ;

ðrx; rh; rr; shrÞ ¼ ðrx; S
2rh; S

3rr; S
3shrÞ2h=Y rjd1jj/0j;

ðDh;DrÞ ¼ ðSDh;DrÞ2h=jd1j2Y rj/0j

/ ¼ /=j/0j: ð132a–dÞ
Tables 2 and 3 show the present asymptotic solutions of elastic and electric field variables for various orders at
crucial positions in the cylindrical shells. The present asymptotic solutions are computed up to the 212-order
level with R/2h = 4, 10, 100 and ha = p/3. It is shown that the convergent speed in the cases of thin shells is
more rapid than that in the cases of thick shells. The present convergent solutions yield at the 28-order level
for the cases of thick shells (R/2h = 4), at the 26-order level for the cases of moderately thick shells (R/2h = 10)
and at the 24-order level for the cases of thin shells (R/2h = 100). The present convergent solutions are also
compared with the 3D piezoelectricity solutions available in the literature (Dumir et al., 1997). It is shown that
the present convergent solutions are in good agreement with the 3D piezoelectricity solutions.

7.2. Functionally graded piezoelectric cylindrical shells

Figs. 4–6 show the variations of mechanical and electric variables across the thickness coordinate for the
moderately shells (R/2h = 10) under loading conditions of Cases 1, 2 and 4, respectively, where a is taken
as �3.0, �1.5, 0, 1.5, 3.0.. The material properties are assumed to obey the identical exponent-law varied expo-
nentially with the thickness coordinate and are given in Eq. (129). The material properties of PZT-4 are used
as the reference material properties (Table 1) and placed on the bottom surface (i.e., cðbÞij ; e

ðbÞ
ij ; g

ðbÞ
ij ). According

to Eq. (130), the ratio of material properties between top surface and bottom surface is given as
cðtÞij

cðbÞij

¼
eðtÞij

eðbÞij

¼
gðtÞij

gðbÞij

¼ ea; ð133Þ
where a is considered to range from �3.0 to 3.0 so that the ratio of material properties between top surface
and bottom surface is approximately from 0.05 to 20. In addition, the present results for FG piezoelectric
shells with a particular value of a = 0 may reduce to the results of single-layer homogeneous piezoelectric
shells.



Table 2
Mechanical and electric components at the crucial positions in single-layer piezoelectric cylindrical shells (PVDF) under cylindrical bending (case 1)

R/2h 22k uhð0;þhÞ uhð0;�hÞ urðha
2 ; 0Þ rxðha

2 ;þhÞ rxðha
2 ;�hÞ rhðha

2 ;þhÞ rhðha
2 ;�hÞ rrðhr

2 ; 0Þ shrð0; 0Þ 103/ðha
2 ; 0Þ 10Drðha

2 ;þhÞ 10Drðha
2 ;�hÞ Dhð0; 0Þ

4 20 0.7432 �8.9744 �12.9568 �0.2058 0.2433 �0.6148 0.7270 0.1499 �0.4992 2.2113 0.0000 0.0000 �0.3914
22 �0.3777 �12.2956 �19.2634 �0.2706 0.3145 �0.7466 0.9399 0.2069 �0.6132 2.4302 0.1164 2.1034 �0.4301
24 �0.7915 �12.9657 �20.7983 �0.2746 0.3244 �0.7585 0.9696 0.2159 �0.6229 2.4399 0.0299 2.5156 �0.4319
26 �0.8675 �13.0728 �21.0594 �0.2749 0.3255 �0.7596 0.9730 0.2169 �0.6237 2.4425 0.0218 2.5472 �0.4323
28 �0.8788 �13.0879 �21.0972 �0.2750 0.3257 �0.7597 0.9734 0.2170 �0.6237 2.4427 0.0214 2.5494 �0.4324
210 �0.8804 �13.0899 �21.1022 �0.2750 0.3257 �0.7597 0.9735 0.2170 �0.6238 2.4427 0.0213 2.5496 �0.4324
212 �0.8806 �13.0902 �21.1029 �0.2750 0.3257 �0.7597 0.9735 0.2170 �0.6238 2.4428 0.0213 2.5496 �0.4324
3D solutions (Dumir et al., 1997) �0.8806 �13.09 �21.10 �0.2750 0.3257 �0.7597 0.9735 0.2170 �0.6238 2.443 0.0213 2.550 �0.4324

10 20 �2.3513 �6.2520 �13.0025 �0.2159 0.2308 �0.6451 0.6896 1.1600 �0.4999 2.2142 0.0000 0.0000 �0.3919
22 �3.3276 �7.8519 �16.8350 �0.2510 0.2724 �0.7402 0.8140 1.3886 �0.5798 2.5225 �0.0810 0.7047 �0.4465
24 �3.5329 �8.1285 �17.5532 �0.2544 0.2773 �0.7501 0.8286 1.4161 �0.5882 2.5558 �0.1496 0.7782 �0.4524
26 �3.5665 �8.1702 �17.6658 �0.2547 0.2778 �0.7512 0.8302 1.4191 �0.5891 2.5595 �0.1566 0.7826 �0.4530
28 �3.5715 �8.1761 �17.6819 �0.2548 0.2779 �0.7513 0.8304 0.4195 �0.5892 2.5600 �0.1574 0.7829 �0.4531
210 �3.5722 �8.1769 �17.6841 �0.2548 0.2779 �0.7514 0.8304 1.4195 �0.5893 2.5600 �0.1574 0.7830 �0.4531
212 �3.5723 �8.1770 �17.6844 �0.2548 0.2779 �0.7514 0.8304 1.4195 �0.5893 2.5600 �0.1575 0.7830 �0.4531
3D solutions (Dumir et al., 1997) �3.572 �8.177 �17.68 �0.2548 0.2779 �0.7514 0.8304 1.420 �0.5893 2.560 �0.1575 0.7830 �0.4531

100 20 �4.1416 �4.5319 �13.0111 �0.2224 0.2239 �0.6645 0.6689 16.1660 �0.5000 2.2148 0.0000 0.0000 �0.3920
22 �5.1054 �5.5411 �15.9705 �0.2479 0.2502 �0.7405 0.7477 18.0972 �0.5580 2.4714 �0.1759 �0.0975 �0.4374
24 �5.2686 �5.7093 �16.4677 �0.2507 0.2532 �0.7490 0.7565 18.3121 �0.5645 2.5000 �0.2010 �0.1148 �0.4425
26 �5.2930 �5.7342 �16.5416 �0.2510 0.2535 �0.7499 0.7574 18.3359 �0.5652 2.5031 �0.2037 �0.1168 �0.4431
28 �5.2964 �5.7377 �16.5519 �0.2510 0.2535 �0.7500 0.7575 18.3386 �0.5653 2.5035 �0.2041 �0.1170 �0.4431
210 �5.2968 �5.7382 �16.5533 �0.2510 0.2535 �0.7500 0.7575 18.3389 �0.5653 2.5035 �0.2041 �0.1171 �0.4431
212 �5.2969 �5.7382 �16.5535 �0.2510 0.2535 �0.7500 0.7576 18.3389 �0.5653 2.5035 �0.2041 �0.1171 �0.4431
3D solutions (Dumir et al., 1997) �5.297 �5.738 �16.55 �0.2510 0.2535 �0.7500 0.7576 18.34 �0.5653 2.504 �0.2041 �0.1171 �0.4431
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Table 3
Mechanical and electric components at the crucial positions in single-layer piezoelectric cylindrical shells (PVDF) under cylindrical bending (case 2)

R/2h 22k uhð0;þhÞ uhð0;�hÞ urðha
2 ; 0Þ rxðha

2 ;þhÞ rxðha
2 ;�hÞ rhðha

2 ;þhÞ rhðha
2 ; 0Þ rhðha

2 ;�hÞ shrð0� h
2Þ /ðha

2 ; 0Þ Drðha
2 ;þhÞ Drðha

2 ;�hÞ Dhð0; hÞ
4 20 �27.0370 �20.3704 8.8889 �0.1000 �0.1000 0.0000 0.0000 0.0000 0.0000 �0.5000 60.2017 60.2017 157.3333

22 �28.6269 �13.6980 12.0040 �0.1318 �0.1364 �1.3132 0.7100 �1.5595 0.4048 �0.4981 62.8177 62.4993 157.3333
24 �28.7444 �13.7686 11.9212 �0.1307 �0.1359 �1.2650 0.6757 �1.5355 0.3935 �0.4978 62.7708 62.4753 157.3333
26 �28.7425 �13.7762 11.8976 �0.1307 �0.1359 �1.2659 0.6767 �1.5358 0.3925 �0.4978 62.7676 62.4760 157.3333
28 �28.7434 �13.7763 11.8957 �0.1307 �0.1359 �1.2662 0.6768 �1.5361 0.3925 �0.4978 62.7679 62.4760 157.3333
210 �28.7436 �13.7764 11.8953 �0.1307 �0.1359 �1.2661 0.6768 �1.5361 0.3925 �0.4978 62.7679 62.4760 157.3333
212 �28.7436 �13.7764 11.8952 �0.1307 �0.1359 �1.2661 0.6768 �1.5361 0.3925 �0.4978 62.7679 62.4760 157.3333
3D solutions (Dumir et al., 1997) �28.74 �13.78 11.90 �0.1307 �0.1359 �1.266 0.6768 �1.536 0.3925 �0.4978 62.77 62.48 157.3

10 20 �25.0370 �22.3704 8.8889 �0.1000 �0.1000 0.0000 0.0000 0.0000 0.0000 �0.5000 60.2017 60.2017 168.5714
22 �26.3777 �22.0113 6.6537 �0.1025 �0.1085 �1.3732 0.7096 �1.4705 0.4011 �0.5071 58.9259 62.3782 168.5714
24 �26.4755 �22.0890 6.3729 �0.1024 �0.1086 �1.3443 0.6994 �1.4704 0.3986 �0.5070 58.9648 62.3947 168.5714
26 �26.4850 �22.0989 6.3434 �0.1024 �0.1086 �1.3448 0.6995 �1.4705 0.3984 �0.5070 58.9643 62.3945 168.5714
28 �26.4862 �22.1000 6.3401 �0.1024 �0.1086 �1.3448 0.6995 �1.4705 0.3984 �0.5070 58.9643 62.3945 168.5714
210 �26.4863 �22.1001 6.3397 �0.1024 �0.1086 �1.3448 0.6995 �1.4705 0.3984 �0.5070 58.9643 62.3945 168.5714
212 �26.4863 �22.1001 6.3397 �0.1024 �0.1086 �1.3448 0.6995 �1.4705 0.3984 �0.5070 58.9643 62.3945 168.5714
3D solutions (Dumir et al., 1997) �26.49 �22.10 6.340 �0.1024 0.1086 �1.345 0.6995 �1.410 0.3984 �0.5070 58.96 62.39 168.6

100 20 �23.8370 �23.5704 8.8889 �0.1000 �0.1000 0.0000 0.0000 0.0000 0.0000 �0.5000 60.2017 60.2017 176.1194
22 �25.7542 �25.4203 3.2304 �0.0996 �0.1005 �1.4143 0.7096 �1.4240 0.3993 �0.5012 59.9188 60.4943 176.1194
24 �25.9637 �25.6297 2.6016 �0.0996 �0.1005 �1.3971 0.7019 �1.4108 0.3953 �0.5012 59.9193 60.4948 176.1194
26 �25.9870 �25.6530 2.5318 �0.0996 �0.1005 �1.3972 0.7019 �1.4108 0.3953 �0.5012 59.9193 60.4948 176.1194
28 �25.9896 �25.6556 2.5240 �0.0996 �0.1005 �1.3972 0.7019 �1.4108 0.3953 �0.5012 59.9193 60.4948 176.1194
210 �25.9898 �25.6559 2.5232 �0.0996 �0.1005 �1.3972 0.7019 �1.4108 0.3953 �0.5012 59.9193 60.4948 176.1194
212 �25.9899 �25.6559 2.5231 �0.0996 �0.1005 �1.3972 0.7019 �1.4108 0.3953 �0.5012 59.9193 60.4948 176.1194
3D solutions (Dumir et al., 1997) �25.99 �25.66 2.523 �0.0996 �0.1005 �1.397 0.7019 �1.411 0.3953 �0.5012 59.92 60.49 176.1
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Fig. 4. Distributions of elastic and electric field variables through the thickness of FG piezoelectric cylindrical shell under cylindrical
bending (Case 1).
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Fig. 5. Distributions of elastic and electric field variables through the thickness of FG piezoelectric cylindrical shell under cylindrical
bending (Case 2).
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Fig. 6. Distributions of elastic and electric field variables through the thickness of FG piezoelectric cylindrical shell under cylindrical
bending (Case 4).
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The relative field variables are normalized as follows:
For loading condition of Case 1 (Eq. (124)),
ui ¼ uic�=q0ð2hÞ; sij ¼ sij=q0; U ¼ Ue�=q0ð2hÞ; Di ¼ Dic�=q0e�; ð134Þ
For loading conditions of Case 2 (Eq. (125)),
ui ¼ uic�=/0e�; sij ¼ sijð2hÞ=/0e�; U ¼ U=/0; Di ¼ Dic�ð2hÞ=/0ðe�Þ
2
; ð135Þ
For loading conditions of case 4 (Eq. (127)),
ui ¼ uie�=D0ð2hÞ; sij ¼ sije�=D0c�; U ¼ Uðe�Þ2=D0c�ð2hÞ; Di ¼ Di=D0: ð136Þ
where c* = 10 · 109 N/m2, e* = 10 C/m2, q0 = �1 N/m2, /0 = 1 V, D0 = 1 C/m2.
The influence of material property gradient index on the mechanical and electric variables is studied among

loading conditions of Cases 1, 2 and 4 in Figs. 4–6, respectively. Figs. 5(c) and (d) and 6(c) and (d) show that
the through-the-thickness distributions of transverse stresses change dramatically as the index a becomes a
positive value for Case 2; conversely, they change dramatically as the index a becomes a negative value for
Case 4. The distributions of transverse stresses across the thickness coordinate in the Cases of 2 and 4 are
higher-degree polynomials and are back and forth among the positive and negative values. It is also shown
from Figs. 4(e) and (f) that the distributions of normal electric displacement through the thickness coordinate
are approximately linear functions and parabolic functions for electric potential in Case 1. The through-the-
thickness distributions of electric potential and normal electric displacement in Figs. 5(e) and (f) and 6(e) and
(f) are shown to be different patterns between homogeneous piezoelectric shells (a = 0) and FG piezoelectric
shells in the cases of applied electric loads. By observation through Figs. 4–6, we found that the distributions
of mechanical and electric variables through the thickness coordinate in FG piezoelectric shells reveal different
patterns from homogeneous piezoelectric shells. Hence, it is suggested that an advanced 2D theory may be
necessary to be developed for the analysis of FG piezoelectric shells, especially when the shells are subjected
to electric loads.
8. Concluding remarks

Based on the method of perturbation, we develop two asymptotic formulations for the coupled static anal-
ysis of FG piezoelectric shells under two cylindrical bending types of electric loads. After a dimensional anal-
ysis, we select two different sets of dimensionless variables of electric field in conjunction with one identical set
of those of elastic field. Through the complicated but straightforward manipulation, such as nondimension-
alization, asymptotic expansions, successive integration etc, we obtain two recursive sets of governing equa-
tions for various order problems. In the cases of prescribed normal electric displacement, the variable of
electric potential becomes as one of the generalized kinematics field variables in the governing equations
for various order problems; whereas the variable of normal electric displacement becomes so in the cases of
prescribed electric potential. These formulations are illustrated to be feasible in a systematic manner. Appli-
cations of the present formulations to illustrated examples show that the present solutions are accurate and the
rate of convergence is rapid. It is noted that the through-the-thickness distributions of field variables in FG
piezoelectric shells reveal different patterns from those in homogenous piezoelectric shells. According to the
present analysis, we suggest that an advanced 2D theory may be necessary to be developed for the analysis
of multilayered and FG piezoelectric shells, especially when the shells are subjected to electric loads.
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