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In this article, the anti-plane deformation of a transversely isotropic sector with multiple defects is stud-
ied analytically. The solution of a Volterra-type screw dislocation problem in a sector is first obtained by
means of a finite Fourier cosine transform. The closed form solution is then derived for displacement and
stress fields over the sector domain. Next, the distributed dislocation method is employed to obtain inte-
gral equations of the sector with cracks and cavities under an anti-plane traction. The ensuing integral
equations are of the Cauchy type singular and have been solved numerically. A set of examples are pre-
sented to demonstrate the applicability of the proposed solution procedure. The geometric and force sin-
gularities of stress fields in the sector are also studied and compared to the earlier reports in the
literature.
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1. Introduction

1.1. Background

The stress analysis of wedges and sectors has been considered
by a number of earlier investigators. These investigations may be
grouped into two major categories: those primarily dealing with
wedges and sectors with no defects, and those studying wedges
and sectors with single or multiple defects. Within the first cate-
gory, the problem of anti-plane stress analysis of an isotropic and
dissimilar finite wedge, with different boundary conditions under
point tractions on the wedge straight edges, was originally studied
by Karegarnovin et al. (1997) and Kargarnovin and Fariborz (2000)
A finite Mellin transform was used to analyze the wedge problem,
and subsequently the geometric and loading singularities were
investigated. Similarly, the stress analysis of an anisotropic finite
wedge under anti-plane deformation was studied by Shahani
(1999). Using the above-mentioned stress field and changing only
the apex angle of finite wedge, the stress intensity factor (SIF) due
to an edge crack in circular shafts and also the stress concentration
factor in the apex of bonded wedges as well as bonded half planes
were evaluated. More recently, the stress concentration factor for a
double cantilever beam (DCB) was extracted by Shahani (2003).
Solutions of dissimilar isotropic wedges subjected to anti-plane
point forces and screw dislocations were studied by Lin and Ma
(2004) using the Mellin transform and an image method. It was as-
ll rights reserved.

x: +98 241 515 2762.
sumed that wedges with equal apex angles are attached to each
other along their interface. Various boundary conditions on the
wedge edges were considered and with the aid of the Peach–Koeh-
ler equation, the stress field of the image forces exerted on screw
dislocations was derived. The solution of an isotropic sector wedge
subjected to anti-plane shear loading on a circular edge of the
wedge was obtained by Chen and Wang (2009). Different boundary
conditions including fixed and traction free conditions were con-
sidered for straight edges of the finite wedge. A combination of
the finite Mellin transform and the Laplace transform was used
to solve the ensuing governing equations. Finally, the stress con-
centration of the wedge apex was studied for different edge bound-
ary conditions.

Wedges and sectors weakened by multiple defects have been
the subject of other earlier investigations. The anti-plane stress
analysis of an infinite wedge weakened by a finite number of col-
linear cracks located on the wedge bisector was first studied by
Mkhitaryan et al. (2001). The anti-symmetric mixed boundary con-
ditions on both wedge faces were the specified displacement and
stress components on the nonintersecting intervals. A closed-form
solution of the ensuing mixed boundary problem was derived
using the Mellin integral transformation in conjunction with the
singular integral equations, and the crack opening and SIF on
cracks tips were calculated. Anti-plane stress analysis of an infinite
wedge weakened by multiple cracks with an arbitrary smooth
shape and orientation was also investigated by Faal et al. (2004).
The Mellin transform was used to solve the problem and the stress
field of an uncracked wedge under point traction on the wedge
edges was obtained. In another report by Faal et al. (2007), the
Mellin transform in conjunction with an image method was used
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to analyze the anti-plane stress field of a finite wedge weakened by
multiple cavities. Similarly, the stress field of an undamaged finite
wedge under concentrated traction on the edges was attained. In
both aforementioned works, various types of boundary conditions
were considered. Anti-plane stress analysis of an anisotropic finite
wedge weakened by a single radial crack was the subject of the
study by Shahani and Ghadiri (2010). The governing equation of
the problem was rewritten in a complex form by introducing
appropriate complex variables, and the solution was obtained in
terms of complex functions using a set of finite complex transfor-
mations (also see Lekhnitskii, 1963; Shahani, 1999). The latter
complex method may be analogous to the standard finite Mellin
transforms of the first and second types. The ensuing singular dual
integral equations were solved numerically to calculate the stress
intensity factors at the wedge crack tips.

The anti-plane stress analysis of two different types of dissimi-
lar sectors, i.e. the sector consisting of two isotropic sectors with
the circular or the radial interface, was accomplished by Faal and
Pasrad (in press a). Using the finite Fourier cosine transform as well
as the technique of separation of variables, the closed-form solu-
tions were obtained for the displacement and stress fields in each
sector.

Anti-plane deformation of a typical dissimilar sector, consisting
of two sub-sectors with a circular interface, was the subject of
study by Faal and Pasrad (in press b). Using the finite Fourier cosine
transform, the exact closed-form solutions for the displacement
and stress fields of a Volterra type screw dislocation were attained.
Next, using a distributed dislocation method, singular integral
equations of the dissimilar sector weakened by defects (located
in one of the sub-sectors) were obtained. The governing equations
were found to be of the Cauchy type and solved numerically. For
the sector in Faal and Pasrad (in press a), in comparison with Faal
and Pasrad (in press b), an additional boundary condition was cho-
sen such that the finite Fourier cosine transform was no longer use-
ful and the technique of separation of variables was employed.
Moreover, a new dissimilar sector, namely with the radial inter-
face, was analyzed.

1.2. Motivation of this study

According to the brief review above, the stress analysis of trans-
versely isotropic sectors weakened by multiple, arbitrarily shaped
defects and with two circular fixed edges has not been the subject
of previous investigations. In this article, the classical theory of
elasticity for the stress analysis of a transversely isotropic sector
containing Volterra-type screw dislocations is first presented (Sec-
tion 2). For the simplicity of dislocation solutions, we use the dis-
location arc instead of dislocation line to define the dislocation.
Results in Section 2 have been validated by available dislocation
solutions of isotropic finite wedges in the literature. Next, the
stress analysis of a sector under point and patch loading is studied
for selected boundary conditions (Section 3). Similar to Section 2,
results for special cases (namely, finite wedges) have been vali-
dated by the reported data in the literature. Methodologically,
Buckner’s principle can be used to analyze sectors weakened by
multiple cracks and cavities using the results of Sections 2 and 3.
This approach is shown in Section 4. Namely, a distributed disloca-
tion method is employed to obtain integral equations for the sector
deformation and, subsequently, a set of relationships for the calcu-
lation of stress intensity factor and dimensionless hoop stress on
cavities are derived in terms of the dislocation density function.
Cavities are considered as closed, embedded curved cracks without
singularity. Finally, a method for solving the ensuing integral equa-
tions is recommended following the work of Faal et al. (2006),
where the solution of Erdogan et al. (1973) is generalized so that
both cavities and embedded/edge cracks can be taken into account
simultaneously. Numerical examples are presented in Section 5
and results are compared to those of an isotropic infinite wedge.
Concluding remarks are included in Section 6.

In practice, the analysis of transversely isotropic sectors with
multiple defects may be used, e.g., during the design of cylindrical
components with unidirectional composite materials where pre-
imposed defects can be present due to poor distribution of resin
in a pultrosion process, etc. Other potential application areas
may include piezoelectric devices made of transversely isotropic
materials such as lead zirconate (PZT-4) and barium titanate
ceramics, as well as transversely isotropic biological tissues such
as muscle.
2. Problem formulation

In crack problems, a so called ‘distributed dislocation technique’
is often used in treating cracks with smooth geometries (Hills et al.,
1996). The method relies on knowledge of the stress field due to a
single dislocation in the region of interest. For a transversely iso-
tropic sector containing a screw dislocation, the method can be
developed under anti-plane deformation as follows.

Let us consider a transversely isotropic sector (Fig. 1(a)) with in-
ner and outer radii R1 and R2, and sector angle a. The origin of the
polar coordinate is located at the center of the sector’s circular
edges and the angle h is measured from the lower edge. As such,
the sector consists of two sub-sectors R1 6 r 6 a and a 6 r 6 R2,
which are attached together along the circular arc r = a. The only
nonzero displacement component under anti-plane deformation
is the out-of-plane component wðr; hÞ in each region. The equilib-
rium equation in the absence of body forces in the polar coordi-
nates is written as follows:

@srz

@r
þ 1

r
@shz

@h
þ srz

r
¼ 0 ð1Þ

The constitutive equations for non-vanishing stress components
are:

srz ¼ Grz
@w
@r

shz ¼ Ghz
1
r
@w
@h

ð2Þ

where Grz and Ghz are the orthotropic shear moduli of the sector
(Lekhnitskii, 1963). Substituting Eq. (2) into Eq. (1) leads to:

r2 @
2w
@r2 þ r

@w
@r
þ G2 @

2w

@h2 ¼ 0 ð3Þ

where G ¼
ffiffiffiffiffi
Ghz
Grz

q
. The finite Fourier cosine transform for a sufficiently

regular function f(h) is defined as:

FðnÞ ¼
Z a

0
f ðhÞ cos

nph
a

dh ð4Þ

The inverse of the finite Fourier cosine transform yields:

f ðhÞ ¼ 2
a
X1
n¼1

FðnÞ cos
nph
a

ð5Þ

The traction-free condition on the sector straight edges and also the
fixed-edge conditions at the edges r = R1 and r = R2 imply that:

@wðr;0Þ
@h

¼ 0

@wðr;aÞ
@h

¼ 0

wðR1; hÞ ¼ 0
wðR2; hÞ ¼ 0

ð6Þ



Fig. 1. (a) Sector with screw dislocation and (b) sector under anti-plane loading.
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Application of the finite Fourier cosine transform (4) into Eq. (3) and
using the boundary conditions (6) lead to:

r2 @
2Wðr;nÞ
@r2 þ r

@Wðr;nÞ
@r

� ðnjÞ2Wðr;nÞ ¼ 0 ð7Þ

where j ¼ pG
a . The general solution of Eq. (7) is:

Wðr;nÞ ¼ Aknrnj þ Bknr�nj; k ¼ 1;2 ð8Þ

Constants Akn and Bkn should be determined by applying the appro-
priate boundary and continuity conditions. The index k ¼ 1;2 is
used to refer to the closer and farther sectors to the origin O, respec-
tively (Fig. 1(a)). By virtue of Eqs. (5) and (8), the out of plane com-
ponent wðr; hÞ is written as:

wðr; hÞ ¼ 2
a
X1
n¼1

ðAknrnj þ Bknr�njÞ cos
nph
a

; k ¼ 1;2 ð9Þ

A Volterra type screw dislocation with Burgers vector d is situated
at point ða;bÞ with the dislocation arc r ¼ a, 0 6 h 6 b. Here we
use a dislocation arc instead of a dislocation line (see Faal et al.,
2004, 2007, 2011) to define the dislocation. The boundary condition
representing an arc dislocation under anti-plane deformation reads:

wða�; hÞ �wðaþ; hÞ ¼ dHðb� hÞ ð10Þ

where H(�) is the Heaviside step function. The continuity condition
(self-equilibrium of stress) in the sector containing the dislocation
is:

srzðaþ; hÞ ¼ srzða�; hÞ ð11Þ

Applying the finite Fourier cosine transform to Eqs. (10) and (11) re-
sults in:

Wða�;nÞ �Wðaþ;nÞ ¼ ðda=npÞ sinðnpb=aÞ
@Wðaþ;nÞ

@r
� @Wða�;nÞ

@r
¼ 0

ð12Þ

The first pair of boundary conditions (6) is readily satisfied and
applying the second pair of boundary conditions (6) to Eq. (9) gives:

A1nRnj
1 þ B1nR�nj

1 ¼ 0
A2nRnj

2 þ B2nR�nj
2 ¼ 0

ð13Þ

Application of the conditions (12) to Eq. (9) leads to:

ðA1nanj þ B1na�njÞ � ðA2nanj þ B2na�njÞ ¼ ðda=npÞ sinðnpb=aÞ
ðA1nanj � B1na�njÞ � ðA2nanj � B2na�njÞ ¼ 0

ð14Þ

The solution of Eqs. (13) and (14) gives:
A1n ¼ ðda=2pÞa�nj ða=R2Þ2nj þ 1
� �

Kn

B1n ¼ �ðda=2pÞðR2
1=aÞnjðða=R2Þ2nj þ 1ÞKn

A2n ¼ ðda=2pÞa�njðða=R2Þ2nj þ ðR1=R2Þ2njÞKn

B2n ¼ �ðda=2pÞðanj þ ðR2
1=aÞnjÞKn

ð15Þ

where Kn ¼ sinðnpb=aÞ=nð1� ðR1=R2ÞnjÞ. Substituting coefficients
(15) into Eq. (9) results in:

wðr;hÞ¼ d
p
X1
n¼1

Kn½ðr=aÞnjþðra=R2
2Þ

nj�ðaR2
1=rR2

2Þ
nj�ðR2

1=raÞnj�cos
nph
a
;

R16 r6 a

wðr;hÞ¼ d
p
X1
n¼1

Kn½ðra=R2
2Þ

njþðrR2
1=aR2

2Þ
nj�ða=rÞnj�ðR2

1=raÞnj�cos
nph
a
;

a6 r6R2

ð16Þ

Using the first equation of (16) in Eq. (2), the stress field when
R1 6 r 6 a is obtained as:

srz ¼GGrz
d
ar

X1
n¼1

nKn½ðr=aÞnjþðra=R2
2Þ

njþðaR2
1=rR2

2Þ
njþðR2

1=raÞnj�cos
nph
a

shz¼�Ghz
d
ar

X1
n¼1

nKn½ðr=aÞnjþðra=R2
2Þ

nj�ðaR2
1=rR2

2Þ
nj�ðR2

1=raÞnj�sin
nph
a

ð17Þ

For a 6 r 6 R2, the stress component srz(r,h) is achieved by replacing
r/a with a/r. Analogously, for stress component shz(r,h), similar
changes are made for each region. Moreover the changed terms
are multiplied by a negative sign. Making use of the formulas given
in Appendix (A) of the report by Faal et al. (2004) and the Taylor’s
expansion of expression nKn (i.e., nKn ¼ sin npb

a

P1
m¼0ðR1=R2Þ2mnjÞ,

the stress components (17) are summed in the whole sector region,
leading to:

srz ¼
djGrz

4pr

X1
m¼0

f½umðr=a;pðb� hÞ=aÞ þumðr=a;pðbþ hÞ=aÞ�

þ ½umðra=R2
2;pðb� hÞ=aÞ þumðra=R2

2;pðbþ hÞ=aÞ�
þ ½umðaR2

1=rR2
2;pðb� hÞ=aÞ þumðaR2

1=rR2
2;pðbþ hÞ=aÞ�

þ ½umðR
2
1=ra;pðb� hÞ=aÞ þumðR

2
1=ra;pðbþ hÞ=aÞ�g; R1 6 r 6 a

shz ¼ �
djGGrz

4pr

X1
m¼0

fwmðr=a;pðbþ hÞ=aÞ � wmðr=a;pðb� hÞ=aÞ

þ wmðra=R2
2;pðbþ hÞ=aÞ � wmðra=R2

2;pðb� hÞ=aÞ
� wmðaR2

1=rR2
2;pðbþ hÞ=aÞ þ wmðaR2

1=rR2
2;pðb� hÞ=aÞ

� wmðR2
1=ra;pðbþ hÞ=aÞ þ wmðR2

1=ra;pðb� hÞ=aÞg; R1 6 r 6 a

ð18Þ

where g = R1/R2 and
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umðx; h;j;gÞ ¼
sin h

coshfj½2mLngþ Lnx�g � cos h

wmðx; h;j;gÞ ¼
sinhfj½mLngþ Lnx�g

coshfj½2mLngþ Lnx�g � cos h

ð19Þ

For brevity, the constants j and g were eliminated from Eq. (18).
For finite wedges, R1 = 0 then g = 0 and the functions umðx; h;j;gÞ
and wmðx; h;j;gÞ are vanished for all m – 0. Therefore, the stress
field (18) is simplified for a finite wedge as follows:

srz ¼
djGrz

4pr
½/0ðr=a;pðb� hÞ=aÞ þ /0ðr=a;pðbþ hÞ=aÞ

þ /0ðra=R2
2;pðb� hÞ=aÞ þ /0ðra=R2

2;pðbþ hÞ=aÞ�; 0 6 r 6 a

shz ¼
djGGrz

4pr
½�w0ðr=a;pðbþ hÞ=aÞ þ w0ðr=a;pðb� hÞ=aÞ

� w0ðra=R2
2;pðbþ hÞ=aÞ þ w0ðra=R2

2;pðb� hÞ=aÞ�; 0 6 r 6 a

ð20Þ

Comparing the above stress field to the solution obtained by Faal
et al. (2007) and performing some manipulations show identical re-
sults. It is also worth mentioning that the dislocation definition
used by Faal et al. (2007) was based on a straight cut of the wedge,
but here we employ a circular cut to define the dislocation. One of
the benefits of using a circular cut is the simplicity of finding the
dislocation solution. To investigate the behavior of stress fields in
the dislocation position, let us define a new coordinate system
(q,n), Fig. 1(a). The relationships between the two coordinates
may be written as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ q2 þ 2aq sin n

q
;

h ¼ b� sin�1 q cos nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ q2 þ 2aq sin n

p
 !

; 0 6 n 6 2p ð21Þ

Substituting (21) into u0ðr=a;pðb� hÞ=aÞ and w0ðr=a;pðb� hÞ=aÞ
and carrying out the necessary manipulations yields:

1
r
u0ðr=a;pðb� hÞ=aÞ � 2a

p cos n
1
q
; as q! 0; 0 6 n 6 2p

1
r

w0ðr=a;pðb� hÞ=aÞ � Ga sin n
2p cos2 n

1
q
; as q! 0; 0 6 n 6 2p

ð22Þ

According to the above relations, one can conclude that ðsrz; shzÞ � 1
q

as q ? 0. It should be added that this Cauchy singularity was previ-
ously reported, e.g., by Weertman and Weertman (1992) for the
stress field of two-dimensional isotropic media containing screw
dislocations. It has also been reported by Faal et al. (2006, 2011)
for the stress field of an orthotropic strip and rectangular planes
containing screw dislocations.

3. Transversely isotropic sector under traction

In this section we use the analysis framework of Section 2 and
predict the anti-plane deformation of a transversely isotropic sec-
tor under two point forces/tractions with a magnitude of s0

(Fig. 1(b)). The boundary conditions (6) hold but the first two
boundary conditions should be replaced by:

shzðr;0Þ ¼ shzðr;aÞ ¼ s0dðr � r0Þ ð23Þ

where d(�) is Dirac delta function. Application of the finite Fourier
cosine transform (4) to Eq. (3) and recalling the boundary condi-
tions (23)leads to:

r2 @
2Wðr;nÞ
@r2 þ r

@Wðr;nÞ
@r

� ðnjÞ2Wðr;nÞ

¼ ðrs0=GhzÞ½1þ ð�1Þnþ1�dðr � r0Þ ð24Þ
Solving Eq. (24) as a Green’s function problem leads to seeking a
W(r,n) as follows:

Wðr;nÞ ¼ C1rnj þ D1r�nj R1 6 r 6 r0

Wðr;nÞ ¼ C2rnj þ D2r�nj r0 6 r 6 R2

�
ð25Þ

Continuity of displacements at r = r0 imply that:

Wðr�0 ;nÞ ¼Wðrþ0 ;nÞ ð26Þ

Application of the last two boundary conditions (6) and continuity
equations of (26) to (25) in view of (5) gives:

C1Rnj
1 þ D1R�nj

1 ¼ 0
C2Rnj

2 þ D2R�nj
2 ¼ 0

C1rnj
0 þ D1r�nj

0 ¼ C2rnj
0 þ D2r�nj

0

ð27Þ

Integrating Eq. (24) over the arc r = r0 gives:Z rþ0

r�0

r2 @
2Wðr;nÞ
@r2 dr þ

Z rþ0

r�0

r
@Wðr;nÞ

@r
dr � ðnjÞ2

Z rþ0

r�0

Wðr;nÞdr

¼ s0

Ghz
½1þ ð�1Þnþ1�

Z rþ
0

r�0

rdðr � r0Þdr ð28Þ

Considering the fact that the displacement is continuous along the
arc r = r0 and making use of the integration by parts, Eq. (28) is sim-
plified to:

@W rþ0 ;n
� �
@r

�
@W r�0 ;n

� �
@r

¼ ðs0=r0GhzÞ½1þ ð�1Þnþ1� ð29Þ

Application of conditions (29) to Eq. (25) leads to:

C2rnj
0 � D2r�nj

0

� �
� C1rnj

0 � D1r�nj
0

� �
¼ ðs0=njr0GhzÞ 1þ ð�1Þnþ1

h i
ð30Þ

The solution of Eqs. (27) and (30) results in the coefficients C1, D1,
C2 and D2 and, by substituting those into Eq. (25) and applying
the inverse transform (5) to the ensuing equations, leads to the dis-
placement field as:

wðr; hÞ ¼ s0

pGGhz

X1
n¼1

ð1þ ð�1Þnþ1ÞCn rr0=R2
2

� �nj
� ðr=r0Þnj þ R2

1=rr0

� �njh

� R2
1r0=R2

2r
� �nji

cos
nph
a

; R1 6 r 6 r0

wðr; hÞ ¼ s0

pGGhz

X1
n¼1

ð1þ ð�1Þnþ1ÞCn r0r=R2
2

� �nj
� ðR2

1r=R2
2r0Þnj

h

þ R2
1=r0r

� �nj
� ðr0=rÞnj

i
cos

nph
a

; r0 6 r 6 R2

ð31Þ

where Cn ¼ 1=nð1� ðR1=R2Þ2njÞ ¼ Kn= sinðnpb=aÞ. Stress compo-
nents in the whole sector region are attained in view of the consti-
tutive Eq. (2) as follows:

srzðr; hÞ ¼
s0

G2ar

X1
n¼1

nð1þ ð�1Þnþ1ÞCn½ r0r=R2
2

� �nj
� ðr=r0Þnj

� R2
1=r0r

� �nj
þ ðR2

1r=R2
2r0Þnj� cos

nph
a

; R1 6 r 6 r0

shzðr; hÞ ¼ �
s0

Gar

X1
n¼1

nð1þ ð�1Þnþ1ÞCn½ r0r=R2
2

� �nj
� ðr=r0Þnj

þ R2
1=r0r

� �nj
� ðR2

1r0=R2
2rÞnj� sin

nph
a

; R1 6 r 6 r0

ð32Þ

For r0 6 r 6 R2, the stress component shzðr; hÞ is achieved by replac-
ing r=r0 with r0=r. Analogously for the stress component srzðr; hÞ,
similar changes are done for each region. Moreover, the changed
terms were multiplied by a negative sign. The term nCn is replaced
by the series

P1
m¼0ðR1=R2Þ2mnj and the stress components are
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summed using the relationships given in Appendix (A) of Faal et al.
(2004).

srzðr;hÞ ¼
s0

2G2ar

X1
m¼0

½wm r0r=R2
2;p�ph=a

� �
�wm r0r=R2

2;ph=a
� �

�wmðr=r0;p�ph=aÞþwmðr=r0;ph=aÞ�wm R2
1=r0r;p�ph=a

� �
þwm R2

1=r0r;ph=a
� �

þwm R2
1r=R2

2r0;p�ph=a
� �

�wm R2
1r=R2

2r0;ph=a
� �

�; R1 6 r6 r0

shzðr;hÞ ¼�
s0

2Gar

X1
m¼0

um r0r=R2
2;ph=a

� �
þum r0r=R2

2;p�ph=a
� �n

�umðr=r0;ph=aÞ�umðr=r0;p�ph=aÞþum R2
1=r0r;ph=a

� �
þum R2

1=r0r;p�ph=a
� �

�um R2
1r0=R2

2r;ph=a
� �

�um R2
1r0=R2

2r;p�ph=a
� �o

; R1 6 r6 r0

ð33Þ

It can be seen that the displacement and stress fields satisfy the pre-
scribed boundary and continuity conditions. For R1 ¼ 0 and
Ghz ¼ Grz, Eq. (33) are simplified and the stress field of reference
(Faal et al., 2007) is achieved. The local coordinates ðr0; h0Þ,
Fig. 1(b), is moved to the load location as h ¼ sin�1ðr0 sin h0=rÞ,

0 6 h0 6 p and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 þ r2

0 þ 2r0r0 cos h0
q

. Using this transformation

we deduce that ðsrz; shzÞ � 1=r0 near the traction s0 i.e. r0 ! 0.
Choosing similar local coordinates in the sector corners, it can be
shown that the stress is not singular. These corners can be modeled
by a rectangular wedge apex which is not singular, confirming the
report by Karegarnovin et al. (1997) for isotropic wedges.
4. Transversely isotropic sector with multiple cracks and
cavities

The dislocation solution accomplished in Section 3 may be ex-
tended to analyze sectors with multiple defects consisting of cracks
and cavities. The cavities are considered as closed-curve cracks
riðsÞ¼ d2
i þa2

i b2
i = b2

i cos2ðpsþxsiÞþa2
i sin2ðpsþxsiÞ

h i
�2aibidi cosðpsþxsiþwsiÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i cos2ðpsþxsiÞþa2
i sin2ðpsþxsiÞ

q	� 
1
2

hiðsÞ¼ tan�1 di sinbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i cos2ðpsþxsiÞþa2
i sin2ðpsþxsiÞ

q
�aibi sinðpsþxsiþwsiþbiÞ di cosbi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

i cos2ðpsþxsiÞþa2
i sin2ðpsþxsiÞ

q
�aibi cosðpsþxsiþwsiþbiÞ

� �	� 

/iðsÞ¼ tan�1½riðsÞh0iðsÞ=r0iðsÞ�

ð36Þ
without singularity. Consequently, the analysis resembles that of
Faal et al. (2004, 2007, 2011) but with overriding the crack singu-
larity. We consider a sector weakened by M cavities, N1 embedded
cracks, and N2 edge cracks. Henceforth, we designate cavities,
embedded cracks and edge cracks with the respective subscripts
as follows.

i 2 f1;2; . . . ;Mg
j 2 fM þ 1;M þ 2; . . . ;M þ N1g
k 2 fM þ N1 þ 1;M þ N1 þ 2; . . . ;M þ N1 þ N2g

where N ¼ M þ N1 þ N2 and represents the total number of defects.
The antiplane traction on the surface of the i-th defect,
i ¼ 1;2; . . . ;N, Fig. 2, in terms of stress components in polar coordi-
nates becomes:
stzðri; hiÞ ¼ shzðri; hiÞ sin /i þ srzðri; hiÞ cos /i

snzðri; hiÞ ¼ shzðri; hiÞ cos /i � srzðri; hiÞ sin /i

ð34Þ

where /i is the angle between tangent to the surface of the i-th de-
fect and the radial direction ri. Suppose dislocations with unknown
density BzjðrjÞ are distributed on the infinitesimal segment at the
boundary of the j-th defect. The traction on the surface of the i-th
defect due to the presence of dislocations, utilizing (34) and (18),
leads to:

snzðri;hiÞ¼�
BzjðrjÞjGrz

4pri

X1
m¼0

sin/i umðri=rj;pðhj�hiÞ=aÞ
��

þumðri=rj;pðhjþhiÞ=aÞþum rirj=R2
2;pðhj�hiÞ=a

� �
þum rirj=R2

2;pðhjþhiÞ=a
� �

þum rjR
2
1=riR

2
2;p hj�hi
� �

=a
� �

þum rjR
2
1=riR

2
2;pðhjþhiÞ=a

� �
þum R2

1=rirj;pðhj�hiÞ=a
� �

þum R2
1=rirj;pðhjþhiÞ=a

� �o
þG wmðri=rj;pðhjþhiÞ=aÞ
�

�wmðri=rj;pðhj�hiÞ=aÞþwm rirj=R2
2;pðhjþhiÞ=a

� �
�wm rirj=R2

2;pðhj�hiÞ=a
� �

�wm rjR
2
1=riR

2
2;pðhjþhiÞ=a

� �
þwm rjR

2
1=riR

2
2;pðhj�hiÞ=a

� �
�wm R2

1=rirj;pðhjþhiÞ=a
� �

þwm R2
1=rirj;pðhj�hiÞ=a

� �o
cos/i

o ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdrjÞ2þðrjdhjÞ2

q
;

R16 ri6 rj ð35Þ

For rj 6 ri 6 R2, the traction snzðri; hiÞ is written through the replace-
ment of the term ri=rj by rj=ri and multiplying the functions wm by a
negative sign. Covering the boundary of cavities or border of cracks
by dislocations, the principle of superposition may used to obtain
traction on the surface of cavities or cracks. Equation set (35) is
integrated on the boundary of defects and the resultant tractions
are superimposed. The integration of Eq. (35) can be facilitated by
describing the configuration of cracks and cavities in a parametric
form. For example, the parameter �1 6 s 6 1 is chosen and the fol-
lowing change of variables is employed for elliptical cavities with
major and minor semi-axes ai and bi, respectively,
where ðdi;biÞ is the coordinate of the cavity center and /iðsÞ is the
angle between a tangent to the surface of the cavity and the radial
direction riðsÞ. Also, xsi is the angle specifying the starting point and
wsi is the orientation angle of the major axis (Faal et al., 2007). In Eq.
(36), the prime sign indicates differentiation with respect to the
function argument. The traction on the surface of the i-th crack or
cavity in the sector containing N defects may be expressed as:

snzðriðsÞ; hiðsÞÞ ¼
XN

j¼1

Z 1

�1
bzjðtÞkijðs; tÞdt; �1 6 s 6 1;

i ¼ 1;2; . . . ;N ð37Þ

where bzjðtÞ is the dislocation density on the non-dimensional
length of the boundary of the j-th crack or cavity. The above kernel



Fig. 2. Schematic view of the sector with a smooth curved crack.

3632 R.T. Faal et al. / International Journal of Solids and Structures 49 (2012) 3627–3640
kijðs; tÞ in light of Eq. (35) can be obtained as shown in Appendix A.
The functions u0ðriðsÞ=rjðtÞ;pðhj � hiÞ=aÞ and w0ðriðsÞ=rjðtÞ;
pðhj � hiÞ=aÞ are singular for i ¼ j as t ! s. Hence, we may conclude
that kijðs; tÞ has the Cauchy-type singularity for i ¼ j as t ! s. By vir-
tue of Bueckner’s principle1 (Korsunsky and Hills, 1996) the left-
hand side of Eq. (37), after changing the sign, is the traction caused
by the external loading on the sector without defect at the presumed
boundary of cavities or crack borders. The applied traction on the
sector with multiple defects is taken to be as Eq. (23) and the stress
components as Eq. (33). Utilizing Eqs. (33) and (34), the following
traction should be applied on the surface of the i-th defect:

snzðriðsÞ; hiðsÞÞ ¼
s0

2G2ari

X1
m¼0

G um r0ri=R2
2;phi=a

� �hn

þum r0ri=R2
2;p�phi=a

� �
�umðri=r0;phi=aÞ
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� �
þum R2

1=r0ri;p�phi=a
� �

�um R2
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� �
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1r0=R2

2ri;p�phi=a
� �i

cos /i

þ �wm r0ri=R2
2;p�phi=a

� �
� wm r0ri=R2

2;phi=a
� �h

þwmðri=r0;p�phi=aÞ þwmðri=r0;phi=aÞ

þwm R2
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� �
þ wm R2

1=r0ri;phi=a
� �

�wm R2
1ri=R2

2r0;p�phi=a
� �

�wm R2
1ri=R2

2r0;phi=a
� �i

sin /i

o
; R1 6 ri 6 r0

snzðriðsÞ; hiðsÞÞ ¼
s0

2G2ari

X1
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1=r0ri;p�phi=a

� �
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þwm R2
1ri=R2
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Employing the definition of a dislocation density function, the equa-
tion for crack opening displacement across the j-th crack is:

wþj ðsÞ �w�j ðsÞ ¼
Z s

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0jðtÞ
� �2

þ rjðtÞh0jðtÞ
� �2

r
bzjðtÞdt;

� 1 6 s 6 1; j ¼ 1;2; . . . ;N ð39Þ

The uniqueness requirement of a displacement field on the surfaces
of cavities and embedded crack borders implies:Z 1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0jðtÞ
� �2

þ rjðtÞh0jðtÞ
� �2

r
bzjðtÞdt ¼ 0; j ¼ 1;2; . . . ;M þ N1ð40Þ

The Cauchy singular integral Eqs. (37) and (40) are solved simulta-
neously to determine dislocation density functions. Cavities are
1 If a cracked body includes forces applied to the crack surfaces to close it (or slide
for the modes II and III of fracture mechanics), while the body is subjected to an
external loading or prescribed displacement at its boundary, the applied forces to the
crack surfaces must be equivalent to the stress distribution in an uncracked body of
the same geometry subject to the same external loading.
defined as closed curved cracks with a bounded dislocation density
at both ends of the cracks. Thus, for �1 6 t 6 1, j ¼ 1;2; . . . ;M the
dislocation density functions for cavities are expressed as:

bzjðtÞ ¼ gzjðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
ð41Þ

Stress fields for embedded cracks in orthotropic media are singular
at crack tips with square root singularity (Delale, 1984). To show
the order of stress singularity for embedded cracks located at the
transversely isotropic sector, we selected a local coordinate (x,y)
or (r0,h0) as x,y ? 0 or r0 ? 0, see Fig. 1(b). Following, the transfor-
mation between the two coordinate systems (x,y) or (r,h) is written
as:

x ¼ r cosðh� cÞ � d

y ¼ r sinðh� cÞ
ð42Þ

Application of the above transformation to Eq. (3) yields:

ðxþdÞ2@
2w
@x2 þy2@

2w
@y2 þ2yðxþdÞ @

2w
@x@y

þðxþdÞ@w
@x
þy

@w
@y

þG2 y2@
2w
@x2
þðxþdÞ2@

2w
@y2
�2yðxþdÞ @

2w
@x@y

�y
@w
@y
�ðxþdÞ@w

@x

" #
¼0 ð43Þ

For x; y! 0 the above equation is approximated by:

@2w
@x2 þ G2 @

2w
@y2 ¼ 0 ð44Þ

Now let us make a comparison. We consider an orthotropic material
where the shear modulus in the x-direction (Gxz) is different from
that in the y-direction (Gyz). The governing equation of this material

under anti-plane deformation is Gxz
@2w
@x2 þ Gyz

@2w
@y2 ¼ 0 (Liebowitz,

1968). The interesting observation is that we are able to compare
this equation with Eq. (44) by defining G ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gyz=Gxz

p
. The displace-

ment field of a transversely isotropic sector, which is globally
governed by Eq. (3) through the coordinates (r,h) is locally governed
by Eq. (44). We recall that Eq. (44) is valid only for the infinitesimal
neighborhood of point A(r,h). Therefore in the vicinity of each
specified point of the transversely isotropic sector we may assume

an orthotropic material with the governing equation Gxz
@2w
@x2 þ

Gyz
@2w
@y2 ¼ 0, but the material properties Gxz and Gyz should be replaced

by Grz and Ghz, respectively. Let us consider a crack tip located at the
point (x,y) of an orthotropic sector (Gxz – Gyz). The displacement and
stress distributions around the crack tip are given in the study by

Liebowitz (1968) by solving the equation Gxz
@2w
@x2 þ Gyz

@2w
@y2 ¼ 0. For

brevity, we give only the displacement field solution as:
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wðx; yÞ ¼ kIII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=GxzGyz

q
Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ ðy=GÞi

q� �
ð45Þ

where G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gyz=Gxz

p
and kIII is the stress intensity factor of the tear-

ing mode of fracture. The equation above is also valid for the infin-
itesimal neighborhood of each specified point of the transversely
isotropic sector, but the material properties Gxz and Gyz are replaced
by Grz and Ghz, respectively. In view of Fig. 1(b), we have x ¼ r0 cos h0

and y ¼ r0 sin h0. Consequently, it is straightforward to deduce that
the stress field in the crack tip has a square root singularity. Thus,
the dislocation density functions are represented by �1 6 t 6 1,
j ¼ M þ 1;2; . . . ;M þ N1 as

bzjðtÞ ¼ gzjðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

p
ð46Þ

Following, Eq. (45) is rewritten for a crack tip located at the point
A(r,h) of the transversely isotropic sector, Fig. 1(b), as follows:

wðx; yÞ ¼ kIII

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=GrzGhz

p
Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ ðy=GÞi

q� �
ð47Þ

Thus, the stress intensity factors for the i-th crack in terms of crack
opening displacement are:

kIIILi ¼
ffiffiffi
2
p

4
GGrzlim

rLi!0

wþðsÞ �w�ðsÞffiffiffiffiffi
rLi

p ;

kIIIRi ¼
ffiffiffi
2
p

4
GGrz lim

rRi!0

wþðsÞ �w�ðsÞffiffiffiffiffiffi
rRi

p ð48Þ

for i ¼ M þ 1;2; . . . ;N, where r is the distance from a crack tip. Set-
ting the points Li and Ri on the surface of the crack, as shown in
Fig. 2, yields:

rLi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðriðsÞÞ2 þ ðrið�1ÞÞ2 � 2riðsÞrið�1Þ cosðhiðsÞ � hið�1ÞÞ

q
rRi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðriðsÞÞ2 þ ðrið1ÞÞ2 � 2riðsÞrið1Þ cosðhiðsÞ � hið1ÞÞ

q ð49Þ

Substituting Eq. (46) into Eq. (39), and Eq. (49) into Eq. (48), and
finally employing L’Hopital’s rule yields the stress intensity factors
for the embedded cracks:
Fig. 3. Dimensionless hoop stress for a cavity in an isotropic/transversely is
kIIILi ¼
1
2

GGrz½ðr0ið�1ÞÞ2 þ ðrið�1Þh0ið�1ÞÞ2�
1
4gzið�1Þ

kIIIRi ¼ �
1
2

GGrz½ðr0ið1ÞÞ
2 þ ðrið1Þh0ið1ÞÞ

2�
1
4gzið1Þ

ð50Þ

where i ¼ M þ 1;2; . . . ;M þ N1. For edge cracks, taking the embed-
ded crack tip at t = �1, for �1 6 t 6 1, j ¼ M þ N1 þ 1;M
þN1 þ 2; . . . ;N, we let:

bzjðtÞ ¼ gzjðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
1� t
1þ t

r
ð51Þ

Analogously, for an edge crack the stress intensity factor is:

kIIILi ¼ GGrz½ðr0ið�1ÞÞ2 þ ðrið�1Þh0ið�1ÞÞ2�
1
4gzið�1Þ ð52Þ

where i ¼ M þ N1 þ 1;M þ N1 þ 2; . . . ;N. The anti-plane strain com-
ponents on the surface of the i-th defect, i ¼ 1;2; . . . ;N, Fig. 2, in
terms of strain components in polar coordinates become:

ctzðri; hiÞ ¼ chzðri; hiÞ sin /i þ crzðri; hiÞ cos /i

cnzðri; hiÞ ¼ chzðri; hiÞ cos /i � crzðri; hiÞ sin /i

ð53Þ

Substituting strain components crz = srz/Grz and chz = shz/Ghz into Eq.
(53) and eliminating stress components srz and shz between the
resultant equations and Eq. (34) gives:

ctzðri; hiÞ ¼
cos2 /i

Grz
þ sin2 /i

Ghz

 !
stzðri; hiÞ þ

1
Ghz
� 1

Grz


 �
sin /i

� cos /isnzðri; hiÞ ð54Þ

The calculation of hoop stress on the surface of cavities is accom-
plished by employing the definition of a dislocation density func-
tion, i.e. ctzðriðsÞ; hiðsÞÞ ¼ bziðsÞ and Eq. (54) and also using the fact
that the i-th cavity surface is reaction free (snzðri; hiÞ ¼ 0) as follows:

stzðriðsÞ; hiðsÞÞ ¼
GrzGhz

Grz sin2 /iðsÞ þ Ghz cos2 /iðsÞ
bziðsÞ;

� 1 6 s 6 1; i ¼ 1;2; . . . ;M ð55Þ

The system of Cauchy integral Eq. (37) in conjunction with Eq. (40)
can be solved numerically. To this end, the original numerical pro-
cedure developed by Erdogan et al. (1973) may not be directly
otropic sector and two different cavity orientations (G = 1, G = 0.8811).



Fig. 4. Variation of dimensionless hoop stress for point h ¼ 3p
2 of a cavity versus the orientation angle (G = 1, G = 0.8811).
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applicable since it does not consider all types of defects; i.e., embed-
ded and edge cracks and also multiple cavities at the same time. In
the study by Faal et al. (2006), a minor generalization of the numer-
ical procedure, by means of expanding the continuous integrands of
integral equations with different weight functions in terms of Tche-
byshoff and Jacobi polynomials, was introduced to overcome this
problem. Various weight functions resulted in various stress fields
of different types of crack tips and cavity boundaries. The only
approximation in the modified method was the truncating inte-
grand infinite expansion, which would not change the accuracy of
results if an adequate number of discrete points are used (Faal
et al., 2006).
Fig. 5. Dimensionless hoop stress for two cavities located at the sector with two d
5. Numerical examples and discussions

The analysis framework developed in the preceding section al-
lowed the consideration of a transversely isotropic sector with an
arbitrary number of defects. These defects may contain embedded
and edge cracks as well as cavities with different orientations. Let
us consider a sector with R2 = 2R1 and a sector angle a = 2p/3. In
the examples to follow, the orthotropy ratio G is assumed to be
0.8811 and 1.4348 for a transversely isotropic material. For the iso-
tropic case, we have G = 1. The applied tractions are patch loads
with the magnitude of s0 which are distributed on the sector
straight edges, except for Example 4.
ifferent materials (isotropic and transversely isotropic: G = 1 and G = 0.8811).



Fig. 6. Variation of dimensionless stress intensity factor with l/R1 for an isotropic sector.
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Example 1. Assume a transversely isotropic sector weakened by
anelliptical cavity with major and minor semi-axes a = 0.3R1 and
b = 0.1R1, respectively, as shown in Fig. 3. The center of the cavity
is on the line bisecting the sector at the distance d = 1.5R1. Fig. 3
depicts the dimensionless hoop stress on the surface of the cavity
for two different orientations of the cavity and also different
materials (isotropic/transversely isotropic (G = 0.8811)). The angle
h on the cavity is measured from the minor axis in the counter-
clockwise direction. Based on Fig. 3, the most severe hoop
stresses are observed at the sharpest points of the cavity. In the
transversely isotropic sector, weaker material stiffness in the
angular direction, compared to that of the radial direction,
reduces the dimensionless hoop stress. For w = 0, one of the
sharpest points i.e. h ¼ p

2 is in the minimum distance of the inner
Fig. 7. Variation of dimensionless stress intensity factor with l
sector circular edge and has the global maximum hoop stress.
Also, the other sharpest point at h ¼ 3p

2 shows a local maximum
hoop stress. For w ¼ p

2, the two sharpest points of the cavity are in
the identical distances of the sector bisector and have identical
hoop stresses. One of the sharpest points of cavity i.e. h ¼ p

2 for
w = 0 is closer than the distance from the point w ¼ p

2 to the fixed
edge of the sector, therefore the hoop stress of point h ¼ p

2 for
w = 0 is higher than the one for w ¼ p

2. Fig. 4 shows the variation
of nondimensional hoop stress for point h ¼ 3p

2 of the cavity
against the orientation angle w. Similarly, in the transversely
isotropic sector, the weaker material stiffness in the angular
direction compared to that of the radial direction reduces the
dimensionless hoop stress. The problem is symmetric with
respect to the angle w = 0 and w = p as seen in Fig. 4.
/R1 for a transversely isotropic sector with G = 0.8811 < 1.



Fig. 8. Variation of dimensionless stress intensity factor with l/R1 for a transversely isotropic sector with G = 1.4348 > 1.
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Example 2. The variation of hoop stress for two identical parallel
axes cavities with centers at the distances d1 = 1.25R1 and
d2 = 1.75R1 from the circular edges center is shown in Fig. 5. The
minor axes of the cavities are on the line bisecting the sector. Also
we have a1 = a2 = 0.3R1, b1 = b2 = 0.1R1 and the cavities orientation
angle is w1 ¼ w2 ¼ p

2. Similar to the example with one cavity, the
most severe hoop stresses are seen at the sharpest points of cavi-
ties or points with a maximum curvature. Moreover, the stress
level of the isotropic sector is higher than the sector made of the
transversely isotropic material (G = 0.8811), mainly because the
material stiffness in the angular direction is weaker than that of
the radial direction.
Fig. 9. Variation of dimensionless stress intensity factor with l/R1 for edge cra
Example 3. For this example let us consider two identical circular
embedded cracks which are parallel with the sector circular edges.
The crack centers are fixed and located at the points (1.5R1,p/12)
and (1.5R1,p/4). Fig. 6 shows the variation of nondimensional
stress intensity factors, k/k0 at crack tips against l/R1, where l is
the half length of embedded circular cracks and k0 ¼ s0

ffiffi
l
p

. These
cracks are located at an isotropic sector. The variation of the stress
intensity factor of a crack tip R2 is negligible, whereas those near
the crack tips R1, L2 and also L1 increase rapidly. In particular, for
the tip L1, the SIF increases because of approaching the loading
point. The problem was re-solved for a transversely isotropic sector
with two different orthotropy ratios, G = 0.8811 and G = 1.4348,
cking an isotropic/transversely isotropic sector with G = 1 and G = 0.8811.



Fig. 10. Variation of dimensionless hoop stress for a cavity in an isotropic/transversely isotropic sector (G = 1 and G = 0.8811, l = 0.2356R1).

Fig. 11. Variation of dimensionless stress intensity factor with l/R1 for an isotropic sector.
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and similar trends were observed in Figs. 7 and 8, respectively. In
the transversely isotropic sector (G = 0.8811), the weaker material
stiffness in the angular direction increased the stress intensity fac-
tor. For two radial collinear cracks, one may predict that the sec-
tor’s behavior would be opposite, which will be shown in
Example 5. Comparison of Figs. 7 and 8 shows that increasing
the orthotropy ratio from G = 0.8811 to G = 1.4348 reduces the
SIF of the crack tips. Consequently, there is a logical reduction of
SIF by increasing the orthotropy ratio from G < 1 to G = 1.
Example 4. Now we consider a sector weakened by a circular
edge crack and an elliptical cavity with the length of major
semi-axis a = 0.3R1 and minor semi-axis b = 0.1R1. The major
axis of the cavity is tangent to the circle with radius 1.5R1

and the center of the cavity is located at the line with the angle
h = 7p/36. The circular edge crack is parallel with the sector cir-
cular edges and in equal distances from the lower and upper
boundaries. The patch loads are distributed on the sector
straight edges except for the small gap with length 0.1R1



Fig. 12. Variation of dimensionless stress intensity factor with l/R1 for a transversely isotropic sector with G = 0.8811 < 1.

Fig. 13. Variation of dimensionless stress intensity factor with l/R1 for a transversely isotropic sector with G = 1.4348 > 1.
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around the starting point of the edge crack. Fig. 9 shows the
dimensionless stress intensity factors, k/k0, for the crack tip
versus the dimensionless crack length l/R1. For all crack lengths,
the magnitude of SIF in the isotropic sector is higher than that
of the transversely isotropic sector. As the crack tip approaches
the sharpest point of the elliptical cavity, k/k0 at the tip L
increases rapidly. As the crack length advances, SIF increases
and when the crack tip recedes from the loading point, SIF
decreases. In the mid points, depending on which of the afore-
mentioned effects becomes dominant, SIF decreases or
increases. The latter cause, i.e., receding from the loading point,
may explain the reason for the reduction of SIF in the middle
portion of the plot in Fig. 9. Near the sharpest point of the
elliptical cavity h ¼ p

2

� �
, where the crack tip is approached, the

absolute value of the dimensionless hoop stress is maximized
(Fig. 10).
Example 5. This example contains a sector weakened by two
equally-sized radial cracks bisecting the sector angle. The distance
between the centers of the cracks is 0.5R1 and the distance from
the center circular edges to the center of the first crack is
d1 = 1.25R1. Figs. 11–13 show the normalized stress intensity factors
(SIF), k/k0 of crack tips against l/R1 where l is the half length of the
embedded radial cracks. As can be seen from these figures, SIF
increases rapidly while the distance between the tips of cracks
decreases. The formation of regions with high stress levels is attrib-
uted to the interaction of geometric singularities. Moreover, the slow
reduction of other crack tips versus the crack length may be notable.
Interestingly, compared to the case in Example 3, an inverse trend is
seen in Example 4 where the SIF for the isotropic sector is smaller
than that of the transversely isotropic sector. Similar to the previous
example, the comparison of Figs. 12 and 13 shows that when the
orthotropy ratio is increased, the SIF of the crack tip is amplified.
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For validation purposes, for an infinite wedge (R1 = 0 and
R2 ?1) weakened by two equal-sized radial cracks bisecting the
apex angle, we re-examined the solution procedure. The distances
between the each crack center and wedge apex are d1 = l/10 and
d2 = 3l/10, respectively, where the applied traction is a patch load
on the two wedge edges with the length l = 0.1 (m). The dimen-
sionless stress intensity factors (k/k0) determined by the present
approach were found to be in excellent agreement with the results
in Fig. 4 of Faal et al. (2004).
6. Concluding remarks

An analytical solution for the problem of transversely isotropic
sectors weakened by Volterra-type screw dislocations was first ob-
tained in terms of two new definite functions. Consequently, the
stress field in a transversely isotropic sector under traction on its
straight edge(s) was presented in a compact form, where the load
and geometric singularity of stress field was shown. The disloca-
tion density on the crack surfaces is obtainable by solving a set
of integral equations of the Cauchy type singular. Finally, the dis-
tributed dislocation technique can be used to solve problems
including multiple cracks and cavities with smooth geometries.
The presented examples on the embedded and edge cracks, as well
as cavities revealed that:

(1) The normalized stress intensity factor of the crack tips
increases rapidly as they approach either each other, or near
the sharp points of cavities or the loading point.

(2) The stress intensity factor at crack tips for both transversely
isotropic (G – 1) and isotropic (G = 1) materials is symmetri-
cally increased by an increase of the crack length. In the
transversely isotropic sector (G < 1), however, the weaker
material stiffness in the angular direction reduces the stress
intensity factor for radial collinear cracks and increases for
circular cracks. Increasing the orthotropy ratio showed a
similar trend for the stress intensity factor.

(3) The stress intensity factor of a crack tip that is closer to the
sharpest point of the elliptical cavity increases as the crack
approaches the cavity boundary. Also the largest value of
dimensionless hoop stress was observed at the points of the
cavity boundary with minimum curvature, which are at the
nearest distances from the inner sector circular edges. The lat-
ter observation is because of the presence of regions with a
high stress concentration. A similar trend for the dimension-
less hoop stress but with higher magnitude was noted on
the cavity of the isotropic sector. Also the stress intensity fac-
tor and hoop stress for finite wedge were higher than those for
a sector because of the singularity of a finite wedge apex (for
some apex angles), while the sector corners are not singular.

In summary, the stress intensity factor of crack tips in trans-
versely isotropic sectors can depend on critical factors such as
the distance of the crack tip from the load, fixed edges or corners,
and the curvature of cavities. As a future work, individual and com-
bined effects of these factors on the stress intensity factor may be
evaluated for different sector problems following the analytical
solution procedure provided in this work. Other structural config-
urations and material types could also be considered, however the
analytical solvability of the problem is still a limiting factor.
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Appendix A. Kernels of the integral equations
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