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In this paper, we propose a micromechanical analysis of damage and related inelastic deformation in sat-
urated porous quasi brittle materials. The materials are weakened by randomly distributed microcracks
and saturated by interstitial fluid with drained and undrained conditions. The emphasis is put on the
closed cracks under compression-dominated stresses. The material damage is related to the frictional
sliding on crack surface and described by a local scalar variable. The effective properties of the materials
are determined using a linear homogenization approach, based on the extension of Eshelby’s inclusion
solution to penny shaped cracks. The inelastic behavior induced by microcracks is described in the frame-
work of the irreversible thermodynamics. As an original contribution, the potential energy of the satu-
rated materials weakened by closed frictional microcracks is determined and formulated as a sum of
an elastic part and a plastic part, the latter entirely induced by frictional sliding of microcracks. The influ-
ence of fluid pressure is accounted for in the friction criterion through the concept of local effective stress
at microcracks. We show that the Biot’s effective stress controls the evolution of total strain while the
local Terzaghi’s effective stress controls the evolution of plastic strain. Further, the frictional sliding
between crack lips generates volumetric dilatancy and reduction in fluid pressure. Applications of the
proposed model to typical brittle rocks are presented with comparisons between numerical results
and experimental data in both drained and undrained triaxial tests.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Damage induced by microcracks is an essential mechanism of
inelastic deformation and failure in most cohesive geomaterials
such as concrete and rocks. In many engineering applications,
these materials are not only subjected to mechanical loads but also
to variation of pore pressure. The mechanical behavior and
poromechanical coupling properties as well as permeability are
strongly affected by the induced damage. On the other hand, the
damage evolution is controlled by mechanical loads and pore pres-
sure variation. Therefore, it is essential to investigate such coupling
phenomena for the analysis of failure and fluid flow in many engi-
neering applications. The present paper intends to propose a
micromechanical analysis of damage evolution and related inelas-
tic deformation in quasi brittle materials in saturated conditions. In
particular, we will focus at the case of closed cracks under com-
pressive stresses, which is still open issue.

In the last decades, a number of phenomenological models have
been proposed for quasi brittle geomaterials (we do not intend to
give an exhaustive list here). These models are generally based on
ll rights reserved.

).
macroscopic experimental data and formulated in the framework
of irreversible thermodynamics. The damage state is characterized
by scalar or tensorial internal variables. In some cases, the physical
significance of such internal variables is not always clearly defined.
With a relatively high number of parameters, the phenomenological
damage models can provide an efficient tool for modeling main fea-
tures of mechanical behaviors of geomaterials. They are now used in
failure analysis of various engineering structures. Further, some
extensions have also been proposed for damage modeling in satu-
rated and partially saturated porous geomaterials (Shao, 1998;
Bourgeois et al., 2002; Shao et al., 2004; Kuhl et al., 2004; Selvadurai,
2004; Xie and Shao, 2006; Maleki and Pouya, 2010 to mention a few).
However, with the phenomenological approaches, the physical phe-
nomena at different scales, which represent the origin of material
damage and inelastic deformation, are not properly taken into ac-
count. Due to this, there are some difficulties in phenomenological
models to properly consider some important features of material
behavior, for example, inherent damage-friction coupling, unilateral
effects and related continuity at the opening-closing transition of
cracks, volumetric dilatation induced by frictional sliding, hysteretic
loop related to local hardening kinetics. Therefore, micromechanics-
based constitutive models have been developed and applied to
induced damage in cohesive geomaterials (Mura, 1987; Kachanov,
1992; Gambarotta and Lagomarsino, 1993;Nemat-Nasser and Hori,
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1993; Lubarda and Krajcinovic, 1993; Ju and Chen, 1994; Basista and
Gross, 1998; Brancich and Gambarotta, 2001; Pensee et al., 2002;
Golshani et al., 2006; Marmier et al., 2007; Abou-Charka Guery
et al., 2008; Zhu et al., 2008a,b, just to mention a few). These models
were attempted to improve phenomenological modeling by incor-
porating different modes of distribution and propagation of micro-
cracks. The micromechanical models provide an alternative way
for damage modeling in brittle materials. However, most models
developed so far have been essentially applied to dry materials.
Few studies are conducted on micromechanical modeling of damage
in saturated or partially geomaterials. Dormieux and his coworkers
were among founding researchers to have developed micromechan-
ics of damage in saturated brittle media (Dormieux et al., 2006;
Dormieux and Kondo, 2007). However, their works are still limited
to the cases of opened cracks or closed frictionless cracks in elastic
solid matrix. In these two conditions, the deformation of both cracks
and matrix are elastic, implying that the free energy of the RVE is
reversible. More recently, interesting progresses have been achieved
by Zhu et al. (2011) in micromechanics-based modeling of coupled
friction-induced inelastic deformation and damage in quasi-brittle
materials under dry condition. However, the interaction between
elastoplastic deformation and interstitial fluid pressure variation
has not yet been dealt with in their works.

The present work is devoted to extending the previous work of
Zhu et al. (2011) to micromechanical modeling of poromechanical
behavior in saturated quasi-brittle rocks with the emphasis on the
coupling between friction-induced plasticity, damage evolution as
well as variation of interstitial fluid pressure. We will essentially
focus on closed microcracks under compressive stresses. Damage
is directly related to the frictional sliding along rough crack sur-
faces. We first derive the macroscopic potential energy for the
RVE of cracked solids for the case of opened cracks. The obtained
result is then extended to the case of closed saturated microcracks.
Applying the thermodynamics to local scale, frictional sliding crite-
rion and damage evolution law will be formulated. The Ponte–Cas-
taneda and Willis homogenization scheme (Ponte-Castaneda and
Willis, 1995) will be used for the determination of effective prop-
erties of damaged materials. After the identification of model’s
parameters, the proposed model will be applied to simulate cou-
pled poromechanical tests performed on typical porous quasi-brit-
tle rocks in both drained and undrained conditions.
2. Description of micro-cracked media

Let us consider a cracked porous cohesive material. The repre-
sentative elementary volume (REV), denoted by X, is composed
of a solid matrix and a random distribution of defects. According
to their shapes, these defects in the matrix can be mainly classified
into two categories, i.e. flat openings, assumed to be penny-shaped,
which we call cracks, and rounded openings, which we call pores.
In this work, the ensemble of the solid phase and pores therein is
taken as a homogenized porous matrix, for the reason that focus
here is put on the characterization of inelastic behaviors induced
by microcracking (characterized by damage variable) and its cou-
pling with friction-induced plasticity. Thus, the REV on which the
current study relies is composed of a pores-weakened solid matrix
and distributed microcracks, as shown in Fig. 1a.

The pores-weakened matrix is assumed to be linearly elastic
with the elasticity tensor Cm, which is, more or less, softer than
the elasticity tensor Cs of the solid phase. Inelastic behavior, mate-
rial degradation and failure process are viewed as the consequence
of propagation of microcracks. Approximated by oblate inclusions,
microcracks are, according to their normal directions, classified
into M families with elasticity tensor Cc;r for the rth crack family.
When cracks are closed, the evolution of inelastic deformations
will occur only when some condition of frictional sliding is met,
while for open cracks nonlinear properties in the elementary vol-
ume are caused by elastic damage. Moreover, crack’s opening/clo-
sure state depends on local unilateral contact condition.

For micromechanical determination of material effective prop-
erties, it is possible to make direct use of the basic solution to
the Eshelby’s inclusion problem. By adopting local linearly elastic
constitutive behavior for both the matrix and inclusions (cracks),
the effective elasticity tensor Chom of the cracks-matrix system is
classically obtained by taking average of the local stiffness over
the whole domain X (Zaoui, 2002; Dormieux et al., 2006; Zhu
et al., 2009):

Chom ¼ Cm þ
XM

r¼1

uc;rðCc;r � CmÞ : Ac;r ; ð1Þ

where uc,r and Ac;r are the volume fraction and the averaged con-
centration tensor of the rth crack family, respectively. Ac;r relates
the local strain e linearly to the macroscopic one E, i.e. e ¼ Ac : E.
Several homogenization schemes for deriving the concentration
tensor can be found in the literature, for instance, the dilute scheme,
the Mori–Tanaka scheme, the Ponte–Castaneda and Willis estima-
tion and the self-consistent method.

Focus now on a family of penny-shaped microcracks of normal
nr and with the aspect ratio h = cr/ar, with ar and cr being, respec-
tively, the radius and half height of the cracks, as illustrated in
Fig. 1. When all microcracks are approximated as flat ellipsoids,
the volume fraction uc,r of the rth crack family reads

uc;r ¼ 4
3
pa2

r crNr ¼
4
3
phdr ; ð2Þ

where Nr denotes crack density (crack number per unit volume)
and dr ¼Nra3

r is the crack damage parameter (Budiansky and
O’Connel, 1976). When limited to isotropic case, a scalar variable
d, common to all crack families (dr = d), will suffice to describe the
process of material degradation. In this case, material damage is ori-
entation-independent, corresponding to the case where a large
number of microcracks are randomly distributed in the REV. For
simplicity, the damage evolution is only related to the propagation
of cracks by neglecting the change of pores.

3. Poroelasticity of saturated media with open cracks

In this work, the Ponte–Castaneda and Willis’ homogenization
scheme (PC-W) is adopted for its explicit form and the ability of prop-
erly taking into account the influence of spatial distribution of micro-
cracks. When all microcracks in the REV are open, the global
deformation is elastic and the effective elasticity tensor Chom is ob-
tained by settingCc;r ¼ 0 in Eq. (1) due to the cancellation of local stress
within cracks. In the isotropic case, Chom can be expressed as the linear
combination of the four order projection operators J and K:

Chom ¼ 3khom
Jþ 2lhomK; ð3Þ

with

Jijkl ¼
1
3

IijIkl; Kijkl ¼ Iijkl � Jijkl;

where Iij and Iijkl are the components of the second and fourth order
identity tensors, respectively. In Eq. (3), the effective module of
compressibility khom and the effective shear module lhom take the
following form:

lhom ¼ lm 1� g2d
1þ g2a2d

� �
; khom ¼ km 1� g1d

1þ g1a1d

� �
; ð4Þ

where lm and km are the shear and bulk modulus of the matrix,
respectively; both g1 and g2 are functions of the Poisson’s ratio of
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Fig. 1. (a) decomposition of the REV and (b) schematic representation of a penny-shaped crack.
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solid matrix such that g1 ¼
16ð1�ðmmÞ2Þ

9ð1�2mmÞ and g2 ¼
32ð1�mmÞð5�mmÞ

45ð2�mmÞ . The coef-
ficients a1 and a2 are used to characterize the effect of spatial dis-

tribution of microcracks via the fourth tensor a1
3km Jþ a2

2lm K
� �

,

whose expressions in the isotropic case are given by a1 ¼ 1
3

1þmm

1�mm

and a2 ¼ 2
15

4�5mm

1�mm . Note that unlike the scalar damage variable d
widely used in the macroscopic phenomenological damage theory,
which generally varies from 0 to the critical value 1, the damage
variable in the present micromechanical analysis is physically re-
lated to the microcrack density as mentioned in the relation (2).
In the isotropic case, the damage variable is defined as d = Na3/jXj
where a denotes the mean radius of penny-shaped microcracks
and N/jXj is the crack density (crack number per unit volume) in
the representative volume under consideration. Therefore, although
the volume fraction for microcracks is generally very small because
of their opening degree negligible with respect to the radius, the
variable Na3/jXj may be not limited to the unity. In fact, the critical
value, corresponding to which the elastic modulus decreases to
zero, is dependent on the choice of homogenization scheme.

When the cracked porous material is saturated by interstitial
fluid, the REV is subjected to both the macroscopic uniform strain
E on its boundary @X and to the fluid pressurep at the solid–fluid
interface. Accordingly the work rate is expressed as:

_Ws ¼ R : _E þ p _/ ð5Þ

where / is the porosity of the REV. R : _E denotes the strain work
rate in absence of water pressure and p _/ the work rate generated
by interstitial pressure. The stress tensor is function of the macro-
scopic strain and the pressure

Under isothermal conditions and the assumption of small
strains, the macroscopic elastic free energy density Ws takes the
following form Coussy (2004), Dormieux and Kondo (2007):

Ws ¼ R : E þ pð/� /0Þ ¼
1
2

E : Chom : E þ p2

2N
s ð6Þ

where use has been made of the relations

R ¼ E : Chom � pB; _/ ¼ B : _E þ
_p
N

ð7Þ

The corresponding potential energy W�s is derived by a simple
transformation:

W�s ¼ Ws � pð/� /0Þ ¼
1
2

E : Chom : E � p2

2N
� pB : E ð8Þ

Note that 1
N and B are the well-known Biot modulus and the tensor

of Biot coefficients, respectively (Biot and Willis, 1957; Nur and
Byerlee, 1971). Under drained conditions, both 1

N and B are functions
of the homogenized elasticity tensor Chom (Dormieux and Kondo,
2007):

B ¼ I � Chom : Ss : I ð9Þ
1
N
¼ ðB� /IÞ : S

s : I ð10Þ

where Ss ¼ ðCsÞ�1 is the elastic compliance tensor of the solid phase
of the REV, and /0 is the initial porosity. By making use of (3) and
(4), Eqs. (8) and (9) are further rewritten as:

B ¼ 1� khom

ks

 !
I ¼ 1� km

ks

� �
I þ km

ks
g1d

1þ g1a1d
I; ð11Þ

1
N
¼ 1

ks 1� khom

ks � /

 !
: ð12Þ

Thus, the Biot coefficient B can be divided into two parts

B ¼ B0 þ BðdÞ ¼ b0I þ ð1� b0Þ
g1d

1þ g1a1d
I; ð13Þ

with b0 ¼ 1� km

ks . The first part B0 represents the Biot coefficients
due to the existence of pores (Biot and Willis, 1957), and the second
part B(d) corresponds to the contribution by microcracks.

In the framework of thermodynamics, the macroscopic stress–
strain relationship and the relative variation of porosity are derived
by standard differentiation of the potential energy

R ¼ @W
�
s

@E
¼ Chom : E � Bp; ð14Þ

/� /0 ¼ �
@W�s
@p
¼ p

N
þ B : E: ð15Þ

The above poroelastic relations hold for the case of saturated media
with open cracks. However, in most cases, porous quasi brittle
materials like concrete and rocks are generally subjected to com-
pression-dominated stresses leading to closure of microcracks.
Due to local tangential stresses, frictional sliding may occur along
rough crack faces, usually accompanied by crack propagation lead-
ing to damage evolution of material. Further, normal opening can be
generated by tangential sliding due to asperities of crack surfaces
and such an opening leads to macroscopic volumetric dilation.
Therefore, the above results should be extended to the case of
closed cracks saturated by interstitial fluid, by taking into account
the coupling between damage evolution and dissipative frictional
sliding.

4. Micromechanical formulation for closed microcracks

This section is devoted to the description of inelastic behavior of
saturated media with frictional microcracks in open and closed
states. In the case of closed cracks, the most previous works gener-
ally considered idealized smooth cracks without friction (Dormieux
et al., 2006; Zhu et al., 2008a,b). However, as mentioned above, in
real cases, both inherent and induced cracks in geomaterials contain
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rough surfaces with various forms of asperities. The local friction
coefficient depends on the evolution of such asperities. On the other
hand, the frictional sliding along rough cracks can generate both
normal aperture and tangential sliding. Unlike the poroelastic
behavior of open cracks, the strains related to displacement discon-
tinuities on cracks are no long available. We thus propose to deter-
mine the evolution of such strains within the framework of
plasticity theory. Based on previous works (Zhu et al., 2008a,b), we
propose to combine the homogenization procedure for the determi-
nation of effective properties and the standard thermodynamics
framework for the dissipation process related to frictional sliding.
For this purpose, it appears convenient to determine first the macro-
scopic free energy with consideration of the influence of interstitial
pressure. Since the present problem is a dissipative one, we chose to
formulate the constitutive equations in a rate-dependent form
(Lubarda and Krajcinovic, 1995; Dormieux and Kondo, 2007).

For the clarity of presentation, we start with one family of
microcracks with unit normal vector n. As mentioned above, the
frictional sliding along cracks is described as a plastic phenomenon
and a normal opening can be generated due to the roughness of
crack surfaces. Denote the averaged opening and the vector of rel-
ative sliding between two crack surfaces by b and c, respectively.
Both b and c are related to the displacement discontinuity [u] such
that:

b ¼N

Z
@Xc

½u�:ndS; c ¼N

Z
@Xc

½u�:ðI � n� nÞdS: ð16Þ

The local inelastic strain ec then takes the form:

ec ¼ bn� nþ 1
2
ðc� nþ n� cÞ: ð17Þ

Furthermore, the macroscopic strain Epl can be obtained by integra-
tion of ec(n) over the surface of a unit sphere

Epl ¼ 1
8p

Z
S
½2bn� nþ ðc� nþ n� cÞ�dS: ð18Þ

Under the isotropic assumption, Epl is finally decomposed into a
spherical part and a deviatoric part (Zhu et al., 2011):

Epl ¼ 1
3

bI þ C; ð19Þ

with the relations

b ¼ trEpl; C ¼ 1
8p

Z
@Xc
ðc� nþ n� cÞdS: ð20Þ

Remark that the above formulations are valid for both open and
closed cracks. The difference between these two cases states that
for open cracks analytical solution for b and c is available while
for closed cracks it is not.

4.1. Problem decomposition

We now proceed to establish the macroscopic free energy in
terms of the plastic strains Epl and the interstitial pressure p. It is
convenient to divide the macroscopic strain into two parts: the
elastic strain of the matrix (E � Epl) and the inelastic strain induced
by the discontinuities of cracks Epl. Accordingly the initial problem
is decomposed into two sub-problems, as illustrated in the Fig. 2.

In Sub-problem 1, the REV contains an elastic homogeneous
matrix weakened by pores. In this matrix, both the stress and
strain fields in the REV are uniform and expressed as:

1
jXj

Z
Xs

_eð1ÞdV ¼ _E � _Epl: ð21Þ

rð1Þ ¼ 1
jXj

Z
Xs

Cm : eð1ÞdV � pBð1Þ ¼ Cm : ðE � EplÞ � pBð1Þ ð22Þ
The variation of porosity is totally elastic and can be calculated
by using (15). Since in Sub-problem 1 the REV is only pores-
weakened, the tensor of Biot coefficient takes the part B0 of the
Eq. (12), i.e.

Bð1Þ ¼ B0 ¼ b0I ð23Þ

and correspondingly

1
Nð1Þ
¼ 1

ks ðb0 � /0Þ ð24Þ

Thus, the variation of porosity is the difference between /(1) and /ð1Þ0

/ð1Þ � /ð1Þ0 ¼ /e ¼ p
b0 � /0

ks þ b0trðE � EplÞ: ð25Þ

The rate form of the free energy in the matrix is finally obtained by
(21), (22) and (25):

_Wð1Þs ¼
1
X

Z
Xs

rð1Þ : _eð1ÞdV þ p _/ð1Þ ¼ ðE � EplÞ : Cs

: ð _E � _EplÞ þ p _p
b0 � /0

ks ð26Þ

In the sub-problem 2, the local stress field r(2) is self-equilibrated
and fluid-free, i.e.

hrð2ÞiX ¼ 0; ð27Þ

The strain field e(2) is assumed to be completely attributed to dis-
continuities by cracks, leading to the following relationship by
using the homogenization procedure:

1
X

Z
Xc

_eð2ÞdV ¼ _Epl ð28Þ

According to Zhu et al. (2008a), the following relation between the
local stress and the inelastic strain can be established:

rð2Þ � pI ¼ �Cpl : Epl; ð29Þ

with Cpl ¼ ½ðI�AcÞ�1 : Ac : S
m��1. In isotropic case, the global strain

concentration tensor Ac is given as:

Ac ¼ 48ð1� m2Þd
27ð1� 2mÞ þ 16ð1þ mÞ2d

J

þ 480ð1� mÞð5� mÞd
675ð2� mÞ þ 64ð5� mÞð4� 5mÞd K: ð30Þ

And Cpl takes the general form:

Cpl ¼ 3kb
Jþ 2lbK; ð31Þ

with the coefficients (Zhu et al., 2011):

kb ¼ 1þ g1ða1 � 1Þd
g1d

km
; lb ¼ 1þ g2ða2 � 1Þd

g2d
lm:

According to the decomposition of free energy given in (43), the
fourth order tensor Cpl characterizes the capability of storing the
energy due to frictional sliding, and depends on the mechanical
property of solid matrix and the current state of damage (density
and size of cracks). All inelastic variation of porosity occurs in
Sub-problem 2, leading to the relation:

/ð2Þ � /ð2Þ0 ¼ /pl ¼ 1
jXj

Z
Xc

treð2ÞdV : ð32Þ

It follows by comparing the above measure with (20):

/pl ¼ trEpl ¼ b: ð33Þ

By the definition of _Ws, the rate of the free energy in the sub-prob-
lem 2 is expressed as follows:



Fig. 2. Problem decomposition of a saturated porous media with microcracks.
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_Wð2Þs ¼
1
jXj

Z
Xs

rð2Þ : _eð2ÞdV þ p _/ð2Þ: ð34Þ

Noting the relationship between the two sub-domains Xc [Xs = X,
the above equation is equivalent to the following form:

_Wð2Þs ¼
1
jXj

Z
X
rð2Þ : _eð2ÞdV � 1

jXj

Z
Xc

rð2Þ : _eð2ÞdV þ p _/ð2Þ: ð35Þ

By using (29) and (34) as well as the self-equilibrating property
(27), the above equation gives

_Wð2Þs ¼ Epl : Cpl : _Epl: ð36Þ

Note that _Wð2Þs is a function of plastic strain Epl induced by micro-
cracks, and is generally termed as the blocked free energy stocked
in closed cracks.

4.2. Determination of the overall free energy

By combining _Wð1Þs and _Wð2Þs , the overall free energy in the REV is
finally obtained as

_Ws ¼
1
jXj

Z
Xs
ðeð1Þ þ eð2ÞÞ : Cm : ð _eð1Þ þ _eð2ÞÞdV þ pð _/ð1Þ þ _/ð2ÞÞ

¼ _Wð1Þs þ _Wð2Þs þ
1
jXj

Z
Xs

eð1Þ : Cm : _eð2ÞdV þ 1
jXj

Z
Xs

eð2Þ : Cm

: _eð1ÞdV ð37Þ

Note that both Cm : _eð2Þ ¼ _rð2Þ and Cm : eð2Þ ¼ rð2Þ are self-equili-
brated and that e(1) and its rate form _eð1Þ are uniform. One then has:

1
jXj

Z
Xs

eð1Þ : Cm : _eð2ÞdV þ 1
jXj

Z
Xs

eð2Þ : Cm : _eð1ÞdV ¼ 0: ð38Þ

The general formulation (37) reduces finally to the sum of the en-
ergy rates _Wð1Þs and _Wð2Þs , i.e.

_Ws ¼ _Wð1Þs þ _Wð2Þs ; ð39Þ

which verifies the requirement on problem decomposition.
The total free energy Ws in the REV is obtained by integration

and expressed as:

Ws ¼
1
2
ðE � EplÞ : Cs : ðE � EplÞ þ 1

2
Cpl : Epl : Epl þ b0 � /0

2ks p2: ð40Þ

Recall the definition

W�s ¼ Ws � pð/� /0Þ: ð41Þ

It follows by introducing (25), (33) and (40) into (41)

W�s ¼
1
2
ðE � EplÞ : Cs : ðE � EplÞ þ 1

2
Cpl : Epl

: Epl � b0 � /0

2ks p2 � pb0I : ðE � EplÞ � p trEpl: ð42Þ

By setting p = 0, this potential energy reduces to that of dry materi-
als (Zhu et al., 2008a, 2011):
W�s ¼
1
2
ðE � EplÞ : Cs : ðE � EplÞ þ 1

2
Epl : Cpl : Epl ð43Þ

The potential energy (42) contains a recoverable part stored in the
solid matrix and a second part in form of the stored energy U due to
closed microcracks

U ¼ 1
2

Epl : Cpl : Epl � p trEpl ð44Þ

Within the thermodynamic framework of irreversible processes, the
state equations are then obtained by standard differentiation of po-
tential energy with respect to the internal variables:

R ¼ @W
�
s

@E
¼ Cs : ðE � EplÞ � b0pI; ð45Þ

/� /0 ¼ �
@W�s
@p
¼ b0 � /0

ks pþ b0 trðE � EplÞ þ trEpl: ð46Þ

And the elastic variation of porosity can also be obtained as:

/� /p � /0 ¼ �
@ W�s � U
� �
@p

¼ p
b0 � /0

ks þ b0 trðE � EplÞ; ð47Þ

which is the same as that given in (25).

4.3. Discussions

Upon the above formulations, it is useful to address the follow-
ing discussions and comparisons:

� From the macroscopic free energy (40), it is seen that when
cracks are closed, the tensor of Biot coefficients is totally con-
tributed by the pores inside the matrix and the closed cracks
have no contribution to it. This result conforms to the simplify-
ing assumption that in the matrix phase there is no additional
inelastic deformation during frictional sliding. The influence of
crack sliding upon the change of pores has been neglected in
the present framework.
� According to the previous work by Coussy (2004), when irre-

versible deformation occurs in micro-cracked media, the strain
E and the Lagrange porosity / are no longer efficient to capture
the current Skeleton energy Ws. Internal variables, such as plas-
tic strain Epl, plastic porosity /pl as well as damage variable d,
must be involved in the formulation of skeleton energy W to
characterize the energy dissipation. Thus, the free energy of
the matrix Ws can be expressed in the following general form:

Ws ¼WsðE � Epl;/� /pl;dÞ þ U ð48Þ

and the potential energy changes accordingly into the form:

W�s ¼WsðE � Epl;/� /pl;dÞ � pð/� /pl � /0Þ þ U; ð49Þ

with the first part Ws representing the reversible energy supplied by
external loads, and U the trapped energy, the latter will dissipate
during plastic deformation. Formally, U should be a function of both
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Epl and /pl as well as damage variable d. Under isothermal condi-
tions, U takes the general form as:

dU ¼ dWp ¼ rij dep
ij þ pd/p: ð50Þ

Comparison between Eqs. (49) and (42) shows that the form of free
energy obtained here by micromechanical analyses supports the
macroscopic framework established by Coussy (2004).

4.4. Frictional sliding criterion

Inspired by previous works, the frictional sliding in geomateri-
als is generally governed by the generalized Coulomb type crite-
rion. This criterion is adopted and applied here at the local scale
to describe the frictional sliding along microcracks. Based on the
extension of the formulation for dry cracked materials by Zhu
et al. (2011) to the current saturated case, the thermodynamic
force that controls the evolution of inelastic strain is obtained by:

Fpl ¼ � @W
�
s

@Epl
¼ R� Cpl : Epl þ pI ð51Þ

where use has been made of the definition (45) for making occur-
rence of the macroscopic stress tensor R.

According to the results given in (45) and (51), it is shown that
the thermodynamic forces conjugated with total strain and that
with plastic strain are the Biot effective stress and local Terzaghi
effective stress, respectively. Some more detailed discussions on
the validity of effective stress concept in plastic theory and failure
condition of saturated materials can be found in De Buhan and
Dormieux (1996) and Lydzba and Shao (2002).

In order to express the Coulomb criterion, it is convenient to
decompose the local stress tensor into a spherical part and a devi-
atoric part. By denoting rpl ¼ 1

3 trðFplÞ and Spl ¼ K : Fpl, it is then
possible to perform the following decomposition

Fpl ¼ J : Fpl þK : Fpl ¼ rplI þ Spl; ð52Þ

where rpl = Rm � kbb + p and Spl = S � 2lbC with Rm = trR/3 and
S = R � RmI standing for the mean part and deviatoric part of the
macroscopic stress, respectively.

The friction criterion is then expressed as a function of the ther-
modynamic force:

f ¼ kSplk þ cf rpl ¼ kS � 2lbCk þ cf ðRm � kbbþ pÞ 6 0: ð53Þ

In this work, an associated plastic flow rule is adopted for frictional
sliding. The elastic strain b and C can be easily determined by fol-
lowing the normality rule.

4.5. Damage criterion

The thermodynamic force associated with the overall damage
variable d is derived from the free energy (40) or the potential en-
ergy (42):

Fd ¼ � @W
�
s

@d
¼ �1

2
Epl :

@Cpl

@d
: Epl: ð54Þ

It can be seen from (54) that it is the cumulated plastic shearing
along crack faces that drives the evolution of damage. The intersti-
tial pressure p is not explicitly involved in the expression of Fd.
However, it is known from (53) that the interstitial pressure p takes
a part in the friction criterion. Thus, the damage evolution is also
dependent on the interstitial pressure in an indirect way as the con-
sequence of frictional sliding.

The damage criterion is chosen to be an exponential function
of Fd as usually used for brittle materials such as concrete and
rocks.

fd ¼ dc � ðdc � d0Þ½expð�c1FdÞ� � d 6 0; ð55Þ
where d0 and dc are the initial threshold and critical value of dam-
age variable respectively, and c1 is a model parameter that controls
the kinetics of damage evolution. The critical damage value can be
determined from the following condition for the effective value of
shear modulus lhom P 0 (Zhu et al., 2011):

dc ¼
1

g2ð1� a2Þ
¼ 675ð2� mmÞ

32ð5� mmÞð7� 5mmÞ ð56Þ
5. Numerical simulations

In this section, we apply the proposed micromechanics-based
model to simulate triaxial compression tests performed on sam-
ples of a typical porous brittle material, sandstone, under drained
and undrained conditions.

There are totally 7 parameters in the present model: 5 parame-
ters for mechanical behavior of dry materials and 2 for porome-
chanical coupling. The two elastic constants, i.e. Young’s modulus
E and Poisson’s radio m, are determined from the elastic part of
the stress–strain curves in triaxial compression tests. The local fric-
tion coefficient cf can be fitted by the envelope of peak stresses ob-
tained from a series of triaxial compression tests under different
confining pressures. The initial damage threshold d0 describes
the initial distribution of microcracks and can depend on the value
of confining pressure. The parameter c1is numerically fitted from
the nonlinear part of stress–strain curves of triaxial compression
tests. In the poromechanical formulation of saturated materials,
two additional parameters are needed: the initial porosity /0 and
the initial Biot coefficient b0, both of which can be determined
experimentally by various procedures (Hu et al., 2010).

Further, it is known that the elastic modulus of porous sand-
stone is generally influenced by the confining pressure. The higher
the confining pressure is, the greater the elastic modulus will be. In
the present micromechanics-based model, the initial damage value
will be adjusted to account for the variation of elastic modulus
with the different confining pressure. Therefore, the initial damage
threshold is defined as a parameter reflecting the damage state
after the exertion of hydrostatic confining pressure, leading to pro-
gressive closure of microcracks. During the process of deviatoric
loading, the damage variable d will increase with the propagation
of microcracks.

5.1. Drained tests

As the variation of interstitial pressure is not studied in drained
tests, the two coupling parameters, /0 and b0, are not needed. The
parameters for the sandstone used in drained tests are determined
following the general procedure mentioned above and the values
obtained are: E = 21000 MPa, m = 0.23, c1 = 1.0, cf = 0.7. The values
of initial damage value for different confining pressures are as fol-
lows: d0 = 0.22, 0.15, 0.001 and 0.001 for pc = 10 MPa, 20 MPa,
30 MPa, 40 MPa respectively. Note that the value of initial damage
density represents here the state of open microcracks in the sam-
ples after the application of confining pressure. It decreases when
the confining pressure increases due to progressive closure of ini-
tial microcracks. Under high confining pressure, for instance 30
and 40 MPa, the initial microcracks inside sandstone are nearly
completely closed and the corresponding damage density vanishes.
However, from a computational point of view, a non-vanished va-
lue of initial damage is needed. Therefore a small value of
d0 = 0.001 is chosen in the simulation of the tests under 30 and
40 MPa confining pressures. Note that for application of the model
to engineering boundary values problems, the damage state after
confining pressure is generally not known a priori. We need to
use some in situ geophysical data. For instance, it is possible to
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Fig. 3a. Stress–strain curves in drained triaxial compression test with 10 MPa
confining pressure and comparison between numerical results (continuous lines)
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choose an initial state of microcracks, and consider closing of
microcracks. This method was used in some previous works con-
cerning applications of micromechanical damage models to engi-
neering problems (Pensee et al., 2002; Zhu et al., 2008b). An
initial state of microcracks, generally uniform, was considered
and all cracks were assumed to be closed under compression dom-
inant stresses. However, the determination of initial state is an-
other issue which is not addressed in detail here.

The mechanical response of the sandstone under drained condi-
tion is first simulated. The numerical results are compared with
experimental data as shown in Figs. 3a–3d. It can be seen that both
axial and lateral strains are in good agreement with the experi-
mental data for different confining pressures. The proposed model
seems to capture the main features of mechanical behavior of
sandstone: inelastic deformation induced by crack propagation
and sliding, pressure dependency, transition from volumetric com-
paction to dilatancy. In Fig. 4, we show the evolution of overall
damage versus axial strain respectively in different triaxial com-
pression tests with different confining pressures. We can see that
the damage evolution is affected by confining pressure. The dam-
age propagation threshold under deviatoric stress increases when
the confining pressure is higher leading to smaller cumulated dam-
age in material.

5.2. Undrained triaxial tests

By the extension of poroelastic theory to saturated brittle mate-
rials with inelastic deformation due to frictional sliding, the varia-
tion of interstitial pressure is given by:
_p ¼ M �btrð _E� _EplÞ þ
_mf

qf
� _/p

 !
; ð57Þ

in which mf is the mass content variation of interstitial fluid with
respect to a referential state, qf is the density of the fluid, and M
is the Biot modulus which is defined by 1

M ¼ 1
N þ

/
kf

, with kf standing
for the bulk modulus of the fluid. According to the range of pressure
and temperature considered here, the compressibility modulus of
water in room temperature is used for interstitial fluid, i.e.
kf = 2200 MPa.

In an undrained triaxial compression test, there is no mass ex-
change of interstitial fluid and we have _mf in (57). The variation
rate of interstitial pressure becomes:

_p ¼ Mð�btr _Eþ b _b� _bÞ ð58Þ

where use has been made of the relation /p = trEpl = b. One can see
that the volumetric dilation generated by the frictional sliding be-
tween crack lips induces a reduction in interstitial pressure. The
variation of interstitial pressure is inherently coupled with the
mechanical response of the material. Once the elastic and plastic
strains are derived, the variation of interstitial pressure can be ob-
tained by the constitutive law. On the other hand, the variation of
interstitial pressure has an effect on the frictional sliding condition
and then influences the evolution of plastic strain. Further, it seems
that the set of parameters for mechanical modeling of saturated
sandstone is slightly different from that used for dry sandstone used
in drained tests. For the sandstone used in undrained tests, the



0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00 1.20

egamad egamad

ε1(%)

10MPa

20MPa

30MPa

40MPa

(drained)

Fig. 4. Evolution of overall damage versus axial strain in drained tests with
different confining pressures.

0

20

40

60

80

100

120

-1 -0.5 0 0.5 1

simulation

test data

σ1-σ3 ( MPa)

ε1 (%)ε3(%)

Fig. 5a. Stress–strain curves in undrained triaxial compression test with 10 MPa
confining pressure and comparison between numerical results (continuous lines)
and experimental data.

0

20

40

60

80

100

120

0 1 2 3 4 5 6

simulation
test data

σ1-σ3 ( MPa)

P(MPa)

Fig. 5b. Interstitial pressure versus deviatoric stress in undrained triaxial com-
pression test with 10 MPa confining pressure and comparison between numerical
results (continuous lines) and experimental data.

0

20

40

60

80

100

120

140

160

-1 -0.5 0 0.5 1 1.5

simulation

test data

σ1-σ3 ( MPa)

ε1 (%)ε3 (%)

Fig. 6a. Stress–strain curves in undrained triaxial compression test with 30 MPa
confining pressure and comparison between numerical results (continuous lines)
and experimental data.

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10 12

simulation
test data

σ1-σ3 ( MPa)

P (MPa)

Fig. 6b. Interstitial pressure versus deviatoric stress in undrained triaxial com-
pression test with 30 MPa confining pressure and comparison between numerical
results (continuous lines) and experimental data.

0

40

80

120

160

200

-1 -0.5 0 0.5 1 1.5 2

simulation
test data

σ1-σ3 (MPa)

ε1 (%)ε3(%)

Fig. 7a. Stress–strain curves in undrained triaxial compression test with 50 MPa
confining pressure and comparison between numerical results (continuous lines)
and experimental data.

926 N. Xie et al. / International Journal of Solids and Structures 49 (2012) 919–928
following parameters are used: E = 21000 MPa, m = 0.25, c1 = 0.75,
cf = 0.5, /0 = 0.12, b0 = 0.8.

Such a difference can be related to the fact that the samples used
in the drained and undrained tests are not drilled exactly from the
same block and there exists some heterogeneity between tested
samples. Concerning the choice of the initial damage state for vari-
ous confining pressures, we have adopted the same values as those
used for drained tests presented in the preceding section. Thus the
initial damage value is equal to d0 = 0.22 for the confining pressure
of 10 MPa. Under the confining pressures of 30 MPa and 50 MPa,
experimental observations show that the initially existing cracks
are nearly closed after the application of confining pressure. A small
value of d0 = 0.001 is used for the reason of computational
convenience.

The numerical results are compared with experimental data for
three values of confining pressures and respectively shown in
Figs. 5a–7b. Again there is a good concordance both for strains
and interstitial pressure. In particular, we can see that under
deviatoric loading the interstitial pressure first increases and then
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decreases. This transition of interstitial pressure is in agreement
with that of volumetric strain which evolves from compaction to
dilation. The volumetric dilation is generated by the frictional slid-
ing along crack faces and significantly intensified by the coales-
cence of microcracks in the zone near to the peak stress. The
corresponding interstitial pressure tends in an asymptotical way
toward to zero near the peak strength. In the present simulation,
we choose to stop the calculation once the fluid pressure becomes
zero in order to avoid various features related to strain localization.
The evolution of damage versus axial strain is shown in Fig. 8 and
similar remarks can be drawn as for drained tests.
6. Conclusions

A new micromechanical model is proposed for the description of
damage evolution and plastic deformation in saturated porous quasi
brittle materials. The macroscopic free energy of the REV is derived
by combining the Eshelby’s solution-based homogenization proce-
dure with the thermodynamics of irreversible process. It is shown
that the macroscopic energy is composed of an elastic part and a
locked plastic part which is related to frictional sliding along closed
microcracks. The damage evolution is therefore totally controlled by
the frictional sliding, which is also the origin of volumetric dilata-
tion. It is shown that the volumetric dilation due to frictional sliding
affects the variation of interstitial pressure and in a coupled way the
frictional sliding condition is influenced by the interstitial pressure.

Compared with most phenomenological models, the proposed
micromechanical model contains a smaller number of parameters.
The physical significance of each parameter is clearly defined.
Further, the micromechanical model takes into account various
physical mechanisms involved at relevant materials scales.

The proposed model has been used in the simulation of labora-
tory tests on sandstone in drained and undrained conditions. There
was a good agreement between numerical results and experimen-
tal data. The proposed model is able to reproduce the main features
of mechanical behavior and poromechanical coupling in saturated
quasi-brittle materials. A number of future works can be envis-
aged: extension of the present work to anisotropic distribution of
damage, coupling between microcracks and permeability evolu-
tion as well as extension to partially saturated media.
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