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In this paper, adhesive contact of a rigid cylinder on an elastic power-law graded half-space is studied
analytically with the theory of weakly singular integral equation and orthogonal polynomial method.
Emphasis is placed on the coupling effect between tangential and normal directions which was often
neglected in previous works. Our analysis shows that the coupling effect tends to reduce the contact area
in the compressive regime. The effect of bending moment on the adhesion behavior is also examined. Like
a pull-off force, there also exists a critical bending moment at which the cylinder can be bended apart
from the substrate. However, unlike pull-off force, the critical bending moment is insensitive to the gra-
dient exponent of the graded material.
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1. Introduction

The adhesion forces between surfaces which are induced by the
intermolecular interactions may significantly affect the contact
behavior of small size objects. Such situation often arises in mi-
cro-electro-mechanical-systems (MEMS), scanning probe micro-
scope (SPM) measurements and micro/nano-tribology
applications. Therefore, the study of adhesive contact behavior
has received increasing attention in recent years (Johnson et al.,
1971; Derjaguin et al., 1975; Maugis, 1992; Barquins, 1988; Chau-
dhury et al., 1996; Baney and Hui, 1997; Greenwood, 1997; Green-
wood and Johnson, 1998; Barthel, 1998; Hui et al., 2001; Chen and
Gao, 2006, 2007). It is worth noting, however, that only homoge-
neous elastic materials are considered in all these works.

Problems arise when the contact behavior of non-homogeneous
materials is taken into account. Mathematical complexity involved
in this kind of problem often leads to great difficulties in obtaining
the exact stress and displacement fields in closed form. For in-
stance, the singular integral equations for contact analysis of
two-dimensional power-law graded half-space are not of Cauchy
but Abel type, whose solution requires more advanced techniques.

Previous studies on the contact behavior for graded materials
can be found in the works of Booker et al. (1985a,b), Gibson
(1967), Gibson et al. (1971), Gibson and Sills (1975), Brown and
Gibson (1972), Awojobi and Gibson (1973) and Calladine and
Greenwood (1978). In most of these literatures, only non-adhesive
contact problems under normal forces with specific Poisson’s ratio
ll rights reserved.
and gradient exponents were considered. Giannakopoulos et al.
made a systematic exploration into the micromechanics of inden-
tation on graded elastic solids (Giannakopoulos and Suresh,
1997a,b). In their work, the force-depth relations, the depth-con-
tact radius relations and stress/displacement fields at the contact
surface were examined through a combination of analytical, com-
putational and experimental investigations. Furthermore, two-
dimensional contact problem of power-law graded materials was
also addressed (Giannakopoulos and Pallot, 2000). Chen et al.
(2009a,b) extended these results to examine the adhesive behavior
of graded materials. By using the superposition technique pro-
posed by Johnson (1985) and Maugis (1992), they obtained the
analytical solutions for pull-off force and critical contact radius of
the contact area between a rigid sphere and a graded elastic half-
space. The same technique is also employed to study the corre-
sponding plane strain problem. In most of the above-mentioned
works, however, the tangential traction inside the contact region
was either ignored or assumed to be independent of the normal
traction. In addition, the possible bending moment that may be in-
duced by the external force was also totally neglected in these
works.

The main purpose of the present paper is to elucidate the cou-
pling effect between normal and tangential tractions on the adhe-
sive behavior of power-law graded materials from a theoretical
point of view. To this end, the orthogonal polynomial method
developed by Popov (1973) will be employed to find the exact tan-
gential and normal tractions inside the contact region under a rigid
cylinder punch taking into account the coupling effect. The rest of
the paper is organized as follows: In Section 2, the contact problem
under consideration and its solution approach are introduced.

http://dx.doi.org/10.1016/j.ijsolstr.2010.02.010
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According to whether the bending effect is included or not, the
adhesive contact problem under different boundary conditions will
be examined analytically in Section 3. Analysis results and discus-
sions are presented in Section 4. The paper is ended with some
concluding remarks in the final section.
2. Contact problem and the solution approach

The problem under consideration is the same as that discussed
in Giannakopoulos and Pallot (2000) and Chen et al. (2009a). As
shown in Fig. 1, a rigid cylinder of radius R is in non-slipping adhe-
sive contact with an elastically graded half-space with constant
Poisson ratio and elastic modulus varying with depth according
to a power-law. The width of the contact region is assumed to be
2a. In the present work, two loading conditions are contained:
(a) Only the force effect is considered; (b) both the effects of force
and bending moment are considered.

The Young’s modulus of the graded half-space varies in the fol-
lowing form:

E ¼ E0
z
c0

� �m

; 0 < m < 1; ð2:1Þ

where E0 is a reference modulus, c0 a characteristic depth ðc0 > 0Þ
and m is the gradient exponent.

With use of the surface Green’s function, the interfacial dis-
placements �uxðxÞ and �uyðyÞ of the half-space can be related to the
interfacial normal and tangential tractions pðxÞ and qðxÞ as follows
(Popov, 1973; Giannakopoulos and Pallot, 2000):

h0

Z a

�a

pðyÞdy
mjx� yjm

þ h1

Z a

�a

signðx� yÞ
jx� yjm

qðyÞdy ¼ �uyðxÞ; ð2:2aÞ

h2

Z a

�a

qðyÞdy
mjx� yjm

� h3

Z a

�a

signðx� yÞ
jx� yjm

pðyÞdy ¼ �uxðxÞ; ð2:2bÞ

where
Fig. 1. A rigid cylinder of radius R in non-slipping contact with an elastic graded half-spac
while Poisson’s ratio remaining constant. Both external force F and bending moment M
h0 ¼
ð1� l2Þbcm

0Cm sin bp
2

ð1þ mÞE0
; h2 ¼

ð1� l2Þð1þ mÞcm
0Cm sin bp

2

bE0
;

h3 ¼ h1 ¼ �
ð1� l2Þcm

0Cm cos bp
2

mE0
; Cm ¼

21þmC 3þmþb
2

� �
C 3þm�b

2

� �
pCð2þ mÞ ;

b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ mÞ 1� lm

1� l

� �s
ð2:3Þ

and C ¼ CðxÞ is the Gamma function.
Under given interfacial displacements �uxðxÞ and �uyðxÞ, Eq. (2.2)

is a system of coupled Abel type singular integral equations for un-
known interfacial tractions. From Eq. (2.2), it can be seen that cou-
pling exists between the normal and tangential direction
problems: the tangential interfacial traction can induce normal
displacement whilst the normal interfacial traction can also induce
tangential displacement. Theoretically, the coupling effect can only
be neglected when h1 ¼ h3 ¼ 0. In previous studies (Giannakopou-
los and Pallot, 2000; Chen et al., 2009a), this coupling effect has
been neglected. Up to now, it is still unclear whether the coupling
effect will play an important role on the adhesive contact behavior
of graded materials or not. In the present work, this issue will be
addressed analytically by employing the seminal results developed
by Popov (1973) for solving the weakly singular integral equation.

Let us first rewrite Eq. (2.2) in dimensionless form. This can be
achieved by letting
x ¼ an; y ¼ ag; jnj 6 1; jgj 6 1: ð2:4Þ
Substituting Eq. (2.4) into Eq. (2.2) and after some algebraic manip-
ulations, we have

a1�m h0

h1

Z 1

�1

pðagÞdg
mjn� gjm

þ
Z 1

�1

signðn� gÞ
jn� gjm

qðagÞdg
� �

¼ 1
h1

�uyðanÞ;

ð2:5aÞ

a1�m h2

h3

Z 1

�1

qðagÞdg
mjn� gjm

�
Z 1

�1

signðn� gÞ
jn� gjm

pðagÞdg
� �

¼ 1
h3

�uxðanÞ:

ð2:5bÞ
e with Young’s modulus varying with depth z according to E ¼ E0ðz=c0Þm ð0 < m < 1Þ
are applied.



1 This is because CðzÞ ¼ C �zð Þ, where z is a complex number.
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By introducing

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0h3=ðh1h2Þ

p
: ð2:6Þ

Eq. (2.5) can be further transformed into the following complex
form:Z 1

�1

signðn� gÞ þ i cot kp
2

� �
jn� gjm

vðgÞdg ¼ gðnÞ; ð2:7Þ

where

vðgÞ ¼ rðgÞ þ isðgÞ; ð2:8aÞ
rðgÞ ¼ j1

2a1�mpðagÞ; sðgÞ ¼ j�1
2a1�mqðagÞ; ð2:8bÞ

cotðkp=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0h3=ðh1h2Þ

p
=m; ð2:8cÞ

and

gðnÞ ¼ ij�1
2ðh1Þ�1�uyðanÞ � j1

2ðh3Þ�1�uxðanÞ: ð2:8dÞ

According to Popov (1973), the exact solution of the integral equa-
tion in (2.7) can be expressed as a series of Jacobi polynomials, that
is

vðnÞ ¼
X1
m¼0

gmpq
mðnÞ

irmkmwqðnÞ
; ð2:9Þ

where Pq
mðnÞ ¼ P�w�iq;�wþiq

m ðnÞ is the Jacobi polynomial of order m
with index ð�w� iq;�wþ iqÞ and

wqðnÞ ¼
ð1� nÞwþiq

ð1� nÞ�wþiq ; w ¼ 1� m
2

;

q ¼ 1
2p

ln
sin½ðmþ kÞp=2�
sin½ðm� kÞp=2� ; ð2:10Þ

rm ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin½ðmþ kÞp=2� sin½ðm� kÞp=2�

p
sinðmpÞ sinðkp=2Þ ; k ¼ b� 1; ð2:11Þ

gm ¼
Z 1

�1

gðnÞP�q
m ðnÞ

w�qðnÞ
dn; km ¼

2mjCð1�wþ iqþmÞj2

m!2ðmþ 2mÞCðmÞ
: ð2:12Þ

Once vðgÞ is determined, the interfacial tractions pðagÞ and qðagÞ
can be obtained from its real and imaginary parts, respectively. Fur-
thermore, the width of the contact area can be calculated from

oUT

oa

				
�uxðxÞ;�uyðxÞ

¼ oðUE þ UsÞ
oa

				
�uðxÞ;�uyðxÞ

¼ 0; ð2:13Þ

where the derivative is taken under fixed �uxðxÞ and �uyðxÞ. In Eq.
(2.13), UE denotes the elastic strain energy stored in the grated
half-space and Us ¼ �2aDc is associated with the surface energy
due to work of adhesion Dc.

It should be noted that the actual contact region is not neces-
sary symmetric when the external load is asymmetric (Yao et al.,
2009). However, our previous study on the contact behavior of pie-
zoelectric material showed that the assumption of symmetric con-
tact width is fair reasonable if we only focus on the contact
behavior before or at pull-off (Guo and Jin, 2009). For power-law
graded material, Chen et al. (2009a) also showed that the contact
region is symmetric even though tangential external force is ap-
plied if the coupling effect between normal and tangential trac-
tions is ignored. Strictly speaking, considerations of the coupling
effects and the bending moment will inevitably lead to an asym-
metric contact region (�b,a). Under this circumstance, the equilib-
rium condition (2.13) should be revised as

oUTða; bÞ
oa

				
�uxðxÞ;�uyðxÞ

¼ oUTða; bÞ
ob

				
�uxðxÞ;�uyðxÞ

¼ 0; ð2:14Þ

and the corresponding surface energy Us should be written as
Us ¼ �ðaþ bÞDc: ð4:2Þ

Of course, the corresponding end points of integrals involved should
be modified as �b and a, respectively. This will not bring essential
difficulties to the solution procedure since any interval (�b,a) can
be transformed to (�1,1) by a linear transformation. But the corre-
sponding calculations will be quite lengthy and complex. In the
present work, in order to obtain some closed-form analytical solu-
tions, the assumption of symmetric contact region is adopted. The
effect of asymmetric contact region resulting from the bending mo-
ment will be intensively discussed in a separate work.

In the following sections, the above solution procedures will be
employed to investigate the adhesive contact behavior of rigid cyl-
inder indenter/graded half-space system under different loading
conditions with coupling effect taken into account.

3. Analysis

3.1. Contact behavior without bending effect

In this case, it is assumed that only external force applied on the
rigid cylinder is considered and the effect of bending moment is to-
tally omitted. As a consequence, the rigid cylinder just experiences
translation. This assumption has been adopted by many authors in
the analysis of adhesive contact behaviors by supposing external
force to be properly applied (Chen and Gao, 2007; Yao et al.,
2009; Guo and Jin, 2009; Chen et al., 2009a).

Under this circumstance, the tangential and normal displace-
ments along the interface of the elastic graded half-space can be
expressed as

�ux ¼ e; �uy ¼ h� x2

2R
; jxj 6 a; ð3:1Þ

where e and h are two constants.
Replacing x with an in Eq. (3.1) and inserting it to Eq. (2.8d)

leads to

gðnÞ ¼ � i
R1

n2 þ ih� � e�ð Þ; ð3:2Þ

where

h� ¼ j�1
2ðh1Þ�1 h; e� ¼ j1

2ðh3Þ�1e; R1 ¼ 2j1
2h1Ra�2: ð3:3Þ

Substituting Eq. (3.2) into Eq. (2.12)1 yields (see Appendix Afor
details)

g0 ¼ �
2mRm

Cð1þ mÞ e� þ i
1
R1

1þ m� 4q2

ð1þ mÞð2þ mÞ � h�
� �
 �

; ð3:4aÞ

g1 ¼ �
21þm ð1þ mÞ2 þ 4q2

h i
qRm

R1Cð4þ mÞ ; ð3:4bÞ

g2 ¼ �
i

R1

Rm ð1þ mÞ2 þ 4q2
h i

ð3þ mÞ2 þ 4q2
h i

22�mCð5þ mÞ
; gn ¼ 0; ðn P 3Þ;

ð3:4cÞ

where

Rm ¼ Cð1�wþ iqÞCð1�w� iqÞ ð3:5Þ

is real.1

Letting

Jk ¼
Z 1

�1
gkvðgÞdg; k ¼ 0;1; ð3:6Þ
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the boundary conditions

Z a

�a
pðxÞdx ¼ F sin u ¼ P;

Z a

�a
qðxÞdx ¼ F cos u ¼ Q ð3:7Þ

can be rewritten in the following compact form:

j1
2P þ ij�1

2Q ¼ amJ0; ð3:8Þ

where the explicit expression of J0 is given in Eq. (A6). Then it fol-
lows that

g0 ¼ rma�m ij1
2P � j�1

2Q
� 


: ð3:9Þ

Taking Eqs. (2.10)2, (2.12)2, (3.4b), (3.4c) and (3.9) into account, we
have

g0Pq
0 ðnÞ

k0
¼

ij1
2P � j�1

2Q
� 


rm

ð2aÞmRm
Cð1þ mÞ; ð3:10aÞ

g1Pq
1ðnÞ

k1
¼ �4q½nð1þ mÞ � 2iq�

ð3þ mÞð1þ mÞmR1
; ð3:10bÞ

g2Pq
2ðnÞ

k2
¼ �16i

R1

1
ð3þ mÞð2þ mÞð1þ mÞm Pq

2ðnÞ; ð3:10cÞ

gnPq
n ðnÞ

kn
¼ 0; ðn P 3Þ; ð3:10dÞ

where

Pq
2ðnÞ ¼ �

3þ mþ 4q2

8
þ n2 ð2þ mÞð3þ mÞ

8
� iqn 1þ m

2

� 

: ð3:11Þ

Then by substituting Eq. (3.10) into (2.9) and recalling Eqs. (2.8a),
(2.8b) and (3.3)3, we can obtain the following expressions of the
interfacial normal and tangential tractions inside the contact
region:

pðxÞ ¼ 1

ða2 � x2Þ
1�m

2



I1 cos

�
q ln

aþ x
a� x

�
� I2 sin

�
q ln

aþ x
a� x

��
;

ð3:12aÞ

qðxÞ ¼ j
ða2 � x2Þ

1�m
2



I2 cos

�
q ln

aþ x
a� x

�
þ I1 sin

�
q ln

aþ x
a� x

��
;

ð3:12bÞ

where

I1 ¼
Cð1þ mÞ
ð2aÞmRm

P þ 1
jh1R

a2ð1þ 4q2Þ � x2ð2þ mÞ
ð2þ mÞð1þ mÞmrm

; ð3:13aÞ

I2 ¼
Cð1þ mÞ
ð2aÞmRmj

Q þ 1
jh1R

2qax
ð1þ mÞmrm

: ð3:13bÞ

With use of the identities listed in Eq. (A8), it can be verified
that the interfacial tractions described in Eq. (3.12) satisfy the
boundary conditions defined in Eq. (3.7). Oscillating with increas-
ing frequency as x approaches the contact edge, the tractions have
the singularities of r

m�1
2 þiq at the contact perimeter x ¼ �a. This

immediately reminds us the similar stress singularity occurring
at the interfacial cracks between two dissimilar materials. Com-
pared with the case for homogenous materials ðm ¼ 0Þ, the singu-
larity of the stress has been weakened for graded materials
(Giannakopoulos and Pallot, 2000).
In the homogeneous limit, i.e., m! 0, one can show that

b! 1; k! 0; w! 1
2
; j! 1;

q! 1
2p

lnð3� 4lÞ; Cm !
2
p
; Rm !

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p
2ð1� lÞ ;

h1 !
ð1þ lÞð1� 2lÞ

2E0
; mrm !

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p
1� 2l

: ð3:14Þ

Hence, Eq. (3.12) reduces to

pðxÞ ¼ 1

ða2 � x2Þ
1
2



I01 cos

�
q0 ln

aþ x
a� x

�
� I02 sin

�
q0 ln

aþ x
a� x

��
;

ð3:15aÞ

qðxÞ ¼ 1

ða2 � x2Þ
1
2



I02 cos

�
q0 ln

aþ x
a� x

�
þ I01 sin

�
q0 ln

aþ x
a� x

��
;

ð3:15bÞ

respectively. In Eq. (3.15)

I01 ¼
2Pð1� lÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p þ
a2 1

2þ 2q2
0

� �
� x2

Rð1þ lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p E0; ð3:16aÞ

I02 ¼
2Qð1� lÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p þ 2E0aq0x

Rð1þ lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p ð3:16bÞ

with

q0 ¼ lim
m!0

q ¼ 1
2p

lnð3� 4lÞ: ð3:16cÞ

In Appendix B, it can be shown that the interfacial tractions in Eq.
(3.15) are exactly the same as that obtained by solving the corre-
sponding Riemann–Hilbert problem using analytical function the-
ory for homogeneous half-space.

With use of above results, the relations between the interfacial
displacements and the corresponding external force can be estab-
lished as follows:

h ¼ h1rmjCð1þ mÞ
ð2aÞmRm

P þ a21þ m� 4q2

2Rð1þ mÞð2þ mÞ ; e ¼ h1rmCð1þ mÞ
ð2aÞmjRm

Q :

ð3:17Þ

The elastic strain energy stored in the substrate is

UE ¼ UEq þ UEp; ð3:18aÞ

where

UEq ¼
1
2

Z a

�a
qðxÞ�ux dx ¼ 1

2
Qe; ð3:18bÞ

UEp ¼
1
2

Z a

�a
pðxÞ�uy dx ¼ 1

2
Ph� 1

4R

Z a

�a
x2pðxÞdx: ð3:18cÞ

Making use of the identities in Eq. (A8) and inserting Eq. (3.15a) into
the last integral on the right-hand side of Eq. (3.18c), we haveZ a

�a
x2pðxÞdx ¼ d1Pa2 � 21þmRmd2

Rjh1ð4þ mÞmrm
a4þm; ð3:19Þ

where

d1 ¼
1þ m� 4q2

ð1þ mÞð2þ mÞ ; d2 ¼
ð1þ 4q2Þ ð1þ mÞ2 þ 4q2

h i
ð1þ mÞð2þ mÞCð3þ mÞ ð3:20Þ

are two dimensionless parameters.
The balance between elastic strain energy and surface energy

yields that

oðUEp þ UEqÞ
oa

				
e;h
¼ 2Dc: ð3:21Þ
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Since

oUEq

oa

				
e
¼ 1

2
oQ
oa

				
e
e; ð3:22aÞ

oUEp

oa

				
h

¼ 1
2

oP
oa

				
h

h� d1

4R
a2 oP

oa

				
h

þ 2Pa
� �

þ 1
4R2

21þmRm

jh1mrm
d2a3þm;

ð3:22bÞ

then from Eq. (3.17), we have

oP
oa

				
h

¼ m
a

P � 2mRm

h1rmjR
1þ m� 4q2

Cð3þ mÞ a1þm;
oQ
oa

				
e
¼ m

a
Q : ð3:23Þ

Substitution of Eqs. (3.7), (3.17), (3.22) and (3.23) into Eq. (3.21)
leads to

d3mrmCð1þ mÞ
21þmRm

ðj sin2 uþ j�1 cos2 uÞa�m Dc
E�R

F
Dc

� �2 a
R

� 
�ð1þmÞ

� d1
a
R

F
Dc

sinuþ 2m�1d2Rm

d3mrmj
am E�R

Dc
a
R

� 
ð3þmÞ
� 2 ¼ 0; ð3:24Þ

where

d3 ¼ �
Cm

m
cos

bp
2
; E� ¼ E0

1� l2 ; a ¼ R
c0
: ð3:25Þ

Eq. (3.24) describes the relationship between the normalized load
F=Dc and the normalized contact half width a/R. For homogeneous
half-space, Eq. (3.24) reduces to

1
p

Dc
E�R

F
Dc

� �2 a
R

� 
�1
� 1� 4q2

0

2
a
R

F
Dc

sinuþ
p 1þ 4q2

0

� �2

16
E�R
Dc

a
R

� 
3
� 2¼ 0

ð3:26Þ

by letting m! 0.
When u ¼ p

2, the vertical force P applied on the cylinder can be
expressed as

P ¼ ð1� 4q2
0ÞpE�a2

4R
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�aDc� q0pE�a2

R

� �2
s

; ð3:27Þ

where q0 ¼ ð1=2pÞ lnð3� 4lÞ. As shown in Eq. (3.27), which is de-
rived from the non-slipping model, the effect of tangential traction
manifests itself just through the term of q0. For an incompressible
half-space ðl ¼ 0:5Þ, q0 ¼ 0, and Eq. (3.27) reduces to the following
two-dimensional JKR-like solution:

P ¼ pE�a2=ð4RÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pE�aDc

q
; ð3:28aÞ

which was obtained by Barquins (1988) in the frictionless contact
condition. This is consistent with the conclusion documented in John-
son (1985). From Eq. (3.28a), it can be obtained that (Barquins, 1988)

a2D
JKR ¼

2DcR2

pE�

 !1
3

ð3:28bÞ

and

P2D
JKR ¼ 3

pE�RDc2

16

� �1
3

: ð3:28cÞ
3.2. Contact behavior with bending effect taken into account

In this subsection, adhesive contact behavior of graded half-
space with bending moment taken into account will be discussed.
This is a more realistic case since bending moment always exists
unless the action point of the external force is properly chosen
(Yao et al., 2009).
When bending moment is considered, it is necessary to include
the displacement components arising from the rotation of cylinder
into �ux and �uy. Denoting the rigid body rotation angle of the cylin-
der as h, then under small deformation assumption, the interfacial
displacements can be written as

�ux ¼ e; �uy ¼ hþ hx� x2

2R
; jxj 6 a: ð3:29Þ

Replacing x with an in Eq. (3.29) and inserting it to Eq. (2.8d) yield to

gðnÞ ¼ � i
R1

n2 þ ih�nþ ðih� � e�Þ; ð3:30Þ

where h�; e� and R1 are defined in Eq. (3.3) and

h� ¼ j�1
2ðh1Þ�1ah: ð3:31Þ

Substituting Eq. (3.30) into Eq. (2.12)1 yields (see Appendix A for
details)

g0 ¼ �
2mRm

Cð1þ mÞ e� � 2qh�

1þ m
þ i

1
R1

1þ m� 4q2

ð1þ mÞð2þ mÞ � h�
� �
 �

; ð3:32aÞ

g1 ¼
ð1þ mÞ2 þ 4q2
h i

Rm

21�mCð3þ mÞ
ih� � 4q

R1

1
3þ m

� �
; ð3:32bÞ

g2 ¼
i

R1

Rm ð1þ mÞ2 þ 4q2
h i

ð3þ mÞ2 þ 4q2
h i

22�mCð5þ mÞ
; gn ¼ 0 ðn P 3Þ:

ð3:32cÞ

Recalling Eq. (3.6), the boundary conditions

Z a

�a
pðxÞdx ¼ P;

Z a

�a
qðxÞdx ¼ Q ;

Z a

�a
xpðxÞdx ¼ M ð3:33Þ

can be rewritten as

j1
2P þ ij�1

2Q ¼ amJ0; j1
2M ¼ a1þmReðJ1Þ; ð3:34Þ

where the explicit expressions of J0 and J1 are given in Eqs. (A6) and
(A7), respectively.

Substituting Eqs. (A6), (A7), (2.12)2, (3.32a) and (3.32b) into Eq.
(3.34) yields

j1
2P þ ij�1

2Q ¼ ð2aÞmRm

Cðmþ 1Þrm
i e� � 2qh�

1þ m

� �
� d1

R1
� h�

� �� �
; ð3:35aÞ

j1
2Cð2þ mÞM
ð2aÞmþ1Rm

¼ ð1þ mÞ2 þ 4q2

2ð2þ mÞð1þ mÞmrm
h� þ q

rm
�e� þ 2qh�

1þ m

� �
;

ð3:35bÞ

where d1 is defined in Eq. (3.20)1.
Then, combining Eqs. (3.3), (3.31) and (3.35) gives rise to

h ¼ h1rmjCð1þ mÞ
ð2aÞmRm

P þ d1
a2

2R
; ð3:36aÞ

e ¼ rmh1Cð3þ mÞ
ð1þ mÞ2 þ 4q2
h i

Rm

ð1þ 4q2Þð1þ mÞ
2þ m

Q
ð2aÞm

þ 4qmM

ð2aÞ1þm

" #
; ð3:36bÞ

h ¼ 4h1mrmCð3þ mÞ
ð1þ mÞ2 þ 4q2
h i

Rm

qQ

ð2aÞ1þm þ
ð1þ mÞjM

ð2aÞ2þm

" #
: ð3:36cÞ

From Eq. (3.36), it can be seen that the bending moment M has no
influence on the maximum indentation depth h, but will affect both
tangential displacement e and angular rotation h.



Fig. 2. Schematic illustration of the critical curve projected onto the F=Dc�M=RDc
plane, loading path and the corresponding critical state.

Fig. 3. Comparison of the contact half width as a function of the pulling force considerin
for (a) different values of a; (b) different values of m. Here u ¼ p=2;l ¼ 0:3; and E�R=Dc
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Furthermore, by combining Eqs. (2.4), (2.8a), (2.8b), (2.12)2,
(3.4b), (3.32) and (3.36), we have
pðxÞ ¼ 1

ða2 � x2Þ
1�m

2



I3 cos

�
q ln

aþ x
a� x

�
� I4 sin

�
q ln

aþ x
a� x

��
;

ð3:37aÞ
qðxÞ ¼ j
ða2 � x2Þ

1�m
2



I4 cos

�
q ln

aþ x
a� x

�
þ I3 sin

�
q ln

aþ x
a� x

��
;

ð3:37bÞ
where
g coupling effect with the corresponding results in the absence of tangible tractions
¼ 100.
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I3 ¼
Cð1þ mÞ
ð2aÞmRm

P þ 2xCð3þ mÞ
a ð1þ mÞ2 þ 4q2
h i

Rm

ð1þ mÞM
ð2aÞ1þm þ

qQ
jð2aÞm

" #

þ 1
rmRjh1

1þ 4q2

ð2þ mÞð1þ mÞm a2 � x2

mð1þ mÞ

� �
; ð3:38aÞ

I4 ¼
Cð1þ mÞ
ð2aÞmRm

Q
j
� 4qCð3þ mÞ
ð1þ mÞ2 þ 4q2
h i

Rm

M

ð2aÞ1þm þ
1

1þ m
qQ

jð2aÞm

" #

þ 1
rmRjh1

2qax
mð1þ mÞ : ð3:38bÞ

Following the same procedure described in the previous sec-
tion, the governing equation for the dimensionless contact half
width can be obtained as

A1 sin2 uþ A5 cos2 u
� 


a�m Dc
E�R

F
Dc

� �2 a
R

� 
�ð1þmÞ

� A2 sinu
F
Dc

a
R
þ A3a�m Dc

E�R
M

RDc

� �2 a
R

� 
�ð3þmÞ

þ A4 cos ua�m Dc
E�R

M
RDc

F
Dc

a
R

� 
�ð2þmÞ
þ A6am E�R

Dc
a
R

� 
3þm
� 4

¼ R
F
Dc

;
M

RDc
;
a
R

� �
¼ 0; ð3:39Þ

where the coefficients Ai; i ¼ 1;2; . . . ;6 defined as

A1 ¼
rmd3

2mRm
jmCð1þ mÞ; A2 ¼ 2d1; ð3:40aÞ

A3 ¼
rmd3

2mRm

mð1þ mÞð2þ mÞCð3þ mÞj
ð1þ mÞ2 þ 4q2

;

A4 ¼
rmd3

2mRm

4qmð1þ mÞCð3þ mÞ
ð1þ mÞ2 þ 4q2

; ð3:40bÞ

A5 ¼
rmd3

2mRm

mð1þ mÞð1þ 4q2ÞCð2þ mÞ
ð1þ mÞ2 þ 4q2
h i

j
;

A6 ¼
2mð4þ mÞRmd4

mrmd3j
ð3:40cÞ
Fig. 4. Comparison of the contact half width obtained by considering coupling effect w
angles. Here m ¼ 0:1; l ¼ 0:3; E�R=Dc ¼ 100; and a ¼ 100.
are all dimensionless quantities. d1, d3, and a in Eq. (3.40) are given
by Eqs. (3.20)1, (3.25)1 and (3.25)3, respectively. Meanwhile,

d4 ¼
ð3þ mÞð1þ 4q2Þ ð1þ mÞ24q2

h i
ð1þ mÞð2þ mÞCð5þ mÞ : ð3:41Þ

Eq. (3.39) describes an equilibrium surface R F
Dc ;

M
RDc ;

a
R

� 

¼ 0 in

a=R� F=Dc�M=RDc space implicitly. The ‘‘edge” curve of this equi-
librium surface, which represents the critical state, can be deter-
mined from the following formula:

R F
Dc ;

M
RDc ;

a
R

� 

¼ 0;

oR F
Dc ;

M
RDc ;

a
R

� 

=oa ¼ 0:

8><
>: ð3:42Þ

Generally, a specific loading condition can be represented by an
implicit function BðF=Dc;M=RDcÞ ¼ 0. Then the corresponding
critical state (if it exists) can be determined by solving (3.42) and
BðF=Dc;M=RDcÞ ¼ 0 simultaneously. See Fig. 2 for reference.

For a homogeneous half-space, Eq. (3.39) reduces to

1
p

Dc
E�R

F
Dc

� �2 a
R

� 
�1
� 1� 4q2

0

2
a
R

F
Dc

sin uþ
p 1þ 4q2

0

� �2

16
E�R
Dc

a
R

� 
3

þ 4
p 1þ 4q2

0

� � Dc
E�R

M
RDc

� �2 a
R

� 
�3

þ 8q0 cos u
p 1þ 4q2

0

� � Dc
E�R

M
RDc

F
Dc

a
R

� 
�2
� 2 ¼ 0: ð3:43Þ

Comparing Eq. (3.43) with Eq. (3.26), it seems that the bending mo-
ment M affects the contact width a only through the fourth and fifth
terms. When M ¼ 0, Eq. (3.43) will reduce to Eq. (3.26). On the other
hand, if F ¼ 0 (there is no net force exerted on the cylinder), from
Eq. (3.39), we have

A3a�m Dc
E�R

M
RDc

� �2 a
R

� 
�ð3þmÞ
þ A6am E�R

Dc
a
R

� 
3þm
� 4 ¼ 0; ð3:44Þ

which can be simplified as

jMj
RDc

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 a

R

� �3þm � K1
a
R

� �6þ2m

K2

s
; ð3:45Þ
ith the corresponding results in the absence of coupling effect for different pulling



Fig. 5. The gradient exponent m versus (a) the normalized pull-off force Ppull-off=P2D
JKR and (b) the normalized pull-off contact width apull-off=a2D

JKR with l ¼ 0:3; E�R=Dc ¼ 100 and
different values of a.
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where

K1 ¼ A6am E�R
Dc

; K2 ¼ A3a�m Dc
E�R

: ð3:46Þ

The critical contact half width at bend-off can be obtained from the
following condition:
oM
oa
¼ 0; ð3:47Þ

which gives

abend-off ¼ R
2

K1

� � 1
3þm

: ð3:48Þ

Inserting Eq. (3.48) back into Eq. (3.45) yields the closed-form solu-
tion for the bend-off moment which is required to bend the cylinder
away from the substrate
Mbend-off ¼ �
2RDcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

p : ð3:49Þ

In the homogeneous limit, the critical contact half width and the
corresponding bend-off moment reduce to

ahomo
bend-off ¼

16

p 1þ 4q2
0

� �2

R2Dc
E�

 !1
3

; Mhomo
bend-off ¼ �

2RDcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q2

0

q ;

ð3:50Þ

respectively.
From the above analysis, it is interesting to note that the bend-

off moment is independent of the two parameters E�R=Dc and a
defined in Eq. (3.25)3. In other words, it is irrespective of the char-



Fig. 6. The gradient exponent m versus (a) the normalized pull-off force Ppull-off=P2D
JKR and (b) the normalized pull-off contact width apull-off=a2D

JKR with l ¼ 0:3 and different values
of E�R=Dc and a.
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acteristic depth c0 and the characteristic Young’s modulus E0 but
only depends on the gradient exponent m, Poisson ratio l, cylinder
radius R and the work of adhesion Dc.

At this position, it is worth noting that for any symmetric inden-
ter whose shape can be described by a polynomial, the closed-form
analytical solution of the corresponding problem can also be ob-
tained with the above procedure. This is because it can be proved,
with use of the properties of Jacobi polynomials, that there are only
finite non-zero terms of gm in Eq. (2.9) if gðnÞ is a polynomial func-
tion of n.
4. Results and discussion

First, let us investigate the adhesive contact behavior under ver-
tical force (i.e., u ¼ p

2). For comparison purpose, the variation of the
contact width under non-slipping condition with coupling effect
taken into account along with the corresponding solutions for fric-
tionless contact (Chen et al., 2009a) are schematically shown in
Fig. 3(a) and (b). For the material examined, it can be observed that
the two sets of solutions agree well in the tensile regime ðP < 0Þ.
Whereas, in the compressive regime ðP > 0Þ, they give distinct pre-
dictions of the contact width. Concretely speaking, it is found that
the tangential tractions due to friction can reduce the area of con-
tact between the cylinder and substrate. Compared with graded
materials, this difference is more obvious for homogenous case.
This is reasonable since compared with homogenous material,
the average stiffness near the surface of the half-space is larger
for graded materials whose modulus varies in the form of
E ¼ E0

z
c0

� 
m
; 0 < m < 1 along depth. Fig. 3 also shows that the

pull-off forces are almost identical for homogenous material and
the graded materials tested.



Fig. 7. The equilibrium surface described by Eq. (3.39) with a specific set of parameters in a=R� F=Dc�M=RDc space. Panels (a) and (b) are side views from different angles.
(c) Projections of the curves obtained by intersecting the surface with a M=RDc ¼ const plane onto the a=R� F=Dc plane. Here l ¼ 0:3; E�R=Dc ¼ 100; a ¼ 100;
m ¼ 0:1; and u ¼ p=2.
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Similar conclusions can also be drawn from Fig. 4, which depicts
the normalized inclined force as a function of the normalized con-
tact half width for different pulling angles under a specific set of
parameters m ¼ 0:1; l ¼ 0:3; a ¼ 100; and E�R=Dc ¼ 100. This fig-
ure shows that the coupling effect between the normal and tan-
gential problem becomes obvious when the external force is
inside the compressive regime ðF > 0Þ. In addition, the critical force
corresponding to u ¼ 0 (only shear force applied) exhibits bilateral
symmetry about contact center.

The above comparison results indicate that, for the material
examined, the coupling effect almost does not have significant
influence on the critical force and critical contact width at pull-
off. Therefore when the bending effect is neglected, nearly the
same results as those of Chen et al. (2009a) are obtained at pull-
off. Fig. 5 plots the pull-off force (scaled by P2D

JKR defined in Eq.
(3.28c)) and the critical contact width (scaled by a2D

JKR defined in
Eq. (3.28b)) as functions of the gradient exponent m for various a
with the other parameters are constant. Fig. 6 shows the effects
of E�R=Dc on the critical force and the critical contact width. From
this figure, it is observed that parameter E�R=Dc does not affect the
trend of the variations of critical contact width or pull-off force
with respect to m significantly even though coupling effect is con-
sidered. For materials with different values of m and a, the variation
of the normalized pull-off force Fpull-off

P2D
JKR

as a function of the pulling
angle u is almost the same as that without coupling effect. We re-
fer the readers to Chen et al. (2009a) for more detail discussions.

When bending moment is considered, the corresponding adhe-
sive behavior is shown in Fig. 7. Viewed from different angles in
a=R� F=Dc�M=RDc space, Fig. 7(a) and (b) plots an equilibrium
surface with a specific set of parameters described by Eq. (3.39).
Fig. 7c shows the projection of the curves obtained by intersecting
the surface with a M=RDc ¼ const: plane onto the a=R� F=Dc
plane. From these figures, it is observed that bending moment
has a significant effect on the contact behavior of the considered
system. For a specific loading process, it can be represented by a
curve on the equilibrium surface. When this curve arrived at the
edge of the surface, the cylinder will be taken away from the
substrate.
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For the case where only bending moment exists ðF ¼ 0Þ, Fig. 8
plots the relation between the contact width and the bending
moment for prescribed values of E�R=Dc and l. It shows that
the contact width is independent of the direction of the bending
moment. In addition, one can also notice that each curve has al-
most the same critical point M=ðRDcÞ � �2ð Þ, at which the con-
tact is separated. Given bend-off moment, adhesion strength is
measured by the critical contact area. Therefore, it can be seen
from Fig. 8 that for a specific gradient exponent, the larger the va-
lue of a, the more difficult to bend the cylinder apart from the
graded substrate.

Fig. 9 plots the variation of the normalized bend-off moment
Mbend-off

Mhomo
bend-off

with respect to the gradient exponent m for prescribed
Fig. 9. The normalized bend-off moment Mbend-off=Mho
be

Fig. 8. The normalized external bending moment M=ðRDcÞ as a function of the normal
different values of a. Here l ¼ 0:3; E�R=Dc ¼ 100.
Young’s modulus l ¼ 0:3. It shows that the bend-off moment
changes slightly although it rises monotonically with the increas-
ing value of m. It means that the bend-off moment is insensitive
to the gradient exponent m.

Fig. 10 shows the influence of a and m on the critical contact
width at bend-off when the values of E�R=Dc and l are prescribed.
It is interesting that the trend of critical contact width at bend-off
shares the similar character with that corresponding to the pull-off
force plotted in Fig. 5b.

The effect of E�R=Dc on the critical contact width at bend-off is
shown in Fig. 11. One can see that parameter E�R=Dc does not sig-
nificantly affect the critical contact width, just as we concluded
from Fig. 6b.
mo
nd-off versus the gradient exponent m with l ¼ 0:3.

ized contact half width a=R for homogeneous and graded materials ðm ¼ 0:5Þ with



Fig. 10. The normalized bend-off contact width abend-off=ahomo
bend-off versus the gradient exponent m with l ¼ 0:3; E�R=Dc ¼ 100, and different values of a.

Fig. 11. The normalized bend-off contact width abend-off=ahomo
bend-off versus the gradient exponent m under the effects of different values of E�R=Dc and a with l ¼ 0:3.
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5. Summary

In this paper, we examined the non-slipping adhesive contact
behavior of power-law graded materials focusing on the coupling
effect between the tangential and normal directions which was of-
ten neglected in previous works. Based on the theory developed by
Popov (1973), some closed-form analytical solutions were ob-
tained for the considered problem. Our analysis showed that, for
the material examined, the coupling effect becomes obvious
mainly in the compressive regime of the external force but does
not affect the critical force and critical contact width at pull-off sig-
nificantly. This justified some of the results obtained by Chen et al.
(2009a) about the adhesive behavior of graded materials where the
coupling effect was ignored.
The role of the bending moment was also studied analytically in
the present paper. The closed-form analytical solutions of the crit-
ical contact width and critical moments at bend-off are obtained.
Our analysis showed that bending moment has a significant effect
on the adhesive behavior of the considered system. When only
bending moment is applied, unlike pull-off force, the bend-off mo-
ment is not sensitive to the gradient exponent and is almost equal
to that for the corresponding homogeneous case. On the other
hand, the trend of critical contact width at bend-off shares the sim-
ilar character with that at pull-off. Compared to the homogeneous
case, the graded materials has critical contact width which is larger
for small values of a but smaller for large values of a. The results
obtained in this paper are helpful for understanding the adhesive
behavior of contact systems involving graded elastic materials.
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Appendix A. Some integrals related to Jacobi polynomials

In this appendix, some useful integrals of Jacobi polynomials
(e.g. gm in Eq. (2.12)1 and Jk in Eq. (3.6)) are derived.

First, let us introduce the following two identities:Z 1

�1
ð1�xÞqð1þxÞbPða;bÞm ðxÞdx¼ 2bþqþ1Cðqþ1ÞCðbþmþ1ÞCða�qþmÞ

m!Cða�qÞCðbþqþmþ2Þ
for Req>�1; Reb>�1; ðA1Þ

Z 1

�1
ð1�xÞqð1þxÞrPða;bÞm ðxÞdx¼ 2qþrþ1Cðqþ1ÞCðrþ1ÞCðmþ1þaÞ

m!Cðqþrþ2ÞCð1þaÞ
� 3F2ð�m;aþbþmþ1;
qþ1;aþ1;qþrþ2;1Þ;
for Req>�1; Reb>�1; ðA2Þ

where 3F2ða; b; c; d; e; zÞ is the hypergeometric function.
With use of the above results, it can be shown thatZ 1

�1

P�q
0 ðnÞ

W�qðnÞ
dn¼ 2vRv

Cð1þvÞ ;
Z 1

�1

P�q
0 ðnÞ

W�qðnÞ
ndn¼�21þv iqRv

Cð2þvÞ ;Z 1

�1

P�q
0 ðnÞ

W�qðnÞ
n2 dn¼

2vRv 1þv�4q2
� �
Cð3þvÞ ;

Z 1

�1

P�q
1 ðnÞ

W�qðnÞ
dn¼0;

Z 1

�1

P�q
1 ðnÞ

W�qðnÞ
ndn¼

ð1þvÞ2þ4q2
h i

Rv

21�vCð3þvÞ
;

Z 1

�1

P�q
1 ðnÞ

w�qðnÞ
n2dn¼�

21þv iq ð1þvÞ2þ4q2
h i

Rv

Cð4þvÞ ;

Z 1

�1

P�q
2 ðnÞ

W�qðnÞ
dn¼

Z 1

�1

P�q
2 ðnÞ

W�qðnÞ
ndn¼0;

Z 1

�1

P�q
2 ðnÞ

W�qðnÞ
n2 dn¼

2v�2Rv ð1þvÞ2þ4q2
h i

ð3þvÞ2þ4q2
h i

Cð5þvÞ ;

Z 1

�1

P�q
n ðnÞ

W�qðnÞ
dn¼

Z 1

�1

P�q
n ðnÞ

W�qðnÞ
ndn¼

Z 1

�1

P�q
n ðnÞ

W�qðnÞ
n2 dn¼0 ðn P 3Þ

ðA3Þ

andZ 1

�1

Pq
0 ðnÞ

WqðnÞ
dn ¼ 2vRv

Cð1þ vÞ ;
Z 1

�1

Pq
n ðnÞ

WqðnÞ
dn ¼ 0; ðn P 1Þ;

Z 1

�1

Pq
0 ðnÞ

WqðnÞ
ndn ¼ 21þv iqRv

Cð2þ vÞ ;
Z 1

�1

Pq
1ðnÞ

WqðnÞ
ndn ¼

ð1þ vÞ2 þ 4q2
h i

Rv

21�vCð3þ vÞ
;

Z 1

�1

Pq
n ðnÞ

WqðnÞ
ndn ¼ 0; ðn P 2Þ;

ðA4Þ

where Pq
m ¼ P�w�iq;�wþiq

m ðnÞ; Wq and Rv are defined in Eqs. (2.10)1

and (3.5), respectively. In the above derivations, the following facts

1
Cð0Þ ¼ 0; Cð1þ zÞ ¼ zCðzÞ ðA5Þ

have been used. In (A5), z is a complex number.
From the results in (A3), Eqs. (3.4) and (3.32) can be obtained by

inserting Eqs. (3.2) and (3.30) into Eq. (2.12)1, respectively. From
the results in (A4) the integral in (3.6) can be calculated as:
J0 ¼
Z 1

�1
vðgÞdg ¼

X1
m¼0

gm

irvkm

Z 1

�1

Pq
mðgÞ

wqðgÞ
dg ¼ g0

irvk0

2vRv

Cð1þ vÞ ;

ðA6Þ

J1 ¼
Z 1

�1
vðgÞgdg ¼

X1
m¼0

gm

irvkm

Z 1

�1

Pq
mðgÞ

wqðgÞ
gdg

¼ 21þvRv

irvCð2þ vÞ
ð1þ vÞ2 þ 4q2

4ð2þ vÞ
g1

k1
þ iq

g0

k0

" #
: ðA7Þ

Furthermore, by expressing the sine and cosine functions in com-
plex exponential form and making use of Eq. (A1), we haveZ a

�a

x2n

ða2 � x2Þw
sin q ln

aþ x
a� x

� 

dx ¼ 0; n ¼ 0;1;2; . . . ;

Z a

�a

x2nþ1

ða2 � x2Þw
cos q ln

aþ x
a� x

� 

dx ¼ 0; n ¼ 0;1;2; . . . ;Z a

�a

1
ða2 � x2Þw

cos q ln
aþ x
a� x

� 

dx ¼ Rv

Cð1þ vÞ ð2aÞv ;
Z a

�a

x2

ða2 � x2Þw
cos q ln

aþ x
a� x

� 

dx ¼ 1þ v � 4q2

Cð3þ vÞ Rv2va2þv ;

Z a

�a

x4

ða2 � x2Þw
cos q ln

aþ x
a� x

� 

dx

¼ 3ð1þ vÞð3þ vÞ � 8q2ð7þ 2v � 2q2Þ
Cð5þ vÞ Rv2va4þv ;

Z a

�a

x
ða2 � x2Þw

sin q ln
aþ x
a� x

� 

dx ¼ 21þvqRv

Cð2þ vÞ a
1þv ;

Z a

�a

x3

ða2 � x2Þw
sin q ln

aþ x
a� x

� 

dx

¼ 2qð5þ 3v � 4q2Þ
Cð4þ vÞ 2vRva3þv ;

ðA8Þ

where w is defined in (2.10)2.

Appendix B. Tractions force inside the adhesive contact region
of a rigid cylinder on homogeneous isotropic half-space

In this appendix, the stress distributions inside the adhesive
contact region of a rigid cylinder on homogeneous isotropic half-
space under vertical and horizontal force (denoted as P and Q,
respectively) will be derived for comparison purpose.

Since there is no mismatch strain in our problem, then by
adopting the notations in Chen and Gao (2006), we have

ð1� bÞTþ1 þ ð1þ bÞT�1 ¼
E�

4R
x; ðB1aÞ

ð1þ bÞTþ2 þ ð1� bÞT�2 ¼ �
E�

4R
x; ðB1bÞ

where

E� ¼ E
1� l2 ; b ¼ 1� 2l

2ð1� lÞ ðB2Þ

and E and l are the Young’s modulus and Poisson’s ratio of the half-
space, respectively.

The Riemann–Hilbert equations in Eq. (B1) can be solved ana-
lytically by following the standard analytical function approach.
By virtue of some calculations based on the identities given by
Guo and Jin (2009), we have

Tþ1 � T�1 ¼
iE�

4R
coshðpjÞ x2 � 2ijax� a2 1

2
þ 2j2

� �� �
ðaþ xÞ��rða� xÞ�r � 2ic1 coshðpkÞðaþ xÞ��rða� xÞ��r

;

ðB3aÞ
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Tþ2 � T�2 ¼ �
iE�

4R
coshðpjÞ x2 þ 2ijax� a2 1

2
þ 2j2

� �� �
ðaþ xÞ�rða� xÞ��r � 2ic2 coshðpjÞðaþ xÞ�rða� xÞ��r

ðB3bÞ

and

qðxÞ ¼ Tþ1 � T�1
� �

þ Tþ2 � T�2
� �

; pðxÞ
¼ i Tþ1 � T�1
� �

� i Tþ2 � T�2
� �

; ðB4Þ

where

r ¼ 1
2
þ ij; j ¼ 1

2p
ln

1þ b
1� b

ðB5Þ

and qðxÞ as well as pðxÞ denote the tangential and normal traction
forces, respectively.

The constants c1 and c2 in Eq. (B3) can be determined by using
the boundary conditionsZ a

�a
qðxÞdx ¼ Q ;

Z a

�a
pðxÞdx ¼ P; ðB6Þ

which gives

c1 ¼
P þ iQ

4p
; c2 ¼ �

P � iQ
4p

: ðB7Þ

Then by combining Eqs. (B3), (B4) and (B7), we can obtain that

pðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p I001 cos j ln

aþ x
a� x

� 

� I002 sin j ln

aþ x
a� x

� 
n o
; ðB8aÞ

qðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p I002 cos j ln

aþ x
a� x

� 

þ I001 sin j ln

aþ x
a� x

� 
n o
; ðB8bÞ

where

I001 ¼
2Pð1� lÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p þ
a2 1

2þ 2j2
� �

� x2

Rð1þ lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p E; ðB9aÞ

I002 ¼
2Qð1� lÞ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p þ 2Eajx

Rð1þ lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 4l

p ðB9bÞ

and

j ¼ 1
2p

lnð3� 4lÞ: ðB10Þ

It is obvious the results in Eq. (B8) are the same as that in Eq. (3.15),
which verifies the assertion made in Section 3 of the main text.
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