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We develop a method through the mirror plane (MP) to identify the symmetry type of linear elastic stiff-
ness tensor whose components are given with respect to an arbitrarily oriented coordinate system. The
method is based on the irreducible decomposition of high-order tensor into a set of deviators and the
multipole representation of a deviator into a scalar and a unit-vector set. Since a unit-vector depends
on two Euler angles, we can illustrate the MP normals of the elastic tensor as zeros of a characteristic
function on a unit disk and identify its symmetry immediately, which is clearer and simpler than the
methods proposed before. Furthermore, by finding the common MPs of three unit-vector sets using For-
tran recipes, we can also analytically recognize the symmetry type first and then recover the natural coor-
dinate system associated with the linear elastic tensor. The structures of linear elastic stiffness tensors of
real materials with all possible anisotropies are investigated in detail.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Hooke’s law connects the components of the strain and stress
tensors, which under a given Cartesian coordinate system has the
form of

rij ¼ Cijklekl; ð1Þ

where coefficients Cijkl are the fourth-order elastic stiffness tensor
satisfying the symmetries Cijkl ¼ Cjikl ¼ Cklij, which arise from the
symmetry of the stress and strain tensors and the requirement that
the stress is derivable from a strain energy function. Here, and
henceforth, all lower case Latin subscripts have the range from
one to three, and the summation convention for repeated indices
is implied.

The elastic stiffness tensor involved in (1) has at most 21 inde-
pendent components. This number might be reduced if it exhibits
material symmetries, which could arise from crystal structure,
microstructure, etc. In the context of linear elasticity, the number
of material symmetries has been proven to be eight (Huo and del
Piero, 1991; Zheng and Boehler, 1994; He and Zheng, 1996; Forte
and Vianello, 1996; Chadwick et al., 2001; Ting, 2003; Bóna
et al., 2004). Namely a material is either isotropic or anisotropic,
and that an anisotropic material is either triclinic (generally aniso-
tropic), monoclinic, trigonal, orthogonal, tetragonal, cubic or trans-
ll rights reserved.

Study, Nanchang University,
bile: 15970409286.

al. Identification of symmetry
i.org/10.1016/j.ijsolstr.2013.03.
versely isotropic. There are two ways to express the symmetries of
the linear elastic stiffness tensor or elastic tensor thereafter (Forte
and Vianello, 1996; Chadwick et al., 2001): one is by the symmetry
groups (Bóna et al., 2004), another is by the admitted sets of sym-
metry planes (Chadwick et al., 2001; Ting, 2003). Cowin and
Mehrabadi (1995) showed that the operations associated with
the symmetry groups of the elastic tensors, including the center
of symmetry, the n-fold rotation axis and the n-fold inversion axis
as well as the plane of (reflective) symmetry (namely mirror plane,
abbreviated as MP in this paper) itself, can be developed from com-
binations of MPs, implying the equivalence of the two routes to
analyze the symmetry of the elastic tensor (see Chadwick et al.,
2001). Chadwick et al. (2001) argued that in general the restriction
of the MP set is weaker than that of the symmetry group.

If the symmetry group of a material is not known a priori, then –
except for the isotropic case, for which each coordinate system is a
natural one – it is an inherent problem to recognize its symmetry
type from the linear elastic tensor measured in an arbitrary coordi-
nate system (Cowin and Mehrabadi, 1987; Cowin and Mehrabadi,
1995; Norris, 1989; Jaric, 1994). Cowin and Mehrabadi (1995)
summarized that once the number and orientation of the normals
to the symmetry planes of an elastic tensor are known, one can
determine the symmetry type of the involved elastic material as
follows. If there is no plane of symmetry, then the material belongs
to triclinic. If there is one, it belongs to monoclinic. If there are
three, then it is either orthorhombic or trigonal. If the three planes
of symmetry are mutually perpendicular, it is orthorhombic; and if
the three are coplanar, then it is trigonal. If there are five planes of
type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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symmetry, then the material belongs to tetragonal. If there are nine
it belongs to cubic. If there are one plane of symmetry and a plane
(same as the plane of symmetry) of isotropy, then the material is
transversely isotropic. If every plane is a plane of symmetry, then
the material is isotropic. However, the procedure suggested by
Cowin and Mehrabadi (1995) for the determination of the number
and orientation of symmetry planes is implicit and seems to de-
pend on the nonzero of both Cijkk and Cikkj. Diner et al. (2010; see
also François et al., 1998) developed a different method based on
the concept of distance in the space of tensors, where, especially,
the monoclinic and transversely isotropic distance functions are
proposed because they depend only on two Euler angles and hence
can be easily plotted. For instance, the monoclinic distance func-
tion (MDF)

d C;Lmonoð Þ¼4 C2
1113þC2

1123þC2
2213þC2

2223þC2
3313þC2

3323þ2C2
1223þ2C2

1213

� �
ð2Þ

vanishes if and only if the axis e3 is normal to one of the symmetry
planes of the elastic tensor C. Actually, the essence of an effective
distance function is based on its ability to identify the MPs, and
the concept of distance or proximity, as opposed to belonging, does
not meet the spirit of the symmetry classification of elastic materi-
als. Thus in the plot of MDF, only the observed number and location
of the zeros will be helpful in the identification of the symmetry
type. The MDF method must work through plotting, and its accu-
racy will be heavily intervened by the huge difference of elastic
modulus for different materials even though their symmetries of
elastic tensors are the same, which will result in a sharp variation
in the distance function around the zero, and by the fact that usu-
ally there are more local minimums than zeros.

The objective of this paper is to present a novel method, from a
different point of view and independent of the modulus, to recog-
nize the MPs of the elastic tensors and also recover the correspond-
ing natural coordinate system. We first decompose the elastic
tensor into its irreducible parts, which in general include two iso-
tropic terms defined by the Lamé coefficients k and l, and three
anisotropic terms coming from two second-order deviators and a
fourth-order deviator (Zou et al., 2001). we then represent every
deviator with a scalar module and a set of unit vectors called the
multipoles of the deviator (Zou and Zheng, 2003). The relevant
geometric picture of the latter concept, ‘bouquets of space direc-
tions’, can be found in Backus (1970), which was further developed
by Baerheim (1993, 1998) to classify the symmetry of the elastic
tensor. The separations of tensor characteristic from the scalar
modulus allow us to precisely recognize the MPs from three sets
of unit vectors. In this way, we can, from the elastic tensor, define
the indicator function relying on two Euler angles and plot it on a
unit disk where the zeros of the function indicate the MP normals
of the elastic tensor. Further, we develop an analytical procedure to
determine all the MPs of the three unit-vector sets and find the
rotation transformation back to the natural coordinate system of
the elastic material.

The paper is constructed as follows. In Section 2, some basic
concepts about the elastic tensor, such as its irreducible decompo-
sition and multipole representation are elucidated. The class
description of symmetry of the elastic tensor is presented based
on the patterns of the corresponding unit-vector sets. In Section 3,
we first introduce a characteristic function and plot it to recognize
the MPs of the elastic tensor. A series of examples with all possible
elastic anisotropies are illustrated, and some discussions are given.
Then we propose an analytical procedure capable of judging the
symmetry type of an elastic tensor from the analysis of its three
unit-vector sets, and recovering the transformations back to the
corresponding natural coordinate system. Finally, some concluding
remarks are given in Section 4. The orthonormal base expansion of
Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry
system. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.
a deviator and the route from it to solve the unit-vector set and
module of the deviator are given in the Appendix.

2. Structure and symmetry of an elastic tensor

2.1. Irreducible decomposition

With the scalar and vector being named as zeroth-order and
first-order tensors, it is well-known that any higher-order tensor
can be decomposed into some irreducible parts. For example, a
general second-order tensor in three dimensions can be expressed
by

Tij ¼ adij þ �ijkvk þ dij; ð3Þ

with the scalar a, the vector v i and the second-order tracelessly
symmetric tensor dij satisfying: dij ¼ dji; dkk ¼ 0, where dij is the sec-
ond-order identity tensor and �ijk is the third-order permutation
tensor. If Tij is symmetric, such as the strain and stress tensors,
the second term on the right hand side of (3) vanishes. A traceless
and symmetric tensor is referred to as a deviator (deviatoric tensor).
Especially, the scalar and vector are recognized as deviators of zer-
oth-order and first-order respectively. An irreducible tensor belongs
to an irreducible and invariant subspace of the tensor space, and can
be proved to be a combination of a deviator with an isotropic tensor
made of some identity tensors or a half isotropic tensor made of
some identity tensors and a permutation tensor. It is well known
(cf. Backus, 1970; Cowin, 1989; Baerheim, 1993; Zou et al., 2001)
that the irreducible decomposition of a linear elastic stiffness tensor
has the form of

Cijkl ¼ kdijdkl þ l dikdjl þ dildjk

� �
þ dijd

1
kl þ dkld

1
ij

þ dikd2
jl þ dild

2
jk þ djkd2

il þ djld
2
ik

� �
þ Dijkl; ð4Þ

with two scalars k and l, called Lamé coefficients, two second-order
deviators d1

ij and d2
ij, and a fourth-order deviator Dijkl. Multiplying

one or two dij for contraction, one can obtain the reciprocal repre-
sentation as

k ¼ 1
15

2Ciikk � Cikikð Þ; l ¼ 1
30

3Cikik � Ciikkð Þ; ð5Þ

d1
ij ¼

5
7

Ckkij �
1
3

Ckklldij

� �
� 4

7
Ckikj �

1
3

Cklkldij

� �
; ð6Þ

d2
ij ¼

3
7

Ckikj �
1
3

Cklkldij

� �
� 2

7
Ckkij �

1
3

Ckklldij

� �
; ð7Þ

whereas the fourth-order deviator Dijkl is determined.
Voigt (see Cowin and Mehrabadi, 1995) employed a matrix

notation for the Hooke’s law. In this notation, two symmetric indi-
ces in three dimensions are replaced by an index in six dimensions,
say

11! 1; 22! 2; 33! 3; 23! 4; 31! 5; 12! 6: ð8Þ

Thus, the stress–strain relation (1) can be written as

r1

r2

r3

r4

r5

r6

0
BBBBBBBB@

1
CCCCCCCCA
¼

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66

0
BBBBBBBB@

1
CCCCCCCCA

e1

e2

e3

2e4

2e5

2e6

0
BBBBBBBB@

1
CCCCCCCCA
: ð9Þ

It is easy to see that the transformation matrix CIJ is symmetric and
has at most 21 distinct components. In Voigt’s notation, we obtain
the expressions of the Lamé coefficients
type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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k ¼ 1
15 C11 þ C22 þ C33 þ 4C12 þ 4C23 þ 4C13 � 2C44 � 2C55 � 2C66ð Þ;

l ¼ 1
15 C11 þ C22 þ C33 � C12 � C23 � C13 þ 3C44 þ 3C55 þ 3C66ð Þ;

(

ð10Þ

two sets of five distinct components of the second-order deviators
d1

ij

d1
11 ¼ 1

21 2C11 � C22 � C33 þ 5C12 � 10C23 þ 5C13 þ 8C44 � 4C55 � 4C66ð Þ;
d1

22 ¼ 1
21 2C22 � C11 � C33 þ 5C12 þ 5C23 � 10C13 þ 8C55 � 4C44 � 4C66ð Þ;

d1
12 ¼ 1

7 C16 þ C26 þ 5C36 � 4C45ð Þ; d1
23 ¼ 1

7 C24 þ C34 þ 5C14 � 4C56ð Þ;
d1

13 ¼ 1
7 C15 þ C35 þ 5C25 � 4C46ð Þ

8>>>>><
>>>>>:

ð11Þ

and d2
ij

d2
11 ¼ 1

21 2C11 � C22 � C33 � 2C12 þ 4C23 � 2C13 � 6C44 þ 3C55 þ 3C66ð Þ;
d2

22 ¼ 1
21 2C22 � C11 � C33 � 2C12 � 2C23 þ 4C13 � 6C55 þ 3C44 þ 3C66ð Þ;

d2
12 ¼ 1

7 C16 þ C26 � 2C36 þ 3C45ð Þ; d2
23 ¼ 1

7 C24 þ C34 � 2C14 þ 3C56ð Þ;
d2

13 ¼ 1
7 C15 þ C35 � 2C25 þ 3C46ð Þ

8>>>>><
>>>>>:

ð12Þ

and nine distinct components of the fourth-order deviator Dijkl

D1111 ¼ 1
35 8C11 þ 3C22 þ 3C33 � 8C12 þ 2C23 � 8C13 þ 4C44 � 16C55 � 16C66ð Þ;

D2222 ¼ 1
35 8C22 þ 3C11 þ 3C33 � 8C12 þ 2C13 � 8C23 þ 4C55 � 16C44 � 16C66ð Þ;

D1122 ¼ 1
35 C33 � 4C11 � 4C22 þ 9C12 � C13 � C23 þ 18C66 � 2C44 � 2C55ð Þ;

D1123 ¼ 1
7 2C14 � C24 � C34 þ 4C56ð Þ; D1113 ¼ 1

7 4C15 � C25 � 3C35 � 2C46ð Þ;
D1112 ¼ 1

7 4C16 � C36 � 3C26 � 2C45ð Þ; D2213 ¼ 1
7 2C25 � C15 � C35 þ 4C46ð Þ;

D2212 ¼ 1
7 4C26 � C36 � 3C16 � 2C45ð Þ; D2223 ¼ 1

7 4C24 � C14 � 3C34 � 2C56ð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð13Þ
2.2. Multipole representation of a deviator and its symmetry pattern

Although the pth-order deviator with 2pþ 1 independent com-
ponents is much simpler than the generic pth-order tensor with 3p

components, the structure of a deviator of higher order is still com-
plicated. The geometric picture of a deviator can go back to the
multipole representation of an arbitrary spherical harmonics sug-
gested by Maxwell (1881). Backus (1970) observed that a totally
symmetric tensor is equivalent to a homogeneous polynomial,
and used the so-called ‘harmonic decomposition’ to represent a
pth-order homogeneous polynomial in terms of p=2½ � unique har-
monic polynomials of orders p; p� 2; � � �, where each tensor corre-
sponding to a harmonic polynomial is called the harmonic tensor.
Zou and Zheng (2003) established the Maxwell’s multipole repre-
sentation to express a pth-order deviator as the traceless symmet-
ric part of the tensor product of p unit vectors nr ðr ¼ 1; � � � ; pÞ,
which are called the multipoles of the deviator, multiplied by a sca-
lar A, such that

DðpÞ ¼ A n1 � � � � � np
� 	

: ð14Þ

In establishing the representation (14) (Zou, 2000), the first author
of this paper was actually enlightened by the exercise 1.10 in the
textbook of Chadwick (1979), and reminded of the multipole idea
of Maxwell (1881). During the publication of Zou and Zheng
(2003), the first author was aware of the perfect coincidence of
(14) with the image of bouquets of directions proposed by Backus
(1970). However, as pointed out by Zou and Zheng (2003), Eq.
(14) represent better the spirit of tensor theory, and furthermore
it is very straightforward for applications.

For the elastic tensor (4), one needs eight unit vectors

nr ¼ n hr;urð Þ ¼ e3 cos hr þ e1 cos ur þ e2 sin urð Þ sin hr ; r

¼ 1; � � � ;8; ð15Þ
Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry
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to express the three deviators as

d1 ¼ A1 n1 � n2b c; d2 ¼ A2 n3 � n4b c;
D ¼ A3 n5 � n6 � n7 � n8b c; ð16Þ

where the three scalars Ak k ¼ 1;2;3ð Þ could be positive if proper
choice, which are in general not unique (between the unit vector
and its corresponding antipodal). The multipole representation
(14) means that for a pth-order deviator there are 2p angular vari-
ables from a set of p unit vectors besides a modular variable.
According to Zou and Zheng (2003), the procedure to solve the set
of p unit vectors and the module of a deviator is algebraic as de-
tailed in the Appendix.

If the sign of the module A is allowed to be indefinite, one can
construct the unit-vector set freely from the unit vectors and their
corresponding antipodals. That is to say, it becomes unnecessary to
distinguish a unit vector from its antipodal in the unit-vector set. In
the rest of this paper, we call a unit vector as an axis-direction in-
stead. The axis-direction set can be used to reveal the structure
and symmetry of a deviator, while the scalar module tells whether
the structure and symmetry exist or not.

In the context of linear elasticity, MP is a powerful concept in
identifying the type of symmetry (cf. Cowin and Mehrabadi,
1995). Let n be the unit vector normal to a plane and m any vector
perpendicular to n, thus m � n ¼ 0 for all m. Typically, by choosing
two unit vectors m1 and m2 orthogonal to each other such that the
set m1;m2;nf g forms a right-hand coordinate system, one can rec-
ognize m as

m/ ¼m1 cos /þm2 sin /: ð17Þ

The orthogonal transformation Rn defined by a MP with normal n
has properties

Rnn ¼ �n; Rnm/ ¼m/; 8/ 2 0;2p½ Þ: ð18Þ

Similarly, the MP normal n of a pth-order tensor TðpÞ appears if and
only if the invariant relation

R�p
n TðpÞ ¼ TðpÞ ð19Þ

holds, where R�p
n indicates the Kronecker powers of Rn (see Zheng

and Spencer, 1993). A plane of isotropy is a plane of mirror symme-
try in which every vector is itself a MP normal.

A scalar takes any plane as its MP and thus it is isotropic. A
plane is recognized to be the MP of an axis-direction set if and only
if the mirror of every axis-direction with respect to the plane be-
longs to the set too. It is easy to prove that under the MP transfor-
mation the axis-directions in the set are either unchanged or
changed in pair(s). In other words, the axis-directions must lie on
the MP, or in pair(s): (i) reflect to be their antipodals, (ii) reflect
to each other or equivalently make the MP as their mid-separate
surface.

The MP symmetries of second- and fourth-order deviators are
described below (Zou, 2000). A second-order deviator with a set
of two axis-directions has two types of MP symmetries: transverse
isotropy when two axis-directions are the same, and orthogonal
symmetry otherwise. A fourth-order deviator with a set of four
axis-directions has seven types of MP symmetries, just as those
of the elastic tensor, namely (For simplicity, the coplanar MP nor-
mals are assumed to lie on the e1; e2ð Þ-surface, the single MP nor-
mal is set to be the e3 eð Þ-axis):

� Transverse isotropy (TI) if all four axes are the same, say
n5 ¼ n6 ¼ n7 ¼ n8 ¼ e, with 1þ1 MPs whose normals are e
and all unit vectors normal to it.
� Cubic symmetry if a coordinate system m1;m2;nf g can be

found to express the set of four axis-directions as
type of linear elas
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Please
system
n5;n6;n7;n8f g

¼ nþm1 þm2ffiffiffi
3
p ;

n�m1 þm2ffiffiffi
3
p ;

nþm1 �m2ffiffiffi
3
p ;

�nþm1 þm2ffiffiffi
3
p

� �
;

ð20Þ
with nine MPs as those of a cube.
� Tetragonal symmetry if four axis-directions come from an axis

rotation around a distinct axis at 90�, say
n5;n6;n7;n8f g ¼ n h;uþ kp
2

� �
; k ¼ 0;1;2;3

� �
; ð21Þ
with five MPs whose four normals are coplanar at 45� lying on
another MP.
� Trigonal symmetry if three axis-directions come from an axis

rotation around the fourth axis-direction at 120�, say
n5;n6;n7;n8f g ¼ e;n h;uþ 2kp
3

� �
; k ¼ 0;1;2

� �
; ð22Þ
with three MPs whose normals are coplanar at 120�.
� Orthogonal symmetry if one can find that the MPs orthogonal to

each other is three, with the axis-direction set made of the fol-
lowing three kinds of sets with one, two or four elements if the
three coordinate surfaces are assumed to be the MPs:
SW ¼ n h;uð Þ;n h;p�uð Þ;n h;pþuð Þ;n h;2p�uð Þf g;
SU ¼ n p

2 ;u
� �

;n p
2 ;p�u
� �
 �

or n h;0ð Þ;n h;pð Þf g or n h; p2
� �

;n h; 3p
2

� �
 �
;

SV ¼ ef g or e1f gor e2f g:

8><
>:

ð23Þ
� Monoclinic symmetry if there is only one MP, with four axis-
directions lying on a plane (namely the MP) in pair(s) or making
the plane as their mid-separate surface in pair(s).
� Triclinic (general anisotropy) if the four axis-directions are arbi-

trary (without a MP).

The above patterns of MPs are invariant under the transforma-
tion of coordinate system. Especially, one can identify the symmetry
types of the second- and fourth-order deviators by simply counting
the number of MPs, except for the trigonal and orthogonal symme-
tries that have three MPs but remarkably different patterns. Further,
the MPs of the elastic tensor can be recognized as the common part
of MPs of the three axis sets n1;n2f g; n3;n4f g and n5;n6;n7;n8f g,
which are derived from the three deviators obtained in (4).

2.3. MPs of the elastic tensor

Besides its isotropic part, the elastic tensor consists of at most
two second-order deviators and a fourth-order deviator. Thus,
from the aforementioned analysis of MP symmetry, one can de-
duce the MPs of the elastic tensor. For instance, two second-order
deviators may be combined to be triclinic, monoclinic, orthogonal
and transversely isotropic, belonging to a symmetry sub-class of
the fourth-order deviator taking the cubic symmetry out and
degenerating the trigonal and tetragonal symmetries into the
transverse isotropy. In summary, we can list in Table 1 the spans
of scalar modulus and patterns of the axis-direction sets under
all possible symmetry types, where the blank means arbitrary
and the symbol ‘-’ means insignificant.

Theoretically, the number of independent variables of an elastic
tensor of certain symmetry type may change within a large range.
For example, the generally anisotropic elastic material has at most
21 independent components in its linear stiffness tensor, but at
least 9 variables if it consists of a fourth-order deviator only.
It should be noticed that the conventional statistics on the
cite this article in press as: Zou, W.-N., et al. Identification of symmetry
. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.
independent components of the elastic tensor with higher symme-
tries is carried out under a given coordinate axis or system where
two or three angular variables are specified. The whole independent
variables including these omitted angular variables are listed in Ta-
ble 2, where the Lamé coefficients are assumed to be always non-
zero, and the modular variables and angular variables (in the
parentheses) are counted separately.

3. Symmetry identification of an elastic tensor

3.1. Two kinds of modulus

The Frobenius norm of a pth-order deviator

DðpÞ
��� ��� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dii ���ip Dii ���ip

q
¼ Aj j n1 � � � � � np

� 	�� �� ð24Þ

is invariant under any orthogonal transformation. But, it is indeed a
product of two kinds of modulus, namely the scalar module A and
the so-called phase module

B ¼ n1 � � � � � np
� 	�� ��: ð25Þ

The nonzero scalar module indicates the existence of the deviator,
while the phase module never equals to zero which implies some
pattern information of the axis-direction set n1; � � � ;np


 �
. For in-

stance, the phase part of a second-order deviator with axis-direc-
tion set n1;n2f g takes the form

n1 � n2b c ¼ 1
2

n1 � n2 þ n2 � n1ð Þ � 1
3
c121; ð26Þ

with c12 ¼ n1 � n2. The corresponding phase module can be deduced
as

B ¼ n1 � n2b ck k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

6
c2

12

r
2

ffiffiffi
1
2

r
;

ffiffiffi
2
3

r" #
� 0:7071;0:8165½ �: ð27Þ

The maximum of B indicates the TI symmetry, whilst other values
indicate the orthogonal symmetry.

For the phase part of a fourth-order deviator with the axis-
direction set n1;n2;n3;n4f g, the expression is complicated as given
below

n1 � n2 � n3 � n4b c ¼ 1
24

n1 � n2 � n3 � n4h i

� 1
84

c12 1� n3 � n4h i þ c13 1� n2 � n4h i½

þc14 1� n2 � n3h i þ c23 1� n1 � n4h i
þc24 1� n1 � n3h i þ c34 1� n1 � n2h i�

þ 1
105

c12c34 þ c13c24 þ c14c23ð Þ 1� 1h i; ð28Þ

where the symbol hi denotes the symmetrization operator not di-
vided by the number of terms. If the fourth-order deviator has the
TI symmetry, the expression (28) can be simplified to be

n�4� 	
¼ n�4 � 1

7
1� n�2� �

þ 1
35

1� 1h i; ð29Þ

which yields the phase module

B ¼ n�4� 	�� �� ¼
ffiffiffiffiffiffi
8

35

r
� 0:4781: ð30Þ

In other situations, the phase module of (28) depends on the six cosines
cij 1 6 i – j 6 4ð Þ and it is difficult to derive its theoretical formula.

It is interesting to find that the phase module (29) gives the
maximum, and that the minimum of B is about 0.2434 coming
from the fourth-order deviator with the cubic symmetry. In view
of these and more data listed in the last column B3 in Table 3, we
conclude that it is unsuitable to use the phase module as the sym-
metry indicator of a deviator.
type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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Table 1
Symmetry types of elastic tensors.

C k;lf g d1 d2 D

Types Number of MP normals A1 n1;n2f g A2 n3;n4f g A3 n5;n6;n7;n8f g

Triclinic 0
Monoclinic 1 a1

2;1 ¼ 0 a2
2;1 ¼ 0 a4;1 ¼ a4;3 ¼ 0

Orthogonal 3(orthogonal) from (23) from (23) from (23)
Trigonal 3(coplanar) ef g ef g – 0 (22)
Tetragonal 5(4 coplanar) ef g ef g – 0 (21)
Cubic 9 0 – 0 – – 0 (20)
TI 11 þ 1 ef g ef g ef g
Isotropic 13 – 0 0 – 0 – 0 –

Table 2
Numbers of independent modular and angular variables in an elastic tensor.

Types Isotropic TI Cubic Tetragonal Trigonal Orthogonal Monoclinic Triclinic

Numbers 2(0) 3–5(2) 3(3) 3–5(3–4) 3–5(4) 3–5(4–7) 3–5(6–10) 3–5(8–16)
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3.2. Identification via MP pattern

Since the pioneering research of Voigt in the 1880s (see Love,
1944), the elastic tensors of various materials have been measured.
According to the method described above, the module variables of
the elastic materials with different symmetries are calculated and
listed in Table 3. The data of the elastic tensors are collected from
Sutcliffe (1992); Pan (2002); Yang (2005). First of all, if the scalar
modulus A1;A2 and A3 are negligible with respect to the Lamé coef-
ficients k and l, the elastic tensor should be identified to be isotro-
pic; otherwise, the elastic tensor is anisotropic and the MP patterns
of its three deviators can be used to determine which type of
anisotropy it belongs, where the criterion is simply given by the
second column in Table 1.

From the discussion presented above, if the axis-direction
n h;uð Þ is the MP normal of the elastic tensor, then some compo-
nents in the orthonormal base expansions (see the Appendix) of
its deviators, namely ak

2;1 (k ¼ 1;2) of second-order deviators dk

(k ¼ 1;2), a4;1 and a4;3 of fourth-order deviator D, must be zero in
the new coordinate system with n h;uð Þ as its e-axis. So we can
introduce the following characteristic function (CF)

C h;uð Þ ¼ 2
N

1

d1
��� ���2 a1

2;1

��� ���2 þ 1

d2
��� ���2 a2

2;1

��� ���2 þ 1

Dk k2 a4;1j j2 þ 1

Dk k2 a4;3j j2
0
B@

1
CA;
ð31Þ
Table 3
Module variables of linear elasticity materials (Unit of scalar modulus: 1010Pa).

Materials names (Types) k;lf g d1

k l A1

CuSO4�5H2O (Triclinic) 2.443 1.378 1.113
Gypsum (Monoclinic) 3.255 1.719 2.434
Topaz (Orthogonal) 9.166 11.58 3.834
Gallium (Orthogonal) 3.332 3.745 1.589
Left-hand Quartz (Trigonal) 0.6160 4.781 0.3883
a-Quartz (Trigonal) 0.6800 4.767 0.1414
Tourmaline (Trigonal) 4.380 8.913 1.029
Pentaerythritol (Tetragonal) �0.06 0.3767 0.3043
Tin (Tetragonal) 3.994 1.914 1.868
Indium (Tetragonal) 3.764 0.5923 0.3979
Copper (Cubic) 10.24 5.440 0
Silicon (Cubic) 5.245 6.810 0
GaAs (Cubic) 4.320 4.820 0
Beryl (TI) 8.352 7.984 1.393
Cobalt (TI) 13.40 8.451 3.977
Magnesium (TI) 2.403 1.734 0.2729
PZT-4 ceramic (TI) 7.567 2.747 0.3071

Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry
system. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.
to identify the pattern of MPs on a unit sphere, where N is the num-
ber of nonzero scalar modulus. It is obvious that the CF (31) is inde-
pendent of all scalar modulus k;l;A1;A2, and A3, and its zeros on the
unit sphere directly determine the MP normals. Another interesting
property of CF (31) is that its permitted maximum equals to 1,
which is reached when the e1; e2ð Þ-plane is a plane of the mirror
antisymmetry of the tensor under consideration. However, it is
impossible to reach the permitted maximum for an elastic tensor
because it has no mirror antisymmetry, which can be observed in
the subsequent figures.

Due to the symmetry of center inversion, the entire information
of C h;uð Þ in Eq. (31) can be shown in the upper hemisphere. Fur-
ther through the mapping

x ¼ eiu tan
h
2
; ð32Þ

we can plot the image of C h;uð Þ on the unit disk. Some typical
examples are numerically shown in Fig. 1(a-g), where the resolution
is of one degree in the Euler angles h and u. We note that in general
the number of zeros does not equal to the number of minimums.
For instance, there are many minimum points in Fig. 1(a; b) but
most of them are not zero point; in Fig.1(d), the central minimum
point is not a zero point.

Comparing with the MDF (2), which can be plotted on the unit
disk too, we find that the pattern of the CF in Eq. (31) is clearer and
more meaningful. While the image of MDF depends on the modu-
lus of the elastic tensor and varies for different materials, the image
d2 D

B1 A2 B2 A3 B3

0.7426 0.2989 0.7091 4.990 0.2897
0.7082 0.7682 0.7479 14.19 0.2878
0.7239 0.4757 0.7111 22.11 0.3017
0.7287 0.7629 0.7722 6.665 0.2881
0.8165 0.9256 0.8165 31.67 0.2446
0.8165 0.7686 0.8165 30.72 0.2445
0.8165 3.571 0.8165 21.24 0.2728
0.8165 0.1057 0.8165 0.3980 0.3103
0.8165 1.205 0.8165 11.14 0.2473
0.8165 0.2741 0.8165 5.461 0.2769
– 0 – 46.35 0.2434
– 0 – 25.79 0.2434
– 0 – 24.30 0.2434
0.8165 0.5279 0.8165 11.18 0.4781
0.8165 2.703 0.8165 15.77 0.4781
0.8165 0.1421 0.8165 1.240 0.4781
0.8165 0.4571 0.8165 0.3000 0.4781

type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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Fig. 2. Comparisons of the monoclinic distance function (MDF) and the character-
istic function (CF) for the elastic tensor of the cubic material given by Diner et al.
(2010), with rotation angles 4:6	 ;21:86	;33:95	ð Þ for the non-natural coordinate
system.
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of CF is determined only by the phase parts of the deviators ex-
tracted from the elastic tensor, especially for the elastic tensors
of cubic materials for which all images of the CFs are the same.
Using the elastic tensor of the cubic material given in Diner et al.
(2010), where the rotation of the non-natural coordinate system
has Euler angles 4:6	;21:86	;33:95	ð Þ, we illustrate the patterns
of these two functions given in Eqs. (2) and (31) in Fig. 2(a-d). It
is observed that in the angle resolution the spans of MDF and CF
are, respectively, [0;6:60] and [0;0:7407] in the natural coordinate
system; however after the rotation they become [0:0456;6:60] and
[3:530� 10�5; 0:7407], respectively. Another example shown in
Fig. 3(a-d) is the trigonal elastic material a-Quartz, where the arbi-
trary rotation from the natural coordinate system has Euler
angles 110:82	;36:21	;123:23	ð Þ, and the corresponding spans un-
der the natural and non-natural coordinate systems are
[1:47� 10�6;6:92] and [0:0363;6:92] for MDF, [0;0:6776] and
[1:169� 10�5;0:6778] for CF.

From these examples, we find that the probing precision loses
quickly when the zeros depart from the sampling grid points, espe-
cially for the MDF whose zeros look like singular points. As for the
trigonal example, since there are minimum points other than the
zeros, the strategy proposed by Diner et al. (2010) for determining
the zeros does not work. Up to now, there is no explicit method for
obtaining the MPs of the elastic tensor, or in other words, no exist-
ing method is analytically feasible. For any distance functions pro-
posed to determine the symmetry type of the elastic tensor of a
given material (cf. Diner et al., 2010; Gazis et al., 1963; Moakher
and Norris, 2006), regardless of its validity, figure illustration and
identification are unavoidable.

Actually, from the transformation relations (49)2 and the char-
acteristic function (31), we can derive four equations equivalent to
the conditions of zero point. For instance, one condition from the
components of the deviator d1 is
Fig. 1. Symmetry patterns of materials with various elastic anisotropies.

Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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http://dx.doi.org/10.1016/j.ijsolstr.2013.03.037


Fig. 3. Comparisons of the monoclinic distance function (MDF) and the character-
istic function (CF) for the elastic tensor of the trigonal material a-Quartz, with
arbitrary rotation angles 110:82	;36:21	;123:23	ð Þ for the non-natural coordinate
system.
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0 ¼ a10
2;1 ¼ Dð2Þ1�2 a1

2;2 � Dð2Þ1�1 a1
2;1 þ Dð2Þ10 a1

2;0 þ Dð2Þ11 a1
2;1 þ Dð2Þ12 a1

2;2

¼ �a1
2;2 sin h

1� cos h
2

e�i2u � a1
2;1 2 cos hþ 1ð Þ1� cos h

2
e�iu

�
ffiffiffi
3
2

r
a1

2;0 cos h sin hþ a1
2;1 2 cos h� 1ð Þ1þ cos h

2
eiu þ a1

2;2
1þ cos h

2
sin hei2u;
Fig. 4. Configurations of multipoles for the elastic tensor of different materials in their na
smaller ones from the second-order deviators). The set patterns of the three deviators a
tetragonal symmetries, and alternative for orthogonal and monoclinic. (For interpretatio
version of this article.)
Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry
system. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.
which is neither an algebraic equation of a single variable from two
Euler angles, nor a equation solvable analytically.

3.3. Identification via multipole analysis

In this subsection, we develop an analytical method to deter-
mine the symmetry type of an elastic tensor of a given material
based the three axis-direction sets.

First, in the natural coordinate system, the patterns of the axis-
direction sets for the elastic tensors of different materials are pre-
sented in Fig. 4(a-g). Besides the sets of the two second-order devi-
ators, which serve as backups in the identification process, the set
pattern of the fourth-order deviator is completely fixed for TI and
cubic symmetries, shape-unchanged for trigonal and tetragonal
symmetries, alternative for orthogonal and monoclinic symme-
tries, and arbitrary for triclinic symmetry. Considering the appear-
ance and relative movement of these multipoles, one can observe
the evolving relation of the elastic tensor of the material from
the low symmetry (triclinicity) to the high symmetry (isotropy)
(see Chadwick et al., 2001).

Second, once the axis-direction sets n1;n2f g; n3;n4f g and
n5;n6;n7;n8f g are solved from the components of the three devia-

tors of an elastic tensor, we can then identify the symmetry type
through their MPs and recover the transformation R /; h;uð Þ with
three Euler angles /; h;u to its natural coordinate system of the
tensor. The detailed procedure is as follows.

Denoting by MP T½ � the set of the MP normals of a tensor T, then
for the second-order deviator d1 we can obtain

MP d1
h i

¼
all directionsðisotropicÞ; if A1 ¼ 0;

n;m/;/ 2 0;2p½ Þ

 �

ðTIÞ; if A1 – 0 and n1 ¼ n2 ¼ n;
three principal directionsðorthogonalÞ; if A1 – 0 and n1 – n2;

8><
>:

ð33Þ

where the principal directions are calculated by

N1 ¼
n1 þ n2

n1 þ n2j j ; N2 ¼
n1 � n2

n1 � n2j j ; N3 ¼ N1 � N2: ð34Þ

Similar expressions can be written for the other second-order devi-
ator d2.
tural coordinate system (red bigger points from the fourth-order deviator, and blue
re completely fixed for TI and cubic symmetries, shape-unchanged for trigonal and
n of the references to colour in this figure legend, the reader is referred to the web

type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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Fig. 5. Symmetry identification map of the fourth-order deviator D.
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For the fourth-order deviator D, the recognition process of the
MP normals, though being much complicated, can be carried out
according to the flowchart shown in Fig. 5. The MP normals of
the elastic tensor C is obtained by the intersection

MP C½ � ¼MP d1
h i

\MP d2
h i

\MP D½ � ð35Þ

and thus the symmetry type of the associated material can be iden-
tified from the second column in Table 1.

Finally, except for the triclinic (general) anisotropy and isotropy
about which we have nothing to do, the transformation R /; h;uð Þ
to the natural coordinate system is found by

1. Assigning a direction n h;uð Þ defined by two Euler angles h;u:
if the symmetry is TI, it is the single MP normal n h;uð Þ; if the
symmetry is cubic or orthogonal, the direction could be cho-
sen to be one of the three MP normals perpendicular to
each other; if the symmetry is trigonal or tetragonal, it is
the direction normal to the coplanar MP normals; if the
symmetry is monoclinic, the direction is the same as the
MP normal.
Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry
system. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.
2. determining the third Euler angle, or equivalently the direction
m1 in the coordinate system m1;m2;nf g. If the symmetry is TI
or monoclinic, the third Euler angle is arbitrary and can be set to
be zero; if the symmetry is cubic or orthogonal, m1 is the other
one of the three MP normals perpendicular to each other. If the
symmetry is trigonal or tetragonal, m1 can be chosen to be one
of the coplanar MP normals.

The above procedure has been realized by us using Fortran
codes, and testified with the elastic tensors of the materials listed
in Table 3, after giving an arbitrary rotation transformation from
the natural coordinate system. For example, the elastic tensor of
the trigonal material a-Quartz is (Sutcliffe, 1992)

8:76 0:60 1:33 0 �1:73 0
0:60 8:76 1:33 0 1:73 0
1:33 1:33 10:68 0 0 0

0 0 0 5:72 0 1:73
�1:73 1:73 0 0 5:72 0

0 0 0 1:73 0 4:08

0
BBBBBBBB@

1
CCCCCCCCA
; ð36Þ
type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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in its natural coordinate system. After an arbitrary rotation with Eu-
ler angles 110:82	;36:21	;123:23	ð Þ, the corresponding elastic ten-
sor becomes

C ¼

7:92 0:71 2:18 �0:08 �0:06 �0:66
0:71 10:82 �0:03 0:44 �0:07 2:17
2:18 �0:03 10:26 0:82 0:58 �1:20
�0:08 0:44 0:82 4:32 �1:10 0:09
�0:06 �0:07 0:58 �1:10 6:29 0:33
�0:66 2:17 �1:20 0:09 0:33 4:51

0
BBBBBBBB@

1
CCCCCCCCA
: ð37Þ

Starting from the elastic tensor (37), we solve for the three axis-
direction sets and find that their common MP normals are three
coplanar axis-directions at 120� separation. Thus the material a-
Quartz is judged to be a trigonal elastic material. The normal to
the coplane

n h;uð Þ ¼ �0:21e1 � 0:5522e2 � 0:8068e3 ð38Þ

is used as the direction to yield the two Euler angles h;u; and one of
MP normals is chosen to be the m2-direction

m2 ¼ 0:9171e1 � 0:3973e2 þ 0:03326e3; ð39Þ

which defines the third Euler angle /. Finally, we obtain the recov-
ering Euler angles as

/; h;uð Þ ¼ 176:7724	;143:7857	;�110:8217	ð Þ; ð40Þ

which define an inverse transformation, resulting in the following
elastic tensor

8:76 0:60 1:33 0 1:73 0
0:60 8:76 1:33 0 �1:73 0
1:33 1:33 10:68 0 0 0

0 0 0 5:72 0 �1:73
1:73 �1:73 0 0 5:72 0

0 0 0 �1:73 0 4:08

0
BBBBBBBB@

1
CCCCCCCCA
: ð41Þ

in a natural coordinate system of the given material.

4. Concluding Remarks

A method to identify the symmetry type of the linear elastic
stiffness tensor given in an arbitrary natural coordinate system is
developed, utilizing the knowledge of the irreducible decomposi-
tion of the fourth-order elastic tensor and the multipole represen-
tations of deviators. Instead of the monoclinic distance function
(MDF), we introduce a characteristic function (31) and plot it on
a unit disk to identify the anisotropic types of the elastic tensor
according to the zeros. Further, an analytical procedure is proposed
to obtain the MPs of the given elastic tensor, which is the common
part of the MPs of the three axis-direction sets derived from two
second-order and a fourth-order deviators constituting the elastic
tensor. The rotation transformation back to the natural coordinate
system of the tensor is also presented, and various examples are
analyzed to verify the accuracy of the proposed approach. Since
we introduce the constructive representation (14) of a deviator
and the concept of MP, our approach in identifying the symmetry
of an elastic tensor is direct and more efficient as compared to pre-
vious methods (Backus, 1970; Baerheim, 1998).

We point out that, in reality, an elastic tensor of a given material
could seem to be generally triclinic (without symmetries) due to
experimental errors and/or the arbitrarily attached coordinate sys-
tem. The accuracy of the parameter measurement may be esti-
mated to 
3% for the tensor components and to be about 
5	 for
the angle (see François et al., 1998). These can be used as the
thresholds in modulus selection, and as an error band to judge
whether the axis-directions are parallel or normal to each other.
Please cite this article in press as: Zou, W.-N., et al. Identification of symmetry
system. Int. J. Solids Struct. (2013), http://dx.doi.org/10.1016/j.ijsolstr.2013.03.
However, it is impossible to find a simple function to define the
distance between the elastic tensor measured experimentally and
its nearest possible symmetry groups. For instance, the elastic ten-
sor of the trigonal material a-Quartz, which looks like cubic in the
plot of the MDF (see Fig. 3(a; b)), may become any one of the aniso-
tropic types except for TI, if a disturbance larger than the threshold
is admitted.
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Appendix A

A.1. Orthonormal base expansion of a deviator

According to Zou and Zheng (2003), the angular variables of
unit vectors in (14) can be solved from an algebraic equation,
and the module can be determined consequently. In order to use
this method, we first introduce a set of complex orthonormal bases

Ep;r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�r pþ rð Þ! p� rð Þ!

2pð Þ!

s X½ p�rð Þ=2�

s¼0

�1
2

� �s

e�p�r�2s �w�rþs � �w�s
� �

;

r ¼ 0;1; � � � ;p; ð42Þ

to expand a pth-order deviator DðpÞ uniquely as

DðpÞ ¼ ap;0Ep;0 þ
Xp

r¼1

ap;rEp;r þ ap;rEp;r
� �

; ð43Þ

where e ¼ e3;w ¼ 1ffiffi
2
p e1 þ ie2ð Þ; i ¼

ffiffiffiffiffiffiffi
�1
p

is the unit imaginary num-
ber, the nth tensor power of vector ðÞ is denoted by ðÞ�n

; �w and Ep;r

are the conjugates of w and Ep;r respectively. The operator hi in (42)
represents the symmetrization without dividing by the number of
summation terms, for example,

e�w�2� �
¼ e�w�2 þw� e�wþw�2 � e: ð44Þ

Due to the orthogonality Ep;r 	 Ep;s ¼ drs, the expansion coefficients
can be calculated from the complete scalar product

ap;r ¼ Ep;r 	 DðpÞ: ð45Þ

Making use of the notations

Ep;�r ¼ �1ð ÞrEp;r; ap;�r ¼ �1ð Þrap;r ; ð46Þ

the expansion (43) can be rewritten in a compact form as

DðpÞ ¼
Xp

r¼�p

ap;rEp;r: ð47Þ

Under the rotation of the bases defined by three Euler angles

e0i ¼ R /; h;uð Þ ei½ � ¼ Rz /ð ÞRy hð ÞRz uð Þ ei½ �; i ¼ 1;2;3; ð48Þ

the coefficients of a pth-order deviator have the following transfor-
mation relations

a0p;r ¼
Xp

s¼�p

DðpÞrs /; h;uð Þap;s ð49Þ

due to the fact that

E0p;r ¼ R�p /; h;uð Þ Ep;r
� �

¼
Xp

s¼�p

DðpÞrs /; h;uð ÞEp;s;
type of linear elastic stiffness tensor in an arbitrarily orientated coordinate
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where the transformation matrix DðpÞ is given by

DðpÞrs /; h;uð Þ ¼
Xmin p�r;pþsð Þ

k¼maxð0;s�rÞ

�1ð Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ rð Þ! p� rð Þ! pþ sð Þ! p� sð Þ!

p
k! p� r � kð Þ! pþ s� kð Þ! r � sþ kð Þ!

e�ir/ cos
h
2

� �2p�rþs�2k

� sin
h
2

� �r�sþ2k

e�isu: ð50Þ

For instance, taking p ¼ 1, the transformation matrix can be written
by

Dð1Þ /; h;uð Þ ¼

e�i/ 1þcos h
2 e�iu �e�i/ sin hffiffi

2
p e�i/ 1�cos h

2 eiu

sin hffiffi
2
p e�iu cos h � sin hffiffi

2
p eiu

ei/ 1�cos h
2 e�iu ei/ sin hffiffi

2
p ei/ 1þcos h

2 eiu

0
BB@

1
CCA: ð51Þ

Applying this to the three deviators of an elastic tensor, we ob-
tain the formulae of expansion coefficients as follows:

ak
2;0 ¼ �

ffiffiffi
3
2

r
dk

11 þ dk
22

� �
; ak

2;1 ¼ dk
13 � idk

23; ak
2;2

¼ 1
2

dk
11 � dk

22

� �
� idk

12; k ¼ 1;2; ð52Þ

a4;0 ¼
ffiffiffiffi
35
8

q
D1111 þ D2222 þ 2D1122ð Þ;

a4;1 ¼
ffiffi
7
2

q
�D2213 � D1113 þ i D2223 þ D1123ð Þ½ �;

a4;2 ¼
ffiffi
7
p

2 D2222 � D1111 þ 2i D2212 þ D1112ð Þ½ �;
a4;3 ¼ 1ffiffi

2
p D1113 � 3D2213 � i 3D1123 � D2223ð Þ½ �;

a4;4 ¼ 1
4 D1111 þ 1

4 D2222 � 3
2 D1122 þ i D2212 � D1112ð Þ:

8>>>>>>>>><
>>>>>>>>>:

ð53Þ

A valuable property of this expansion is that it directly connects the
components of a deviator with its structures. For example, the e-
axis is the normal of the MP of an even-order deviator if and only
if its base coefficients satisfy the condition ap;2kþ1 ¼ 0; k ¼
0;1; � � � ; p=2½ �. Therefore, under the rotation R 0; h;uð Þ defined by
two Euler angles h and u, one can make use of the zero points of
the sum of modulus of a1

2;1, a2
2;1; a4;1 and a4;3 to identify the normals

of the MPs, which is equivalent to the monoclinic distance function
(2) given by Diner et al. (2010).

A.2. A.2 Calculations of angular and modular variables of deviators

Taking into account the property

eþ xffiffiffi
2
p w� x�1ffiffiffi

2
p �w

� �
� eþ xffiffiffi

2
p w� x�1ffiffiffi

2
p �w

� �
¼ 0; ð54Þ

we further construct a tensorial polynomial

Zp ¼ eþ xffiffiffi
2
p w� x�1ffiffiffi

2
p �w

� ��p

¼
Xp

r¼�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�p 2pð Þ!

pþ rð Þ! p� rð Þ!

s
xrEp;r ; ð55Þ

to derive the characteristic equations for the angular and modular
variables of a pth-order deviator. Rewriting the unit vector, say
(15) by

nr ¼ e cos hr þ
wffiffiffi

2
p eiur sin hr þ

�wffiffiffi
2
p e�iur sin hr; r ¼ 1; � � � ;p ð56Þ

and from the expressions (14) and (47) of a deviator, we obtain the
complete inner product of DðpÞ and Zp as

DðpÞ 	 Zp ¼
Xp

r¼�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�p 2pð Þ!

pþ rð Þ! p� rð Þ!

s
�1ð Þrap;�rxr

¼ A
Yp

r¼1

cos hr þ
xeiur

2
sin hr �

e�iur

2x
sin hr

� �
: ð57Þ
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It is easy to find that if ap;r ¼ 0 for r ¼ mþ 1; � � � ;p, then there are
p�m unit vectors among the set identified as e, and other elements
can be solved from the algebraic equation of x

ap;0 þ
Xm

r¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p!p!

pþ rð Þ! p� rð Þ!

s
xrap;r þ �1ð Þrx�rap;r
� �

¼ 0: ð58Þ

Obviously, xr and �xr
�1 happen to be two roots of (58) at the same

time, and further correspond to the unit vector nr ¼ n hr ;urð Þ and its
antipodal by

xr ¼ e�iur tan
hr

2
; ��x�1

r ¼ e�i urþpmod2pð Þ tan
p� hr

2
: ð59Þ

By comparing the coefficient of the first term of x in (57), one can
find that the scalar module A must be

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22m�p 2pð Þ!

pþmð Þ! p�mð Þ!

s
ap;m

Ym
r¼1

e�iur sec hr: ð60Þ

Thus, for the elastic tensor, through the characteristic Eq. (58),
and using (11), (12), (13), (52) and (53), we are able to find all
the angular and modular variables of the three involved deviators.
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