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The energy required to fracture viscoelastic media is known to depend on the rate of crack propagation. In
this work, crack propagation, driven by applied moments, in an idealized model of a viscoelastic double
cantilever beam (DCB) is studied. Rate dependency is taken into account through a standard linear solid
viscoelastic model for the bulk material, and an adhesive zone model describing bond rupture kinetics for
the polymer chains which bridge the interface. Attractive van der Waals (vdW) forces are also taken into
account within the adhesive zone. The apparent energy release rate consists of two parts: the energy to
overcome adhesion on the interface as well as viscous dissipation in the bulk. The adhesive energy in rup-
turing polymer chains increases as crack propagation speed increases. Relaxation of the bulk material
causes viscous dissipation as stored strain energy is lost. For a beam of fixed length this dissipation
was found to be negligible at high and low rates of crack propagation. Between these two limits there
is a critical crack propagation speed where viscous dissipation is maximized.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The failure of polymeric materials is a phenomenon frequently
encountered in a wide range of technological applications. Many of
these materials display viscoelastic properties upon mechanical
loading. However, the fracture mechanics of viscoelastic materials
has yet to be fully understood (Gent 1996). Numerous experimen-
tal studies have found that the energy required to fracture poly-
meric materials depends on the rate of fracture (Lake and
Thomas 1967; Gent 1996; Chaudhury 1999; Ghatak et al. 2000).
The work needed to propagate a crack at constant speed is often
found to increase as the speed is increased (Gent 1996; Hui et al.
2004). A similar phenomenon has also been observed for viscoelas-
tic adhesives. Gent and Schultz found that the energy needed to
peel viscoelastic rubbery adhesives was strongly dependent on
the rate of peeling (Gent and Shultz 1972; Kovalchick et al. 2014)
had similar findings. The adhesive failure of amorphous rubber
adhered to a rigid substrate was studied by Andrews and Kinloch
(1973) who found that the energy required to detach the rubber
consisted of two components: the intrinsic failure energy and the
energy dissipated viscoelastically. Their results when reduced to
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a reference temperature using the Williams-Landel-Ferry (WLF)
equation (Williams et al. 1955) yielded a single master curve, rem-
iniscent of the time-temperature superposition for the relaxation
modulus of viscoelastic materials. It is generally accepted that
the energy supplied to propagate a crack at a constant speed must
be sufficient to overcome energy dissipation in the bulk polymer
(Xu et al. 1992; Gent 1996; Christiansen 2003) as well as the adhe-
sive or cohesive energy on the crack interface (Xu et al. 1992;
Chaudhury 1999; Ghatak et al. 2000; Hui et al. 2004), henceforth
referred to as the fracture energy.

Several theoretical efforts have been made to quantify viscous
dissipation in the bulk material. Xu et al. (1992) and Hui et al.
(1992) studied the peeling of a viscoelastic double cantilever beam
(DCB) as well as an infinite viscoelastic solid with small scale yield-
ing. In both cases the viscoelastic material was modeled as a stan-
dard linear solid (Hui et al. 1992; Xu et al. 1992). Chen et al. (2013)
and Gao and Su (2015) studied peeling of viscoelastic Bernouli-
Euler beams using linear viscoelastic models which use the Boltz-
mann superposition integral. More sophisticated models which
consider microstructural changes brought about by scission and
reforming of polymer networks have been proposed (Rajagopal
and Wineman 1992; Wineman 2009). These models can provide
a more accurate description of viscoelastic polymers, especially
under finite deformation, but would also add significant complex-
ity to the problem.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2015.08.020&domain=pdf
http://dx.doi.org/10.1016/j.ijsolstr.2015.08.020
mailto:tian.tang@ualberta.ca
http://dx.doi.org/10.1016/j.ijsolstr.2015.08.020
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr

278 S.R. Lavoie et al./International Journal of Solids and Structures 75-76 (2015) 277-286

There have also been works seeking to model interfacial phe-
nomena for crack propagation in polymeric materials. Xu et al.
(1992) and Hui et al. (1992) used a simple Dugdale-Barenblatt
cohesive zone model with a constant cohesive stress, and a Newto-
nian fluid model with a cut-off stress to describe the cohesive
interaction in their works. Lake and Thomas studied the failure
of vulcanized rubber and concluded that the fracture energy was
amplified by the number of monomer units on the chains bridging
the crack (Lake and Thomas 1967). However, the Lake-Thomas the-
ory did not explain why the fracture energy is rate dependent, and
Chaudhury (1999) proposed that this rate dependency is related to
chemical kinetic processes at the interface. To quantify the kinetics
of such interfacial processes, Chaudhury (1999) introduced a
kinetic equation, with the Lake and Thomas amplification factor
incorporated, to study the dissociation of bonds bridging two inter-
faces as they were separated. This rate equation was later applied
to a crack with an idealized wedge-shaped opening profile (Ghatak
et al. 2000), and further to more realistic crack opening profiles
(Hui et al. 2004). This approach differs from traditional rate-
independent models where the criterion for interface separation
is based on a critical energy release rate or cohesive stress. An
overview of the historical application of chemical kinetics to inter-
facial problems and further justification for the use of kinetic equa-
tions in fracture problems was given by Chaudhury (1999).

The works cited above all made excellent contributions to
advancing the field. However, in his review of several experiments,
Gent (1996) concluded that rate dependency of the apparent
energy release rate should result from a combined effect of both
interfacial and bulk properties.

The conclusion that the interfacial model must also be rate
dependent was reached by Rahulkumar et al. (2000) after attempt-
ing to match finite element results to experimental data for peel
tests. Among the prior theoretical works several have considered
basic bulk viscoelastic models (Hui et al. 1992; Xu et al. 1992),
however the adhesive zone models used in these works were too
simplistic. On the other hand, none of the prior works that cap-
tured rupture kinetics of the polymer chains bridging a crack have
considered bulk viscoelastic behavior (Chaudhury 1999; Ghatak
et al. 2000; Hui et al. 2004). The goal of this work is to develop a
simple model which takes into account both bulk viscoelasticity
and rate dependent rupture of polymer chains across the interface.
We will accomplish this by considering steady state crack propaga-
tion in a simple viscoelastic DCB geometry which was used by (Xu
et al. 1992). The crack will be reinforced by an adhesive zone with
polymer chains which undergo rate dependent breakage following
the kinetics previously presented in the literature (Chaudhury
1999; Ghatak et al. 2000; Hui et al. 2004).

The structure of the paper is as follows. The mathematical for-
mulation of our model is presented in Section 2. The numerical
methods used to solve the equations are described in Section 3.
Numerical results are presented and discussed in Section 4. Con-
clusions are given in Section 5.

2. Formulation

The problem studied in this work is the rate dependent fracture
of a viscoelastic material, represented by a DCB as shown in Fig. 1
(a). Here the applied moments M, cause steady-state crack prop-
agation at speed V, and separates the DCB into two identical beams.
The rightmost point in the fully bonded portion (no separation) of
the DCB is referred to as the adhesive zone tip. An adhesive zone is
introduced to the right of the adhesive zone tip, within this zone
stresses from both van der Waals (vdW) attractions and the stretch
of polymer chains resist the separation of the two beams (see Fig. 1
(a)). As one moves away from the adhesive zone tip (to the right)

Adhesive
zone tip
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Polymer
Chains
V Y
—T T

Fig. 1. (a) Schematic of the viscoelastic DCB studied in this work. The represen-
tative polymer chains shown in this figure are not meant to indicate the chains are
disabled at some positions and enables at others. The density of chains is smaller for
larger x. The crack-tip is the point where the bond density first becomes zero. (b)
free body diagram of a section of the upper beam within the adhesive zone.

eventually stretched chains will rupture, which will reduce the
density of chains bridging the crack tip and cause the adhesive
stress to decrease. A suitable criterion will be specified later to
define the crack tip as the leftmost point where these stresses van-
ish. The region between the adhesive zone tip and the crack tip is
the adhesive zone. X-Y is a fixed coordinate system and x-y is a
coordinate system which is attached to the adhesive zone tip and
translates at constant speed V with the crack. The crack opening
6 depends on position x. Because the two beams are assumed to
be identical, the system is symmetrical about line 0;-0, which is
the crack interface. Our goal is to calculate the energy required
to propagate the crack at a given speed V. This energy consists of
work required to overcome attractions in the adhesive zone, and
energy dissipated by viscoelastic processes in the bulk material.

2.1. Viscoelastic Beam

Consider the free-body diagram of a section of the upper beam
shown in Fig. 1(b). The beam is shown in a deflected state and is
acted upon by a distributed adhesive stress f. f consists of contribu-
tions from polymer chains which bridge the crack interface and
vdW attractions. An imaginary cut is made in the beam at x to
reveal the two internal loads acting on the beam: a shear force S,
and a bending moment M. At point O there is a reaction shear force
So. Xu et al. (1992) formulated a differential equation for the deflec-
tion of a viscoelastic DCB:

E.ld*s T,VEId’s .
2w 2 @ M)
where I is the moment of inertia of the beams’ cross section. The
derivatives in the equation are with respect to x instead of time t
because under steady state condition, the transformation
d/dt = Vd/dx can be introduced using the translating coordinate
system x-y fixed to the adhesive zone tip. Eq. (1) is based on a
standard linear viscoelastic solid model, which for a uniaxial stress
state reduces to the following stress-strain relation ¢ + 7,6 = E, &+
1.E,&, where E, is the instantaneous or unrelaxed modulus, E. is the
infinite time or relaxed modulus, 7, is the bulk relaxation time, o is
stress, ¢ is strain and the overhead dot (&, ¢) indicates differentia-
tion with respect to time (Xu et al. 1992).

M—-1,VS=

2.2. Rate Dependent Chain Rupture

The two beams are bridged by polymer chains. Kinetic equa-
tions can be written to model the rupture of bonds on the polymer
chains; rupture of any one bond on a chain’s backbone prevents it
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from bridging the crack. When a tensile force (F) is applied to a
chemical bond it decreases the activation energy of bond dissocia-
tion (Chaudhury 1999), and hence increases the probability of
bond rupture. The number of chains bridging the two surfaces
can be obtained from the solution of an equation governing the
kinetics of bond rupture (Chaudhury 1999)

d¥, _n Fi/kgT
Vo = Ezbe , (2)
25(0) =X, 3)

In Eq. (2), X is the number of chains that cross a unit area of the
interface, n is the number of bonds per polymer chain, 4 is the bond
activation length, F is the tensile force acting on each chain, kg is
the Boltzman constant, T is the absolute temperature and 7_ is
the characteristic time of bond dissociation which depends on
the activation energy for bond dissociation (Chaudhury 1999). In
particular, T_ = hpefe/ksT /ksT, where h, is Plank’s constant; larger
vibration energy of molecules at higher temperature allows more
rapid passage over the activation energy (E,) barrier and leads to
faster dissociation. The right hand side of Eq. (2) is the rate of chain
dissociation. Theoretically, there can also be a term responsible for
chain association, but it is typically assumed to be considerably
smaller than the chain dissociation rate and has been neglected
(Chaudhury 1999). Eq. (2) is accompanied by a boundary condition
Eq. (3) which states that at x = 0, where the crack opening is zero
and the chains are not stretched, no chains are broken. X, is the
chain density for perfectly bonded interface. The original kinetic
equation (Chaudhury 1999) is expressed in terms of the time
derivative of X, which has been converted to a derivative with
respect to position by using a steady-state assumption and a coor-
dinate transformation (d/dt = Vd/dx) from the fixed X-Y system to
the x-y system which translates with velocity V (see Fig. 1(a)). The
tensile force acting on each chain, F, can be related to the extension
of the polymer chains bridging the crack interface. Although the
force-extension relationship is usually not linear (Ghatak et al.
2000), we will adopt an assumption from the literature where
the chains are assumed to be linear springs (Chaudhury 1999;
Hui et al. 2004), i.e., F = k5, where ks is the average spring stiffness

defined from U = [ k;6ds = kst/Z. Here U is the work required to
stretch the chain from its unstressed configuration to its contour
length L.. Defining the average spring stiffness in this way ensures
that the work U to stretch the linear chain is equal to that for its
nonlinear counterpart.

The distributed load acting on the beams,

f=3F+ —W(;"‘W e o/, (4)

4

is made up of two components: the adhesive stress from polymer
chains X,F (the force acting on each chain, F, times the density of
chains X,), and the attractive vdW stress W ,qywe=%/% /5. where 6.
is a characteristic decay length and W ,qy is the work of adhesion
due to vdW attractions. The inclusion of the vdW component of
the adhesive stress was shown to be necessary in order to have a
well-defined adhesive zone tip (Hui et al. 2004). This exponential
function for vdW attractions is an approximation which has been
chosen for mathematical convenience. It is well-known that disper-
sion forces decay much slower than the exponential function
(Hui et al. 2004). However, provided that the vdW region is much
smaller than the chain bridging region, it is expected, and demon-
strated later in this work, that fracture problems are insensitive to
the form of the vdW interaction potential as long as it produces
the same work of adhesion (Hui et al. 2004).

2.3. Non-dimensionalized boundary value problem

The viscoelastic beam model introduced in Section 2.1 and the
rate-dependent interface model described in Section 2.2 are com-
bined to study the steady-state crack propagation in the DCB.
The interface and beam models are coupled through the stretch
of interfacial polymer chains and the resulting forces acting on
the beams. Balance of the distributed load f on the interface with
the internal shear forces S and moment M, shown in Fig. 1(b)
(Hibbeler 2005), leads to a system of ordinary differential equa-
tions (ODEs) and boundary conditions (BCs). Through the formula-
tion 16 parameters have been identified which define the rate of
crack propagation, geometry and properties of the bulk and inter-
facial models: V, n, 7_, 4, kg, T, o, To» Eo, Eoc, I, L, U, Wyaw, 8¢, and D.
All of these parameters have been introduced in previous sections
except the last one which is the out-of-plane depth of the beam. To
reduce the number of parameters and simplify the ensuing discus-
sion we introduce the following non-dimensional parameters.

1/4
. 2p 2kgTX,D ) . FL;
=2, X =Xx|"—1="— , 0 =+, =7,
PR ( E,IL Lc ksT
1/4
fo e g Sl (2KTZ,D
"~ kgTZ,D’ " kgTZ,D E,IL? ’
1/4
X 2 Ve 2k TZ,D
W =M (s om) M S
.U E, - Y . Oc
U*k'ﬁs yE*E_Ov yr*nzv /L*ch 6571{’
% o WzxdW x G o Gad L Gvis
WvdW o kBTZO ’ B kBTEO ’ ad = kBTZD ’ vis — kBTZO ’ (5)

The physical meanings of the variables from Eq. (5) are summa-
rized in Table 1.

After nondimensionalization using Eq. (5), the bond dissociation
equation, Egs. (2) and (3), becomes
a, ).
dx &

e, (6)

Table 1
Description of non-dimensional Parameters.

Category Parameter Description of non-dimensional
parameter
Position- x* Position
dependent P Bond density
variables §* Crack opening
F* Force on a single polymer chain
f Distributed load on the interface
S* Shear force
M Bending moment
Governing v Crack propagation speed
Parameters U Energy of a polymer chain when stretched

to its full contour length

Ve Ratio of relaxed to unrelaxed Young’s
modulus in the standard linear solid
viscoelastic model

Yz Ratio of relaxation times of bulk and chain
dissociation

7L Ratio of activation length to contour
length

S vdW decay length

Woaw vdW work of adhesion

Fracture Energies G* Fracture energy

(Desired d Adhesive fracture energy; describing
Output) interfacial dissipation
Gois Viscous fracture energy; describing bulk

dissipation
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%0 =1, (7)

and the polymer chain force-stretch relationship, becomes
F* =2U"¢". Similarly, introduction of the parameters in Eq. (5) into
the beam equation gives
dza* d3 5
M -V'S =y, —+ V" .
i dx? dx?

The balance of the shear force with the distributed load leads to

)

as- . * .
: :fx — Y'F + vle e—z) /dc7 (9)
dx b o

and the bending moment is related to the shear force by

v
= (10)

Egs. (8)-(10) contain two first order ODEs and one third order
ODE, and should be accompanied by five BCs. Firstly, on the left
of the adhesive zone at x = 0, the crack opening is identically zero
therefore the slope and deflection at the adhesive zone tip will
be zero or

ds*
w

Secondly, the steady-state assumption implies that the beams
experience a sudden loading at the adhesive zone tip. As a result
the material at the adhesive zone tip can be treated as elastic with
the unrelaxed or instantaneous modulus. Using the j-integral (Rice
1968; Glassmaker and Hui 2004; Anderson 2005; Tang and
Glassmaker 2010) both the moment and curvature at the adhesive
zone tip are found to be zero,

d2 5
dx*Z

In the Supporting Material (Section S1) we present an alterna-
tive approach where the vdW attractions are not explicitly
included in f* but are accounted for at the adhesive zone tip by
using nonzero curvature and moment conditions obtained from
the j-integral. This approach represents the limit as the vdW decay
length 6. approaches zero. Physically it is less realistic but results
in a simpler model. It is also explained in the Supporting Material
(Section S1) that if all sources of adhesive attraction are considered
explicitly in the adhesive stress f* then the moment and curvature
at the adhesive zone tip must be zero.

BCs far from the adhesive zone tip require more discussion. It is
expected that, as the crack opening increases from the adhesive
zone tip, the chains will undergo greater stretch and hence faster
dissociation as indicated by Eq. (6); eventually the low bond den-
sity will cause f* on the interface to be negligible. On the other
hand, the decrease in force is continuous and f* will approach
but never actually reach zero. To resolve the dilemma of not having
a clearly defined crack tip, we introduce the adhesive zone length
L*. Ideally this length would be defined so that f*(x* = L*) reduces
below some tolerance; however, f* can have a local minimum (data
not shown), as the decay of the vdW portion can be stronger than
the increase of the chain portion (stretching) for small openings.
This local minimum makes such a criteria undesirable; therefore
the following criteria was implemented

S <e and 5L > 5 (13)

5"(0) =0, (0) = 0. (11)

M*(0) =0, (0) =0. (12)

Here the first condition ensures that at L* the bond density and
hence the adhesive stress from polymer chains has decreased
below a desired tolerance. The second condition ensures that at
L* the crack has opened sufficiently far such that the work done
by the vdW attractions is sufficiently close to the vdW work of
adhesion. The critical vdW opening, &;, .., iS @ constant which

depends on &;. If, for example, we require the work done by vdW
attractions to be least 99% of W, then d;, 4 = 4.6054;. In the
Supporting Material (Section S2) we explore a number of different
criteria for determining L* and found that the value of L* can
change considerably depending on what criteria is used. However,
the fracture energies were found to be insensitive to the criteria. In
light of the definition of L* above, the traction outside of the adhe-
sive zone is negligible. Therefore, from Eq. (9) the shear force must
be constant and since only a moment, M, is applied at the far
field, the constant must be zero, i.e.

S (L) =0. (14)

Similarly, from Eq. (10), outside of the adhesive zone the
moment must be constant and equal to the far field value, M ;
therefore the necessary moment for crack propagation at a given
speed V* can be evaluated from M. = M"(L").

2.4. Fracture Energies

Eqgs. (6)-(14) constitute a boundary value problem that can be
solved to compute the crack opening profile and adhesive zone
length; however, a few additional steps are required to extract
the energy release rate. The apparent energy release rate for crack
growth, G*, can be obtained from the work done by the applied
moment to advance a unit area of the crack, after subtracting a
strain energy correction due to the translating coordinate system
(see Supporting Material, Section S3)

_w.ds
- 2 dX*Z )

Eq. (15) is valid outside of the adhesive zone (x*>L*) where
S§*=0and M" = M., however G still depends on position because
viscoelastic dissipation still occurs in the bulk material outside of
the adhesive zone. The simple loading condition outside of the
adhesive zone allows for an explicit expression for d25*/dx*? to be

derived from Eq. (8)
2 ok
- dx’

dzb-* B d2 5
dX*Z dx*Z

Here d?5*/dx**(L*) is known from the solution within the adhe-
sive zone. At infinity the beams are fully relaxed; therefore,
d?5*/dx*?(c0) can be evaluated by assuming the beam were elastic
with the infinite time modulus

G'(x)

(15)

d?s5

- dx*z

(16)

L 0

d25*
dX*Z .

_M

=5

(17)

Together with (16) and (17), the energy release rate can be eval-
uated from (15) at any given position x* outside the adhesive zone.

The energy release rate as calculated above can also be
expressed as
G = Gyg + G (18)
where G, is the work per unit area done by tractions within the
adhesive zone, and G, is the viscous dissipation in the beam per
unit area of crack advancement. G,; can be calculated using the def-
inition of work for a non-constant force

00 (L)
Gy — / fdo ~ / SIS+ Wiy, (19)
0 0
where we have separated the contributions to G, into components
from polymer chains and vdW attractions. Since the traction is neg-
ligible outside of the adhesive zone the integration does not need to
extend to § greater than the crack opening displacement (COD),
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8"(L"). The viscous dissipation G is obtained from Eq. (18) with G’
evaluated from Eq. (15) and G,, evaluated from Eq. (19). Note that
the energy of both beams’ has been taken into account in the above
equations.

3. Numerical methods

To solve Eqgs. (6) and (8)-(10) a shooting method is used. First
the value of §7(0) is guessed, which converts the boundary value
problem into an initial value problem with initial conditions Eqs.
(7), (11) and (12). A solution for {Z,*(x*), S*(x*), M*(x*), 6" (x¥),
dé*/dx" and dzb‘*/dx*Z} is found by integrating Eq. (6) and (8)-
(10) using a 4th order Runge-Kutta method with adaptive step size
control (Press et al. 2007). f(x*) is calculated from Eq. (9) and the
adhesive zone length L* is determined from Eq. (13). After L* is
determined, the shear force at L* is checked to satisfy Eq. (14). If
it is not satisfied within some small tolerance, a new guess for
§(0) is made and the procedure repeats until Eq. (14) is satisfied.

The adhesive zone length can be sensitive to the criteria used in
its definition (Eq. (13)), which was confirmed in the Supporting
Material (Section S2) using results obtained from several different
criteria. However G,; was found to be the same for all criteria. This
insensitivity allows us to present below the results obtained from a
single criterion. The nontrivial results and discussion on L* are
given only in the Supporting Material (Section S4) so as not to dis-
tract from the main objectives of this work.

In addition, because bulk viscous dissipation within the beam
can continue beyond the adhesive zone, the two energy release
rates G,;; and G* depend on the position x* where they are evalu-
ated and G); can greatly exceed the adhesive fracture energy if
the beam length approaches infinity. Practically, it is more realistic
to consider DCBs of finite length for evaluating these energies. We
used several fixed beam lengths to compute the fracture energies,
all of which are larger than the adhesive zone length. In Section 4
below we present representative results with a fixed beam length
at x* =1 which is of the same order of magnitude as the largest
adhesive zone length obtained with different combination of
parameters used in this work. Other cases, including x* = co, have
been presented in the Supporting Material (Section S5).

4. Results and discussion

Even in the normalized form there are still seven parameters
which govern the rate dependent fracture: V*, y, V& v U, Wiy
and 2. Among these, V* and 7y, can be identified as the most essen-
tial parameters since V* is the normalized crack propagation speed
while 7y, captures the ratio of the relaxation times of the two
sources of dissipation (bulk vs. interfacial). Therefore we vary V*
and y, over many orders of magnitude (107'° to 10'° for V* and
107> to 10 for 7,), based on reported values of physical parameters
(Chaudhury 1999; Ghatak et al. 2000; Hui et al. 2004). The remain-
ing parameters are fixed at physically reasonable values. For yg, we
will consider both an elastic case yg=1, and a representative vis-
coelastic case where yg=0.01 (Xu et al. 1992). The activation
length /4 has been reported as 0.1 nm (Evans and Ritchie 1997)
for some biopolymers, and for n =150 the contour length L. has
been reported to be 45 nm (Chaudhury 1999; Ghatak et al. 2000),
thus a representative value of y; = 0.02222 will be used. A repre-
sentative value of U* = 2850 was found by numerically integrating
experimental data from the work of Ghatak et al. (2000) to find U,
and assuming standard ambient temperature and pressure (SATP)
so that T=298 K. Choosing a work of adhesion from dispersion
forces of about W,qy =50 mJ/m? from Tang et al. (2007), and a
bond density X,=2.5 x 10'® from Ghatak et al. (2000) gives, at
SATP, W7, = 5. The vdW decay length is obtained from W;,,

and by assuming a vdW stress of about 2 MPa so that 5. = 0.02.
In the Supporting Material, a sensitivity study for several values
of 4. is presented (Section S6).

With the above parameters, below we first study the rate-
dependent fracture of an elastic DCB where bulk dissipation is
absent (Section 4.1). This section is intended to elucidate the
rate-dependent interfacial behavior before introducing the com-
plexity of bulk viscoelastic behavior. In Section 4.2 we introduce
bulk viscoelasticity in order to see the combined bulk and interfa-
cial dissipation.

4.1. Elastic DCB

Consider the case of an elastic DCB, which can be obtained by
setting g = 1. This simplification removes viscous dissipation from
the bulk. Therefore rate dependency will only come from interfa-
cial bond dissociation. Studying this case will allow us to directly
address the interfacial rate dependence so that later when we
introduce bulk viscoelasticity it will be easier to identify the contri-
butions from each rate-dependent process. Returning to Eq. (6) it is
clear that the two parameters V* and 7y, can be grouped into a sin-
gle parameter V" /y.. Also for the elastic DCB Eq. (8) can be replaced
with M* = d*5* /dx"*; hence V* and 7, do not appear individually in
the formulation. Therefore, we will obtain results by varying V* /7y,
over a large range of values.

First consider Fig. 2(a) where the COD, §*(L*), is shown on the
y-axis and V*/y_ is shown on the x-axis. At low V*/y, the crack
opening is constant and there is no rate dependence. At high speed
the COD appears to grow logarithmically. To understand these
results, we note that when V*/7_ is small the dissociation reaction,
governed by Eq. (6), proceeds rapidly. Since the bonds dissociate so
quickly the chains bridging the interface are not significantly
stretched before the chain density becomes negligible. Hence, for
small V*/y_ the adhesive stress primarily comes from vdW attrac-
tions, represented by the last term in Eq. (9), which only depends
on the crack opening and not on the rate of fracture. This is why
there is no rate dependence at low speed as observed in Fig. 2(a),
and the constant COD value at small V" /y, corresponds to the crit-
ical vdW opening d;, 4y, = 4.6056; = 0.092 for the parameters used
here. At a critical V*/y, (~0.03 in Fig. 2(a)), the COD starts to exhi-
bit rate dependent behavior. This transition occurs because the dis-
sociation reaction in Eq. (6) slows down when V*/y, increases so
that when the COD reaches the critical vdW opening there is still
a considerable number of chains bridging the interface. As a result,
the location of the crack tip is now determined by the kinetics of
bond rupture for the polymer chains. Further increases in V*/y,
result in even greater chain stretch, and therefore crack opening,
before dissociation. This phenomenon causes the rate dependency
seen in Fig. 2(a). It should be noted that until now we have only
discussed how V*/y_ in Eq. (6) affects bond dissociation; however
it is important to understand that bond dissociation is coupled to
the beams deflection through the exponential term in Eq. (6).
While an increase in V*/y, slows down bond dissociation and
allows for increased chain stretch, this stretch increases the tensile
force on each chain and each bond therein, leading to an increase
in the rate of bond dissociation. This feedback limits the increase
of the COD to be logarithmic, as seen in Fig. 2(a).

Having noted that COD increases with V*/y. and greater COD
implies that the chains have more stored energy, it is now of inter-
est to consider the energy required to propagate a crack. For an
elastic beam there is no bulk viscous dissipation so the only energy
component is G,; which is shown in Fig. 2(b) as a function of V*/y_;
the embedded figure contains the same G, only plotted against the
COD data from Fig. 2(a). As established during the discussion of
Fig. 2(a), for slow crack propagation the fracture is governed by
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Fig. 2. Plots for (a) crack opening displacement, 5*(L*), and (b) adhesive fracture
energy, G,,, obtained by varying V*/y. while holding the other governing param-
eters fixed at U*=2850, pg=1, y =0.0022222, .*=0.02 and W,,, =5. The
embedded figure in (b) plots G, against the 6*(L*) result from (a) and the dotted

line represents the analytical result based on a “reverse-step” distribution for the
bond density.

the vdW attractions. The crack tip is located where the COD reaches
the critical vdW opening, and within the adhesive zone the adhe-
sive stress due to chain stretching is negligibly small. Hence, G,
is equal to W3, at low speed, as shown in Fig. 2(b). As V*/y, is
increased the rate of bond dissociation decreases and allows the
chains, on average, to reach a greater stretch and store more
energy before dissociating. Since all of the energy stored in the
chains is lost when the bonds dissociate, the larger V*/y, causes
G4 to increase; physically this means that a greater moment M,
will be needed to propagate the crack. Although the energy dissi-
pated by chains continuously increases as V*/y, is increased, G,
remains approximately constant at W, for V*/y <0.02, which
indicates that this energy needed to dissociate chain bonds
remains negligible for a large range of slow crack propagation
speeds.
It is of interest to study in detail how V*/y, impacts the bond
density and adhesive stress within the adhesive zone, which is
shown in Fig. 3. In Fig. 3(a), the bond density is shown in the
y-axis and position relative to the adhesive zone tip is shown on
the x-axis. Four curves are shown each for a different value of
V*/y.. In all cases, the bond density starts at 1 and decreases with
position. For the lowest V* /7y, value (0.01), the bond density decays
exponentially. As V*/vy. is increased the distribution increasingly
resembles a reverse step where all of the bonds remain unbroken
until the edge of the adhesive zone where all bonds break at once.
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Fig. 3. Plots for (a) bond density X, (b) crack opening 6" and (c) adhesive stress f*.
In each figure each curve represents a different value of V*/y,. Note that horizontal
axis in (b) and (c) are x*/L*, where the adhesive zone length L* for different curves
would be different. Results were obtained while holding the following governing
parameters fixed: U* = 2850, yg = 1, y. = 0.0022222, W, = 5 and &, = 0.02.

To best understand this behavior it should be discussed in conjunc-
tion with Fig. 3(b) where the crack opening is plotted as a function
of the position. In all cases the crack opening starts at zero and
increases with position. Furthermore, at the same x*/L", the magni-
tude of 6* increases as V*/y, is increased. Consider the case of
V*/y. = 0.01. The crack opening in Fig. 3(b) is very small through-
out the adhesive zone. As a result the exponential term in Eq. (6)
is negligible, so the bond density is expected to decay exponen-
tially which is confirmed in Fig. 3(a). Extending this idea, for any
V* /7., at the beginning of the adhesive zone the crack opening is
small; thus initially the exponential term in Eq. (6) can be
neglected. In a semilog plot, such as Fig. 3(a), the initial slope of
the bond density curves should be —y_/V*, and hence higher values
of V*/y, have an initial slope closer to zero. Further from the adhe-
sive zone tip where higher openings are reached, the chain stretch
decreases the activation energy and accelerates the bond dissocia-
tion process. This acceleration is more significant for larger V*/7..
These two features, i.e., near zero initial slope and accelerated bond
dissociation at higher openings, result in the bond density distribu-
tion approaching a reverse step distribution as V*/y, becomes
large. In the extreme case of V*/y, — oo, an exact reverse step
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distribution is expected, and the same distribution exists for the
so-called “rate independent” fracture (Hui et al. 2004), which
was elucidated by considering the limit as the absolute tempera-
ture goes to zero. A consequence of the bond density distribution
within the adhesive zone resembling a reverse step is that the
adhesive stress, f*, when plotted against the opening &*(x*), will
increasingly resemble a saw tooth as V*/y, becomes large. The
adhesive stress vs. crack opening for different V*/y, can be seen
in Fig. 3(c). At 6*=0 the stress contributed by the chains is zero
and the stress from vdW attractions is maximum. As the opening
increases the vdW attractions decay, and each polymer chain is
stretched so that the force F* acting on it increases. The chain stress
is Z,F", while the chain force F* always increases with crack open-
ing, the chain density X, always decreases. This causes the adhe-
sive stress to first increase with 6* but eventually drop due to the
rupture of polymer chain bonds.

Based on the above observations, an interesting result for G; can
be obtained for the extreme case of V*/y, — cc. In this limit, the
bond density distribution is a reverse step function. Because the
polymer chains remain intact within the adhesive zone, the dis-
tance over which the vdW stress is non-negligible is expected to
be considerably smaller than the size of the adhesive zone. There-
fore, as shown in the Supporting Material (Section S7), using the
reverse step distribution for X and assuming & = 0 give a linear
saw tooth distribution for the adhesive stress: f*(5*) = 2U"5" up
to 6"(L"). Gy can then be derived in a closed form: (Gyy)zs = U"[6"

(L) + Wiy, where (Giy)gs is the adhesive fracture energy based
on the reverse step bond density distribution. (G,),, is plotted (dot-
ted line) against the COD 4*(L") in the embedded figure in Fig. 2(b).
Clearly the results of G, converge to (G,)zs When V*/y_ and hence
67(L") is large. The COD ¢"(L") in Fig. 2(a) shows logarithmic depen-
dence on V”/y. at high speed, which can be written as §*(L") =
oIn(BV*/y,), o and f being constants. Introducing this results into
(Gaa)gs gives the following expression

(Gaa)ps = U T In(BV" /901 + Wiy, (20)

which is in agreement with the high speed dependency of G on V,

G ~ [In(V))>, previously reported in the literature (Chaudhury
1999; Ghatak et al. 2000; Hui et al. 2004) for fracture in elastic med-
ium with rate-dependent interfacial process.

4.2. Viscoelastic DCB

Now we consider results where bulk viscoelasticity is included
by setting yg = 0.01. V* is varied over a wide range of values and
this process is repeated for five different values of 7. As a comple-
ment to Fig. 2(a) we first plot the COD against V*/y, in Fig. 4.
According to the normalization, Eq. (5), V*/y, is independent of
the bulk relaxation time t,. The result is remarkably similar in
behavior to Fig. 2(a), only this time there are different lines corre-
sponding to different values of 7., the ratio of bulk relaxation time
over the characteristic time for chain dissociation. With this choice
of x-axes, the curves for different 7, nearly collapse which suggests
that y, primarily functions as a speed shift in Eq. (6). Only minor
differences can be observed for a limited range of V*/y.. This region
has been enlarged in the embedded figure. The interfacial kinetics
is coupled to beam deformation through the adhesive tractions
from the polymer chains, yet compared with the elastic beam,
Fig. 2(a), and over several orders of magnitude of y. we observe
only small differences. These differences are due to relaxation of
the beams’ effective modulus, and will be discussed later. Distribu-
tions of bond density and adhesive stress for a representative vis-
coelastic beam are shown in the Supporting Material (Section S8).
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Fig. 4. Crack opening displacement, 5*(L*), plotted against V*/y.. This plot was
obtained by varying V* while keeping ). fixed at the five values shown in the legend.
The other governing parameters were held fixed at U* = 2850, yg = 1, y. = 0.0022222,
and W, = 5. The embedded figure is zoomed in on the region around V*/y. =1 to
better show details.

Although the influence of bulk viscoelasticity on COD appears to
be minimal, when we consider the work needed to propagate the
crack, G*, bulk viscoelasticity is much more important. For a vis-
coelastic beam, there is dissipation within the beam which can
increase for longer beams as mentioned previously. Here we have
chosen to evaluate G* at x* = 1, which corresponds to a DCB with a
fixed length that is larger than, but on the same order of magnitude
as, the adhesive zone length L*. In Fig. 5(a) the results for G*(1) are
plotted against V*/y,. In the embedded figure the same G*(1) data
is plotted against V*. As in Fig. 4 each curve represents a different
value of y;. The main graph bears some resemblance to Fig. 2(b)
but now the behavior is non-monotonic with each curve peaking
at a different value of V" /y.. As Fig. 5(a) is not trivial to understand,
we decompose G* according to Eq. (18) and discuss the two compo-
nents: G, , shown in Fig. 5(b), and G, , shown in Fig. 5(c).

Starting with Fig. 5(b), where G, is plotted on the y-axis and
V*/y. is shown on the x-axis. In the embedded figure the same
G,q data is plotted against V*. Unlike G*, outside of the adhesive
zone there will be no further contributions to G, so the result of
G,4 is independent of the chosen beam length. First by comparing
Fig. 5(a) and Fig. 5(b) the contribution from G,, is significant. In
addition, very much like the COD, not only does the behavior of
G,4 closely resemble what was seen for the elastic case (Fig. 2b)),
but all the curves corresponding to different y, nearly collapse onto
a master curve with only slight differences observed for a limited
range of V*/y.. This implies that changing y. primarily acts like
an effective speed shift in the bond dissociation equation, Eq. (6).
7. does not appear in the beam equation, Eq. (8), and the fact that
the speed is not shifted by 7y, in the beam equation suggests that
bulk viscoelasticity seems to have only a second-order impact on
bond dissociation and the adhesive portion of the fracture energy.
We will return to these second order effects, seen in Figs. 4 and 5
(b), after we examine the viscous portion of G*.

Consider the portion of G* from bulk viscous dissipation shown
in Fig. 5(c). Here G,;(1) is shown on the y-axis, V" /y, is shown on
the x-axis and each curve represents a different value of y;. G
comes from the beam viscoelasticity, which is governed by Eq.
(8) where 7y, does not appear. Hence 7y, does not directly impact
the results of G, and the normalized crack speed V* would be a
more suitable choice for the x-axis as shown in the inset of Fig. 5
(c). The behavior of G,,(1) is as follows. It approaches zero for both
small and large V*. Between these two limits there is a maximum,
with the lowest values of y, achieving the highest peak. These
peaks are higher since V*[y, is larger and so is the associated crack
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Fig. 5. Plots for (a) total fracture energy G*(1), (b) adhesive fracture energy G,, and
(c) viscous dissipation G, (1), plotted against V*/y.. These plots were obtained by
varying V* while keeping y- fixed at the five values shown in the legend. The other
governing parameters were held fixed at U*=2850, yg=1, y_ =0.0022222, and
W, = 5. Embedded figures shows the same data plotted against normalized crack
propagation speed V*.

opening (Fig. 4) which results is greater deformation and hence
dissipation. Comparing Fig. 5(c) and (a), it is clear that the peaks
in Fig. 5(a) are caused by viscous dissipation.

To understand the viscous dissipation we make an analogy to an
elastic beam and define a local effective modulus E* so that

M (x*) = E*(x*)d*6" /dx". Like G* and G’ the effective modulus var-
ies with position so to compare with G* (1) we have plotted E*(1)
on the y-axis and V* on the x-axis in Fig. 6(a). The behavior is sim-
ple: at low V¥, E*(1) = yg, and as V* is increased there is a transition
to another plateau at high V* where E*(1) = 1. Physically this tran-
sition means that when the crack propagates slowly there is suffi-
cient time for the beam to fully relax and the modulus decays to
the infinite time value. When the crack propagates rapidly, within
the fixed length under consideration, the beam has not yet had suf-
ficient time to relax at all so the effective modulus is still the zero
time modulus. Between these two extremes there is a viscoelastic
transition. Comparing Figs. 6(a) and 5(c) it is clear that this transi-
tion occurs over the same speed range as the nonzero G,;. To

explain the behavior observed in Fig. 5(c), consider that as the
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Fig. 6. Effective Young’s modulus, E*(1), plotted against V*. These plots were
obtained by varying V* while keeping 7y, fixed at the five values shown in the legend.
The other governing parameters were held fixed at U* = 2850, y¢ = 1, y. = 0.0022222,
and W, = 5.

beams deflect to open the crack they acquire strain energy from
the work done by applied moments. However as the effective mod-
ulus of the beams relaxes, the strain energy stored in the beams is
reduced even with a fixed deflection. This difference in strain
energy is lost as viscous dissipation. At low speed negligible energy
is lost because the beams relax to the infinite time modulus before
there is any deflection or stored strain energy. Conversely at high
crack propagation speed the beams deflect and have stored strain
energy, however here the beams have not yet relaxed so viscous
dissipation is again negligible. A consequence of this is that at high
speed within the adhesive zone the beam is essentially elastic.
Therefore, at very large V*/y,, G, and G*(1) approach (G,;) s which
was discussed earlier for the elastic beam and shown in the inset of
Fig. 2(b).

Interestingly, for y, =10 two peaks in G,,(1) can be seen in
Fig. 5(c). The first peak can be attributed to the transition of E* as
discussed above. The second peak appears as V* exceeds the critical
value where the COD begins to increase above d;, 4y (Fig. 4). The
increased COD and beam deformation causes higher dissipation
before eventually the unrelaxed limit shown in Fig. 6 is reached.
This second increase in dissipation also results in the asymmetry
visible for y,=0.1 and 0.001 in Fig. 6(c).

One interesting observation made from Fig. 6 is that there is lit-
tle difference between the E*(1) curves for different values of 7.
Pending a thorough explanation for this, we will use the E* data
in Fig. 6 to discuss the slight deviations between the curves for dif-
ferent ). seen in Figs. 4 and 5(b). In Eq. (6) changing 7. is equiva-
lent to a speed shift, however ), does not appear in the beam
equation (Eq. (8)). If we consider the actual speed V* rather than
the shifted speed V*/y,, as in the embedded figure in Fig. 5(b), at
the same V*/y, we observe that curves for smaller y, would be
translated to lower speed. Since at lower V* the effective modulus
of the beam is smaller which lowers its flexural rigidity, the beam
provides less resistance to crack opening. As a result, at the same
V*/v., for smaller y, and hence smaller V* the effective modulus
is lower and therefore, the crack opening is slightly larger, as seen
in Fig. 4. Since the chains have been stretched slightly more G, is
also slightly larger as seen in the embedded figure of Fig. 5(b). In
the Supporting Material (Section S9) we discuss the relaxation of
E* outside of the adhesive zone and the length of the dissipative
zone relative to the adhesive zone.

So far we have qualitatively explained the results of our model
and have taken several steps, either through literature comparison
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(see Supporting Material Section S10) or by examining limits, to
verify that a correct numerical solution to the governing equations
has been obtained. Qualitatively our results match several other
works in the literature. For example for a viscoelastic beam of fixed
length it has been reported that G,; is zero at high and low speed
and has a critical speed where it is maximum (Xu et al. 1992),
much like what was observed in Fig. 6(b). It has been experimen-
tally observed that G increases with crack propagation speed
(Gent 1996), and G4 displays this same character (Fig. 5(b)). How-
ever, introducing coupled bulk and interfacial rate-dependence
allows the model to explain or predict behavior not previously pos-
sible. For example, Figure 12 of (Ghatak et al. 2000) reported the
rate dependency of fracture energy of silicone elastomers against
an acrylic pressure-sensitive adhesive from rolling contact experi-
ments. The fracture energy was shown to be significantly enhanced
by introducing small amounts of H-bonding groups to increase the
interfacial relaxation time without substantially increasing the
surface energy. In addition, the fracture energy changed from
nearly rate-independent to strongly rate-dependent upon the addi-
tion of H-bonding groups on the interface. In terms of our model
the addition of H-bonding groups would be described by an
increase in 7., which in turn leads to a decrease in ). Consulting
the inset of Fig. 5(c) where the bulk viscous dissipation is plotted
against the crack speed, asy, decreases from 10 to 0.001, the peak
G,;(1) value increases from approximately 60 to 8000; on a linear
scale the former would appear rather rate insensitive in compar-
ison to the latter case. This observation is qualitatively similar to
the experimental observation of (Ghatak et al. 2000). Because our
model has two characteristic time scales (one for bulk relaxation,
and another for bond dissociation), an effective speed shift in Ggq
can be created by varying the ratio of these two relaxation times.
Furthermore, the coupling of bulk and interfacial rate dependence
resulted in complex non-monotonic behaviors of G for finite sized
beams (Fig. 5(a)). This behavior has the potential to offer much
more flexibility in designing adhesive of a desired strength.

Often in viscoelastic fracture experiments the fracture energy G
is expressed in the following form (Gent and Shultz 1972; Andrews
and Kinloch 1973; Xu et al. 1992; Gent 1996; Ghatak et al. 2000;
Rahulkumar et al. 2000)

G =W,(1+f(V)), (21)

where W, is the thermodynamic work of adhesion for separating
the two surfaces under equilibrium conditions (Ghatak et al.
2000) (also referred to as the intrinsic strength (Andrews and
Kinloch 1973)), and f(V) represents the increase in fracture energy
for finite rates of crack propagation. The function f(V) has been
described as the energy dissipated in the material at the propagat-
ing crack tip (Andrews and Kinloch 1973), the enhancement in
strength when the adhesive is imperfectly elastic (Gent and
Shultz 1972), or the energy expended in irreversible processes
(Gent 1996). However it is not fully understood which physical pro-
cesses this function represents (Gent 1996). It has been shown that
the function depends not only on the micromechanical properties of
the interface and viscoelastic properties of the bulk material but
also on the specimen dimensions (Xu et al. 1992). In addition it
has been proposed that the micromechanical properties of the
interface must also be rate dependent (Rahulkumar et al. 2000),
as is the case in the model presented in this work where interface
kinetics are considered. To connect the results of our model to Eq.
(21), we note that in our model as V approaches zero W, = W ,q.
It then follows that f(V) = (G — W ,qw)/W ,qw Which can be obtained
by vertically shifting and scaling Fig. 5(a). The fact that W, = W 4w
as V — 0 implies that to separate the two beams under equilibrium
condition, one only needs to overcome the vdW attractions, while
no energy is needed to break the polymer chains.

To explain this seemingly unrealistic result consider Eq. (6)
where it can be seen that even if the force F* on each chain is zero,
the bond dissociation rate will be non-zero (i.e., the chain will
break) unless the speed is very high. This implies that given
enough time all bonds in the material would dissociate under zero
load, which may be unphysical. This deficiency is directly due to
the interfacial model we adopted in Eq. (6) which has been used
in the literature several times (Chaudhury 1999; Ghatak et al.
2000; Hui et al. 2004). Rate equations have been written with
the addition of a bond association term (Chaudhury 1999;
Ghatak et al. 2000), however this term was assumed to be negligi-
ble. While it is true that bond association quickly becomes negligi-
ble as the crack opens, at low speed very small crack openings were
observed and bond reforming can play an important role. Taking
this into account can increase the bond density and G, at low
speed.

To address another limitation of the present work, recall that
the normalized crack opening was defined as 6" = §/L. where L.
is the contour length of the polymer chain. Given this definition
physically within the adhesive zone we should have 0 < 6" < 1.
However, the COD was observed to be near 4.5 at high speed in
Figs. 2(a) and 4. In other words, the model allows the crack to open
too far at high speeds and this will over-predict G, in these cases.
The source of this deficiency is likely the linearized force-extension
relationship of the polymer chain as proposed in the literature
(Chaudhury 1999; Ghatak et al. 2000). The notion of a nonlinear
chain model has been explored (Ghatak et al. 2000; Hui et al.
2004). Tensile experiments on polymer chains show a force exten-
sion curve which is very flat for most of the extension but increases
rapidly before the chain is fully stretched and fails (Ghatak et al.
2000). Taking into account this behavior should have two impor-
tant effects on the model presented. First, the chain forces F* at
extensions near * =1 would be much higher and through Eq. (6)
would cause the chains to break before 6* =1. Secondly, at low
extensions the force acting on the chain would be much less, which
combined with bond reforming would prevent the chain density
from going to zero at small crack openings when the crack propa-
gation speed is small.

Finally, it was observed that changing ). over several orders of
magnitude only created small changes in the effective modulus. A
possible reason is the bulk viscoelastic beam model we have
adopted. For a viscoelastic beam there is only one stress compo-
nent and it is in the axial direction which is perpendicular to the
direction of the extension of polymer chains. That is, there is no
viscoelastic relaxation of the material in the direction of chain
extension. Therefore, we expect that implementing higher dimen-
sional continuum viscoelastic models could lead to stronger cou-
pling between the bulk and interfacial rate processes and is a
subject of future research.

5. Conclusion

In this work, the rate dependent fracture of a viscoelastic double
cantilever beam (DCB) is studied. Two sources of rate dependence
were considered. The beam itself was assumed to be a standard lin-
ear solid and an interfacial adhesion model describing the kinetics
of breaking polymer chains was used. Within the adhesive zone,
van der Waals (vdW) attractions were also considered. Seven
nondimensional parameters governing the fracture of the DCB
were identified, among which the impact of the V* (normalized
crack propagation speed) and v, (ratio of bulk relaxation time to
bond dissociation relaxation time) on the energy required to prop-
agate the crack were discussed in detail. The apparent energy
release rate G* is made up of two components: the energy needed
to overcome adhesion (G,), and viscous dissipation within the
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bulk material (G,;). G,; increases with crack propagation speed,
whereas G, is negligible for both small and large crack propaga-
tion speeds and has a maximum value at an intermediate V*. The
net result from the two dissipation mechanisms is that G* varies
non-monotonically with the crack propagation speed. A closed-
form scaling relation between G* and V* was derived for very fast
crack propagation. The relaxation time ratio y,; was shown to pri-
marily function as a speed shift in affecting G,.
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