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Abstract

Within the elasticity formulation the most general displacement field for hygrothermal problems of long laminated com-
posite plates is presented. The equivalent single-layer theories are then employed to determine the global deformation
parameters appearing in the displacement fields of general cross-ply, symmetric, and antisymmetric angle-ply laminates
under thermal and hygroscopic loadings. Reddy’s layerwise theory is subsequently used to determine the local deformation
parameters of various displacement fields. An elasticity solution is also developed in order to validate the efficiency and
accuracy of the layerwise theory in predicting the interlaminar normal and shear stress distributions. Finally, various
numerical results are presented for edge-effect problems of several cross-ply, symmetric, and antisymmetric angle-ply lam-
inates subjected to uniform hygrothermal loads. All results indicate high stress gradients of interlaminar normal and shear
stresses near the edges of laminates.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the ever-increasing applications of laminated composites in severe environmental conditions hygro-
thermal behavior of such laminates has attracted considerable attention. The interlaminar normal and shear
stresses, on the other hand, are believed to play a significant role in prediction of dominant cause of failure in
composite laminates. These stresses that exhibit highly localized concentration near the edges of the laminate
are the basis for damage in the form of free-edge delamination and the subsequent delamination growth in the
interior region of laminates, leading to failure at loads below those corresponding to in plane failure. There-
fore among the extensive research areas in the analysis of fiber-reinforced composites, the issue of interlam-
inar-edge stresses has been subject of tremendous investigations and various theoretical and experimental
methods are employed to study the edge-effect problem of composite laminates. Since, the present study is
devoted to thermal and hygroscopic problems, in the proceeding only the pertinent works will be referred.
A relatively comprehensive review of the various techniques of evaluation of interlaminar stresses that have
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appeared in the literature is available in the survey paper by Kant and Swaminathan (2000). Examination of
the literature survey reveals that the first paper considering the thermal loading in the edge-effect problem of
composite laminates is developed by Pagano (1974). He utilized a higher-order shear deformation theory
(HSDT) to formulate the edge-effect problem of symmetric balanced laminates subjected to a constant axial
strain and a constant temperature change. Based on the formulation presented by Pipes and Pagano (1970),
Wang and Crossman (1977a,b) studied the free-edge stresses in symmetric balanced laminates under a uniform
thermal load using a finite element procedure. An approximate elasticity solution was presented by Wang and
Choi (1982) to determine the boundary-layer stresses due to hygroscopic effects. Wang and Chou (1989)
obtained the transient interlaminar thermal stresses in symmetric balanced laminate by means of a zeroth-
order perturbation analysis of the equilibrium equations. Webber and Morton (1993) and Morton and Web-
ber (1993) by following a similar approach to that used by Kassapoglou and Lagace (1986, 1987), attempted to
calculate the interlaminar free-edge stress distribution in symmetric laminates subjected to thermal loads. By
employing the complementary energy approach together with polynomial expansion of stress functions, Yin
(1997) proposed a variational method to evaluate the thermal interlaminar stresses. Also Kim and Atlury
(1995) developed an stress-based variational method to obtain interlaminar stresses under combined
thermo-mechanical loading. In an effort to determine the interlaminar stresses, an iterative technique in con-
junction with the extended Kantorovich method is presented by Cho and Kim (2000) for thermal and mechan-
ical loads. Rohwer et al. (2001) investigated the transverse shear and normal stresses in composite laminates
subjected to thermal loading by using the extended two-dimensional method and the first-order shear defor-
mation plate theory (FSDT). A two-dimensional global higher-order deformation theory was proposed by
Matsunaga (2004) for the calculation of out-of-plane stresses in cross-ply laminates subjected to thermal load-
ing. Recently, a comprehensive examination of interlaminar stresses in general cross-ply laminates has been
presented by Tahani and Nosier (2003, 2004). They used a layerwise theory to predict free-edge stresses in
finite general cross-ply laminates under various mechanical, thermal, and hygroscopic loadings.

Despite the intensive investigations on the analysis of interlaminar stresses in composite laminates, docu-
mented in the literature during the past three decades, few publications focused on the study of such stresses
under hygrothermal loading conditions. In addition, for the case of hygrothermal loading, reliable numerical
results are limited to cross-ply and symmetric balanced laminates. The purpose of the present work, however,
is to analyze the interlaminar stresses in symmetric and unsymmetric cross-ply laminates, symmetric lami-
nates, and antisymmetric angle-ply laminates subjected to uniform thermal and/or hygroscopic loadings.
Towards this goal, both equivalent single-layer (ESL) and layerwise theories (LWT) are utilized. Each of
the ESL and layerwise models has its advantages and disadvantages in terms of solution accuracy, solution
economy, and simplicity. The ESL models which follow from an assumed global displacement field lead to
the definition of effective overall rigidities and are incapable of providing precise calculation of local 3-D stress
field. On the other hand, the layerwise models which possess the ability of accurately describing the three-
dimensional effects, such as free-edge stresses, are computationally expensive. Thus, it is attempted here to
introduce a solution scheme which achieves maximum solution accuracy with minimal solution cost by
employing an efficient analytical procedure. This, on the other hand, is done by utilizing an appropriate
ESL theory to determine the unknown constant parameters appearing in various laminates displacement
fields. Interlaminar stresses are then determined by using an analysis based on the layerwise theory of Reddy.
Lastly, an analytical elasticity solution is presented for a specific set of boundary and loading conditions in
order to assess the effectiveness and validity of the present developments.
2. Theoretical formulation

The laminate considered in the present investigation is of thickness h, width 2b, and assumed to be long in
the x-direction so that the strain components are functions of y and z only (Fig. 1). It is further assumed that
the mechanical loads (if present) are applied at x = �a and x = a only. Also the thermal and hygrothermal
loadings are considered to be uniform everywhere in the laminate. Under these conditions the most general
form of the displacement field within the kth layer of the laminate has been shown to be as follows (Nosier
and Bahrami, 2007; Lekhnitskii, 1981):



Fig. 1. Laminate geometry and coordinate system.
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uðkÞ1 ðx; y; zÞ ¼ B4xyþ B6xzþ B2xþ uðkÞðy; zÞ

uðkÞ2 ðx; y; zÞ ¼ �B1xzþ B3x� 1

2
B4x2 þ vðkÞðy; zÞ

uðkÞ3 ðx; y; zÞ ¼ B1xyþ B5x� 1

2
B6x2 þ wðkÞðy; zÞ

ð1Þ
where, uðkÞ1 ðx; y; zÞ, uðkÞ2 ðx; y; zÞ, and uðkÞ3 ðx; y; zÞ represent the displacement components in the x-, y-, and z-direc-
tions, respectively, of a material point initially located at (x,y,z) in the kth lamina of the laminate. It is next
noted that as long as the loading conditions at x = �a and x = a are similar (so that the laminate in Fig. 1 is
globally in equilibrium), the following conditions will hold:
uðkÞ1 ðx; y; zÞ ¼ �uðkÞ1 ð�x;�y; zÞ
uðkÞ2 ðx; y; zÞ ¼ �uðkÞ2 ð�x;�y; zÞ
uðkÞ3 ðx; y; zÞ ¼ uðkÞ3 ð�x;�y; zÞ:

ð2Þ
Upon imposing these restrictions on (1) it is readily seen that the constants B4 and B5 must vanish and the
displacement field in (1) is, therefore, reduced to what follows:
uðkÞ1 ðx; y; zÞ ¼ B2xþ B6xzþ uðkÞðy; zÞ ð3aÞ

uðkÞ2 ðx; y; zÞ ¼ �B1xzþ B3xþ vðkÞðy; zÞ ð3bÞ

uðkÞ3 ðx; y; zÞ ¼ B1xy� 1
2
B6x2 þ wðkÞðy; zÞ: ð3cÞ
Furthermore, by replacing u(k)(y,z) appearing in (3a) by �B3 y + u(k)(y,z), it becomes apparent that the terms
involving B3 in (3) will generate no strains and, therefore, can be omitted (these terms, in fact, will correspond
to an infinitesimal rotation of the laminate about the z-axis in Fig. 1). Thus, the most general form of an arbi-
trary laminated composite laminate is given as follows:
uðkÞ1 ðx; y; zÞ ¼ B2xþ B6xzþ uðkÞðy; zÞ ð4aÞ

uðkÞ2 ðx; y; zÞ ¼ �B1xzþ vðkÞðy; zÞ ð4bÞ

uðkÞ3 ðx; y; zÞ ¼ B1xy� 1
2
B6x2 þ wðkÞðy; zÞ: ð4cÞ
The displacement field in (4) may be used, in principle, for calculating the stress field in any composite lam-
inate subjected to arbitrary combinations of self-equilibrating mechanical and uniform hygrothermal loads. In
the present study, however, our attention is focused on symmetric and unsymmetric cross-ply laminates, sym-
metric laminates, and antisymmetric angle-ply laminates subjected to uniform hygroscopic and thermal
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loadings. Since the solutions developed here in the present study significantly depend on the lamination
scheme, each of the aforementioned laminates is examined separately.

2.1. Cross-ply laminates

For symmetric and unsymmetric cross-ply laminates (e.g., see Jones, 1998) subjected to uniform hygrother-
mal loadings, based on physical grounds, the following restrictions will, furthermore, hold (see Fig. 1):
uðkÞ1 ðx; y; zÞ ¼ �uðkÞ1 ð�x; y; zÞ ð5aÞ

uðkÞ2 ðx; y; zÞ ¼ uðkÞ2 ð�x; y; zÞ: ð5bÞ

Upon imposing (5a) on (4a) it is concluded that u(k)(y,z) = 0. Also from (5b) and (4b) it is concluded that
B1 = 0. Thus, for cross-ply laminates the most general form of the displacement field is given as follows:
uðkÞ1 ðx; y; zÞ ¼ B2xþ B6xz

uðkÞ2 ðx; y; zÞ ¼ vðkÞðy; zÞ

uðkÞ3 ðx; y; zÞ ¼ �
1

2
B6x2 þ wðkÞðy; zÞ:

ð6Þ
It is to be noted that for symmetric cross-ply laminates it can readily be shown that (see Eqs. (8) below) B6 = 0.

2.2. Symmetric laminates

For symmetrically laminated composite plates (e.g., see Jones, 1998) under uniform hygrothermal loadings
the deformational behavior of the material points within the laminates remains the same with respect to the
middle surface. Thus, the following restrictions must hold with respect to the middle surface of any symmetric
laminate with N layers:
uðkÞ1 ðx; y; zÞ ¼ uðN�kþ1Þ
1 ðx; y;�zÞ ð7aÞ

uðkÞ2 ðx; y; zÞ ¼ uðN�kþ1Þ
2 ðx; y;�zÞ: ð7bÞ
From (7a) and (4a), it is concluded that B6 = 0. Also from (7b) and (4b) it is concluded that B1 = 0. Therefore,
for symmetric laminates the most general form of the displacement field is given as:
uðkÞ1 ðx; y; zÞ ¼ B2xþ uðkÞðy; zÞ
uðkÞ2 ðx; y; zÞ ¼ vðkÞðy; zÞ
uðkÞ3 ðx; y; zÞ ¼ wðkÞðy; zÞ:

ð8Þ
2.3. Antisymmetric angle-ply laminates

For antisymmetric angle-ply laminates with N layers (e.g., see Jones, 1998) subjected to uniform hygrother-
mal loadings the following condition must hold (see also Nosier and Bahrami, 2007):
uðkÞ1 ðx; y; zÞ ¼ uðN�kþ1Þ
1 ðx;�y;�zÞ: ð9Þ
From (9) and (4a) it is concluded that B6 = 0 and, therefore, the most general displacement field for such lam-
inates is given as follows:
uðkÞ1 ðx; y; zÞ ¼ B2xþ uðkÞðy; zÞ
uðkÞ2 ðx; y; zÞ ¼ �B1xzþ vðkÞðy; zÞ
uðkÞ3 ðx; y; zÞ ¼ B1xyþ wðkÞðy; zÞ:

ð10Þ
The displacement fields in (6), (8), and (10) can be represented in one place as:
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uðkÞ1 ðx; y; zÞ ¼ B2xþ dCB6xzþ dASuðkÞðy; zÞ
uðkÞ2 ðx; y; zÞ ¼ �dAB1xzþ vðkÞðy; zÞ

uðkÞ3 ðx; y; zÞ ¼ dAB1xy� 1

2
dCB6x2 þ wðkÞðy; zÞ

ð11Þ
where dA = dAS = 0 and dC = 1 for unsymmetric cross-ply laminates, dA = dC = 0 and dAS = 1 for symmetric
laminates, and dA = dAS = 1 and dC = 0 for antisymmetric angle-ply laminates. It is to be noted that the terms
involving the constant parameters B1, B2, and B6 describe the global deformations within the laminates
whereas the functions u(k)(y,z), v(k)(y,z), and w(k)(y,z) correspond to the local deformations of kth layer within
the laminate.

2.4. Equivalent single-layer theories

It is well known by now that ESL theories are adequate in predicting the global responses of the composite
laminates. On the other hand, these theories are simpler and computationally less time consuming than the
layerwise theories. The objective of the present section is to present the simplest ESL theory which, on the
other hand, will provide sufficiently accurate results for the unknown constant parameters B1, B2, and B6

appearing in (11). For unsymmetric cross-ply and antisymmetric angle-ply laminates numerical studies con-
ducted by the authors indicate the first-order shear deformation theory of plates (FSDT), also known as
Mindlin–Reissner plate theory, is fairly accurate in predicting these parameters. For symmetric laminates,
however, an improved first-order theory must be developed and used for determining the appropriate constant
parameter (i.e., B2) appearing in the displacement field (11).

In FSDT the components of the displacement vector at a material point in the laminate are expressed in the
following form (Reddy, 2003):
u1ðx; y; zÞ ¼ uðx; yÞ þ zwxðx; yÞ
u2ðx; y; zÞ ¼ vðx; yÞ þ zwyðx; yÞ
u3ðx; y; zÞ ¼ wðx; yÞ

ð12Þ
where u, v, and w denote the displacements of a point located on the middle plane of the laminate. Also wx and
wy are the rotations of transverse normals about the y- and x-axes, respectively. The displacement field in (6)
indicates that for hygrothermal problems of cross-ply laminates the displacement field within FSDT (i.e., Eq.
(12)) must take the following simpler form:
u1ðx; y; zÞ ¼ B2xþ B6xz

u2ðx; y; zÞ ¼ V ðyÞ þ zWyðyÞ
u3ðx; y; zÞ ¼ �1

2
B6x2 þ W ðyÞ

ð13Þ
with B6 being equal to zero when the cross-ply laminate is symmetric. Similarly, based on the displacement
field in (10), it is concluded that for hygrothermal problems of antisymmetric angle-ply laminates the displace-
ment field within FSDT must take the following simpler form:
u1ðx; y; zÞ ¼ B2xþ UðyÞ þ zWxðyÞ
u2ðx; y; zÞ ¼ �B1xzþ V ðyÞ þ zWyðyÞ
u3ðx; y; zÞ ¼ B1xyþ W ðyÞ:

ð14Þ
As it is pointed out earlier, for symmetric laminates FSDT is incapable of accurately determining the unknown
parameter B2 appearing in (8). This is attributed to the fact that, when such laminates are subjected to uniform
hygrothermal loads, the unknown functions wx, wy, and w vanish and the remaining terms in (12) will not be
adequate for accurate determination of B2. On the other hand, in symmetric laminates under hygrothermal
loadings the displacement components u1, u2 must be even functions of thickness coordinate z whereas u3 must
be an odd function of z. For such laminates it is found that a more accurate result for B2 may be found by
introducing the following displacement field:
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u1ðx; y; zÞ ¼ uðx; yÞ þ jzj~wxðx; yÞ
u2ðx; y; zÞ ¼ vðx; yÞ þ jzj~wyðx; yÞ
u3ðx; y; zÞ ¼ zwzðx; yÞ:

ð15Þ
Numerical studies reveal, furthermore, that the thickness stretching term (i.e., zwz) introduced in (15) has a
negligible effect on the accuracy of B2 and, therefore, can be omitted when symmetric laminates are subjected
to uniform hygrothermal loadings. Based on the displacement field in (8), it is, thus, concluded that the sim-
plest appropriate displacement field for symmetric laminates is given as follows:
u1ðx; y; zÞ ¼ B2xþ UðyÞ þ jzj ~WxðyÞ
u2ðx; y; zÞ ¼ V ðyÞ þ jzj ~WyðyÞ
u3ðx; y; zÞ ¼ 0:

ð16Þ
The theory that will be developed here using (16) will be referred to as the improved first-order shear defor-
mation plate theory (IFSDT). It remains to find and, thereafter, solve the equilibrium equations correspond-
ing to the displacement fields in Eqs. (13), (14), and (16) in order to determine the constant parameters existing
in these displacement fields. For brevity, however, here the detail of the procedure is demonstrated for the dis-
placement field in (16) only and the results corresponding to the displacement fields in (13) and (14) are sum-
marized. By using the displacement field (16) in the principle of minimum total potential energy (Fung and
Tong, 2001) and treating the constant B2 as an unknown parameter five equilibrium equations are obtained
which may be presented as follows:
dU : N 0xy ¼ 0 ð17aÞ

dV : N 0y ¼ 0 ð17bÞ

d ~Wx : ~Qx � ~M 0
xy ¼ 0 ð17cÞ

d ~Wy : ~Qy � ~M 0
y ¼ 0 ð17dÞ

dB2 :

Z b

�b
Nx dy ¼ 0 ð18Þ
where a prime indicates an ordinary differentiation with respect to variable y and the stress and moment resul-
tants appearing in (17) and (18) are defined as follows:
ðN x;Ny ;N xyÞ ¼
Z h=2

�h=2

ðrx; ry ; rxyÞdz; ð~Qx; ~QyÞ ¼
Z h=2

�h=2

sgnðzÞðrxz; ryzÞdz

ð ~My ; ~MxyÞ ¼
Z h=2

�h=2

jzjðry ; rxyÞdz ð19aÞ
with
sgnðzÞ ¼
�1 for z < 0

1 for z > 0:

�
ð19bÞ
Upon substitution of the displacement field (16) into Eq. (19a), through the linear strain-displacement rela-
tions of elasticity and the plane-stress constitutive law (Herakovich, 1998) of a lamina, the stress and moment
resultants may be expressed as:
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N x

N y

N xy

~My

~Mxy

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

A16 A12
~B16

~B12 A11

A26 A22
~B26

~B22 A12

A66 A26
~B66

~B26 A16

~B26
~B22 D26 D22

~B12

~B66
~B26 D66 D26

~B16

2
6666664

3
7777775

U 0

V 0

~W0x
~W0y
B2

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
�

N T
x

N T
y

N T
xy

~MT
y

~MT
xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
�

NH
x

NH
y

NH
xy

~MH
y

~MH
xy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð20aÞ
and
~Qy

~Qx

( )
¼ k2 A44 A45

A45 A55

� � ~Wy

~Wx

( )
ð20bÞ
where the laminate rigidities Aij, ~Bij, and Dij are defined as:
ðAij; ~Bij;DijÞ ¼
Z h=2

�h=2

�Qijð1; jzj; z2Þdz ð21Þ
with �Qij being the transformed reduced stiffness (Herakovich, 1998) of an orthotropic lamina. Also NT, ~MT are
referred to as the thermal resultants and defined as:
ðNT
x ;N

T
y ;N

T
xyÞ ¼

Z h=2

�h=2

h
ð�Q11; �Q12; �Q16Þax þ ð�Q12; �Q22; �Q26Þay þ ð�Q16; �Q26; �Q66Þaxy

i
DT dz ð22aÞ

ð ~MT
y ;

~MT
xyÞ ¼

Z h=2

�h=2

h
ð�Q12; �Q16Þax þ ð�Q22; �Q26Þay þ ð�Q26; �Q66Þaxy

i
DT jzjdz ð22bÞ
where DT denotes the temperature change and ax, ay, and axy denote the transformed coefficients of thermal
expansions (Herakovich, 1998). The hygroscopic resultants are, similarly, defined as:
ðNH
x ;N

H
y ;N

H
xyÞ ¼

Z h=2

�h=2

h
ð�Q11; �Q12; �Q16Þbx þ ð�Q12; �Q22; �Q26Þby þ ð�Q16; �Q26; �Q66Þbxy

i
DM dz ð23aÞ

ð ~MH
y ;

~MH
xyÞ ¼

Z h=2

�h=2

h
ð�Q12; �Q16Þbx þ ð�Q22; �Q26Þby þ ð�Q26; �Q66Þbxy

i
DM jzjdz: ð23bÞ
In Eqs. (23), DM is the percent moisture (by weight) absorbed by each layer in the laminate and bx, by, and bxy

indicate the transformed coefficients of hygroscopic expansions (Herakovich, 1998). Also in (20b) the constant
k2 is called the shear correction factor which is often introduced for in a first-order theory to modify the lam-
inate transverse shear rigidities.

For free edges of the laminate at y = ±b according to the principle of minimum total potential energy the
following traction-free boundary conditions must be imposed:
Ny ¼ Nxy ¼ 0 at y ¼ �b ð24aÞ
and
~Mxy ¼ ~My ¼ 0 at y ¼ �b: ð24bÞ
Integrating the equilibrium equations in (17a) and (17b) and imposing the boundary conditions in (24a) yield:
NyðyÞ ¼ NxyðyÞ ¼ 0: ð25Þ
These conditions are used to express U 0 and V 0 appearing in (20a) in terms of ~Wx and ~Wy , and B2. This way the
resultants Nx, ~My , and ~Mxy are all expressed in terms of ~Wx and ~Wy , and B2. Finally, upon substitution of ~Mxy

and ~My , and (20b) into the equilibrium equations (17c) and (17d), the following results are obtained:
d ~Wx : �D66
~W00x � k2A55

~Wx þ �D26
~W00y � k2A45

~Wy ¼ 0 ð26aÞ

d ~Wy : �D26
~W00x � k2A45

~Wx þ �D22
~W00y � k2A44

~Wy ¼ 0 ð26bÞ
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with the coefficients �D22, �D26, and �D66 being displayed in Appendix A. Upon imposing the boundary conditions
in (24b) on the general solution of (26), the generalized displacement functions ~Wx and ~Wy are obtained in
terms of the unknown constant B2 which, on the other hand, may be presented as follows:
~WxðyÞ ¼
X2

j¼1

Aj sinhðkjyÞ; ~WyðyÞ ¼
X2

j¼1

�DjAj sinhðkjyÞ ð27Þ
where the coefficients Aj and �Dj ðj ¼ 1; 2Þ are given as:
A1 ¼ d1B2 þ mT
y þ mH

y ð28aÞ

A2 ¼ d2B2 þ mT
xy þ mH

xy ð28bÞ

�Dj ¼ �
�D66k

2
j � k2A55

�D26k
2
j � k2A45

ðj ¼ 1; 2Þ: ð28cÞ
The constant parameters appearing in (28a) and (28b) are presented in Appendix A. In addition, k2
j (j = 1,2)

appearing in (28c) are the roots of the following characteristic equation (associated with Eqs. (26)):
ðk2 �D66 � k2A55Þðk2 �D22 � k2A44Þ � ðk2 �D26 � k2A45Þ2 ¼ 0: ð29Þ
Finally, upon substituting (27) into the stress resultant Nx and the subsequent result into the global equilib-
rium equation (18), the constant parameter B2 is determined which, on the other hand, may be presented as
follows:
B2 ¼
1

ĥ
ðnT

x þ nH
x Þ ð30Þ
where the expressions for ĥ, nT
x , and nH

x are also listed in Appendix A.
It is remarked earlier that a procedure similar to that outlined here for symmetric laminates may be

employed to determine the unknown parameters appearing in the displacement fields of unsymmetric cross-
ply and antisymmetric angle-ply laminates. For brevity, however, only the appropriate results are presented
here. For cross-ply laminates the constants B2 and B6 appearing in (13) are found to be as follows:
B2 ¼
1

h1h4 � h2h3

h4 nT
x þ nH

x

� �
� h2 mT

x þ mH
x

� �� �
ð31aÞ

B6 ¼
1

h1h4 � h2h3

h1 mT
x þ mH

x

� �
� h3 nT

x þ nH
x

� �� �
: ð31bÞ
The expressions for the constant parameters appearing in (31) are for clarity displayed in Appendix B. For
antisymmetric angle-ply laminates the constants parameters B1 and B2 appearing in the displacement field
(14) are found to be as follows:
B1 ¼
1

h1h4 � h2h3

h4 nT
x þ nH

x

� �
� h2 mT

xy þ mH
xy

	 
h i
ð32aÞ

B2 ¼
1

h1h4 � h2h3

h1 mT
xy þ mH

xy

	 

� h3 nT

x þ nH
x

� �h i
: ð32bÞ
The constant parameters in (32) are listed in Appendix C.

2.5. Layerwise laminated plate theory of Reddy

Due to existence of local high stress gradient and the three-dimensional nature of the boundary-layer phe-
nomenon, the interlaminar stresses in the boundary-layer regions can not be computed accurately by the ESL
theories. Thus, Reddy’s layerwise theory that is capable of modeling localized three-dimensional effects is uti-
lized here to carry out the hygrothermal interlaminar stress analysis in laminates with free edges. The theory
assumes that the displacement components of a generic point in the laminate are given by (Nosier et al., 1993):
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u1ðx; y; zÞ ¼ ukðx; yÞUkðzÞ
u2ðx; y; zÞ ¼ vkðx; yÞUkðzÞ k ¼ 1; 2; . . . ;Nþ 1

u3ðx; y; zÞ ¼ wkðx; yÞUkðzÞ
ð33Þ
with k being a dummy index indicating summation from 1 to N + 1. In (33) u1, u2, and u3 denote the displace-
ment components in the x-, y-, and z-directions, respectively, of a material point located at (x,y,z) in the unde-
formed state. Also, uk(x,y), vk(x,y), and wk(x,y) indicate the displacements of all points located, initially, on
the kth plane in the x-, y-, and z-directions, respectively. In addition, N corresponds to the total number of
numerical layers considered in a laminate. Furthermore, Uk(z) are the global Lagrangian interpolation poly-
nomials associated with the kth surface (see Tahani and Nosier, 2004; Reddy, 2003; Nosier et al., 1993). It is to
be noted that the layerwise concept introduced here is very general in a sense that the accuracy of the solution
can be improved as close as desired by increasing the number of the subdivisions through the thickness or
increasing the order of interpolation polynomials through the thickness. However, in the present study, the
interpolation functions Uk(z) are assumed to have linear variation through the thickness of each numerical
layer. The elasticity-based displacement field in (11) indicates that the displacement field of LWT appearing
in (33) must be rewritten in a simpler form as follows:
u1ðx; y; zÞ ¼ B2xþ dCB6xzþ dASU kðyÞUkðzÞ
u2ðx; y; zÞ ¼ �dAB1xzþ V kðyÞUkðzÞ k ¼ 1; 2; . . . ;Nþ 1

u3ðx; y; zÞ ¼ dAB1xy� 1
2
dCB6x2 þ W kðyÞUkðzÞ:

ð34Þ
Substitution of (34) into the linear strain–displacement relations of elasticity (e.g., see Fung and Tong, 2001)
yields the following results:
ex ¼ B2 þ dCB6z; ey ¼ V 0kUk; ez ¼ W kU
0
k; cyz ¼ W 0

kUk þ V kU
0
k

cxz ¼ dASU kU
0
k þ dAB1y; cxy ¼ dASU 0kUk � dAB1z: ð35Þ
The equilibrium equations of a laminate within LWT are obtained employing (35) in the principle of minimum
potential energy (e.g., see Fung and Tong, 2001). The results are, in general, 3(N + 1) local equilibrium equa-
tions corresponding to 3(N + 1) unknown functions Uk, Vk, and Wk, and three global equations correspond-
ing to the three unknown constants B1, B2, and B6 as follows:
dUk : dAS Qk
x �

dMk
xy

dy

 !
¼ 0 ð36aÞ

dV k : Qk
y �

dMk
y

dy
¼ 0 ð36bÞ

dW k : N k
z �

dRk
y

dy
¼ 0 ð36cÞ

dB1 : dA

Z h=2

�h=2

Z b

�b
ðrxzy� rxyzÞdy dz ¼ 0 ð37aÞ

dB2 :

Z h=2

�h=2

Z b

�b
rx dy dz ¼ 0 ð37bÞ

dB6 : dC

Z h=2

�h=2

Z b

�b
rxzdy dz ¼ 0: ð37cÞ
Here, the generalized stress resultants, appearing in Eqs. (36a) through (36c), are defined as:
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ðMk
y ;M

k
xy ;N

k
zÞ ¼

Z h=2

�h=2

ðryUk; rxyUk; rzU
0
kÞdz

ðQk
x;Q

k
y ;R

k
yÞ ¼

Z h=2

�h=2

ðrxzU
0
k; ryzU

0
k; ryzUkÞdz:

ð38Þ
It is next noted that the three-dimensional stress–strain relations within the kth layer of composite laminate
are given as (e.g., see Herakovich, 1998):
frgðkÞ ¼ ½�C�ðkÞ feg � feTg � feHg
� �ðkÞ ð39Þ
with ½�C� being the transformed stiffness matrix and {eT} and {eH} being the thermal and hygroscopic strains,
respectively. By merely substituting relations (35) into (39) and the subsequent results into (38), the generalized
stress resultants are expressed in terms of the displacement functions:
ðMk
y ;M

k
xy ;N

k
z Þ ¼ dASðDkj

26;D
kj
66;B

jk
36ÞU 0j þ ðD

kj
22;D

kj
26;B

jk
23ÞV 0j þ ðB

kj
23;B

kj
36;A

kj
33ÞW j

þ ðBk
12;B

k
16;A

k
13ÞB2 � dAðDk

26;D
k
66;

�Bk
36ÞB1 þ dCðDk

12;D
k
16;

�Bk
13ÞB6

� ðMkðTÞ
y ;MkðTÞ

xy ;N kðTÞ
z Þ � ðMkðHÞ

y ;MkðHÞ
xy ;N kðHÞ

z Þ ð40Þ
ðQk

x;Q
k
y ;R

k
yÞ ¼ dASðAkj

55;A
kj
45;B

kj
45ÞUj þ ðAkj

45;A
kj
44;B

kj
44ÞV j þ ðBjk

45;B
jk
44;D

kj
44ÞW 0

j

þ dAðAk
55;A

k
45;B

k
45ÞB1y
where the expressions for laminate rigidities and the thermal and hygroscopic resultants are listed in Appendix
D. Lastly, upon substitution of Eqs. (40) into (36) and (37), the governing equations of equilibrium are ob-
tained in the following form:
dU k : dAS Dkj
66U 00j � Akj

55U j þ Dkj
26V 00j � Akj

45V j þ ðBkj
36 � Bjk

45ÞW 0
j

h i
¼ dAB1Ak

55y ð41aÞ

dV k : dASDkj
26U 00j � dASAkj

45U j þ Dkj
22V 00j � Akj

44V j þ ðBkj
23 � Bjk

44ÞW 0
j ¼ dAB1Ak

45y ð41bÞ

dW k : dASðBkj
45 � Bjk

36ÞU 0j þ ðB
kj
44 � Bjk

23ÞV 0j þ Dkj
44W 00

j � Akj
33W j

¼ B2Ak
13 � dAB1ðBk

45 þ �Bk
36Þ þ dC

�Bk
13B6 � NkðTÞ

z � N kðHÞ
z ð41cÞ

dB1 : dA

Z b

�b

h
ðdASAj

55Uj þ Aj
45V j þ Bj

45W 0
jÞy� ðdASDj

66U 0j þ Dj
26V 0j þ �Bj

36W jÞ

þ dAB1ðA55y2 þ D66Þ � B2B16 � dCB6D16 þMT
xy þMH

xy

i
dy ¼ 0 ð42aÞ

dB2 :

Z b

�b
dASBj

16U 0j þ Bj
12V 0j þ Aj

13W j þ B2A11 þ dCB6B11 � dAB1B16 � NT
x � NH

x

h i
dy ¼ 0 ð42bÞ

dB6 : dC

Z b

�b
dASDj

16U 0j þ Dj
12V 0j þ �Bj

13W j þ B2B11 þ dCB6D11 � dAB1D16 �MT
x �MH

x

h i
dy ¼ 0: ð42cÞ
To investigate the free-edge-effect problem, Eqs. (41) and (42) must be solved subject to the following traction-
free boundary conditions at y = ±b:
dASMk
xy ¼ Mk

y ¼ Rk
y ¼ 0 at y ¼ �b: ð43Þ
As it is seen from (41) the local displacement equations comprise of 3(N + 1) coupled second-order differential
equations with constant coefficients. It is clear that such a linear system may be solved analytically using, for
example, the state space approach. This way, the displacement components will be found, in general, in terms
of B1, B2, B6, and 6(N + 1) constants of integration. Three global displacement equations in (42) and 6(N + 1)
boundary conditions in (43) are, then, employed to determine integration constants and unknown coefficients
B1, B2, and B6. A detailed description of the solution scheme has been presented in Nosier and Bahrami (2006,
2007) and, therefore, for brevity will not be repeated here. It is to be noted that the constant parameters B1, B2,
and B6 appearing in (34) may be considered to be known from an analysis based on the first-order theories
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developed here (see Eqs. (30) through (32)) since they represent global response quantities of laminates. In fact
the accuracy of the first-order theories in predicting these parameters will be assessed within the present study
when numerical results are discussed.
2.6. Theory of elasticity

In order to verify the validity of the solutions obtained in the previous sections, an analytical elasticity solu-
tion is presented here for particular boundary and loading conditions. A generally stacked laminate subjected
to a uniform hygrothermal loading is considered. It is, moreover, assumed that the ends of the laminate in
Fig. 1 are gripped so that the line AB (EF) is not allowed to have rotations about the x-axis and the line
cc (the x-axis and the line dd). Under such assumptions the constants B1 and B6 vanish and the displacement
field of elasticity in (4) is simplified to what follows:
uðkÞ1 ðx; y; zÞ ¼ B2xþ uðkÞðy; zÞ
uðkÞ2 ðx; y; zÞ ¼ vðkÞðy; zÞ
uðkÞ3 ðx; y; zÞ ¼ wðkÞðy; zÞ:

ð44Þ
The constant B2 appearing in (44) represents the uniform axial strain in the x-direction due to a hygrothermal
loading and will be determined here within the elasticity theory. By employing the displacement field (44) in
the principle of minimum total potential energy (e.g., see Fung and Tong, 2001) the local and global equilib-
rium equations are readily found to be:
du :
orðkÞxy

oy
þ orðkÞxz

oz
¼ 0 ð45aÞ

dv :
orðkÞy

oy
þ

orðkÞyz

oz
¼ 0 ð45bÞ

dw :
orðkÞyz

oy
þ orðkÞz

oz
¼ 0 ð45cÞ
and
dB2 :

Z b

�b

Z h=2

�h=2

rx dzdy ¼ 0; ð46Þ
respectively. For traction-free boundary conditions at y = ±b, no analytical solution seems to exist for Eqs.
(45a) through (45c). It is, however, noted that Eqs. (45) admit an analytical solution for the following bound-
ary conditions at y = ±b:
rðkÞy ¼ uðkÞ3 ¼ rðkÞxy ¼ 0 at y ¼ �b: ð47Þ
Using the three-dimensional stress–strain relations in (39) together with strain-displacement relationships of
elasticity (e.g., see Fung and Tong, 2001), the local equilibrium equations in (45) may be expressed in terms
of the displacement components as follows:
�CðkÞ66 uðkÞ;yy þ �CðkÞ55 uðkÞ;zz þ �CðkÞ26 vðkÞ;yy þ �CðkÞ45 vðkÞ;zz þ ð�C
ðkÞ
45 þ �CðkÞ36 ÞwðkÞ;yz ¼ 0

�CðkÞ26 uðkÞ;yy þ �CðkÞ45 uðkÞ;zz þ �CðkÞ22 vðkÞ;yy þ �CðkÞ44 vðkÞ;zz þ ð�C
ðkÞ
23 þ �CðkÞ44 ÞwðkÞ;yz ¼ 0

ð�CðkÞ45 þ �CðkÞ36 ÞuðkÞ;yz þ ð�C
ðkÞ
23 þ �CðkÞ44 ÞvðkÞ;yz þ �CðkÞ44 wðkÞ;yy þ �CðkÞ33 wðkÞ;zz ¼ 0

ð48Þ
where a coma followed by a variable denotes partial differentiation with respect to that variable. Similarly, the
boundary conditions in (47) are expressed in terms of the displacement components as follows:
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�CðkÞ26 uðkÞ;y þ �CðkÞ22 vðkÞ;y þ �CðkÞ23 wðkÞ;z ¼ �CðkÞ12 ðekðTÞ
x þ ekðHÞ

x � B2Þ

þ �CðkÞ22 ðekðTÞ
y þ ekðHÞ

y Þ þ �CðkÞ23 ðekðTÞ
z þ ekðHÞ

z Þ þ �CðkÞ26 ðckðTÞ
xy þ ckðHÞ

xy Þ
�CðkÞ66 uðkÞ;y þ �CðkÞ26 vðkÞ;y þ �CðkÞ36 wðkÞ;z ¼ �CðkÞ16 ðekðTÞ

x þ ekðHÞ
x � B2Þ at y ¼ �b

þ �CðkÞ26 ðekðTÞ
y þ ekðHÞ

y Þ þ �CðkÞ36 ðekðTÞ
z þ ekðHÞ

z Þ þ �CðkÞ66 ðckðTÞ
xy þ ckðHÞ

xy Þ
wðkÞ ¼ 0:

ð49Þ
It remains next to obtain the solution of Eqs. (48) satisfying the boundary conditions in (49) and the following
conditions:

The traction-free conditions at the top surface of the first layer:
rð1Þz ¼ rð1Þyz ¼ rð1Þxz ¼ 0 at the top surface of the 1st layer: ð50aÞ
The traction-free conditions at the bottom surface of the Nth layer:
rðNÞz ¼ rðNÞyz ¼ rðNÞxz ¼ 0 at the bottom surface of the N th layer: ð50bÞ
The displacement continuity conditions at every interface within the laminate:
uðkÞ1 ¼ uðkþ1Þ
1 ; uðkÞ2 ¼ uðkþ1Þ

2 ; and uðkÞ3 ¼ uðkþ1Þ
3 at interfaces: ð50cÞ
The stress equilibrium conditions at every interface within the laminate:
rðkÞz ¼ rðkþ1Þ
z ; rðkÞyz ¼ rðkþ1Þ

yz ; and rðkÞxz ¼ rðkþ1Þ
xz at interfaces: ð50dÞ
Eqs. (48) with the boundary conditions in (49) may be solved by means of the Fourier series technique. A com-
plete description of the solution procedure is discussed in Nosier and Bahrami (2007) and, for the sake of brev-
ity, is not repeated here. The displacement components within the kth layer of the laminate are found to be:
uðkÞ1 ðx; y; zÞ ¼ B2xþ
X1
m¼0

X6

i¼1

Akmie
kkmiz sinðamyÞ þ

X1
m¼1

Akm sinðamyÞ

uðkÞ2 ðx; y; zÞ ¼
X1
m¼0

X6

i¼1

�BkmiAkmie
kkmiz sinðamyÞ þ

X1
m¼1

Bkm sinðamyÞ

uðkÞ3 ðx; y; zÞ ¼
X1
m¼0

X6

i¼1

�CkmiAkmie
kkmiz cosðamyÞ

ð51Þ
where am = (2m + 1)p/2b and kkmi (i = 1,2, . . . , 6) are the roots of the following sixth-order polynomial
equation:
�a2
m

�CðkÞ66 þ �CðkÞ55 k2
km �a2

m
�CðkÞ26 þ k2

km
�CðkÞ45 �amkkmð�CðkÞ45 þ �CðkÞ36 Þ

�a2
m

�CðkÞ26 þ �CðkÞ45 k2
km �a2

m
�CðkÞ22 þ k2

km
�CðkÞ44 �amkkmð�CðkÞ44 þ �CðkÞ23 Þ

amkkmð�CðkÞ45 þ �CðkÞ36 Þ amkkmð�CðkÞ44 þ �CðkÞ23 Þ �a2
m

�CðkÞ44 þ k2
km

�CðkÞ33

��������

��������
¼ 0: ð52Þ
Also the parameters Akm and Bkm appearing in (51) are given by:
Akm ¼
�CðkÞ12

�CðkÞ26 � �CðkÞ16
�CðkÞ22

�CðkÞ66
�CðkÞ22 � �CðkÞ

2

26

B2am and Bkm ¼
�CðkÞ16

�CðkÞ26 � �CðkÞ12
�CðkÞ66

�CðkÞ66
�CðkÞ22 � �CðkÞ

2

26

B2am ð53aÞ
with
am ¼
8b
p2

ð�1Þm

ð2mþ 1Þ2
: ð53bÞ
Moreover, the coefficients �Bkmi and �Ckmi appearing in (51) are determined from the following relations:
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�Bkmi

�Ckmi

� �
¼
�a2

m
�CðkÞ26 þ k2

kmi
�CðkÞ45 �amkkmið�CðkÞ45 þ �CðkÞ36 Þ

�a2
m

�CðkÞ22 þ k2
kmi

�CðkÞ44 �amkkmið�CðkÞ44 þ �CðkÞ23 Þ

" #�1
a2

m
�CðkÞ66 � �CðkÞ55 k2

kmi

a2
m

�CðkÞ26 � �CðkÞ45 k2
kmi

( )
: ð54Þ
The next step of the analysis is to determine the 6N unknowns, namely, Akmi (k = 1,2, . . . ,N and i = 1, . . . , 6)
for each Fourier integer m and the unknown parameter B2. These unknowns will be determined in a try and
error process by imposing the conditions in (50a) through (50d) and Eq. (46). For this purpose, an initial value
is assumed for B2. This value is then substituted into conditions (50a) through (50d) to obtain a system of 6N
algebraic equations in terms of Akmi (for each m) which upon solving yields the unknown coefficients Akmi

(k = 1,2, . . . ,N and i = 1, . . . , 6). Next, upon carrying out the integration in (46) a new B2 is found which,
on the other hand, may be presented as:
B2 ¼
1

b
PN

k¼1
�CðkÞ11 hk

bðNT
x þ N H

x Þ �
PN
k¼1

P1
m¼1

hkð�CðkÞ12 Bkm þ �CðkÞ16 AkmÞð�1Þm

�2
PN
k¼1

P1
m¼0

P6
i¼1

�Bkmi �CðkÞ
12
þ�CðkÞ

16

kkmi
þ

�Ckmi �CðkÞ
13

am


 �
Akmið�1Þm sinhðkkmihk

2
Þ

2
6664

3
7775 ð55Þ
where N T
x and N H

x appearing in (55) are defined as:
NT
x ¼

XN

k¼1

ð�CðkÞ11 aðkÞx þ �CðkÞ12 aðkÞy þ �CðkÞ13 aðkÞz þ �CðkÞ16 aðkÞxy ÞhkDT

NH
x ¼

XN

k¼1

ð�CðkÞ11 bðkÞx þ �CðkÞ12 bðkÞy þ �CðkÞ13 bðkÞz þ �CðkÞ16 bðkÞxy ÞhkDM :

ð56Þ
It is reminded here that for convenience the z coordinate is located at the middle surface of each ply. The new
value of B2 is then compared with that assumed initially. If the difference between two values is significant, the
new value of B2 in (55) is used as the initial value and the procedure is repeated until B2 is obtained with any
desirable degree of accuracy. It is to be noted that by substituting B2 into (53a) and subsequent results into
(51) the displacement components will be obtained. Upon substitution of the displacement field into strain-dis-
placement relations of linear elasticity (e.g., see Fung and Tong, 2001) and using the three-dimensional Hooke
law (39) the stress components are finally determined.

It is pointed out that the elasticity solution presented here is, although analytical, not an exact solution
since the Gibbs phenomenon appears in the Fourier expansions introduced in the solution procedure (see Nos-
ier and Bahrami, 2007). In fact, according to the solution obtained here, the interlaminar normal stress rz will
vanish at points located on the edges of the laminate at y = ±b which is not a correct result. The exact value of
rz on these edges may, however, be determined by considering the following three-dimensional strain–stress
relations (e.g., see Herakovich, 1998):
eðkÞx ¼ �SðkÞ11 rðkÞx þ �SðkÞ12 rðkÞy þ �SðkÞ13 rðkÞz þ �SðkÞ16 rðkÞxy þ aðkÞx DTþ bðkÞx DM

eðkÞz ¼ �SðkÞ13 rðkÞx þ �SðkÞ23 rðkÞy þ �SðkÞ33 rðkÞz þ �SðkÞ36 rðkÞxy þ aðkÞz DTþ bðkÞz DM
ð57Þ
where �SðkÞij ’s are the off-axis compliances of the kth layer. At the edges of the laminate uðkÞ3 is specified to vanish
(see (47)). Therefore, at all points on these edges (except for points located at the intersections of these edges
with interfaces, bottom surface, and top surface of the laminate) it can be concluded:
ez �
ouðkÞ3

oz
¼ 0 at y ¼ �b: ð58Þ
Next, substitution of (47) and (58) (and eðkÞx ¼ B2) into (57) results in:
B2 ¼ �SðkÞ11 rðkÞx þ �SðkÞ13 rðkÞz þ aðkÞx DTþ bðkÞx DM ð59aÞ

0 ¼ �SðkÞ13 rðkÞx þ �SðkÞ33 rðkÞz þ aðkÞz DTþ bðkÞz DM : ð59bÞ
Upon solving Eqs. (59) the exact value of rðkÞz is obtained to be as follows:
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rðkÞz ¼
�SðkÞ11 ðaðkÞz DTþ bðkÞz DMÞ þ �SðkÞ13 ðB2 � aðkÞx DT� bðkÞx DMÞ

�SðkÞ
2

13 � �SðkÞ11
�SðkÞ33

: ð60Þ
Relation (60) indicates that the interlaminar normal stress rðkÞz has a constant value at the edges of each lamina
(at y = ±b) and, in addition, this constant value changes from one layer to another (adjacent) layer because of
changes in fiber orientations.
3. Numerical results and discussions

In this section the validity and accuracy of the theories and procedures introduced here in the present study
are first assessed trough several numerical examples by considering cross-ply laminates with special boundary
conditions (47) at y = ±b. For this purpose numerical results of ESL and layerwise theories for a uniform tem-
perature change are compared with those of elasticity theory. The interlaminar stresses within various cross-
ply, symmetric, and antisymmetric angle-ply laminates with free edges at y = ±b are then closely examined.
The material layers within any laminate are assumed to have identical thickness (hk), density, and on-axis
properties. The mechanical and thermal properties of each lamina are, furthermore, assumed to be the same
as those of graphite/epoxy T300/5208 (Herakovich, 1998):
E1 ¼ 132 GPa; E2 ¼ E3 ¼ 10:8 GPa; G12 ¼ G13 ¼ 5:65 GPa; G23 ¼ 3:38 GPa;

m12 ¼ m13 ¼ 0:24; m23 ¼ 0:59; a1 ¼ �0:77� 10�6=C�; a2 ¼ a3 ¼ 0:25� 10�6=C�:
ð61Þ
Moreover, the thickness of each physical lamina is assumed to be 1 mm (i.e., hk = 1 mm). In addition, since the
responses of various laminates due to thermal and hygroscopic loads are similar, only thermal results (due to a
uniform temperature change DT = 1 �C) are presented here. Furthermore, in the numerical examples the value
5/6 is used for the shear correction factor, k2, in the first-order plate theories and the interlaminar stress com-
ponents according to LWT are computed by integrating the local equilibrium equations of elasticity (see, e.g.,
Reddy, 2003).

Numerical values of B2 according to FSDT, IFSDT, LWT, and elasticity theory are listed in Table 1 for
cross-ply [90�/0�/0�/90�] and [0�/90�/0�/90�] laminates with boundary conditions in (47) under the uniform
thermal load DT = 1 �C. The ratio of the laminate width to its thickness is assumed to be 5 (i.e., 2b/h = 5)
for the numerical results in Table 1. It is observed that the layerwise theory overestimates the numerical values
of B2 and by, however, increasing the number of numerical layers (p) in each physical layer (see Tahani and
Nosier, 2004; Nosier et al., 1993) the results of LWT approach those of the elasticity theory. It is to be noted
that the numerical values of B2 as predicted by FSDT and IFSDT are sufficiently accurate as compared to
those of elasticity theory. In addition, the slight differences observed between the first-order theories and
the elasticity theory in predicting B2 have no considerable effects on the interlaminar stress distributions within
various laminates. The interlaminar stress components are depicted in Figs. 2 and 3 for thermal problems of
cross-ply [90�/0�/0�/90�] and [0�/90�/0�/90�] laminates subjected to the boundary conditions (47) at y = ±b. It
1
rical value of the constant parameter B2 · 106 according to FSDT, IFSDT, LWT, and elasticity theory for special boundary
ions in Eqs. (47)

P = 1 P = 2 P = 3 P = 4 P = 5 P = 6 P = 7 P = 8

/0�/90�]
erwise theory 1.7296 1.6980 1.6906 1.6871 1.6852 1.6840 1.6833 1.6828
ticity theory 1.6817

T 1.7876

/0�/90�]
erwise theory 1.6633 1.6234 1.6252 1.6113 1.6093 1.6080 1.6072 1.6067
ticity theory 1.6051
T 1.5389



Fig. 2. Distribution of interlaminar stresses near the middle plane of [0�/90�/0�/90�] laminate and in the top 90� layer.

Fig. 3. Distribution of interlaminar stresses near 90�/0� interface of [90�/0�/0�/90�] laminate and in the top 90� layer.
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is observed that the results of the layerwise theory are in excellent agreements with those of the elasticity
theory.

The free-edge-effect problems are now examined by using several numerical examples. The numerical values
of the unknown constant parameters appearing in various displacement fields are presented for cross-ply, sym-
metric, and antisymmetric angle-ply laminates in Table 2. The results are generated for various width to thick-
ness ratios. Close examination of Table 2 reveals that the FSDT and IFSDT results are sufficiently accurate
Table 2
Unknown constants of displacement field according to FSDT and LWT

Laminate Theory Constants 2b/h = 5 2b/h = 10 2b/h = 20

[90�/0�/0�/0�] FSDT B2 7.7625e�7 7.7625e�7 7.7625e�7
B6 �1.7317e�3 �1.7317e�3 �1.7317e�3

LWT B2 7.6235e�7 7.7038e�7 7.7697e�7
B6 �1.7197e�3 �1.7274e�3 �1.7358e�3

[90�/0�/0�/90�] IFSDT B2 1.5323e�6 1.5472e�6 1.5546e�6
LWT B2 1.5141e�6 1.5386e�6 1.5511e�6

[45�/�10�/�10�/45�] IFSDT B2 �1.8309e�6 �1.9222e�6 �1.9672e�6
LWT B2 �1.7793e�6 �1.8970e�6 �1.9577e�6

[45�/�10�/10�/�45�] FSDT B1 �5.5921e�3 �5.5921e�3 �5.5921e�3
B2 �8.6592e�7 �8.6592e�7 �8.6592e�7

LWT B1 �5.5468e�3 �5.5725e�3 �5.5826e�3
B2 �7.9602e�7 �8.3327e�7 �8.5260e�7
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for thin to moderately thick laminates. For thick laminates, however, numerical investigation indicates that
slight inaccuracy in global terms (i.e., terms involving the unknown parameters B1, B2, and B6 appearing in
(4)) has insignificant effects on the accuracy of stress distributions within various laminates. It is, therefore,
concluded here that the explicit expressions obtained for these parameters according to first-order theories
(i.e., relations (30), (31), and (32) for symmetric, cross-ply, and antisymmetric angle-ply laminates) may con-
veniently be used within other theories such as LWT and elasticity theory (see also Nosier and Bahrami, 2006,
2007). This, in fact, is done here in the remaining of the present study. In order to obtain accurate results for
interlaminar stresses, each physical layer is subdivided into, unless otherwise mentioned, 20 numerical layers
(i.e., p = 20). Moreover, the ratio of width to thickness is assumed to be 10 (i.e., 2b/h = 10). It is to be noted
that for symmetric cross-ply laminates either relation (30) or (31) may be used to determine the single constant
parameter B2 (noting that B6 = 0 for symmetric laminates). Fig. 4 shows the distributions of the interlaminar
normal stress rz along the two 0�/90� interfaces in the [0�/90�/0�/90�] laminate. It is observed that the rz exhib-
its different behavior at these interfaces. More explicitly, it is seen that the maximum numerical value of rz is
quite larger in the top 0�/90� interface. The distributions of the interlaminar stresses rz and ryz along the upper
and middle interfaces of the symmetric cross-ply [90�/0�/0�/90�] laminate are shown in Fig. 5. Both stresses are
seen to grow abruptly in the vicinity of the free edge, while being zero in the interior region of the laminate. It
is also noted that the interlaminar shear stress ryz rises toward the free edge and decreases rather suddenly to
zero at the free edge. By increasing the number of numerical layers in each lamina ryz becomes slightly closer
to zero but it may never become zero. This is, most likely, due to the fact that within LWT the generalized
stress resultant Rk

y , rather than ryz, is forced to vanish at the free edge (see Eq. (43)). It is reminded here that
Fig. 4. Interlaminar normal stress along the two 0�/90� interfaces of [0�/90�/0�/90�] laminate.

Fig. 5. Distributions of interlaminar stresses along the top and middle interfaces of [90�/0�/0�/90�] laminate.



Fig. 6. Interlaminar normal stress rz through the thickness of [90�/0�/90�/0�] laminate.

Fig. 7. Distribution of interlaminar shear stress ryz through the thickness of bottom 90� layer of [0�/90�/90�/0�] laminate.

Fig. 8. Distribution of interlaminar stresses along the 25�/�80� interface of [25�/�80�/80�/�25�] laminate.
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the interlaminar shear stress rxz is identically zero everywhere in cross-ply laminates. Also, due to symmetry,
the interlaminar shear stress ryz vanishes at the middle surface of symmetric cross-ply laminates. The varia-
tions of interlaminar normal stress rz through the thickness of the unsymmetric cross-ply laminate [90�/0�/
90�/0�] are depicted in Fig. 6 as the free edge is approached. It is observed that the maximum negative value
of rz occurs within the top 0� layer and the maximum positive value of rz occurs within the bottom 90� layer



8136 A. Bahrami, A. Nosier / International Journal of Solids and Structures 44 (2007) 8119–8142
both near the 90�/0� interfaces at the free edge (i.e., y = b). It is also seen that rz diminishes away from the free
edge as the interior region of the laminate is approached. Fig. 7 shows the variations of transverse shear stress
ryz at the free edge (i.e., y = b) and through the thickness of the bottom 90� layer of the [0�/90�/90�/0�] lam-
inate. It is clear from the figure that ryz has a nonzero value at the interface-edge junction (i.e., interface cor-
ner) of the laminate. A close examination of Fig. 7 reveals that, except for the interface corner point, the value
of ryz along the free edge of the laminate approaches zero as the number of numerical layers in each physical
ply, p, is increased. The variations of the interlaminar normal and shear stresses along the upper interface (i.e.,
the 25�/�80� interface) of the antisymmetric angle-ply laminate [25�/�80�/80�/�25�] are plotted in Fig. 8. It is
seen that the magnitude of ryz is quite smaller than those of rz and rxz (with rxz and rz surprisingly having
similar magnitudes). It is reminded here that extensive numerical studies indicate that the interlaminar shear
stress ryz is equal to zero at the middle surface of all antisymmetric angle-ply laminates subjected to uniform
hygrothermal loads. The distributions of interlaminar stresses rz and rxz across the 0�/60� interfaces of [�60�/
0�/0�/60�] and [0�/60�/�60�/0�] laminates are compared in Fig. 9a and b. It is observed that both transverse
normal stress rz and transverse shear stress rxz exhibit similar behavior in the two laminates. The maximum
interfacial values for both rz and rxz occur, however, in the [0�/60�/�60�/0�] laminate. The distributions of
through-the-thickness interlaminar normal stress rz at y = b for the antisymmetric angle-ply laminate [45�/
60�/�60�/�45�] and the symmetric laminate [45�/60�/60�/45�] are shown in Fig. 10. It is observed that the
value of rz at the free edge is noticeably larger in the antisymmetric angle-ply laminate. The maximum value
of rz in the [45�/60�/�60�/�45�] laminate occurs at the middle surface while the maximum value of rz in [45�/
60�/60�/45�] occurs in the 60� layers near the top and bottom interfaces. It is to be noted that, in both sym-
metric and antisymmetric angle-ply laminates, the interlaminar normal stress rz is an even function of thick-
ness coordinate. Similarly, the variations of interlaminar shear stress rxz through the thickness and at the free
edge of the [(45�/�45�)2] and [45�/�45�]s laminates are presented in Fig. 11. It is noticed from this figure that
Fig. 9. (a) Interlaminar normal stress rz along the 0�/60� interfaces of [�60�/0�/0�/60�] and [0�/60�/60�/0�] laminates. (b) Interlaminar
shear stress rxz along the 0�/60� interfaces of [�60�/0�/0�/60�] and [0�/60�/60�/0�] laminates.



Fig. 10. Distributions of interlaminar normal stress rz through the thickness of [45�/60�/�60�/�45�] and [45�/60�/60�/45�] laminates.

Fig. 11. Distributions of interlaminar shear stress rxz through the thickness of [(45�/�45�)2] and [45�/�45�]s laminates.
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in the antisymmetric angle-ply laminate the maximum positive values of rxz occur near the 45�/�45� interfaces
whereas the maximum negative value of rxz occurs at the middle surface of the laminate. In the symmetric
laminate, however, the maximum positive and negative values of rxz occur near the �45�/45� and 45�/�45�
interfaces, respectively. It is significant to note that the magnitudes of maximum values of rxz for both lam-
inates are approximately equal, with rxz being an odd (even) function of thickness coordinate in symmetric
(antisymmetric angle-ply) laminates.

Finally, the effect of fiber orientation is examined in Fig. 12a and b by comparing the variations of inter-
laminar normal stress rz at the top interface-edge and middle surface-edge junctions of the [0�/h/h/0�] and [0�/
h/�h/0�] laminates as a function of h. It is observed that at the top interface-edge (i.e., 0�/h interface-edge)
junctions the two laminates display very similar behavior, with the numerical values of rz being approximately
identical. At the middle surface-edge junction, however, the distributions of rz in the two laminates are, except
for small h’s, quite different. The maximum values of rz at the top interface-edge junction occur at h = 90� in
both laminates whereas at the middle surface-edge junction rz becomes maximum when h � 55� in the anti-
symmetric angle-ply laminate and when h = 90� in the symmetric laminate.
4. Conclusions

In the present investigation an elasticity formulation is presented for the displacement field of a long gen-
erally stacked laminate subjected to hygrothermal loads. It is found that the components of the displacements



Fig. 12. (a) Interlaminar normal stress rz at the top interface-edge junctions (i.e., 0�/h interface-edge junctions) of the [0�/h/h/0�] and [0�/h/
�h/0�] laminates as a function of h. (b) Interlaminar normal stress rz at the middle interface-edge junctions of the [0�/h/h/0�] and [0�/h/�h/
0�] laminates as a function of h.
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field are composed of two distinct parts, signifying the global and local deformations within laminates. Based
on physical arguments regarding the behavior of symmetric, cross-ply, and antisymmetric angle-ply laminates
special displacement fields are obtained for such laminates. The ESL theories are then employed to determine
the unknown constant parameters appearing in the global deformation part of various displacement fields. It
is also found that for each lamination scheme an appropriate ESL theory must be employed for the efficient
and accurate prediction of these parameters. For cross-ply and antisymmetric angle-ply laminates it is found
that the usual first-order theory (Mindlin–Reissner plate theory) yields accurate results for the unknown con-
stant parameters appearing in various displacement fields. Numerical investigations, however, reveal that for
symmetric laminates the usual first-order theory (FSDT) is inadequate in predicting these parameters. There-
fore, an improved first-order theory (IFSDT) is introduced to obtain these parameters for symmetric lami-
nates. Next, Reddy’s layerwise theory (LWT) is utilized to calculate the interlaminar stresses. The
unknown constants appearing in various displacement fields are also determined within LWT. For special
boundary and loading conditions an analytical elasticity solution is presented to verify the accuracy of
LWT, in predicting the interlaminar stresses and B2, and that of FSDT and IFSDT in predicting B2. Excellent
agreements are seen to exist between the results of LWT and the elasticity theory. Several numerical results
according to LWT are then developed for the free-edge interlaminar stresses through the thickness and across
the interfaces of various cross-ply, symmetric, and antisymmetric angle-ply laminates.
Appendix A

The coefficients �D22, �D26, and �D66 appearing in (26) are given as follows:
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�D22 ¼ D22 þ
~B26ðA26

~B22 � A22
~B26Þ þ ~B22ðA26

~B26 � A66
~B22Þ

A22A66 � A2
26

�D26 ¼ D26 þ
~B26ðA26

~B26 � A22
~B66Þ þ ~B22ðA26

~B66 � A66
~B26Þ

A22A66 � A2
26

�D66 ¼ D66 þ
~B66ðA26

~B26 � A22
~B66Þ þ ~B26ðA26

~B66 � A66
~B26Þ

A22A66 � A2
26

:

The constant parameters in Eqs. (28a) and (28b) are defined as:
ðd1; d2Þ ¼
1

a1a4 � a2a3

ða2
�B16 � a4

�B12; a3
�B12 � a1

�B16Þ

ðmT
y ;m

T
xyÞ ¼

1

a1a4 � a2a3

ða4
�MT

y � a2
�MT

xy ; a1
�MT

xy � a3
�MT

y Þ

ðmH
y ;m

H
xyÞ ¼

1

a1a4 � a2a3

ða4
�MH

y � a2
�MH

xy ; a1
�MH

xy � a3
�MH

y Þ
where
a1 ¼ ð�D26 þ �D1
�D22Þk1 coshðk1bÞ; a2 ¼ ð�D26 þ �D2

�D22Þk2 coshðk2bÞ
a3 ¼ ð�D66 þ �D1

�D26Þk1 coshðk1bÞ; a4 ¼ ð�D66 þ �D2
�D26Þk2 coshðk2bÞ

�B12 ¼ ~B12 þ
~B26ðA12A26 � A16A22Þ þ ~B22ðA16A26 � A12A66Þ

A22A66 � A2
26

�B16 ¼ ~B16 þ
~B66ðA12A26 � A16A22Þ þ ~B26ðA16A26 � A12A66Þ

A22A66 � A2
26
and
�MT
y ¼ ~MT

y �
~B26ðA22NT

xy � A26NT
y Þ þ ~B22ðA66NT

y � A26NT
xyÞ

A22A66 � A2
26

�MT
xy ¼ ~MT

xy �
~B66ðA22NT

xy � A26NT
y Þ þ ~B26ðA66NT

y � A26NT
xyÞ

A22A66 � A2
26

�MH
y ¼ ~MH

y �
~B26ðA22NH

xy � A26NH
y Þ þ ~B22ðA66NH

y � A26N H
xyÞ

A22A66 � A2
26

�MH
xy ¼ ~MH

xy �
~B66ðA22NH

xy � A26NH
y Þ þ ~B26ðA66NH

y � A26N H
xyÞ

A22A66 � A2
26

:

In addition, the constant coefficients appearing in (30) are defined as follows:
ĥ ¼ �A11bþ d1ð�B16 þ �B12
�D1Þ sinhðk1bÞ þ d2ð�B16 þ �B12

�D2Þ sinhðk2bÞ
nT

x ¼ b �NT
x � mT

y ð�B16 þ �B12
�D1Þ sinhðk1bÞ � mT

xyð�B16 þ �B12
�D2Þ sinhðk2bÞ

nH
x ¼ b �N H

x � mH
y ð�B16 þ �B12

�D1Þ sinhðk1bÞ � mH
xyð�B16 þ �B12

�D2Þ sinhðk2bÞ
where
�A11 ¼ A11 þ
A16ðA12A26 � A16A22Þ þ A12ðA16A26 � A12A66Þ

A22A66 � A2
26
and
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�NT
x ¼ N T

x �
A16ðA22N T

xy � A26NT
y Þ þ A12ðA66NT

y � A26N T
xyÞ

A22A66 � A2
26

�NH
x ¼ N H

x �
A16ðA22N H

xy � A26N H
y Þ þ A12ðA66N H

y � A26NH
xyÞ

A22A66 � A2
26

:

Appendix B

The constant coefficients appearing in (31) are given as follows:
h1 ¼ A11a1 þ A12a2 þ B12a3; h2 ¼ B11a1 þ A12a4 þ B12a5

h3 ¼ B11a1 þ B12a2 þ D12a3; h4 ¼ D11a1 þ B12a4 þ D12a5
and
nT
x ¼ NT

x a1 þ N T
y a2 þMT

y a3; mT
x ¼ MT

x a1 þ N T
y a4 þMT

y a5

nH
x ¼ NH

x a1 þ N H
y a2 þMH

y a3; mH
x ¼ MH

x a1 þ N H
y a4 þMH

y a5
where
a1 ¼ A22D22 � B2
22; a2 ¼ B12B22 � A12D22; a3 ¼ A12B22 � A22B12

a4 ¼ B22D12 � B12D22; a5 ¼ B12B22 � A22D12:
It is reminded here that the laminate rigidities and stress, thermal, and hygroscopic resultants are the same as
those defined in Eqs. (19), (21), (22), and (23). Furthermore, here:
ðMT
x ;M

T
y Þ ¼

Z h=2

�h=2

½ð�Q11; �Q12Þax þ ð�Q12; �Q22Þay �DTz dz

ðMH
x ;M

H
y Þ ¼

Z h=2

�h=2

½ð�Q11; �Q12Þbx þ ð�Q12; �Q22Þby �DMz dz
and
Bij ¼
Z h=2

�h=2

�Qijz dz:
It is observed that the constant parameters B2 and B6 appearing in (31) are independent of shear correction
factor. In other words, the results presented in (31) for B2 and B6 are also obtainable from the classical lam-
ination theory.
Appendix C

The constant coefficients appearing in (32) are given by:
h1 ¼ 2ðA12B26 � A22B16Þ
h2 ¼ A11A22 � A2

12

h3 ¼ 2ðB2
26 � A22D66Þ

h4 ¼ A22B16 � A12B26
and
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nT
x ¼ A22NT

x � A12NT
y

mT
xy ¼ A22MT

xy � B26NT
y

nH
x ¼ A22NH

x � A12N H
y

mH
xy ¼ A22MH

xy � B26NH
y

where
MT
xy ¼

Z h=2

�h=2

½�Q16ax þ �Q26ay þ �Q66axy �DTzdz

MH
xy ¼

Z h=2

�h=2

½�Q16bx þ �Q26by þ �Q66bxy �DMzdz
with the remaining thermal and hygroscopic resultants being the same as those defined in (22a) and (23a). For
antisymmetric angle-ply laminates the results in (32) may also be arrived at by using the classical lamination
theory.

Appendix D

The laminate rigidities, introduced in (40), are given as follows (also see Nosier and Bahrami, 2006, 2007):
ðAkj
pq;B

kj
pq;D

kj
pqÞ ¼

�
�Cðk�1Þ

pq

hk�1
;�

�Cðk�1Þ
pq

2
;

hk�1
�Cðk�1Þ

pq

6
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if j ¼ k� 1

�Cðk�1Þ
pq

hk�1
þ

�CðkÞpq

hk
;

�Cðk�1Þ
pq

2
�

�CðkÞpq

2
;

hk�1
�Cðk�1Þ

pq

3
þ hk �CðkÞpq

3
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if j ¼ k

�
�CðkÞpq

hk
;

�CðkÞpq

2
;

hk �CðkÞpq

6
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if j ¼ kþ 1

ð0; 0; 0Þ if j < k� 1 or j > kþ 1

8>>>>>>>>>><
>>>>>>>>>>:
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pq;
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pq;D
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pqÞ ¼
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