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Abstract 

This paper presents an analytical solution of two types of contact between an elastic rod and a 

flat frictionless rigid wall. The first problem deals with large deflections of a rod with one end 

clamped and the other end pushing towards the clamped end by the wall. The second problem 

deals with the deflections of a rod that is pushed between fixed wedges. The solutions of both 

problems are given in terms of Jacobi elliptic functions. The solutions are illustrated using 

several examples, including deformed rod shapes and load-deflection paths.  

Key words. Elasticity, Large deflections, Elastica, Contact problems 

 

1 Introduction 

In this paper, we discuss the large deformation of an isotropic and homogeneous Bernoulli–

Euler rod (Antman 2005) in contact with an inclined frictionless rigid wall(s). We consider 

two cases (Fig 1.). In the first case, one end of the rod is clamped and the other end pushes 

towards the clamped end by the wall. In the second case, the free rod is pushed between fixed 

walls (wedges). We emphasize that the second problem is different from the problem of 

squeezing the free rod between movable walls, that is, it is a special case of the first problem. 

However, if the walls are frictionless, then squeezing of the rod between walls is not possible 

since there is no applied vertical force that will prevent the rod from sliding up the walls. In 

both problems, there may be a point and a line contact between the rod and the wall. 

Therefore, the first problem differs from the classical cantilever problem, and the second 

differs from the well-known three-point bending problem (Frisch-Fay 1962). For possible 
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practical applications of these problems in robotics and neuroscience, see the paper by Goss 

and Chaouki (Goss and Chaouki 2016) and the references given therein.  

 

 

Figure 1. Problem geometry and load.  

The literature on the aforementioned problems is relatively new. The first problem was 

analytically and experimentally discussed by Goss and Chaouki (Goss and Chaouki 2016). 

They presented an analytical solution of the problem in terms of elliptical integrals for the 

range 00 90  . The second problem were treated by Pandit and Srinivasan (Pandit and 

Srinivasan 2015) using numerical methods.  

In this article, we present analytical solutions for both problems in terms of Jacobi elliptic 

functions. We first review the general solution of the large deflection of the elastica (Batista 

2014) and then specialize this solution to the present problems by imposing appropriate 

boundary conditions. In this way, we reduce each problem to algebraic problems. For all 

calculations, we use the program Maple. All calculated values are rounded off to six decimal 

places. 

2 Basic equations 

We consider an initially straight, inextensible elastic cantilever of length  and bending 

stiffness 0EI  subject to an end force R (see Fig 2). In the Cartesian coordinate system Oxy, 

the shape of the deformed base curve of the cantilever is described by the following 

differential equations (Antman 2005, Batista 2014): 

  2cos sin sin
 

            
dx dy d d

ds ds ds ds
 (1) 
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where  x s  and  y s  are the coordinates of the base curve,   s  is the angle between 

tangent to the base curve and the x-axis,   s  is the base curve curvature,   is the angle 

between the x axis and the applied force R, and  0,1s  is the normalized arc length 

parameter measured from the free cantilever end to the clamped cantilever end.   is the load 

parameter defined by 

 
2

2 
R

EI
 (2) 

where EI  is the cantilever bending stiffness. The solution of (1), subject to the condition that 

the clamped cantilever end is at the origin, is given by the following functions (Batista 2014): 

  ˆ ; , , x x s k ,     ˆ ; , , y y s k  (3) 

where 

 

     

     

ˆ ˆˆ ; , , ; , cos ; , sin

ˆ ˆˆ ; , , ; , sin ; , cos

       

       

 

  

x s k s k s k

y s k s k s k

 (4) 

 

 
 

 
       

       

2 2ˆ ; , 1 1 , ,

2
ˆ ; , cn , cn ,

   


   


 
            

 

      

E k
s k s K k k s K k k

K k

k
s k K k k s K k k

  (5) 

k is the elliptic modulus;  K k  and  E k  are the complete elliptic integrals of the first and 

second type, respectively (Carlson 2010); cn, and   are Jacobi elliptic functions (Reinhardt 

and Walker 2010).. The angle   between the tangent to the rod base curve and x-axis, and the 

rod curvature   are given as follows: 

     1ˆ ; , , 2sin sn ,           s k k s K k k  (6) 

  1 ˆ ; ,   s k  (7) 

where     ˆ ; , 2 cn ,    s k k s K k k  and sn is Jacobi elliptic function. The following are 

the cantilever boundary conditions 
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  ˆ 1; , , 0  x k ,     ˆ 1; , , 0  y k ,      ˆ 0; , 0  k  (8) 

  ˆ 1; , , 0   k  (9) 

The conditions in Eq. (8) are automatically satisfied by Eqs. (3) and (7), while the condition in 

Eq. (9) yields the following relation between  , k, and  . 

   sin sn K ,
2


 k k k  (10) 

Thus, the shape of the rod base curve is completely known when two of the three parameters 

 , k, and  are given. In the following discussion, we shall assume that the conditions listed 

below hold for these parameters:   

 0R ,    0 1 k ,        (11) 

The first assumption assures that   is real (see Eq. (2)) and that a unilateral contact exists 

between the rod and the wall. The remaining two assumptions exclude the symmetric solution 

from the consideration (Batista 2014).  

When 0k , we can solve Eq. (10) for . The equation has infinite solutions (modes). 

However, we will consider only the first mode, namely, the only mode that is stable (Batista 

2015). Then, the solution of Eq. (10) is as follows: 

     1 1ˆ , sn sin ,
2


     
    

 
k K k k k      0k   (12) 

When 0k , Eq. (10) implies 0  , which means that the beam is straight and that   is 

indeterminate. On the other hand, when 0  , Eq. (10) is fulfilled if 0k  or if 

  sn , 0  K k k . The first case has already been considered, while the second is satisfied 

by    K k . In the special case that  0 2  K , from Eq. (2), we obtain the well-

known Euler’s critical force EF  that bends the initially straight rod 

 
2 2

4


EF

EI
 (13) 

The solution (12) yields a real value only if the following holds: 
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 1 sin 1
2

 k  (14) 

We now consider the limit cases of this inequality. When 0   and sin
2


k , then from Eq. 

(10), we have 0  . Further, from Eq. (2), we have 0R , while Eq. (3) reduces to

 1 x s  and 0y , which are equations for straight lines. When 0  , because of the 

assumption in Eq. (11)2, we obtain sin
2


 k . From Eq. (10), we obtain  2  K k  for this 

case.  

In the following discussion, we will use the above formulas for solving the present problems. 

Our assumption that the contact between the rod and the wall is frictionless implies that the 

reaction force between the rod and the wall is perpendicular to the wall. In other words, for 

both problems,   is equal to the wall inclination angle. Therefore, for both problems, the 

only unknown left is k, which should be calculated from the specific boundary conditions. 

     

 

Figure 2. Wall problem geometry and load 

3 The cantilever pushed by the wall 

We consider an initially straight cantilever rod of length 0L  that is subjected to pressure 

by the wall (see Fig 2). Two geometrical conditions must be satisfied:  

 The free end point of the rod must satisfy the equation of the wall boundary. 
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  0 cot    y x d  (15) 

where 00  d  is wall displacement, and 2   is the plane inclination angle. 

 The tangent angle    0
ˆ, , 0; , ,     k k  at the point of contact of the rod with the 

wall is bound as shown below. 

  0 , ,
2


    k  (16) 

To fulfil the first condition, we substitute Eq. (3) for 0s  into Eq. (15) and use   from Eq. 

(12). This yields the following expression for wall displacement. 

  0
ˆ ,d d k ,     0k   (17) 

where  

      
 0

0 0

ˆ ,ˆ ˆ ˆ, 1 , , tan 1
cos

 
   


    

k
d k x k y k     (18) 

and 

     0
ˆˆ ˆ, 0; , ,  x k x k k ,        0

ˆˆ ˆ, 0; , ,  y k y k k   (19) 

     0
ˆ ˆ ˆ, 0; , ,    k k k  (20) 

Formula (17) is valid for any k and   for which Eq. (12) for   is valid. From the second 

condition in Eq. (16), we obtain the upper limit of k by using Eq. (6) for  . 

 * sin
4


 k k  (21) 

Note that this upper limit and the condition in Eq. (14) together imply 2  , as already 

assumed in Eq. (15).  

Now, let  

  * 0 *
ˆ d d  (22) 

where 

    * *
ˆ ˆ , d d k

.
 (23) 
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For *d d , the contact between the rod and wall is a point. In the limiting case, when *k k  

and 2    , where 1 , we have  5 22   O  and  * 2 3  d O . This 

limiting value was also obtained by Goss and Chaouki (Goss and Chaouki 2016). 

When *d d , the contact between the rod and wall is a line. In other words, a part of length 

00  b  of the free end of the rod slides over the wall. Therefore, the effective length of the 

beam decreases from 0  to e , whereas the end point of the reduced rod, that is, the elastica 

of the rod, remains tangent to the wall. In this case, the following geometry relations hold (Fig 

2): 

 0 e b   (24) 

  ed d b   (25) 

Furthermore, from Eq. (22), we have the following relation. 

   *
*

0

ˆ    e

e

d d
d   (26) 

From Eqs. (25) and (26), we can express wall displacement as a function of rod free length b 

as follows: 

  * *
ˆ1    

 
d d b d  (27) 

 

 Figure 3. Coontour plot of 0d . The vertical line at 2 2k  represents the limit between 

the rod point and line contact with the wall. For 0  , point contact is possible only if 
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00 2 3 d . For 0.308025 0    , point contact is possible only if 

00 0.543053 d . For 0.308025    , point contact is impossible. 

When   is given, Eqs. (17), (22), and (26) give the displacement d of the wall as a function 

of k and b. When d is an independent parameter, three distinct cases are considered.  

 When *d d , we must solve Eq. (17) for the unknown k to seek solution in the interval 

*sin
2


 k k (Fig 3). 

 When 0d  and 0  , we have a straight line solution with sin
2


k  and 0  , while 

for 0  , the solution is 0k  where   is undetermined.  

 When *d d , then *k k  and *  , while the effective rod length e and rod free 

length b are obtained by using Eqs. (24), (25), and (26) as follows:  

 
 

0

*
ˆ1 





e

d

d
     (28) 

 
 

*
0

*
ˆ1 


  


e

d d
b

d
    (29) 

The coordinates of the deformed rod base curve are calculated by using Eq. (3), where for 

*d d , we have 0 , and for *d d , we have  e . In the last case, the coordinates of 

the end point of the rod are as follows:  

    * * * *
ˆ ˆ0; , , sin 0; , , cos        b e b ex x k b y y k b     (30) 

We now calculate the pushing force F and reaction force R. Once R is known, we can 

calculate F from (Fig 2) 

 cosF R   (31) 

We note that the unilateral contact condition 0R  according to Eq. (31) implies that 0F  

for 2  . Now R is given by Eq. (2). When *d d , then 

  
2

20 ˆ , 
R

k
EI .

   (32) 
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In the limiting case *d d we have 
2

2* 0
*

R

EI
where  

    * * *
ˆ ˆ ,      k

.
 (33) 

When *d d , because 0  decreases to e , we have 
2

2

*
eR

EI
. From the identity 

2
2 2

0

0

 
  

 

e eR R

EI EI
, we obtain the following relation: 

 

2
2

0 0 * 
  
 e

R

EI
 (34) 

Thus, this problem is solved. Note that in the above formulas, 0  play the role of a scale 

factor; hence, in all calculations, we consider 0 1 . 

Examples of calculations based on the above formulas are shown in Fig 4, Fig 5, and Fig 6, 

where the deformed rods for several cases are shown. Some reference numerical values are 

presented in Table 1, Table 2, and Table 3. Note that the calculated value 0.76355EF F  for 

the case with 030   and *d d  (Table 1) agrees exactly with value given by Goss and 

Chaouki (Goss and Chaouki 2016)(Table 1), thus verifying the accuracy of the solution. 

Further, Fig 7 and 8 present load deflection diagrams.  

An interesting case that can be observed in Fig 8 is the case when 0d , and   becomes 

negative. Let    , where 1 , and 2

1 2   k k k  By substituting this expansion into 

Eq. (12), we consider the limit 0   to obtain  1 f k . The value of coefficient 1k  is 

calculated from  ˆ , 0 d k . The convergence of the solution is presented in Table 4. As 

seen from the values in the table, the force needed to bend the rod when the wall is slightly 

negatively inclined is approximately twice the force needed to bend the rod when the wall is 

slightly positively inclined. In other words, this result shows that bending the rod downwards 

(towards negative alpha) is impossible from the initial straight configuration since the force 

needed is higher than the one needed to bend it upwards (towards positive alpha). If we want 

beam to bend downhill then the rod must already be slightly bent, as is well known from 

experience. 
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At the end of this section we conclude that the results for 0   are the same as those given 

by Goss and Chaouki  (Goss and Chaouki 2016) using elliptic integrals. For 0  , we 

analytically confirm that this case can be realized only if a rod is initially slightly bent. In 

addition, for this case, the point of contact is possible only for 00 0.543053 d  and 

00 55.44   . For 055.44   , the point of contact is impossible. 

Table 1. Calculated values for the rod shapes shown in Fig 4 for which 030  . Here, 0x  and 

0y  are the coordinates of the end point of the elastica part of the rod, and 2

02EF EI  is 

Euler critical force. 

0d  k    0  (°) 0 0x  0 0y  0b  EF F  

0.4 0.589338 1.282592 42.220039 0.862807 0.455196 0 0.577388 

0.619918* 2 2  1.474942 60 0.731206 0.608164 0 0.763555 

0.8 2 2  1.474942 60 0.384762 0.320017 0.473798 2.757630 

 * *d d  

Table 2. Calculated values for the rod shapes shown in Fig 5 for which 
030   . Here, 0x  

and 0y  are the coordinates of the end point of the elastica part of the rod, and 2

02EF EI  

is Euler critical force. 

0d  k    0  (°) 0 0x  0 0y  0b  EF F  

0 0.408081 2.338602 78.168710 0.615088 0.666686 0 1.919567 

0.374910* 2 2  2.233208 120 0.174157 0.781038 0 1.750448 

0.6 2 2  2.233208 120 0.111445 0.499792 0.360092 4.274783 

 * *d d   
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Figure 4. Shape of the rod for the case with 030   for various values of d. The dimensons 

corespond to the displacement of the end point of the rod. 

 

 

Figure 5. Rod shapes for the case with 
030    for various values of d. The dimensons 

corespond to the displacement of the end point of the rod. 
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Figure 6. Various beam shapes for 0 0.4d  and different values of  .  

Table 3. Data for the shapes shown in Fig 6 for which 0 0.4d . Here, 0x  and 0y  are the 

coordinates of the end point of the elastica part of the rod, and 2

02EF EI  is Euler critical 

force. 

  (°) k    0  (°) 0 0x  0 0y  0b  EF F  

-60 2 2  2.680093 150 -0.021200 0.358650 0.470187 5.185423 

-30 2 2  2.233208 120 0.167167 0.749689 0.040138 1.899903 

0 0.614552 1.762346 75.838767 0.600000 0.697425 0 1.258759 

30 0.589338 1.282592 42.220039 0.862807 0.455196 0 0.577388 

60 0.634302 0.822616 18.736438 0.971805 0.214661 0 0.137128 

 

Table 4. Convergence of the solution for 0d  and 0   

No. of terms 1k    EF F  

4 0.803068 2.233634 2.022015 

8 0.799407 2.245891 2.044267 

12 0.799240 2.246632 2.045617 

16 0.799226 2.246697 2.045735 

20 0.799225 2.246704 2.045748 
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Figure 7. Load deflection diagram of the rod for various inclination angles of the wall. The 

red (bold) line is the limit between point contact and line contact of the rod with the wall. The 

limit is maximum for 0 0.336546d  and 
034.184112    where 1.757125EF F .  

 

Figure 8. Load deflection diagram of the rod for various wall displacements. The red (bold) 

line is the limit between point contact and line contact of the rod with the wall. The limit is 

maximum at 0.189912     for which 1.757125EF F  and 0 0.336546d . 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

25/11/2013 17:29 
 

14 
 

4 Rod pushing between fixed wedges 

We now consider the problem of a rod of length 02L  pushed between fixed frictionless 

wedges with a given applied force F (Fig 9). We assume that the problem is symmetric so that 

we can use the cantilever solution given in the second section. 

 

Figure 9. Wedge problem geometry and load  

The two geometric constraints of the problem are as follows: 

 The contact point must be on the wedge boundary 

  0 cot y x , 0 2    (35) 

 The contact angle is limited as shown below: 

 0 2     (36) 

When the wedges form a closed region, that is, if 0 0L , where 0L  is the distance between 

the ends of the wedges at the bottom (see Fig 1), the maximum possible deflection is as 

follows:  

 max 0 cotd   (37) 

By using condition (35) and Fig 9, we obtain the vertical displacement of the midpoint of the 

rod 

  0 0 0 cot  d y x   (38) 
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where 0x  and 0y  are the coordinates of the contact point of the rod. If we substitute Eq. (3) 

for 0s  in this relation and use   from Eq. (12), we obtain the following relation: 

  0
ˆ ,d d k   (39) 

where  

       
 0

0 0

ˆ ,ˆ ˆ ˆ, , 1 , cot cot
sin

 
    


    

k
d k y k x k   (40) 

and  0
ˆ ,x k ,  0

ˆ ,y k , and  0
ˆ , k  are given by Eqs. (19) and (20). As in the case of the 

previous problem, condition (36) implies a point contact between the rod and the wedge for 

*k k where *k  is given by Eq. (21). When *k k  we have  

  * 0 *
ˆ d d   (41) 

where    * *
ˆ ˆ , d d k . We note that * maxd d . For *d d , the contact between the rod and 

wall is a line, and the free length of the rod reduces from 0  to e . From the geometry, we 

have relations 

 0 e b   (42) 

  0 cot  e ed d   (43) 

and from Eq. (41), we have 

   *
*

0

ˆ   e

e

d d
d . (44) 

From Eqs. (42), (43), and (44) we obtain 

   * *
ˆcot   d d b d . (45) 

Equations (39), (41), and (45) provide the displacement d of the midpoint of the rod as a 

function of k and b when   is given. When d is an independent parameter, then similar to the 

previous problem, we have three cases. 
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 When *0  d d , we must solve Eq. (39) for an unknown k to seek the solution in the 

interval 
*sin

2


 k k .  

 When 0d , the solution is sin
2


k with 0  , which means that the rod remains 

straight.  

 When *d d , then *k k , and *  , while the effective rod length e and free length 

of the rod b are given as shown below, using Eqs. (42), (43), and (44).  

 
 

0

*

cot

ˆcot



 





e

d

d
  (46) 

 
 

*

*
ˆcot 






d d
b

d
  (47) 

The shape of the rod is calculated as follows using Eq. (3): 

    ˆ ˆ; , , ; , ,     x x s k y y s k d   (48) 

where for *d d , we have 0 , and for *d d , we have  e . The coordinates of the end 

point of the rod are given as follows: 

    * * * *
ˆ ˆ0; , , sin 0; , , cos         b e b ex x k b y y k b d ,   (49) 

Now we will calculate the pushing force F. Owing to the assumption that the contact is 

frictionless, the reaction force R at the contact point is based on static equilibrium (Batista 

2015). 

 
2sin


F

R   (50) 

From Eq. (2), we have  
2

20 ˆ , 
R

k
EI

. Substituting this into Eq. (50) and considering 

02L , we obtain the following: 

  
2

2
ˆ8 , sin  

FL
k

EI
  (51) 
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When *d d  then, since 0  shrinks to e , we have 
2

2

*
eR

EI
 where *  is given by Eq. (33). 

From the identity 

2
2 2

2 0
*

0


 

   
 

e eR R

EI EI
we then obtain the following: 

 

2
2

0 *8 sin



 

  
 e

FL

EI
  (52) 

Thus, all the unknowns of the problem become determinate. 

Examples of calculations using the above formulas are shown in Fig 10 and Fig 11, and some 

numerical values are presented in Table 5.  

Table 5. Data for the shapes shown in Fig 11 for which 
030  . Here, 0x  and 0y  are the 

coordinates of the end point of the elastica part of the rod, and 22EF EI L  is Euler critical 

force. 

0d  k    0  (°) 0 0x  0 0y  0b  EF F  

0.5 0.517894 1.166182 32.328240 0.918154 -0.141762 0 2.204717 

1.073729* 2 2  1.474942 60 0.731206 -0.465564 0 3.526711 

1.5 2 2  1.474942 60 0.257742 -1.285629 0.647512 28.384448 

 * *d d   
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Figure 10. Rod shapes for various midpoint deflections when 
030  . The dimensons 

correspond to the displacement of the end point of the rod. 

 

 

Figure 11. Load deflection diagram for the wedge problem. The red (bold) line is the limit 

between the point and line contact. The limit is maximum when 0 0.763310d  and 

039.757754   for which 3.733578EF F . 

If the wedges do not form a closed region, that is, if 00  L L , then the rod will slip through 

between wedges when it undergoes sufficient displacement. This situation may arise in two 

cases. In the first case, the rod will slip through from the wedges when its end points reach the 

bottom of the wedges, that is, when 0 0 2x L  (see Fig 12, shape 2). Using Eq. (19), the 

following equation is obtained from this condition. 

 

   0
0 0

ˆ , 
L

x k
L

  (53) 

which can be numerically solved for 0k . Once 0k  is known, using Eq. (39), we can calculate 

the deflection  0 0 0
ˆ ,d d k  and the corresponding pushing force by using Eq. (51). If 

0 *k k , 0 *d d , and hence, the rod maintains point contact with the wedges before it pops 

out. If 0 *k k , then the rod maintains line contact with the wedges, and the end points of the 
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elastica part of the rod will reach the bottom of the wedges when the following condition is 

satisfied: 

 

   0
0 *

0

ˆ , e L
x k

L
  (54) 

Thus, we can calculate the corresponding midpoint displacement 0d  by using Eqs. (45), (46), 

and (47): 

 

 
 

 
*0

0 0

0 *

ˆcot
cot

ˆ ,

 




  
   

   

dL
d

L x k
  (55) 

This limit situation is shown in Fig 13, shape 1. When the displacement increases further, that 

is, 0d d , a three-point-bending problem arises (Batista 2015); then, the inclination angle of 

the end point of the rod 02      decreases from   to zero. In other words, the line 

contact between the rod and the wedges is lost, and a point contact is formed at the bottom of 

the wedges. The unknown in the three-point-bending problem is the effective rod length, 

which is given using Eq. (54) as follows: 

 

 
 

0
0

0 *

1

ˆ ,

 
   

  
e

L

x k L
  (56) 

Alternatively, we can express the three-point bending problem in terms of the deflection of 

the midpoint of the rod the end point of the elastic part of the rod is at the bottom of the 

wedges, the following relation holds: 

   0
0 * 0

ˆ , 1 cot 
 

     
 

e

L
y k d

L
  (57) 

This can be numerically solved for   when d is given.  

 

Now, the rod will slip through between the wedges when 0  , i.e. when 0R  or when 

1 e ( see Fig 13, shape 2). When 0   the maximal displacement is expressed as follows 

using Eq. (57). 
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 
 

0 *0
max 0

0 *

ˆ ,0
cot cot

ˆ ,0
 

  
    

   

y kL
d

L x k
  (58) 

When 1 e , then min 0   and the maximum displacement is given using Eq. (57): 

   0
max 0 0 * min

ˆ , 1 cot 
  

    
  

L
d y k

L
  (59) 

where min 0   is numerically calculated using the following expression: 

  0 * min 0
ˆ , x k L L   (60) 

Condition 1 e  will be attained before condition 0   if the hole is sufficiently large, i.e. if 

 0 0 *
ˆ ,0 0.456947 L L x k . The difference between these conditions can be observed in Fig 

12 and Fig 13, which show the rod shapes for 0d d  and maxd d . 

Table 6. Data for the rod shapes shown in Fig 12 for which 
030   and 0 2L L . 

Shape 0d  k    0  (°) 0 0x  0 0y  0b  EF F  

1* 1.281889 2 2  1.474942 60 0.5 -0.866025 0.316198 7.542402 

2** 1.614345 2 2  1.799079 85.546027 0.5 -0.866025 0 0.547756 

* 0d d   ** maxd d  
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Table 12. Deformed rod shapes for
030   and 0 2L L .  

 

 

Table 13. Deformed rod shapes for
030   and 0 4L L .  

Table 7. Data for rod shapes shown in Fig 13 for which 
030   and 0 4L L . 

Shape 0d  k    
0  

(°) 
0 0x  0 0y  0b  EF F  

1* 1.506970 2 2

 
1.474942 60 0.25 -1.299038 0.658099 30.169606 

2** 1.716352 
2 2

 
1.854075 90 0.25 -1.299038 0.452890 0 

* 0d d   ** maxd d  

 

Conclusions 

In this paper, we show that the general solution for the Bernoulli–Euler rod can be used to 

obtain solutions for two types of the rod contact problems. For the case in which a cantilever 

is pushed by the wall, the results agree well with those given in literature (Goss and Chaouki 

2016). The present solution, however, covers the wider range of 090 90   . To the best of 

our knowledge, the analytical results for the case of a rod being pushed between fixed wedges 

are new. 
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As mentioned in the Introduction, squeezing of the free rod between frictionless walls was not 

possible because an applied force was needed to prevent the rod from popping out of the 

walls. Thus, an interesting and open question would be how to treat such squeezing between 

frictional walls. 
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