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A new parametric formulation for high-fidelity generalized method of cells (HFGMC) is presented for the
micromechanical analysis of multiphase periodic composites. To this end, a linear parametric and geo-
metric mapping is employed to transform arbitrary quadrilateral cell shapes from the physical space
to an auxiliary uniform square shapes. A complete quadratic displacement expansion is performed in
the mapped space. Thus, a new bilinear term is added to the quadratic displacement expansion; unlike
the original HFGMC for regular array of rectangular cells where this term in not required. The continuity
of displacements, tractions, together with the periodicity and equilibrium conditions are imposed in the
average sense, similar to the original HFGMC formulation, using both the physical and mapping variables.
However, the addition of bilinear terms requires the introduction of the first averaged moments of the
equilibrium equations. In order to demonstrate the ability the new HFGMC formulation, spatial stress
fields are compared with analytical and numerical solutions of circular and elliptical fibers in an infinite
medium. Furthermore, two progressive damage methodologies are coupled with the new HFGMC formu-
lation in order to predict the strain softening and elastic degrading behaviors. The first methodology
employs a cell extinction approach, while the second uses cohesive interfaces between the cells. Due
to the strain softening, both damage methodologies require an iterative solution approach of the govern-
ing system nonlinear equations. Damage applications are presented for the transverse loading of compos-
ites with square and hexagonal repeating unit-cells (RUC).

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

A major challenge in the micromechanical analysis of multi-
phase composite materials is the accurate geometrical representa-
tion of the phases and microstructure. Accurate prediction of the
spatial distributions of local fields requires a refined depiction of
the geometry of the microstructure. Classical micromechanical
theories are successful in generating both effective linear and non-
linear response. This is because the exact geometrical representa-
tion of the constituents has a higher-order effect on the effective
behavior. However, a refined micromechanical analysis is needed
whenever the detailed spatial distribution of the local fields is re-
quired, such as the stress concentration near voids and material
imperfections. Furthermore, proper prediction for the initiation
and progression of inelastic and damage effects can also require re-
fined micromechanical analysis.

The HFGMC micromechanical theory can be employed for the
refined nonlinear analysis of multiphase composites, Aboudi
ll rights reserved.

: +972 3 640 7617.

anta, GA 30332, USA.
(2004). It provides a viable alternative to classical numerical meth-
ods such as finite element (FE) and finite difference. This is because
it is directly specialized and geared towards multiphase compos-
ites as its formulation is explicitly based on micromechanical vari-
ables needed to establish the elastic and inelastic concentration
tensors of the phases in addition to the detailed local fields. The
HFGMC method has evolved from its predecessors, the method of
cells (MOC) and the generalized method of cells (GMC), Aboudi
(1989, 1991), Paley and Aboudi (1992), respectively. The HFGMC
employs higher-order displacement expansion whereas in MOC
and GMC the displacement expansion is limited to a linear one.

Several recent re-formulations of the HFGMC have been con-
ducted. Haj-Ali and Aboudi (2009) provided total and incremental
formulation of the HFGMC for the micromechanical analysis of
nonlinear multiphase materials. To this end, an iterative procedure
has been developed to minimize the residual error and satisfy the
HFGMC governing equations in their total form. In Aboudi (2002), a
finite strain HFGMC formulation has been performed for the anal-
ysis of composites undergoing large deformations. This necessi-
tates the use of conjugate stress and strain measures along with
the deformation gradient tensor. Various types of finite strain con-
stitutive equations have been implemented within the finite strain

http://dx.doi.org/10.1016/j.ijsolstr.2010.08.022
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HFGMC framework such as hyperelastic coupled with damage,
thermo-inelastic and thermo-viscoelastic, see an expanded review
by Aboudi (2008). Bansal and Pindera (2004) provided a re-
formulation for the linear elastic HFGMC by directly employing
the cell average displacements as the sole independent variables
which enables variable condensation, thus enhances the computa-
tional efficiency. This same approach is followed by Bansal and Pin-
dera (2006), using this HFGMC method, to include plasticity
effects. Although this case is also a direct implementation of the
HFGMC method; it was renamed by these authors.

The HFGMC method has been extensively applied over the last
decade. Coupled electro-magneto-thermo-elastic analysis of multi-
phase composites have been studied (Aboudi, 2001). Inelastic and
viscoelastic–viscoplastic micromechanical effects have been inves-
tigated using the HFGMC by Aboudi et al. (2003) and Aboudi
(2005). Interfacial damage and fiber loss effects using HFGMC were
addressed by Bednarcyk et al. (2004) and Ryvkin and Aboudi
(2007). The analysis of periodic lattice blocks has been performed
by Aboudi and Gilat (2005), whereas pressurized foam cell micro-
structure in the insulation of the external tank of the space shuttle
have been carried out by Bednarcyk et al. (2008). Numerous types
of smart composite material systems have been modeled using the
HFGMC method, see Aboudi (2007) for an extensive review. In the
area of shape memory alloy composites the HFGMC has been
extended and applied to the local and global behavior of these
material systems, see the recent study of Freed and Aboudi
(2009). Finally, Bruck et al. (2007) employed the HFGMC modeling
capability in the optimization of porous microstructures using
multi-objective function with the genetic algorithm method.

The current HFGMC formulation has to be performed on orthog-
onal arrays of cells used to model the geometry of the phases. This
limitation requires a relatively large cell number in order to accu-
rately capture refined geometrical features. Despite this limitation,
the previous applications have demonstrated the effectiveness of
the method to generate the local field solutions when using suffi-
ciently large number of cells. It should be emphasized that few
number of rectangular cells is sufficient to generate the effective
linear and nonlinear response with high accuracy. In fact, this is
one of the advantages of using the HFGMC in a local–global analy-
sis of composite structures (Haj-Ali and Aboudi, 2009).

In order to overcome the aforementioned limitation, a linear
geometrical mapping of cells is proposed. Towards this goal, quad-
rilateral shape cells are used to map the phases and microstruc-
tures of the composite. This linear and parametric geometric
mapping can be arbitrarily applied for general phase geometry
using quadrilateral cell shapes that are transformed to an auxiliary
uniform square shape. It is important to note that while linear
geometric mapping is employed, quadratic displacement expan-
sion, similar to the original HFGMC, is still performed but in the
auxiliary space coordinate system. Special attention is made to
employ a complete quadratic polynomial expansion in the auxil-
iary space in order apply the proper mapping for arbitrary cell
geometry.

This paper is organized as follows. Section 2 presents the gen-
eral re-formulation of the HFGMC with linear mapping including
the establishment of the concentration and the effective stiffness
tensors. The last part of this section deals with the global HFGMC
system of equations represented in a compact form which facili-
tates an efficient iterative solution. Section 3 is concerned with
damage formulation in conjunction with the HFGMC and its linear
mapping. Two progressive damage methods are introduced. The
first is based on cell extinction approach while the second employs
cohesive modeling at the interfaces between the cells. Section 4
presents applications and verifications of the theory. A general
discussion can be found in Section 5, followed by conclusions in
Section 6.
2. General formulation

The HFGMC micromechanical method has been developed for
the analysis of multiphase composite materials. Fig. 1 schemati-
cally illustrates a periodic multiphase material system having a
global coordinates (x2,x3). The repeating unit-cell (RUC) of this
medium is identified and described with respect to the coordinate
system (Y2,Y3). The HFGMC method is based on the homogeniza-
tion technique for periodic composites and is capable of predicting
the spatial local deformation field as well as the overall effective
behavior. In the framework of this method, the RUC is divided into
regular array of cells, often denoted as subcells. In the present sec-
tion, this method is extended to analyze an RUC with a irregular ar-
ray of generally shaped quadrilateral cells. Fig. 2(a) and (b) shows
the RUC domain which is discretized into a general assembly of
quadrilateral cells to represent the different phase geometries. In
addition, a general quadrilateral cell is isolated and shown in its
physical coordinates (y2,y3), Fig. 2(c), whose origin is located at
the center of the cell. This cell is mapped to a uniform parametric
coordinate system (r,s) using the classical linear transformation

y2ðr; sÞ ¼
X4

i¼1

Hiðr; sÞyðiÞ2 ; y3ðr; sÞ ¼
X4

i¼1

Hiðr; sÞyðiÞ3 ð1Þ

where

H1 ¼
1
4
ð1� rÞð1� sÞ; H2 ¼

1
4
ð1þ rÞð1� sÞ

H3 ¼
1
4
ð1þ rÞð1þ sÞ; H4 ¼

1
4
ð1� rÞð1þ sÞ

ð2Þ

and ðyðiÞ2 ; y
ðiÞ
3 Þ are the corner coordinates of the cell.

As in the original HFGMC formulation (e.g., Aboudi, 2004), the
displacement field in the physical coordinates of the cell is ex-
panded in the form:

u ¼ �0 � xþWð00Þ þWð10Þy2 þWð01Þy3 þ
1
2

Wð20Þ 3y2
2 �

h2

4

 !

þ 1
2

Wð02Þ 3y2
3 �

l2

4

 !
ð3Þ

where �0 is the externally applied average strain with h and l are the
cell dimensions. The coefficient variables vectors, W(mn), represent
the volume averaged displacement in the case of m = n = 0, which
together with the additional higher-order terms have to be
determined.

Expansion (3) is suitable for regular and orthogonal array of
cells. However, the above displacement expansion form is not suit-
able for a general quadrilateral cell geometry. Attempts to identi-
cally use the above polynomial to reformulate the HFGMC for
irregular and general cell geometries have been conducted by
Khatam and Pindera (2009). The missing bilinear term, y2y3W(11)

in Eq. (3), is required in order to achieve completeness and proper
transition from the linear to the full quadratic order. This require-
ment is well-known in the mathematical literature as the Pascal
Triangle. In addition, the choice of interpolation terms and func-
tions has been extensively discussed in the finite-element litera-
ture whereby improper transition can lead to undesirable effects
such as gaps and overlaps between adjacent cells. A more ex-
panded discussion of these effects can be found in Cook et al.
(2002), for example.

A general parametric expansion of the displacement in the cell,
using the auxiliary parametric coordinates (r,s), can be expressed
using the Legendre polynomials as follows

u ¼ �0 � xþ
XM

m¼0

XN

n¼0

WðmnÞPmðrÞPnðsÞ ð4Þ



Fig. 1. Schematic illustration of a unidirectional periodic array in the global (x2 � x3) plane of multiphase composite media with its repeating unit-cell (RUC), defined with
respect to its (Y2 � Y3) local coordinate system.
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In the present HFGMC formulation the proper complete quadratic
form is given by

u ¼ �0 � xþWð00Þ þWð10Þr þWð01ÞsþWð11Þrsþ 1
2

Wð20Þð3r2 � 1Þ

þ 1
2

Wð02Þð3s2 � 1Þ ð5Þ

The mapping between the parametric and physical cell geometries
is performed using the above transformation functions Hi along
with the standard Jacobian of the transformation.

J ¼
@y2
@r

@y3
@r

@y2
@s

@y3
@s

" #
ð6Þ

Fig. 2(c) describes a typical four-sided quadrilateral cell labeled as
(b). Let nðbkÞ denote the normal vector to side k = 1,2,3,4. The aver-
age displacement and traction vectors are also shown on each side.
The average displacement vector �uðbkÞ on the side of the cell is
defined by

�uðbkÞ ¼ 1
lk

Z
Sk

uðbÞðyÞdSk ¼
1
lk

Z 1

�1
uðbÞðr; sÞJSk

dnk

¼ 1
2

Z 1

�1
uðbÞðr; sÞdnk ð7Þ

where lk is the length of the side (equal to the area Sk of this side
with unit thickness). The integration is defined in the physical space
and performed using the parametric transformation coordinates.
The line Jacobian JSk

used in the present case of linear mapping
has the value: JSk
¼ lk=2. In the above equation, the integration vari-

ables dnk assume the value dr or ds depending the specified side.
The average traction vector TðbkÞ on the side of the cell is defined

by

T ðbkÞ ¼ 1
lk

Z
Sk

rðbÞðyÞ � nðbkÞdSk ¼
1
2

Z 1

�1
rðbÞðr; sÞ � nðbkÞdnk ð8Þ

where r(b) is the stress field.
By substituting the quadratic form of the displacement given by

Eq. (5) in Eq. (7), the average displacements on the side of the cell
have the form

�uðbkÞ ¼ u0 þW ðbÞ
ð00Þ �W ðbÞ

ð01Þ þW ðbÞ
ð02Þ; k ¼ 1;3

�uðbkÞ ¼ u0 þW ðbÞ
ð00Þ �W ðbÞ

ð10Þ þW ðbÞ
ð20Þ; k ¼ 2;4

ð9Þ

where u0 = �0 � x with �0 being the externally applied strain.
In order to establish the average cell side-tractions, the stresses

need to be expressed in terms of the strains (constitutive equa-
tions) which in turn need to be defined using the coefficients in
the displacement expansions (microvariables). The displacement
gradients with respect to the physical coordinates, as functions of
the parametric coordinates (r,s), are given by

@ui

@yj
ðr; sÞ ¼ @uiðr; sÞ

@r
@r
@yj
þ @uiðr; sÞ

@s
@s
@yj

¼ Ĵj1
@uiðr; sÞ
@r

þ Ĵj2
@uiðr; sÞ
@s

ð10Þ
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Fig. 2. (a) Schematic multiphase RUC geometry; (b) HFGMC mesh of the RUC with quadrilateral cells; (c) a representative quadrilateral cell with the normal, displacement
and traction vectors shown on the four sides; (d) the mapped space of the cells.
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where Ĵ is the inverse of the Jacobian that was given in Eq. (6). A di-
rect differentiation of Eq. (5) yields

@ui

@yj
¼ Ĵj1½Wið10Þ þWið11Þsþ 3Wið20Þr� þ Ĵj2½Wið01Þ þWið11Þr

þ 3Wið02Þs� ð11Þ

The spatial form of the strains in a given cell (b) are defined by

�ðbÞij ðyðr; sÞÞ ¼ �
0
ij þ

1
2

@ui

@yj
þ @uj

@yi

 !
ð12Þ

After some algebraic manipulations, the strains can be lumped in
the vector form

�ðbÞ ¼ �0 þ AðbÞW ðbÞ ð13Þ

where the strain vector notation � is defined by

�T ¼ �11; �22; �33;2�23;2�13;2�12f g ð14Þ

The size of the vector W(b) is 18 and includes all the microvariables
of cell as follows

W ðbÞ;T ¼ W ð00Þ;W ð10Þ;W ð01Þ;W ð11Þ;W ð20Þ;W ð02Þ
� �ðbÞ ð15Þ

The A(b) matrix is divided into six equal-size sub-matrices of the
form

AðbÞ ¼
Að00Þ Að10Þ Að01Þ Að11Þ Að20Þ Að02Þ

6� 3 6� 3 6� 3 6� 3 6� 3 6� 3

� �ðbÞ
ð16Þ

where A(00) is a matrix of the order of 6 � 3 the elements of which
are zeros, and
Að10Þ ¼

0 0 0

0 Ĵð21Þ 0

Ĵð11Þ 0 0

Ĵð21Þ Ĵð11Þ 0

0 0 Ĵð11Þ

0 0 Ĵð21Þ

2
6666666666664

3
7777777777775

ð17Þ

Að01Þ ¼

0 0 0

0 Ĵð22Þ 0

Ĵð12Þ 0 0

Ĵð22Þ Ĵð12Þ 0

0 0 Ĵð12Þ

0 0 Ĵð22Þ

2
6666666666664

3
7777777777775

ð18Þ

Að11Þ ¼ sAð10Þ þ rAð01Þ; Að20Þ ¼ 3rAð10Þ; Að02Þ ¼ 3sAð10Þ ð19Þ

Having established the spatial strains in the cell, the corre-
sponding stresses can be obtained using the generalized Hooke’s
law to be employed in the expression for the average tractions,
Eq. (8). This provides

T ðbkÞ ¼ 1
2

Z 1

�1
NðbkÞCðbÞ½�0 þ AðbÞW ðbÞ�dnk

¼ NðbkÞCðbÞ½�0 þ AðbkÞW ðbÞ� ð20Þ
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where C(b) is the stiffness of the material in the cell and,

NðbÞ ¼
n1 0 0 0 n3 n2

0 n2 0 n3 0 n1

0 0 n3 n2 n1 0

2
64

3
75
ðbÞ

ð21Þ

and

�AðbkÞ ¼ 1
2

Z 1

�1
AðbÞdnk ð22Þ

It should be noted that due to the applied linear mapping, the N(b)

matrix is constant.
We proceed by following the original HFGMC formulation to

impose the displacements and tractions continuity between the
cells along with the periodicity conditions and intra cell equilib-
rium. As stated above, these conditions are imposed in an average
integral sense. In the following, the above transformed expressions
for the average displacements and tractions, (9) and (20), respec-
tively, can readily be used to impose the HFGMC equations. The
displacements and tractions continuity can be written as

�uðbkÞ ¼ �uðcmÞ; T ðbkÞ ¼ T ðcmÞ ð23Þ

where bk denotes the kth interface (side) of cell b and cm is neigh-
boring mth interface side of cell c. The displacement and traction
periodicity conditions are imposed as in Eq. (23), but with cell b
and c located on opposite sides of the RUC.

The equilibrium equations for each cell are imposed in an aver-
age sense in conjunction with Divergence theorem in order to uti-
lize the derived expressions for the average tractions as followsZ

V
r � rdV ¼

Z
S
r � ndS ¼

X4

k¼1

Z
Sk

NðbkÞrðbÞdSk ¼
X4

k¼1

lkT ðbkÞ ¼ 0

ð24Þ

where V and S are the volume and surface of the (b)-cell, respec-
tively, and lk is the length of the kth side.

The total number of unknown microvariables in the RUC is 18Nc

where Nc is the total number of cells every one of which has 18
microvariables, see Eq. (5). The number of continuity and periodic-
ity equations for displacements is 3 � 2Nc (only two interfaces for
each cell provide independent relations), see the first equality in
Eq. (23). Similarly, the number of traction continuity and periodic-
ity equations is 3 � 2Nc. The average equilibrium relations, Eq. (24),
provide 3Nc equations. Thus additional 3Nc equations are needed.
To this end, the moment of the equilibrium equations can be used.
This is expressed as followsZ

V
y2y3r � rdV ¼

Z
V
r � y2y3rð ÞdV �

Z
V

y2r � ê3dV �
Z

V
y3r � ê2dV

¼
Z

S
y2y3r � ndS� Sð10Þ � ê3 � Sð01Þ � ê2

¼
X4

k¼1

lk

V
T ðbkÞ
ð11Þ � Sð10Þ � ê3 � Sð01Þ � ê2 ¼ 0 ð25Þ

where the volume average stress moments are generally defined as

SðmnÞ ¼
1
V

Z
V

ym
2 yn

3rdV ð26Þ

and

T ðbkÞ
ðmnÞ ¼

1
lk

Z
Sk

ym
2 yn

3r � ndSk ð27Þ

with ê2, ê3 being the unit vectors in the y2 and y3-directions,
respectively.

Next, the established HFGMC 18 � Nc governing equations of
the RUC are solved to obtain the unknown 18 microvariables for
each cell. These equations can symbolically be grouped into four
parts in the form

AðþÞu � Að�Þu

AðþÞT � Að�ÞTP
AðþÞT �

P
Að�ÞTP

y1y2AðþÞT �
P

y1y2Að�ÞT

2
666664

3
777775fWg þ

0
DðþÞT � Dð�ÞT

0
0

2
6664

3
7775f�0g ¼

0
0
0
0

8>>><
>>>:

9>>>=
>>>;
ð28Þ

where the first part (row) represents the average continuity and
periodicity of the displacements, the second part represents the
continuity of the tractions in a similar fashion. The third and the
fourth parts represent the equilibrium equations and their mo-
ments for all the cells. The above system of equations is solved
for an externally applied strains �0 to obtain the cell microvariables.
Furthermore, the local spatial strains are readily obtained using Eq.
(13) which leads to the spatial distribution of the stresses in the
RUC.

The set of HFGMC equation (28), is singular in its present form
since the rigid-body motion has not been eliminated. To this end, it
is convenient to impose a pointwise zero displacement at the mid-
side points of the corner cells of the RUC. These displacement
boundary conditions are expressed by appropriately setting to zero
one of the following four equations:

uð�1;0Þ ¼ �0 � xþWð00Þ �Wð10Þ þWð20Þ �
1
2

Wð02Þ

uð0;�1Þ ¼ �0 � xþWð00Þ �Wð01Þ �
1
2

Wð20Þ þWð02Þ

ð29Þ

The ability to apply pointwise displacement boundary conditions
stems from the current HFGMC formulation whereby it is not solely
based on the average deformation field of the cell. A choice of aver-
age variables in the derivation may impair the flexibility of the
HFGMC implementation.

The effective elastic properties of the multiphase composite can
be obtained from the cell strain concentration tensors G(b). The lat-
ter is established by considering the average strain of the cell hav-
ing the form

��ðbÞ ¼ 1
V

Z
V
�ðyÞdV ¼ �0 þ 1

2V

Z
V
ryuþ ury
� �

dV ð30Þ

By using the Divergence theorem and the linear mapping, Eq. (30)
takes the form

��ðbÞ ¼ �0 þ 1
2V

Z
S

u� nþ n� uð ÞdS

¼ �0 þ 1
2V

X4

k¼1

lk �u� nþ n� �uð ÞðbkÞ 	 GðbÞ : �0 ð31Þ

As can be observed from the Eq. (31), the concentration tensor G(b)

depends on the average displacement vectors on the surfaces of the
cell. Those can be computed only after solving the entire HFGMC
system of equations for the RUC. Once the concentration tensors
G(b) have been obtained, the effective elastic stiffness tensor C* is
evaluated from

C
 ¼
XNc

b¼1

vbCðbÞGðbÞ ð32Þ

where vb = V/VRUC, and VRUC = H L being the volume of the RUC.

3. Damage formulation

Damage in composite materials is of a local and distributed
nature due to multi-site imperfections, such as voids and micro-
cracking in the matrix phase. Damage characteristics include
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multi-mode and anisotropic, initial benign states, and slow to sud-
den evolution rates. These offer a formidable challenge in the
mechanics of damage in composite materials, especially if the goal
is to describe both local and macro-behavior at all stages of the
material life span. This is an active and wide area of research and
over the last two decades has seen major advances. Several early
landmark publications have made continuum damage mechanics
a classical subject and an independent area in mechanics, e.g.,
Kachanov (1986), Mura (1987), Lemaitre and Chaboche (1990),
Krajcinovic (1996), Lemaitre (1996), Voyiadjis and Kattan (2005)
and Lemaitre and Desmorat (2005) among many others. However,
there are many challenges that make damage mechanics a
current and an active area of research especially in composite
materials.

Damage in polymeric and metal matrix composites have been
the subject of numerous studies. The wide range of damage modes
that are present in the composite material, e.g., delamination, ma-
trix cracking, fiber microbuckling, etc., justify their independent
study. This makes it difficult, if not impossible, to model damage
in a unified manner. Examples of such investigations are Allen
et al. (1994), Boyd et al. (1993), Chow and Lu (1989), Majumdar
et al. (1993), Matzenmiller et al. (1995), Talreja (1985a,b), Talreja
(1994), Voyiadjis (1993), Voyiadjis and Allen (1996), Voyiadjis
and Kattan (1999) and references cited there.

The use of coupled three-dimensional micromechanics with
damage in the constituents offer an advantage mainly that the
effective damaged response evolves naturally from the formulation
without a priory assumption over its anisotropic nature and pro-
gression. Haj-Ali and Aboudi (2009) introduced progressive damage
in polymeric composites in conjunction with GMC re-formulation
to allow for softening damage behavior. Voyiadjis and Deliktas
(1997) have introduced anisotropic damage formulation with the
GMC micromechanics for the analysis of metal matrix composites.
Bednarcyk et al. (2010) employed the HFGMC to include multiaxial
progressive damage in the elastic matrix constituents.

Micromechanical and damage formulation can be coupled with
multiscale analysis of composite materials and structures, e.g.,
Haj-Ali et al. (2006), Haj-Ali (2008, 2009). However, the refined
micromechanical prediction of the HFGMC can offer a great advan-
tage if coupled with damage. This is because local damaged re-
sponse can be attained along with the effective softening. In this
section, the proposed HFGMC micromechanical formulation is
modified to implement progressive damage at the microlevel with-
in the constituents. The key idea herein is to apply a damage crite-
rion and the resulting softening effects at the cell level. In this way
both micromechanical and damage analyses are coupled without
the need to be a priori specified and thus constrain the effective
damage response of the composite. The proposed ability to couple
micromechanics-damage formulation offers great advantage
among which the effective damage evolution emerges naturally
and need not to be assumed. To this end, two major damage ap-
proaches are considered. The first is termed cell extinction damage
(CED) approach where cells in HFGMC are degraded and then re-
moved from the RUC model by appropriately modifying the gov-
erning micromechanical equation developed in the previous
section. The second micromechanical damage approach, is based
on the application of cohesive interfacial models for each cell. Here,
the displacement continuity equations for the undamaged state are
modified to include discontinuities expressed in terms of the inter-
facial tractions at the onset of damage. The latter tractions are mul-
tiplied by selected interfacial compliance functions. However, it is
important to note the limitation of introducing damage within the
RUC micromechanical formulation. This is because the periodicity
conditions in the latter formulation are also imposed on the dam-
age initiation and evolution in the entire composite material. As a
result, the predicted damage formations are limited in the sense
that they are not independent in the inter-RUCs. In order to ad-
dress the practical need for damage modeling in composite struc-
tures, the proposed periodic damage formulation should be
implemented in a multiscale analysis framework and applied at a
relatively large number of spatial locations.

In the framework of the first CED damage approach, damage ini-
tiation in the cell is governed by a stress or strain-based criterion,
such the Mises equivalent stress function for the isotropic matrix
cells, e.g., Lemaitre and Chaboche (1990). Once damage initiates,
a strain softening scheme is applied in the cell whereby the stiff-
ness of the cell is degraded. Here, an isotropic damage model can
be adopted for simplicity as follows

rðbÞ ¼ ð1� kðbÞÞCðbÞ : �ðbÞ ð33Þ

where 0 6 k(b)
6 1 is the associated damage variable and C(b) is the

stiffness of the b-cell, respectively. For simplicity, a linear relation
between the cell damage variable and the equivalent strain �ðbÞeq of
the cell is adopted in the form

k ¼ 1
1� g

1� �eq

�i

� �
; �f ¼ g�i ð34Þ

where �eq = �i is the strain condition at damage initiation and �eq = �f

is the strain level at which the cell is removed. The parameter g can
be used to relate the initiation of damage to the final state where
the cell is removed. Its limit values (g = 1,1) correspond to highly
brittle and highly ductile (perfectly plastic) states, respectively. A
loading state is defined by

_k P 0 when �eq ¼ �max and _�eq P 0 ð35Þ

A state of unloading or re-loading after unloading is defined by

_k ¼ 0 and k ¼ kmax when �eq 6 �max or _�eq < 0 ð36Þ

This simple damage evolution has been adopted in the present
study. However, the proposed micromechanics-damage framework
is quite general and other damage evolution laws can be easily
implemented. The current damage formation has been carried out
with isotropic (scalar) damage variables associated with each sub-
cell in the RUC. However, this is not a limitation and tensorial dam-
age variables can be easily introduced in each subcell.

At a pre-selected damage level, k(b) = kf the cell is removed from
the model thus creating a traction-free surfaces. This is achieved in
the present HFGMC formulation by eliminating the displacement
continuity equations of the four sides of the cell, the first part of
Eq. (23). In addition, the traction continuity equations, the second
part of Eq. (23), are replaced by setting Eq. (20) to zero for the adja-
cent cells. Furthermore, the equilibrium equations, (24) and (25),
are also removed from the overall system of equation, (28). As a re-
sult, the system of equations has been reduced by 18 variables and
equations. This procedure creates imbalance in the overall HFGMC
system of equations and a load redistribution is needed. Therefore,
an iterative predictor–corrector procedure must be implemented
in order to reach the correct displacement microvariables and
the associated consistent damage variables in the cells. The itera-
tive solution procedure requires the definition of a cell residual
vector defined by

RðbÞ ¼

�uðbkÞ � �uðcmÞ

T ðbkÞ � T ðcmÞR
V r � rdVR

V y2y3r � rdV

8>>><
>>>:

9>>>=
>>>;

; RðbÞ ! RG ð37Þ

The global residual vector, RG, is established by collecting the indi-
vidual residual vectors of the cells. The latter are evaluated by a
numerical integration over the surface and volumes of the cells.
The linearization of the global residual vector results in the system
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of equations which has been previously established in Eq. (28). By
equating the residual vector RG to the residual form of Eq. (28) it
is possible to apply linearization to both sides and establish an
incremental solution procedure. This can be represented by

RG ¼ AW � D�0 ¼ 0 ð38Þ

Therefore

DW ¼ � @RG

@W

� ��1

k;W
¼ �A�1RG ð39Þ

where the A-matrix is evaluated at a fixed damage and microvari-
ables from the previous time step t � Dt. With the established glo-
bal residual vector and its linearized form, it is possible to proceed
with an incremental iterative procedure aimed at satisfying the
overall HFGMC equations in their total form while consistently
updating the deformation field and damage variables.

The algorithmic solution procedure is summarized in Fig. 3. The
described algorithm begins with a given prior converge solution
state at time t � Dt along with the material and damage history
variables Hism and k(b) in the cell. A trial elastic solution update is
first generated for an applied �0 using the system of equations
(28) in conjunction with the previously computed A and B
Fig. 3. Iterative solution algorithm for the HFGMC micromechanical-damage method il
matrices. Steps 4 and 5 in the solution algorithm, Fig. 3, describe
two nested iterative loops, the first of which damage iteration up-
dates are conducted, whereas the second one incremental iterative
procedure is carried out to generate a converge solution for the
microvariables. The previously described global residual vector
(37) is evaluated during both nested loops following the updates
over the damage and microvariables, respectively. A convergence
is reached once the two residual checks are satisfied as shown in
steps 5.3 and 6.1 in Fig. 3.

In the cohesive micromechanical-damage modeling can be
implemented by modifying the displacements interfacial continu-
ity conditions, the first part of Eq. (23), to

½�u�ðbkcmÞ �XðbkcmÞT ðbkÞ ¼ �uðbkÞ � �uðcmÞ �XðbkcmÞT ðbkÞ ¼ 0 ð40Þ

where ½�u� denotes the average displacement jump across the inter-
face between the kth-side of cell (b) and the mth-side of the neigh-
boring cell (c). The interfacial compliance matrix XðbkcmÞ between
these adjacent cell sides of the interface can depend on the dis-
placement jump ½�u�. In this case, it is possible to associate damage
variables with the cohesive interface, in the same manner as was
previously given in the CED formulation. To this end, the interfacial
traction can be expressed by
lustrating an incremental and total formulation along with state variable updates.
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Fig. 4. HFGMC meshes for two RUCs; (a) square array with a circular fiber; (b)
square array with an elliptical fiber.
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T ðbkÞ ¼ XðbkcmÞ
� 	�1½�u�ðbkcmÞ 	 I � kð ÞC0½�u�ðbkcmÞ ð41Þ

where C0 is the initial interfacial stiffness which is subsequently de-
graded by the damage matrix k. This equation relates the interfacial
compliance tensor to the current interface stiffness through its ini-
tial value and the cohesive damage variables. The loading and load-
ing conditions in this cohesive damage model can be defined in a
similar manner to those in the CED model, Eqs. (35) and (36).

Alternatively, XðbkcmÞ can have a fixed value to represent a pre-
existing state of interfacial damage. Another possibility is to
assume an increasing time dependent function whereby the
debonding history is prescribed a priori XðbkcmÞðtÞ, Bednarcyk and
Arnold (2002) and Bednarcyk et al. (2004). Finally, it is important
to note that in this cohesive damage modeling the traction conti-
nuity conditions remain intact. The creation of free traction sur-
faces is automatically carried out in the limit XðbkcmÞ ! 1.

The interfacial compliance matrix XðbkcmÞ defined in Eq. (40) is
written in the global RUC coordinate system. It is possible to re-
write this equation in the local interface coordinate system, having
the base unit vectors ðê1; ên; êtÞ, as:

½�u�0ðbkcmÞ �X0ðbkcmÞT 0ðbkÞ ¼ 0 ð42Þ

where

½�u�0ðbkcmÞ ¼ a½�u�ðbkcmÞ; ½T�0ðbkcmÞ ¼ a½T�ðbkcmÞ;

XðbkcmÞ ¼ aTX0ðbkcmÞa ð43Þ

with a being the standard vector transformation matrix. The result-
ing transformation shown above yields the XðbkcmÞ: the interfacial
compliance matrix in the (Y2,Y3) coordinates of the RUC. The local
interfacial compliance matrix X0(bkcm) has the following diagonal
form:

X0ðbkcmÞ ¼
X011 0 0

0 X0nn 0
0 0 X0tt

2
64

3
75
ðbkcmÞ

ð44Þ

The implementation of the cohesive micromechanics-damage
model requires the solution of a nonlinear set of equations in the
case where interfacial compliance matrix is dependent on the dis-
placement. This necessitates an iterative solution procedure with
similar considerations as stated above in the CED approach. How-
ever, the residual vector in the present case is of the form

RðbÞ ¼

�uðbkÞ � �uðcmÞ �XðbkcmÞTðbkÞ

T ðbkÞ � T ðcmÞR
V r � rdVR

V y2y3r � rdV

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð45Þ
4. Applications

The application section is divided into two major parts. The first
deals with the verifications of the proposed HFGMC theory with
linear mapping. To this end, RUC models are generated and com-
parisons with analytical and numerical solutions are presented to
demonstrate the ability of the HFGMC to capture the spatial stress
field distributions within the phases. These applications illustrate
the new capability to predict the elastic field in the phases with
general geometry. Special effort has been given to generate RUCs
with moderate or even small number of cells in order to demon-
strate the additional computational efficiency of the new deriva-
tion. The second part of this section presents progressive damage
applications where the current HFGMC formulation is extended
to include evolving and strain softening damage using the CED
method.
Consider two diluted unidirectional composite systems where-
by fibers with circular and elliptical cross-sections are oriented in
the 1-direction. Fig. 4(a) and (b) shows the HFGMC cell meshes
for the RUCs of these two composites. The number of quadrilateral
cells used in these two RUC models are: 880 and 524, respectively,
and both RUCs share the same dimensions, H = L. In the first RUC,
the ratio of the radius of the circular fiber to H is 0.1. As for the sec-
ond RUC with elliptical fiber, the ratio of the major and minor radii
to H are: 0.05 and 0.025, respectively. The material for the fibers is
taken as glass with Young’s modulus and Poisson’s ratio of
E = 69 GPa and m = 0.2, respectively. The matrix material is epoxy
with elastic constants: E = 4.8 GPa and m = 0.34. The composite
with the circular fibers is subjected to a remote stress
r33 = 10 MPa together with the conditions that the effective axial
strain ��11 ¼ 0 and r22 = 0. The closed-form Eshelby solution
(Muskhelishvili, 1963) can be employed to verify the spatial stress
distribution as predicted by the HFGMC model. Fig. 5(a)–(c) shows
the HFGMC plots for the two transverse stress components r22 and
r33 along with the transverse shear stress r23. The corresponding
analytical solution plots are shown in Fig. 5(d)–(f). It can be readily
observed that excellent agreement exists between the two
solutions. It should be noted that a relatively small number



Fig. 5. Stress distributions in the RUC with circular fiber – a comparison between the HFGMC and closed-form Eshelby solutions.
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quadrilateral cells has been used to generate the HFGMC solution
with linear geometric mapping.

The HFGMC results for the diluted composite with elliptical
cross-sectional fibers are shown in Fig. 6(a)–(d). These are com-
pared with a finite-element (FE) solution, Fig. 6(e)–(h), having gen-
eralized plane strain elements. The number of elements in the FE
solution is equal to the number of cells used in generating the
HFGMC results. Fig. 6 exhibits the three normal stress distributions
together with the transverse shear for both solutions. Again, it can
be observed that excellent agreement exists between the two
methods of solution.

Next, we proceed with applications of progressive damage
using the proposed CED method implemented within the HFGMC.
Towards this goal, a unidirectional composite with a fiber volume
fraction vf = 0.385 is considered. It is subjected to a remote uniaxial
transverse strain loading of �0

33. A boron/epoxy material system is
selected in this case where the epoxy properties are the same as
those used previously and the boron elastic properties are:
E = 379.3 GPa, m = 0.1. The HFGMC micromechanics with the CED
damage method is employed to generate both the macroscopic re-
sponse and local stress distributions at different levels of loading.
Two types of RUCs have been considered for this composite,
namely square and hexagonal packing arrays. Fig. 7(a) and (b)
shows the HFGMC meshes of the RUCs for these two cases. A Mises
stress criterion for the damage initiation in the interior matrix cells
is applied in the form: req = 10 MPa. Damage is not considered for
both the fiber and boundary cells in order not to violate the period-
icity equations. Once damage initiation is detected, a softening
procedure takes place whereby the stiffness of the cell is degraded,
see Eq. (33). This cell is extinct and removed from the system of
equations at a given critical value of its damage variable,
k = kcrit = 0.8 in this case. Fig. 8 shows the effective stress–strain re-
sponse of the two types of RUCs exhibiting identical initial re-
sponse. It is interesting to observe that the predicted ultimate
stress level for the composite with the hexagonal array distribution
is somewhat higher than the corresponding stress of the square ar-
ray packing. However, the strains at the ultimate stress levels coin-
cide in the two cases. Furthermore, post ultimate progressive



Fig. 6. Stress distributions in the RUC with an elliptical fiber – a comparison between the HFGMC and the FE solutions.
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damage and energy dissipation are more rapid in the hexagonal ar-
ray that of the square one. Finally, the two macroscopic stress–
strain curves exhibit a re-loading after post ultimate response as
evident by the positive slopes of these two curves. This is an arti-
fact because damage was not considered in the boundary matrix
cells which allow a continued loading in these cells. A damage for-
mulation that includes the RUC periodic boundaries is a subject for
further research. The spatial distributions of the local equivalent
stress req in the square and hexagonal arrays are shown at differ-
ent loading levels in Figs. 9 and 10, respectively. These sequence
of stress distribution plots are chosen to illustrate the damage pro-
gression with increasing remote loading. It is interesting to observe
a different progression sequence of damage in both cases. As men-
tioned above, fiber cells are not affected by damage and their
extinction is not carried out. Nevertheless, unloading of the stress
in the fiber cells is observed due to the loss of connectivity be-
tween the fiber–matrix and the creation of voided zones. It is
worth mentioning that damage initiation in a cell can occur while
the global stress–stain response of the composite seems not to be
affected. This observation can be seen in Figs. 9(b) and 10(c) where
some stress reduction zones have taken place, yet no noticeable
slope change is evident in the global response. This behavior is con-
sistent with experimental observation in the transverse tensile
loading case of composites, especially when acoustic emission is
used to detect early stages of damage initiations.

Finally, the interfacial cohesive damage modeling approach is
utilized to investigate the previous case of square fiber array sub-
jected to the same remote uniaxial strain loading �0

33. The cohesive
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(a)

Fig. 7. HFGMC: two RUC meshes for a unidirectional composite with circular fibers:
(a) square array; (b) hexagonal array.

Fig. 8. Effective transverse stress–strain responses as predicted by the HFGMC with
cell damage extinction method illustrating softening due to progressive damage
behavior.
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model is implemented at the interfaces between the fiber and
matrix cells. The interfacial damage initiation criterion used is
the equivalent traction as proposed by Camacho and Ortiz (1996):

Teq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

n þ bnsT2
s

q
> T0

eq, where Tn and Ts are local interfacial nor-
mal and shear traction components, respectively. The term bns de-
notes a mixed normal-shear coupling coefficient. The properties
used for the cohesive interface are: T0

eq ¼ 27 MPa, bns = 0.2. Once
interfacial damage has been detected, the interfacial compliance
matrix assumes a linear evolving form with time, measured from
the initiation point, reaching a maximum value (full debonding)
at time: tf = bfti. Here, the coefficient, bf, relates the time at full deb-
onding to that of initiation, its chosen value is bf = 1.05. Fig. 11
shows the equivalent transverse stress–strain response of the bor-
on/epoxy composite with strain softening due to the fiber–matrix
interfacial damage modeled by the cohesive damage approach.
Also shown in this figure, the corresponding damage behaviors of
the same composite as previously modeled by the CED approach.
It should be noted that the cohesive properties are calibrated to
achieve similar effective stress–strain curves of the previous two
cases. It can be observed that similar global softening takes place
in both damage approaches while the cohesive model seems to
be more dissipative in the post-peak response. The predicted
HFGMC local stress distributions are shown in Fig. 12 with evolv-
ing damage at selected loading stages. It is interesting to observe
similar initiation in the current model, Fig. 12(b), as previously
shown in the CED results. However, the damage progression and
fiber unloading is somewhat different.

5. Discussion

The aim of the first part of this section is to draw distinctions
between the well-known displacement-based finite-element (FE)
and the HFGMC methods, where a common misconception is to
link the HFGMC to FE. This is not in any way to claim that the
HFGMC can replace the general purpose and well-established FE
method, rather to point out that the two methods are not related.
In the FE formulation the displacement continuity between two
adjacent and connected elements is satisfied in a pointwise man-
ner by sharing the same nodal degrees of freedom at the sides of
an element. However, the displacement continuity in the HFGMC
is satisfied in an average sense between adjacent cells. The latter
is an approximation that allows the HFGMC to explicitly use addi-
tional stress variables in the formulation and directly apply trac-
tion continuity in an average basis between cells. Another major
difference between the two methods lies in the fact that the con-
tinuum equilibrium equations in the HFGMC are explicitly applied
in a volumetric average for each cell, which allows retaining the
cell stresses and their higher order moments in the formulation.
In difference, the FE method employs equilibrium through the
well-known virtual work or weak flux form, expressed externally
using the nodal forces. The FE is a general method and can be em-
ployed to generate micromechanical models for a priori given
states of applied remote fields. This typically requires the applica-
tion of special numerical schemes needed to impose the proper re-
mote traction and displacement boundary conditions in order to



Fig. 10. Equivalent stress distribution sequence in the composite with the hexagonal array as predicted by the HFGMC with the CED evolving damage.

Fig. 9. Equivalent stress distribution sequence in the composite with the square array as predicted by the HFGMC with the CED evolving damage.
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Fig. 11. Comparison between the effective transverse stress–strain responses as
predicted by the HFGMC with the cell damage extinction method (CED) and the
cohesive fiber–matrix interface approach.

Fig. 12. Equivalent stress distribution sequence in the composite with the square array p
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generate the correct internal fields. Unlike FE, the HFGMC is a spe-
cialized modeling framework in which the remote fields are di-
rectly tied to the micromechanical formulation (e.g., the remote
average strain is directly used in the HFGMC formulation). Finally,
the periodicity in the FE formulation is imposed only through dis-
placement boundary conditions, while in the HFGMC, the periodic
boundary conditions are imposed directly using both the displace-
ment and cell tractions.

The current parametric HFGMC formulation with linear map-
ping employs full quadratic displacement expansion including
the mixed bilinear term. This is an important difference because
this term vanishes in the volumetric and surface integral based
continuity applied in the previous HFGMC formulation using rect-
angular shaped cells. The need for full quadratic form of a displace-
ment expansion emanates from the demand that the new mapping
be applied to a general quadrilateral cell shape. As a result, addi-
tional moment equilibrium equations are needed in the current
study in order to have sufficient equations for the added coeffi-
cients of expansion. The form of the average moment equilibrium
is chosen by multiplying the pointwise stress based partial differ-
ential equations with the mixed bilinear coordinates before apply-
ing the average volume integration of the equations for each cell.
This choice may not be the optimal one and further research may
be needed to answer the question: What is the optimal equilibrium
moment equation? Nevertheless, the performance and solution
presented in the verification section indicates a more than
acking as predicted by the HFGMC with the cohesive fiber–matrix evolving damage.
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adequate accuracy has been achieved by the current HFGMC for-
mulation. This is despite the relatively smaller number of cells
used to map complicated shape fibers and phases of the composite.

Finally, it is important to emphasize that the HFGMC can be
used to generate refined micromechanical models when the aim
is to evaluate the local spatial distributions in the phases in an
accurate manner. Several other micromechanical models, e.g.,
Mori–Tanka, MOC, and the GMC, have been successfully applied
to generate the effective stiffness and global nonlinear response
of composite materials with high accuracy comparable to that of
detailed FE models. These earlier micromechanical models have
not accurately depict the fiber or phase geometry. In fact, it is
clearly shown in these models that the exact shape of the fibers
and their corresponding spatial distributions of deformation may
not have dramatic effect on the effective stiffness or even the glo-
bal nonlinear stress and strain. While the HFGMC can be used to
obtain such accurate global solutions using very small number of
cells, the ultimate goal is to propose using the HFGMC to generate
the local distribution of deformation in the RUC when those are
needed in addition to the macroscopic composite response. This
point has been clearly demonstrated in the current study where lo-
cal and global damage formulation was implemented within
HFGMC. Thus, a refined micromechanical-damage approach is an-
other justification for employing refined HFGMC micromechanical
modeling. Damage derivation and implementation in this study
indicate that this refined HFGMC coupled approach is well suited
for predicting local (pointwise) or global (average) damage initia-
tion and its subsequent progression. It should be mentioned that
this is the first implementation of the proposed CED damage ap-
proach with the HFGMC method, and thus limited results have
been presented. Future studies can further address various aspects
of the micromechanical-damage coupling formulation.
6. Conclusions

A new micromechanical re-formulation of the HFGMC method
is presented using parametric linear geometric mapping for the
cells to allow modeling multiphase composites with arbitrary
microstructural geometry. The displacement field and integration
are performed in the auxiliary mapped parametric space while
the overall original governing equations of the HFGMC remain in-
tact. The use of general quadrilateral shaped cells necessitates the
employment of a full quadratic polynomial form for the displace-
ment field unlike the partial quadratic form used in the original
HFGMC for rectangular cells. The new re-formulation allowed the
use of a relatively few number of cells to capture the local stress
fields especially at the fiber–matrix interfaces. The refined resolu-
tion of the HFGMC micromechanics allowed local damage formula-
tion. This enabled a new cell extinction for progressive damage
formulation where both local and global responses are generated
within the proposed coupled micromechanical-damage formula-
tion. The strain softening behavior and local load redistribution
due to damage demand an iterative solution algorithm. The latter
is proposed based on generating a proper residual form for the gov-
erning HFGMC equations and then used to iteratively update the
damage and microvariables in order to satisfy the governing equa-
tions. Applications are presented to verify the HFGMC with linear
mapping as compared with analytical and finite-element solutions.
Two damage formulations (CED and cohesive models) have been
coupled with the HFGMC to form a general micromechanical-
damage framework. Limited progressive damage applications are
also presented to demonstrate the ability to extend the HFGMC
to damage without excessive computational cost. The new HFGMC
formulation can be employed in a local–global framework for the
general progressive damage analysis of composite structures.
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