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a b s t r a c t 

This article presents an analytical method capable of resolving the coupled problem of surface cracking 

in an orthotropic elastic medium subjected to frictional contact by a rigid flat punch. Reciprocal influ- 

ences between the surface crack and the flat punch are accounted for by establishing a fully coupled 

formulation. Governing partial differential equations involving the displacement components are derived 

in accordance with plane theory of orthotropic elasticity. General solutions corresponding to mode I and 

II crack problems and contact problem are obtained employing Fourier transformation techniques. These 

separate solutions are then reconciled; and three coupled singular integral equations are developed by 

applying crack surface and contact zone conditions. Singular integral equations are solved numerically 

through an expansion–collocation method in which the primary unknowns are expanded into series in 

terms of Jacobi polynomials. Comparisons to the results available in the literature for certain special cases 

do verify the proposed procedures. Further numerical results are presented to be able to demonstrate the 

influences of material orthotropy, coefficient of friction, and geometric parameters upon the mixed-mode 

stress intensity factors and the contact stress. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Quite a large number of engineering materials utilized in tech-

ological applications possess an orthotropic macro-structure. Or-

hotropy is a reduced type of general anisotropy, which stems from

he existence of two orthogonal planes of elastic symmetry within

 medium. It is encountered not only in conventional composites

ike fiber reinforced plates and shells but also in newer material

ystems such as thin films and coatings. Orthotropy in thin films

s a result of the processing method. For instance, electron beam

hysical vapor deposition induces a columnar thin film structure

hereas plasma spray technique causes a lamellar type formation.

ecause of the importance and common usage of orthotropic ma-

erials in both conventional and arising fields of technology, there

s a vast amount of literature on related mechanics problems, par-

icularly on contact and fracture mechanics. 

Solutions in literature on contact mechanics of orthotropic ma-

erials depict a clear picture of the influences of material prop-

rties and loading parameters on stress distributions. Certain fun-

amental findings on contact mechanics of anisotropic half-planes

re compiled in the book by Kachanov et al. (2003) . More recent
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dvances in contact mechanics of orthotropic media include de-

elopments pertaining to indentation ( Shi et al., 2003 ), Hertzian

ontact ( Swanson, 2004 ), frictional moving punch problems ( Zhou

t al., 2014 ), and contact with collinear stamps ( Dong et al., 2014 ).

esults on fracture mechanics of orthotropic materials are essen-

ial to quantify critical and sub-critical crack propagation phe-

omena. For this reason, stress intensity factors (SIFs) are com-

uted for a variety of crack configurations. Newer results regard-

ng such research work are generated for multiple interacting

racks ( Baghestani et al., 2013 ), an edge cracked orthotropic strip

 Matbuly and Nassar, 2003 ), a dynamically loaded cracked half-

lane ( Monfared and Ayatollahi, 2012 ), an inclined crack in an in-

nite medium ( Nobile et al., 2004 ), and thermally loaded collinear

racks ( Zhong et al., 2013 ). 

Certain types of cracking failures in engineering materials re-

uire simultaneous consideration of fracture and contact problems.

his is especially the case for brittle materials under the effect of

evere contact loadings. Primary cracking mechanisms in the vicin-

ty of contact zones in such materials are: Radial cracking due

o Vickers indentation ( Page and Knight, 1989 ), Hertzian crack-

ng due to loading by a blunt indenter ( Lawn, 1995 ), and her-

ingbone cracking due to sliding frictional contact ( Suresh et al.,

999 ). Moreover, surfaces subjected to oscillating frictional forces

end to develop fretting fatigue cracks ( Nesladek et al., 2012; Hills

nd Nowell, 2014 ). Studies on the behavior of cracks located in the

http://dx.doi.org/10.1016/j.ijsolstr.2016.04.018
http://www.ScienceDirect.com
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mailto:sdag@metu.edu.tr
http://dx.doi.org/10.1016/j.ijsolstr.2016.04.018


2 D. Sarikaya, S. Dag / International Journal of Solids and Structures 90 (2016) 1–11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

x2

a

b

P

Q

c

E1

E2

Fig. 1. Geometry of the coupled problem. 
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vicinity of a contact zone are required to understand these failure

mechanisms. Analytical research work has been undertaken to ex-

amine fracture in isotropic homogeneous and functionally graded

materials caused by sliding frictional contact ( Hasebe et al., 1989;

Hasebe and Qian, 1998; Dag, 2001; Dag and Erdogan, 2002 ). How-

ever, there has been no prior work on such problems in orthotropic

materials. 

Formulation of the problem of cracking due to sliding contact

for orthotropic materials is substantially different from those de-

veloped for isotropic homogeneous and functionally graded ma-

terials. Constitutive relations of orthotropic materials contain four

elastic constants in the case of plane stress, and seven in the case

of plane strain. Two elastic constants and an inhomogeneity pa-

rameter are needed for FGMs; whereas for the isotropic homo-

geneous case specification of two elastic constants suffices. Dis-

tinct structure of the constitutive law leads to a different set of

partial differential equations for orthotropic materials. Application

of Fourier transform techniques then results in completely differ-

ent general solutions, which depend on the elastic constants of

orthotropy. As a consequence, the terms and kernels of the sin-

gular integral equations are not same as those found for isotropic

homogeneous or functionally graded materials. For this reason, all

formulation steps need to be reapplied for orthotropic materials;

and general solutions and singular integral equations have to be

derived from scratch in terms of engineering constants of plane

orthotropy. 

The present study puts forward an analytical approach capa-

ble of solving the coupled problem of cracking due to sliding con-

tact in an orthotropic medium. For this purpose, a surface crack

in an orthotropic half-plane in sliding frictional contact with a

rigid punch is considered. Governing partial differential equations

in terms of the displacement components are derived by employ-

ing the elements of plane orthotropic elasticity. Crack and con-

tact problems are formulated separately by means of Fourier trans-

form techniques. Primary unknown functions in these formulations

are respectively relative crack surface displacement derivatives and

contact stress for the crack and contact problems. These two sep-

arate formulations are then reconciled and reduced to a system of

three coupled singular integral equations. The integral equations

are solved numerically by an expansion–collocation technique, in

which primary unknowns are expanded into finite series entailing

Jacobi polynomials. Numerical analyses are carried out to compute

mode I and II stress intensity factors and contact stress as func-

tions of degree of orthotropy, coefficient of friction, and geometric

parameters. 

2. Formulation 

The coupled problem of surface cracking in an orthotropic

medium due to sliding contact is illustrated in Fig. 1 . An elastic

orthotropic half-plane lies in the region x 1 > 0 and −∞ < x 2 < ∞ .

x 1 - and x 2 -axes are the principal axes of orthotropy. The half-plane

contains a crack located at x 2 = 0 ; and is in sliding frictional con-

tact with a rigid flat punch. Contact zone extends from x 2 = b

to x 2 = c. The elastic medium is assumed to be in a state of ei-

ther plane stress or plane strain. Normal and friction forces trans-

ferred by the contact are respectively designated by P and Q , where

Q = ηP, η being the coefficient of friction. 

The formulation is based on the constitutive relations of plane

orthotropic elasticity, which are expressed as: [ 

σ11 

σ22 

σ12 

] 

= 

[ 

C 11 C 12 0 

C 12 C 22 0 

0 0 C 66 

] [ 

ε 11 

ε 22 

ε 12 

] 

, (1)

where elements of the stiffness matrix are given by 
 11 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 1 
1 −ν12 ν21 

, for plane stress , 

E 1 ( 1 −ν23 ν32 ) 

1 −ν12 ν21 −ν13 ν31 −ν23 ν32 −2 ν12 ν23 ν31 

, for plane strain , 

(2a)

 12 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 2 ν12 

1 −ν12 ν21 

, for plane stress , 

E 2 ( ν12 + ν13 ν32 ) 

1 −ν12 ν21 −ν13 ν31 −ν23 ν32 −2 ν12 ν23 ν31 

, for plane strain , 

(2b)

 22 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

E 2 
1 −ν12 ν21 

, for plane stress , 

E 2 ( 1 −ν13 ν31 ) 

1 −ν12 ν21 −ν13 ν31 −ν23 ν32 −2 ν12 ν23 ν31 

, for plane strain , 

(2c)

 66 = 2 μ12 , for both plane stress and strain . (2d)

For an orthotropic material, following inequalities are deduced

y considering the fact that strain energy density function is posi-

ive definite ( Agarwal and Broutman, 1990 ): 

 − ν12 ν21 > 0 , 1 − ν13 ν31 > 0 , 1 − ν23 ν32 > 0 , (3a)

 − ν12 ν21 − ν13 ν31 − ν23 ν32 − 2 ν12 ν23 ν31 > 0 . (3b)

Governing partial differential equations are derived by using the

onstitutive relations in conjunction with equilibrium equations

nd kinematic relations; and expressed as given below: 

 11 
∂ 2 u 1 

∂x 2 
1 

+ 

∂ 2 u 1 

∂x 2 
2 

+ ( 1 + d 12 ) 
∂ 2 u 2 

∂ x 1 ∂ x 2 
= 0 , (4a)

∂ 2 u 2 

∂x 2 
1 

+ d 22 
∂ 2 u 2 

∂x 2 
2 

+ ( 1 + d 12 ) 
∂ 2 u 1 

∂ x 1 ∂ x 2 
= 0 , (4b)

 11 = 

2 C 11 

C 66 

, d 12 = 

2 C 12 

C 66 

, d 22 = 

2 C 22 

C 66 

. (4c)

 1 and u 2 here are the scalar components of the displacement vec-

or in x - and x -directions, respectively. The solution has to satisfy
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Fig. 2. The mixed-mode crack problem. 
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he conditions: 

11 ( 0 , x 2 ) = σ12 ( 0 , x 2 ) = 0 , x 2 < b and x 2 > c, (5a)

12 ( 0 , x 2 ) = ησ11 ( 0 , x 2 ) , b < x 2 < c, (5b)

22 ( x 1 , 0 ) = σ12 ( x 1 , 0 ) = 0 , 0 < x 1 < a, (5c)

∂ u 1 ( 0 , x 2 ) 

∂ x 2 
= 0 , b < x 2 < c, (5d)

 c 

b 

σ11 ( 0 , x 2 ) d x 2 = −P. (5e) 

Furthermore, regularity condition requires that all field quanti-

ies be bounded as 
√ 

x 2 
1 

+ x 2 
2 

→ ∞ . Note that Eq. (5c) assumes that

here is no contact of the crack faces. However, the results pro-

uced through this formulation will still be applicable in the pres-

nce of crack closure, provided that they are used as a part of a

uperposition scheme for a combined loading that leads to a fully

pen crack. 

The first step in our analysis is the development of the general

olutions for the crack and contact problems. Crack problem is for-

ulated in terms of the relative displacements of the crack faces

hereas contact formulation hinges on the contact stress. These

wo formulations are then combined to obtain the singular integral

quations for the coupled problem. In what follows below, we first

laborate upon the formulations of crack and contact problems. 

.1. Crack problem 

Fig. 2 illustrates the geometry of the surface crack problem an-

lyzed in this section. The crack is assumed to be under the effect

f mixed-mode loading. Field quantities are derived in terms of the

erivatives of relative crack surface displacements. Mode I and II

roblems are uncoupled in this formulation owing to the symme-

ry of material distribution and geometry about x 1 - axis. Hence,

eneral solutions can be derived by treating mode I and II prob-

ems separately. 

.1.1. Mode I problem 

The mode I problem is formulated in terms of the derivative

f the relative normal crack surface displacement, which is mathe-

atically expressed as 

f 1 ( x 1 ) = 

C 66 

2 

∂ 

∂ x 1 
( u 2 ( x 1 , 0 

+ ) − u 2 ( x 1 , 0 

−) ) , 0 < x 1 < a. (6)

Boundary and continuity conditions that need to be imple-

ented in the formulation of the mode I problem are: 

11 ( 0 , x 2 ) = σ12 ( 0 , x 2 ) = 0 , −∞ < x 2 < ∞ , (7a)
22 

(
x 1 , 0 

+ ) = σ22 

(
x 1 , 0 

−)
, 0 < x 1 < ∞ , (7b)

12 

(
x 1 , 0 

+ ) = σ12 

(
x 1 , 0 

−)
, 0 < x 1 < ∞ , (7c)

 1 

(
x 1 , 0 

+ ) = u 1 

(
x 1 , 0 

−)
, 0 < x 1 < ∞ , (7d)

 2 

(
x 1 , 0 

+ ) = u 2 

(
x 1 , 0 

−)
, a < x 1 < ∞ . (7e)

Applying Fourier, Fourier cosine and Fourier sine transforms to

he governing partial differential equations, general solutions for

he displacement components are derived to be: 

 1 ( x 1 , x 2 ) = 

1 

2 π

∫ ∞ 

−∞ 

4 ∑ 

j=3 

C j exp ( n j x 2 + i ω x 1 ) dω 

+ 

∫ ∞ 

0 

( 

4 ∑ 

j=3 

B j exp 

(
p j x 1 

)) 

cos ( αx 2 ) dα, 

x 1 > 0 , x 2 > 0 , (8a) 

 2 ( x 1 , x 2 ) = 

1 

2 π

∫ ∞ 

−∞ 

4 ∑ 

j=3 

C j A j exp ( n j x 2 + i ω x 1 ) dω 

+ 

∫ ∞ 

0 

( 

4 ∑ 

j=3 

B j D j exp 

(
p j x 1 

)) 

sin ( αx 2 ) dα, 

x 1 > 0 , x 2 > 0 , (8b) 

here 

 3 = −E | ω | , n 4 = −F | ω | , (9a)

 = 

1 

2 

√ 

2 

d 22 

(
β1 + 

√ 

β2 

)
, F = 

1 

2 

√ 

2 

d 22 

(
β1 −

√ 

β2 

)
, (9b)

 j ( ω ) = 

d 11 ω 

2 − n 

2 
j 

( 1 + d 12 ) i ω n j 

, j = 3 , 4 , (9c)

p 3 = −A | α| , p 4 = −B | α| , (9d)

 = 

1 

2 

√ 

2 

d 11 

(
β1 + 

√ 

β2 

)
, B = 

1 

2 

√ 

2 

d 11 

(
β1 −

√ 

β2 

)
, (9e)

 j ( α) = 

α2 − d 11 p 
2 
j 

( 1 + d 12 ) α p j 
, j = 3 , 4 , (9f)

1 = d 11 d 22 − 2 d 12 − d 2 12 , (9g) 

2 = d 2 11 d 
2 
22 − 4 d 11 d 22 d 12 − 2 d 11 d 22 d 

2 
12 + 4 d 2 12 + 4 d 3 12 

+ d 4 12 − 4 d 11 d 22 . (9h) 

 j and B j , j = 3 , 4 , in Eq. (8) are unknown functions and deter-

ined by using the boundary and continuity conditions. The ex-

ressions of these functions are provided in the dissertation by

arikaya (2014) . Note that these unknowns are found in terms of

he primary unknown function f 1 . n j and p j , j = 3 , 4 , are roots of

haracteristic equations obtained by applying Fourier transforms to

he governing equations. An orthotropic material is classified ac-

ording to the form of these roots as detailed by Delale and Er-

ogan (1977) . When β2 > 0, | β1 | > 

√ 

β2 . As a consequence, if β1 

 0 and β2 > 0, all roots are real; and if β1 < 0 and β2 > 0

oots are pure imaginary. The roots are complex if β2 < 0. The or-

hotropic material is referred to as type I if β1 > 0 and β2 > 0;

nd as type II if β2 < 0. In the present study, we consider type I

rthotropic material, which is commonly encountered in engineer-

ng applications such as fiber reinforced composites, and thin films

nd coatings. 
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Fig. 3. The contact problem. 
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2.1.2. Mode II problem 

Mode II problem is formulated in terms of the derivative of the

relative tangential crack face displacement. The primary unknown

function is expressed in the following form: 

f 2 ( x 1 ) = 

C 66 

2 

∂ 

∂ x 1 
( u 1 ( x 1 , 0 

+ ) − u 1 ( x 1 , 0 

−)) , 0 < x 1 < a. (10)

The conditions to be satisfied in the formulation of the mode II

problem are: 

σ11 ( 0 , x 2 ) = σ12 ( 0 , x 2 ) = 0 , −∞ < x 2 < ∞ , (11a)

σ22 

(
x 1 , 0 

+ ) = σ22 

(
x 1 , 0 

−)
, 0 < x 1 < ∞ , (11b)

σ12 

(
x 1 , 0 

+ ) = σ12 

(
x 1 , 0 

−)
, 0 < x 1 < ∞ , (11c)

u 2 

(
x 1 , 0 

+ ) = u 2 

(
x 1 , 0 

−)
, 0 < x 1 < ∞ , (11d)

u 1 

(
x 1 , 0 

+ ) = u 1 

(
x 1 , 0 

−)
, a < x 1 < ∞ . (11e)

Fourier, Fourier cosine, and Fourier sine transforms are applied

to find the displacement fields, which are written as follows: 

u 1 ( x 1 , x 2 ) = 

1 

2 π

∫ ∞ 

−∞ 

4 ∑ 

j=3 

F j exp ( n j x 2 + i ω x 1 ) dω 

+ 

∫ ∞ 

0 

( 

4 ∑ 

j=3 

G j exp 

(
p j x 1 

)) 

sin ( αx 2 ) dα, 

x 1 > 0 , x 2 > 0 , (12a)

u 2 ( x 1 , x 2 ) = 

1 

2 π

∫ ∞ 

−∞ 

4 ∑ 

j=3 

F j A j exp ( n j x 2 + i ω x 1 ) dω 

+ 

∫ ∞ 

0 

( 

4 ∑ 

j=3 

G j H j exp 

(
p j x 1 

)) 

cos ( αx 2 ) dα, 

x 1 > 0 , x 2 > 0 , (12b)

where 

H j (α) = 

d 11 p 
2 
j 
− α2 

( 1 + d 12 ) α p j 
, j = 3 , 4 . (13)

The functions F j , G j , j = 3 , 4 , are determined in terms of f 2 by

considering boundary and continuity conditions given by Eq. (11) ;

and provided by Sarikaya (2014) . 

2.2. Contact problem 

The contact problem considered is shown in Fig. 3 . Primary un-

known function in contact formulation is the contact stress at the

surface and defined by 

f 3 ( x 2 ) = σ11 ( 0 , x 2 ) , b < x 2 < c. (14)

Boundary conditions read: 

σ12 ( 0 , x 2 ) = ησ11 ( 0 , x 2 ) , b < x 2 < c, (15a)

σ11 ( 0 , x 2 ) = σ12 ( 0 , x 2 ) = 0 , x 2 < b and x 2 > c. (15b)

Applying Fourier transform in x 2 to Eqs. (4a) and ( 4b ), displace-

ment components are found to be: 

u 1 ( x 1 , x 2 ) = 

1 

2 π

∫ ∞ 

−∞ 

2 ∑ 

j=1 

M j exp ( s j x 1 + i ρ x 2 ) dρ, (16a)
 2 ( x 1 , x 2 ) = 

1 

2 π

∫ ∞ 

−∞ 

2 ∑ 

j=1 

M j N j exp ( s j x 1 + i ρ x 2 ) dρ, (16b)

here, 

 1 = −A | ρ| , s 2 = −B | ρ| , (17a)

 j (ρ) = 

ρ2 − d 11 s 
2 
j 

( 1 + d 12 ) i ρ s j 
, j = 1 , 2 . (17b)

The unknown functions M j , j = 1 , 2 , in Eq. (16) are obtained in

erms of f 3 by implementing the boundary conditions and written

n the form: 

 j (ρ) = 

2 

C 66 

ψ j (ρ) 

∫ c 

b 

f 3 (t) exp (−iρt) dt , j = 1 , 2 , (18a)

 1 ( ρ) = 

∣∣∣∣ 1 d 11 s 2 + d 12 N 2 iρ
η iρ + N 2 s 2 

∣∣∣∣

3 ( ρ) 

, 

 2 ( ρ) = 

∣∣∣∣ d 11 s 1 + d 12 N 1 iρ 1 

iρ + N 1 s 1 η

∣∣∣∣

3 ( ρ) 

, (18b)

3 ( ρ) = 

∣∣∣∣ d 11 s 1 + d 12 N 1 iρ d 11 s 2 + d 12 N 2 iρ
iρ + N 1 s 1 iρ + N 2 s 2 

∣∣∣∣. (18c)

.3. Singular integral equations 

Displacement field for the coupled crack and contact problem

hown in Fig. 1 is obtained by adding up the displacement fields

erived for mode I, mode II, and contact problems. Strains and

tresses are found by means of kinematic relations and generalized

ooke’s law, respectively. The coupled problem is then reduced

o a system of three singular integral equations by applying the

oundary conditions conveyed by Eq. (5c) and ( 5d ). Derivation pro-

edure of the singular integral equations involves lengthy asymp-

otic analyses, which are needed to extract the singular terms.

hese details are not presented here for the sake of brevity but

vailable in the dissertation by Sarikaya (2014) . The integral equa-

ions are expressed as follows: 
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22 ( x 1 , 0) = 

∫ a 

0 

[ 
1 

2 π

a 20 

x 1 − t 
+ h 11 s ( x 1 , t) + h 11 f ( x 1 , t) 

] 
f 1 (t) dt 

+ 

∫ c 

b 

[
h 13 s ( x 1 , t) + h 13 f ( x 1 , t) 

]
f 3 (t) dt = 0 , 

0 < x 1 < a, (19a) 

12 ( x 1 , 0) = 

∫ a 

0 

[ 
1 

2 π

m 20 

x 1 − t 
+ h 22 s ( x 1 , t) + h 22 f ( x 1 , t) 

] 
f 2 (t) dt 

+ 

∫ c 

b 

[
h 23 s ( x 1 , t) + h 23 f ( x 1 , t) 

]
f 3 (t) dt = 0 , 

0 < x 1 < a, (19b) 

C 66 

2 

∂ 

∂ x 2 
u 1 (0 , x 2 ) = 

∫ a 

0 

[
h 31 s ( x 2 , t) + h 31 f ( x 2 , t) 

]
f 1 ( t) dt 

+ 

∫ c 

b 

[
h 32 s ( x 2 , t) + h 31 f ( x 2 , t) 

]
f 2 (t) dt 

+ 

∫ c 

b 

[ 
1 

2 π

(
e 20 

x 2 − t 

)
+ 

(
e 10 

2 

)
δ ( x 2 − t) + h 33 f ( x 2 , t) 

] 
× f 3 (t) dt = 0 , b < x 2 < c. (19c) 

( x 2 − t ) in Eq. (19c) is the Dirac delta function. The constants

nd functions associated with the integrands are given by Sarikaya

2014) . 

.4. Singular behaviors of the unknown functions 

Singular behaviors of the primary unknown functions f 1 , f 2 , and

 3 at the end points of their respective intervals of definition are

etermined by employing the function-theoretic method, whose

etails are described by Dag (2001) and Erdogan (1978) . The func-

ions may possess power singularities at the ends and thus can be

ritten as 

f 1 ( x 1 ) = x θ1 

1 ( a − x 1 ) 
λ1 F 1 ( x 1 ) , 0 < x 1 < a, (20a)

f 2 ( x 1 ) = x θ2 

1 ( a − x 1 ) 
λ2 F 2 ( x 1 ) , 0 < x 1 < a, (20b)

f 3 ( x 2 ) = ( x 2 − b ) 
ω 
( c − x 2 ) 

βF 3 ( x 2 ) , b < x 2 < c, (20c)

here F 1 ( x 1 ), F 2 ( x 1 ), and F 3 ( x 2 ) are bounded functions; and the ex-

onents θ1 , θ2 , λ1 , λ2 , ω, and β stand for strengths of singularity.

onsidering these expressions and following the function-theoretic

ethod; the singular integral equations are recast into new forms

onsisting of dominant terms near the end points. These represen-

ations are given by 

22 ( x 1 , 0) ∼= 

F 1 (0) (a ) λ1 

{ 

a 20 

2 

cot (πθ1 ) − π

sin (πθ1 ) 

×
[ 

b 110 F (AF ) 
θ1 + b 120 E (AE) 

θ1 + b 210 F (BF ) 
θ1 + b 220 E (BE) 

θ1 

] } 

× ( x 1 ) 
θ1 − F 1 ( a ) ( a ) 

θ1 cot ( πλ1 ) ( a − x 1 ) 
λ1 = 0 , 

0 < x 1 < a, (21a) 

σ12 ( x 1 , 0) ∼= 

F 2 (0) (a ) λ2 

{ 

m 20 

2 

cot (πθ2 ) − π

sin (πθ2 ) 

×
[ 

n 110 F (AF ) 
θ2 + n 120 E (AE) 

θ2 + n 210 F (BF ) 
θ2 + n 220 E (BE) 

θ2 

] } 

×( x 1 ) 
θ2 − F 2 ( a ) ( a ) 

θ2 cot ( πλ2 ) ( a − x 1 ) 
λ2 = 0 , 

0 < x 1 < a, (21b) 
C 66 

2 

∂ 

∂x 2 
u 1 ( 0 , x 2 ) ∼= 

e 20 

2 

[ 
F 3 ( b ) ( c − b ) 

β
cot ( πω ) ( x 2 − b ) 

ω 

− F 3 ( c ) ( c − b ) 
ω 

cot ( πβ) ( c − x 2 ) 
β
]

+ 

e 10 

2 

F 3 ( x 2 ) ( x 2 − b ) 
ω 

( c − x 2 ) 
β = 0 , b < x 2 < c. 

(21c)

The constants A, B, E , and F are given by Eqs. (9b) and ( 9e ); and

 20 , m 20 , e 20 , e 10 , b 120 , b 210 , n 110 , n 120 , n 210 , and n 220 are available

n the dissertation by Sarikaya (2014) . 

Multiplying Eq. (21a) by ( x 1 ) 
−θ1 and letting x 1 → 0, we arrive

t the characteristic equation 

a 20 

2 

cot (πθ1 ) − π

sin (πθ1 ) 
[ b 110 F ( AF ) 

θ1 + b 120 E ( AE ) 
θ1 

+ b 210 F ( BF ) 
θ1 + b 220 E ( BE ) 

θ1 ] = 0 , (22) 

nd multiplying Eq. (21a) by ( a − x 1 ) 
−λ1 and letting x 1 → a , one

nds 

ot (πλ1 ) = 0 . (23) 

Eq. (22) has no roots lying in the interval ( −1 , 0 ) which implies

hat there is no power singularity for f 1 at x 1 = 0 . Eq. (23) on the

ther hand indicates that λ1 = −0 . 5 . Operating on Eqs. (21b) and

 21c ) in a similar way, we derive the characteristic equations 

m 20 

2 

cot (πθ2 ) − π

sin (πθ2 ) 
[ n 110 F ( AF ) 

θ2 + n 120 E ( AE ) 
θ2 

+ n 210 F ( BF ) 
θ2 + n 220 E ( BE ) 

θ2 ] = 0 , (24) 

ot (πλ2 ) = 0 , (25) 

cot (π ω) = − e 10 

e 20 

, (26) 

cot (π β) = 

e 10 

e 20 

. (27) 

Again, Eq. (24) points out that there is no power singularity

or f 2 at x 1 = 0 ; and from Eq. (25) it follows that λ2 = −0 . 5 . Eqs.

26) and ( 27 ) facilitate computation of the strengths of singular-

ty of the unknown function f 3 . These exponents depend upon

he orthotropic material properties and the coefficient of friction

through e 10 and e 20 . Also note that ω + β = −1 . 

. Numerical solution 

In order to be able to numerically solve the singular integral

quations, we first define the following substitutions and func-

ions: 

 = 

a 

2 

r + 

a 

2 

, x 1 = 

a 

2 

s 1 + 

a 

2 

, −1 < ( r, s 1 ) < 1 , for Eq . ( 19a ) , 

(28a) 

 = 

a 

2 

r + 

a 

2 

, x 2 = 

a 

2 

s 2 + 

a 

2 

, −1 < ( r, s 2 ) < 1 , for Eq . ( 19b ) , 

(28b) 

 = 

c − b 

2 

r + 

c + b 

2 

, x 3 = 

c − b 

2 

s 3 + 

c + b 

2 

, 

−1 < ( r, s 3 ) < 1 , for Eq . ( 19c ) , (28c) 

1 (r) = 

f 1 
(

a 
2 

r + 

a 
2 

)
P/ (c − b) 

, −1 < r < 1 , (28d)

2 (r) = 

f 2 
(

a 
2 

r + 

a 
2 

)
P/ (c − b) 

, −1 < r < 1 , (28e)

3 (r) = 

f 3 
(

c−b 
2 

r + 

c+ b 
2 

)
P/ (c − b) 

, −1 < r < 1 . (28f)
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The new nondimensional unknown functions are expressed as

infinite series involving Jacobi polynomials: 

φ1 (r) = (1 − r) −1 / 2 
∞ ∑ 

n =0 

A 1 n P 
( −1 / 2 , 0 ) 
n (r) , −1 < r < 1 , (29a)

φ2 ( r ) = ( 1 − r ) 
−1 / 2 

∞ ∑ 

n =0 

A 2 n P 
( −1 / 2 , 0 ) 
n ( r ) , −1 < r < 1 , (29b)

φ3 ( r ) = ( 1 − r ) 
β
( 1 + r ) 

ω 
∞ ∑ 

n =0 

A 3 n P 
( β,ω ) 
n ( r ) , −1 < r < 1 . (29c)

A in , i = 1 , . . . , 3 , here are unknown coefficients of the expansions;

and P 
( β,ω ) 
n (r) is the Jacobi polynomial of order n . Using φ3 r in con-

junction with the equilibrium condition given by Eq. (5e) , A 30 is

found to be: 

A 30 = − 2�( β + ω + 2 ) 

2 

β+ ω+1 �( β + 1 ) �( ω + 1 ) 
, (30)

where � is the Gamma function. Substituting Eqs. (29) and

( 30 ) into the singular integral equations, regularizing the singu-

lar terms, and truncating the infinite series at n = N, we reduce

the problem to a system of functional linear algebraic equations as

given below: 

N ∑ 

n =0 

A 1 n m 11 n ( s 1 ) + 

N ∑ 

n =1 

A 3 n m 13 n ( s 1 ) = −A 30 m 130 ( s 1 ) , −1 < s 1 < 1

(31a)

N ∑ 

n =0 

A 2 n m 22 n ( s 2 ) + 

N ∑ 

n =1 

A 3 n m 23 n ( s 2 ) = −A 30 m 230 ( s 2 ) , −1 < s 2 < 1

(31b)

N ∑ 

n =0 

A 1 n m 31 n ( s 3 ) + 

N ∑ 

n =0 

A 2 n m 32 n ( s 3 ) + 

N ∑ 

n =1 

A 3 n m 33 n ( s 3 ) 

= −A 30 m 330 ( s 3 ) , − 1 < s 3 < 1 . (31c)

The functions associated with this system read 

m 11 n ( s 1 ) = 

a 20 

2 

�(−1 / 2)�(n + 1) √ 

2 π �(n + 1 / 2) 
F 

(
n + 1 ;−n + 1 / 2 ; 3 / 2 ; 1 − s 1 

2 

)
+ 

∫ 1 

−1 
( 1 − r ) 

−1 / 2 P ( 
−1 / 2 , 0 ) 

n ( r ) H 11 ( s 1 , r ) dr , (32a)

m 13 n ( s 1 ) = 

∫ 1 

−1 

(1 − r) 
β
(1 + r) 

ω 
P 

(β,ω) 
n (r) H 13 ( s 1 , r) dr , (32b)

m 22 n ( s 2 ) = 

m 20 

2 

�(−1 / 2)�(n + 1) √ 

2 π �(n + 1 / 2) 
F 

(
n + 1 ;−n + 1 / 2 ; 3 / 2 ; 1 − s 2 

2 

)
+ 

∫ 1 

−1 
( 1 −r ) 

−1 / 2 P ( 
−1 / 2 , 0 ) 

n ( r ) H 22 ( s 2 , r ) dr , (32c)

m 23 n ( s 2 ) = 

∫ 1 

−1 

(1 − r) 
β
(1 + r) 

ω 
P 

(β,ω) 
n (r) H 23 ( s 2 , r) dr , (32d)

m 31 n ( s 3 ) = 

∫ 1 

−1 

(1 − r) 
−1 / 2 

P (−1 / 2 , 0) 
n (r) H 31 ( s 3 , r) dr , (32e)

m 32 n ( s 3 ) = 

∫ 1 

−1 

(1 − r) 
−1 / 2 

P (−1 / 2 , 0) 
n (r) H 32 ( s 3 , r) dr, (32f)
 33 n ( s 3 ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

e 20 

4 

1 

sin (πβ) 
P 

(−β, −ω) 
n −1 

( s 3 ) + 

∫ 1 

−1 

(1 − r) 
β
(1 + r) 

ω 

×P 
(β,ω) 
n (r) H 33 ( s 3 , r) dr, if n � = 0 , ∫ 1 

−1 

(1 − r) 
β
(1 + r) 

ω 
P 

(β,ω) 
n (r) H 33 ( s 3 , r) dr , if n = 0 .

(32g)

 in Eqs. (32a) and ( 32c ) is the hypergeometric function; and H ij 

re defined as 

H 11 ( s 1 , r) = 

a 

2 

(
H 11 s ( s 1 , r) + H 11 f ( s 1 , r) 

)
, 

 13 ( s 1 , r) = 

c − b 

2 

(
H 13 s ( s 1 , r) + H 13 f ( s 1 , r) 

)
, (33a)

 22 ( s 2 , r) = 

a 

2 

(
H 22 s ( s 2 , r) + H 22 f ( s 2 , r) 

)
, 

 23 ( s 2 , r) = 

c − b 

2 

(
H 23 s ( s 2 , r) + H 23 f ( s 2 , r) 

)
, (33b)

H 31 ( s 3 , r) = 

a 

2 

(
H 31 s ( s 3 , r) + H 31 f ( s 3 , r) 

)
, 

 32 ( s 3 , r) = 

a 

2 

(
H 32 s ( s 3 , r) + H 32 f ( s 3 , r) 

)
, (33c)

 33 ( s 3 , r) = 

c − b 

2 

H 33 f ( s 3 , r) , (33d)

 i js ( s i , r) = h i js (x, t) , H i j f ( s i , r) = h i j f (x, t) , (33e)

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a 

2 

s i + 

a 

2 

, i = 1 , 2 , 

c − b 

2 

s i + 

c + b 

2 

, i = 3 , 

t = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

a 

2 

r + 

a 

2 

, j = 1 , 2 , 

c − b 

2 

r + 

c + b 

2 

, j = 3 . 

(33f)

The functional equation system, expressed by Eq. (31) , is dis-

retized by means of a collocation scheme. The collocations points,

hich are selected to be the roots of Chebyshev polynomials of the

rst kind, are given by: 

 1 i = cos 

(
π(2 i − 1) 

2(N + 1) 

)
, s 2 i = cos 

(
π(2 i − 1) 

2(N + 1) 

)
, 

i = 1 , . . . , N + 1 , (34a)

 3 i = cos 

(
π(2 i − 1) 

2 N 

)
, i = 1 , . . . , N. (34b)

Mixed-mode stress intensity factors at the crack tip, and contact

tress at the surface can be computed once the unknown coeffi-

ients A in , i = 1 , . . . , 3 , are evaluated. The definitions of the mode I

nd II stress intensity factors at the crack tip are 

 1 = lim 

x 1 → a + 

√ 

2( x 1 − a ) σ22 ( x 1 , 0) 

= − lim 

x 1 → a −

C 66 

2 

√ 

2(a − x 1 ) 
∂ 

∂ x 1 

(
u 2 ( x 1 , 0 

+ ) − u 2 ( x 1 , 0 

−) 
)
, (35a)

 2 = lim 

x 1 → a + 

√ 

2( x 1 − a ) σ12 ( x 1 , 0) 

= − lim 

x 1 → a −

C 66 

2 

√ 

2(a − x 1 ) 
∂ 

∂ x 1 

(
u 1 ( x 1 , 0 

+ ) − u 1 ( x 1 , 0 

−) 
)
. (35b)

Through the use of these definitions and Eq. (29) , normalized

IFs are expressed as 
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Fig. 4. Comparisons of the computed normalized contact stress to the closed form solution for an orthotropic half-plane: (a) η = 0 . 0 ; (b) η = 0 . 2 ; (c) η = 0 . 4 ; (d) η = 0 . 6 , 

( c − b ) /a = 1 . 0 , b/a = 6 . 
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k 1 
√ 

a 

P 
= k 1 n = − a 

c − b 

N ∑ 

n =0 

A 1 n P 
(−1 / 2 , 0) 
n (1) , 

k 2 
√ 

a 

P 
= k 2 n 

= − a 

c − b 

N ∑ 

n =0 

A 2 n P 
(−1 / 2 , 0) 
n (1) . (36) 

Normalized contact stress on the other hand is of the form: 

σ11 

(
0 , c−b 

2 
s 3 + 

c+ b 
2 

)
P/ (c − b) 

= 

σ ∗
11 ( 0 , s 3 ) 

P/ ( c − b ) 
= ( 1 − s 3 ) 

β
( 1 + s 3 ) 

ω 

×
N ∑ 

n =0 

A 3 n P 
(β,ω) 
n ( s 3 ) , −1 < s 3 < 1 . (37) 

. Numerical results 

In parametric analyses, normalized stress intensity factors and

ontact stresses described by Eqs. (36) and ( 37 ) are computed as

unctions of orthotropic material properties, coefficient of friction,

nd normalized dimensions. To be able to verify the formulation

nd developed solution procedures, we made comparisons to the

esults available in the technical literature for certain special cases.

he first set of comparisons is provided in Fig. 4 , in which nor-

alized contact stresses are compared to the results obtained by

sing the closed form contact mechanics solution formulated by

alin ( Kachanov et al., 2003 ). This solution is for an orthotropic

alf-plane in frictional contact with a rigid flat punch; and does

ot take cracking into account. As a sample orthotropic material,

lasma-sprayed alumina is considered in the computations. The

lastic properties of orthotropic alumina are given as follows ( Dag,
006 ): 

 1 = 116 . 36 GPa, E 2 = 90 . 43 GPa, μ12 = 38 . 21 GPa, (38a)

12 = 0 . 28 , ν13 = 0 . 27 , ν31 = 0 . 21 , ν32 = 0 . 14 . (38b)

Once these values are provided, remaining elastic properties

21 , ν23 , and E 3 can be found employing the relations 

ν12 

E 1 
= 

ν21 

E 2 
, 

ν13 

E 1 
= 

ν31 

E 3 
, 

ν23 

E 2 
= 

ν32 

E 3 
, (39)

The results presented in Fig. 4 are generated by setting

( c − b ) /a and b / a as 1.0 and 6.0, respectively. ( c − b ) /a is the ratio

f the contact zone size to the crack length; and b / a represents rel-

tive punch location. Normalized contact stresses are plotted with

espect to the nondimensional coordinate s 3 defined by Eq. (28c) .

 relatively larger value is assigned to b / a to be able to suppress

he influence of the crack on the contact stress distribution. It can

e seen that for each of the four different friction coefficients con-

idered, our results are in excellent agreement with those obtained

hrough Galin’s solution. 

The second set of comparisons provided in Fig. 5 involves nor-

alized mode I and II stress intensity factors for a surface crack in

n isotropic half-plane, that is loaded by a rigid flat punch. The re-

ults produced by the method described in Section 3 are compared

o those given by Dag (2001) . The figure shows normalized mixed-

ode stress intensity factors k 1 n and k 2 n as functions of relative

unch location b / a and friction coefficient η. The ratio of the con-

act zone size to crack length ( c − b ) /a is taken as 1.0. Our results

re in very good agreement with those computed by Dag (2001) ,

hich is indicative of the high degree of accuracy attained by the

pplication of the methods developed in the present study. 
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Fig. 5. Comparisons of the normalized mode I and II stress intensity factors for an 

isotropic half-plane: (a) mode I SIFs; (b) mode II SIFs. ( c − b ) /a = 1 . 0 , ν12 = ν13 = 

ν31 = ν32 = 0 . 25 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Normalized contact stress distributions for different values of the modulus 

ratio E 2 / E 1 , ( c − b ) /a = 1 . 0 , b/a = 0 . 1 ,η = 0 . 4 . 

Fig. 7. Normalized mixed-mode stress intensity factors as functions of b / a and the 

modulus ratio E 2 / E 1 : (a) mode I SIFs; (b) mode II SIFs. ( c − b ) /a = 1 . 0 ,η = 0 . 4 . 
The new results calculated for the coupled problem depicted

by Fig. 1 are provided in Figs. 6–12 . In Figs. 6 and 7 , we display

the influence of the variation in the elastic modulus E 2 upon the

contact stress and the mixed-mode stress intensity factors, respec-

tively. In the generation of this group of results, the base material

considered is plasma-sprayed alumina, whose properties are given

by Eq. (38) . All properties given in this equation are kept constant

except for the elastic modulus E 2 , which is varied to be able to

examine the influence of orthotropy. The degree of orthotropy is

quantified by the ratio E 2 / E 1 . Fig. 6 shows the effect of the change

in E 2 on the normalized contact stress. It is seen that as E 2 / E 1 in-

creases, stress magnitude decreases slightly near the trailing end

of the contact zone, and increases near the leading end. The influ-

ence of the change in E 2 / E 1 is rather pronounced on the normal-

ized mixed-mode stress intensity factors k 1 n and k 2 n as evidenced

by Fig. 7 . The results provided in this figure are generated by con-

sidering a wider range of E 2 / E 1 including larger values. Note that

E 2 / E 1 cannot be increased arbitrarily due to the constraints con-

veyed by Eq. (3). With the orthotropy constants specified by Eq.

(38) , largest possible E 2 / E 1 is 7.5. When the punch is closer to the

crack plane, i.e. when b / a is relatively small, normalized mode I

SIF decreases and normalized mode II SIF increases with a corre-

sponding rise in E 2 . Higher degree of negativity in the mode I SIF

for larger E 2 / E 1 implies more extensive crack closure for these val-

ues of the modulus ratio. As b / a is increased further, mode II SIF
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Fig. 8. Normalized relative crack face displacement distributions for various values 

of the modulus ratio E 2 / E 1 : (a) normal relative displacements; (b) tangential relative 

displacements. ( c − b ) /a = 1 . 0 ,η = 0 . 4 , b/a = 1 . 6 . 
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Fig. 9. Normalized contact stress distributions for different values of the friction 

coefficient η, ( c − b ) /a = 1 . 0 , b/a = 0 . 1 . 

Fig. 10. Normalized mixed-mode stress intensity factors as functions of b / a and the 

friction coefficient η: (a) mode I SIFs; (b) mode II SIFs. ( c − b ) /a = 1 . 0 . 
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p  
apidly levels off around zero whereas mode I SIF exhibits a more

radual drop in magnitude. 

Fig. 8 shows normalized relative crack opening displacements

or various values of the modulus ratio E 2 / E 1 . Normalized relative

isplacements are found by integrating Eqs. (6) and ( 10 ), and given

y 

C 66 

a 


u 2 ( x 1 ) 

P/ ( c − b ) 
= 

(
x 1 
a 

− 1 

)∫ 1 

−1 

φ1 

(
x 1 
a 

r − r + 

x 1 
a 

)
dr , 
u 2 ( x 1 ) 

= u 2 

(
x 1 , 0 

+ ) − u 2 

(
x 1 , 0 

−)
, 0 < x 1 < a, (40a) 

C 66 

a 


u 1 ( x 1 ) 

P/ ( c − b ) 
= 

(
x 1 
a 

− 1 

)∫ 1 

−1 

φ2 

(
x 1 
a 

r − r + 

x 1 
a 

)
dr , 
u 1 ( x 1 ) 

= u 1 

(
x 1 , 0 

+ ) − u 1 

(
x 1 , 0 

−)
, 0 < x 1 < a. (40b) 

For E 2 / E 1 = 2 / 3 , k 1 n is positive, crack is open, and relative nor-

al displacement 
2 is seen to be positive for all values of x 1 / a .

elative tangential displacement 
1 on the other hand is nega-

ive for this value of modulus ratio. As E 2 / E 1 is increased, crack

losure occurs and relative normal displacement becomes negative

ear the crack tip. Relative tangential displacement continually in-

reases with the corresponding rise in E 2 / E 1 . Increase in the size

f the contact zone is manifested by the extension of the region

here 
1 is negative. But, calculation of the exact contact zone

ize requires specification of the contact conditions in the formu-

ation and implementation of an iterative procedure. 
Figs. 9 and 10 illustrate the effect of the coefficient of friction η
n the contact stress and the mixed-mode stress intensity factors

or an orthotropic medium. Plasma sprayed orthotropic alumina

s the half-plane material. When η = 0 , the contact stress curve

lants towards the trailing end of contact, i.e. towards s 3 = −1 . The

urve shifts towards the leading end as the friction coefficient gets

arger. The influence upon both of the stress intensity factors is no-

able. For frictionless contact, mode I SIF is negative whereas mode

I SIF is positive. Negativity of the mode I stress intensity factor im-

lies crack closure. As η is increased, mode I SIF also increases and
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Fig. 11. Normalized contact stress distributions for different values of the contact 

zone size to crack length ratio ( c − b ) /a ,η = 0 . 4 , b/a = 0 . 1 . 

Fig. 12. Normalized mixed-mode stress intensity factors as functions of b / a and 

contact zone size to crack length ratio ( c − b ) /a : (a) mode I SIFs; (b) mode II SIFs. 

η = 0 . 4 . 

 

 

 

 

 

 

 

 

t  

i  

 

f  

5

 

b  

a  

p  

o  

t  

i  

t

c  

l  

i  

l  

p  

t  

t

 

c  

n  

t  

f  

t  

i  

l  

f  

c  

c  

d  

c  

c  

g

 

S  

p  

v  

t  

s  

f  

d  

t  

e

R

A  

B  

 

D  

D  

 

D  

 

 

E

H  
becomes completely positive for η = 0 . 6 . Mode II SIF is smaller for

larger friction coefficients; and assumes negative values for certain

combinations of η and b / a . A reversal in the sign of k 2 n points to a

deviation in the path of crack propagation. 

In Figs. 11 and 12 , we present contact stress and mode I and

II stress intensity factors as functions of contact zone size to crack

length ratio ( c − b ) /a and relative stamp location b / a . The base ma-

terial is again plasma sprayed alumina. The variation in ( c − b ) /a

is seen to lead to a slight change in the contact stress magni-
ude. This change is in the form a magnitude rise near the trail-

ng end and a magnitude drop near the leading end for increasing

( c − b ) /a . The influence upon the mixed-mode SIFs is significant

or relatively small values of b / a . Within this zone, an increase in

( c − b ) /a results in a larger mode I SIF and a smaller mode II SIF. 

. Summary and final remarks 

This study puts forward an analytical method, which is capa-

le of tackling the coupled surface crack and contact problem in

n elastic orthotropic medium. The general solution for the cou-

led problem is constructed by superposing the separate solutions

btained for opening and sliding mode crack problems; and con-

act problem. A system of three coupled singular integral equations

s then derived utilizing crack surface and contact zone condi-

ions. The system is solved numerically by means of an expansion–

ollocation technique. Comparisons to the closed-form contact so-

ution of Galin ( Kachanov et al., 2003 ) and the mixed-mode stress

ntensity factors provided by Dag (2001) demonstrate the high

evel of accuracy of the results generated through the proposed

rocedures. Further numerical results are presented to illustrate

he dependences of fracture behavior and contact stress on ma-

erial and geometric properties, and friction coefficient. 

It is shown that each of the parameters modulus ratio, coeffi-

ient of friction, and contact zone size to crack length ratio has a

otable effect on the mode I and II stress intensity factors. For cer-

ain combinations of these quantities, the mode I stress intensity

actor turns out to be negative, which indicates crack closure. Yet,

he results generated in the case of closure will still be applicable

f they are employed in a superposition procedure for a combined

oading that results in a completely open crack. Contact of crack

aces is treated by implementing a different type of procedure. Be-

ause of the nonlinearity stemming from the unknown size of the

ontact zone, this procedure is iterative. Additionally, contact con-

ition needs to be imposed for the crack-contact region. Although

rack face contact is not within the scope of the current study, its

onsideration as future work will provide valuable information re-

arding fracture behavior especially for small friction coefficients. 

The effects of the problem parameters upon the mixed-mode

IFs are pronounced especially when the rigid punch is in close

roximity of the crack plane, i.e. when b / a is small. A small b / a

alue implies a higher degree of coupling between crack and con-

act problems. The method introduced in this article is perfectly

uitable for such configurations since crack-contact coupling is

ully taken into consideration. Thus, the analytical solution proce-

ures presented are expected to prove useful in developing a bet-

er insight into critical and subcritical crack propagation phenom-

na in orthotropic media subjected to contact loading. 
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