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Abstract

A new elastoplastic J2−flow model with nonlinear combined hardening is

proposed for the purpose of achieving an explicit, comprehensive simulation

of pseudo-elastic SMAs over the whole range of strain up to failure. To

this goal, a new, explicit methodology based on any given uniaxial data is

introduced to obtain multi-axial expressions for the constitutive quantities

incorporated in this model, in such a unified sense that all three successive

deformation stages may be simultaneously represented, including a pseudo-

elastic stage with perfect strain recovery, a hardening stage with partial strain

recovery, and a softening stage up to failure. As such, any given shapes of

uniaxial stress-strain curves from both loading and unloading in these three

stages may be automatically reproduced from the proposed model, without

involving usual complicated numerical procedures in treating nonlinear rate
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constitutive equations with a number of switching conditions. Numerical

examples with test data are supplied to simulate a complete process including

all three stages.

Keywords: Shape memory alloys, Pseudoelasticity, Plasticity, Softening,

Failure behavior, Explicit approach

1. Introduction

When subjected to strain within a certain range, a pseudo-elastic SMA

sample is known to display strain recovery effect upon unloading. However,

such recovery effect may not be maintained and, accordingly, irrecoverable

strain upon unloading may be expected, whenever strain at loading exceeds

the foregoing range. In further development of straining, softening effect is

expected and failure eventually takes place. Such three successive stages of

distinct SMA inelastic behaviors over the whole range of strain up to failure

are schematically shown in Fig. 1 in §2.4 for uniaxial stress-strain curves

when unloading occurs within different ranges of strain.

Toward modeling pseudo-elastic SMAs in a comprehensive sense, the fore-

going three successive stages need to be simultaneously represented by estab-

lishing suitable constitutive models in unified form. Such unified models for

all deformation stages of pseudo-elastic SMAs up to failure are of significance

but have long been unavailable to date.

In the past decades, numerous studies have been made in modeling pseudo-

elastic SMAs. Usually, attention has been confined to the pseudo-elastic

stage in the foregoing. Starting from phase transition mechanisms between

martensite and austenite, results have been derived from either microscopic or
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mesoscopic or phenomenological standpoints. Recent surveys in these three

respects may be found in the review articles by Patoor et al. (2006) and

Lagoudas et al. (2006), as well as in relevant monographs, e.g., by Auricchio

(1995), Battacharya (2003) and Lagoudas (2010). In particular, extensive

studies in the significant respects of microscopic and mesoscopic models may

be found in the just mentioned references and the references therein. Here

our interest is in the respect of phenomenological (macroscopic) models in

a direct sense. Some representative samples of recent contributions in this

respect are briefly discussed below.

Firstly, extensive studies have been devoted to modeling the pseudo-

elastic hysteresis. Earlier, a simple polynomial potential model with a Landau-

Devonshire free-energy function was proposed by Falk (1980) for some simple

cases. A four-parameter model based also on a Landau-Devonshire free-

energy was suggested by Huo (1989) in a further study. In a recent develop-

ment, a microplane model has been presented by Brocca et al. (2002) (cf.,

Mehrabi et al. 2014) by developing a slip theory for polycrystal plasticity.

Yu et al. (2014b) propose a new crystal plasticity constitutive model for

rate-dependent development of SMAs. Moreover, another approach in wide

application, initiated by Tanaka and Nagaki (1982), is based on introduction

of various internal variables in an averaged sense of representing microstruc-

tural features relating to the martensite-austenite phase transitions. Numer-

ous results for small strain cases may be found in the aforementioned review

articles and monographs and the references therein. Here, for results prior to

2006, attention is directed to finite strain cases; refer to, e.g., Tanaka (1987);

Auricchio and Taylor (1997); Masud et al. (1997); Auricchio (2001); Helm
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and Haupt (2003); Peng et al. (2001); Shaw (2002), Lexcellent et al. (2006).

Most recent developments are concerned with multi-axial modeling and re-

sults may be found in, e.g., Popov and Lagoudas (2007), Peng et al. (2008),

Arghavani et al. (2010a), Morin et al. (2011), Saleeb et al. (2011), Yu et al.

(2013) for small strain cases, and Müller and Bruhns (2006), Helm (2007),

Ziólkowski (2007), Luig and Bruhns (2008), Thambujara (2010), Arghavani

et al. (2011), Teeriaho (2013) for finite strain cases. Further studies in treat-

ing martensite reorientation are given in, e.g., Panico and Brinson (2007);

Arghavani et al. (2010b), Zaki (2012), Yoo et al. (2015) and others. Some

most rcent results with numerical implementations may be found in, e.g.,

Vidyashankar et al. (2007), Moumni et al. (2008); Reese and Christ (2008);

Hartl et al. (2010); Arghavani et al. (2011), Lagoudas et al. (2012).

Next, further results in simulating two stages with complete and partial

strain recovery are presented, e.g., in Paiva et al. (2005) and Auricchio et al.

(2007) for cases coupled with permanent inelasticity and in Yu et al. (2013)

for a simulation based on microstructural mechanisms, as well as in Hartl et

al. (2009), Zhou (2012), Yu et al. (2014a) and many others.

On the other hand, the localization and fracture behavior of shape mem-

ory alloys are studied in, e.g., Shaw and Kyriakides (1997, 1998), Desindes

and Daly (2010), Maletta and Furgiuele (2011), Hallai and Kyriakides (2013).

These studies are concerned with the structural instability and failure of

SMAs.

In the existing studies of SMA modeling as briefly summarized in the

above, it is customary to derive results from various standpoints based on

solid-solid phase transition mechanisms between austenite and martensite.
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Irrespective of the fact that numerous significant results are available in the

past decades, it appears that rigorous and reliable continuum-level consti-

tutive models do not exist and need to be developed to meet requirements

for efficient engineering applications of SMAs. Although the understanding

based on the micromechanical aspects of phase transformation mechanisms

has arrived at a comfortable level, nevertheless the quantitative connection

between microscopic and macroscopic behavior prove to be undue complex

and has not yet been developed to the degree required by such continuum-

level models as mentioned in the foregoing. Most recently, it has been demon-

strated (Xiao et al. 2010a,b, 2011; Xiao 2013, 2014a; Wang et al. 2014) that

elastoplastic J2−flow models just in the continuum-level sense may be es-

tablished to simulate SMA thermomechanical behaviors in an explicit, direct

sense without involving any phase variables. Explicit results have been ob-

tained for SMA pseudo-elastic behavior with any given shape of hysteresis

loops (Xiao 2013, 2014a; Wang et al. 2014).

In this contribution, we are going to show that a new elastoplastic J2−flow

model may be established to accomplish an explicit, comprehensive simula-

tion of all three deformation stages of pseudo-elastic SMAs over the whole

range of strain up to failure. It will be shown that explicit expressions for

the constitutive quantities introduced, including the hardening moduli and

the yield strength, may be presented in such a unified sense that all the

three successive stages described before may be simultaneously represented.

As such, any given shapes of uniaxial stress-strain curves from both load-

ing and unloading in respective stages, as shown in Fig. 1 in §2.4, may be

automatically, exactly reproduced from the proposed model, without involv-
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ing usual complicated numerical procedures in treating systems of nonlinear

rate constitutive equations with a number of switching conditions as well as

micro-to-macro averaged procedures.

The main content of this article will be arranged as follows. In Section

2, new elastoplastic J2−flow models with nonlinear combined hardening will

be introduced, in conjunction with a brief description of all three stages of

pseudo-elastic SMAs up to failure. In the next two sections, viz. Sections

3 and 4, results will be presented separately for three successive stages, in-

cluding a pseudo-elastic stage with perfect strain recovery, a hardening stage

with partial strain recovery, as well as a softening stage up to failure. In

Section 5, results in Sections 3 and 4 will be combined to yield unified results

for all the three stages. In Section 6, numerical results with test data will be

supplied to reproduce a complete process from the initial straining to failure,

where typical unloading responses occurring in the foregoing three stages

are incorporated. Finally, novelties of the proposed model will be explained

in comparison with various usual models and further developments will be

indicated in Section 7.

2. Elastoplastic J2−flow models with substantial coupling

We direct attention to the consistent Eulerian formulation of finite elasto-

plasticity, developed in recent years (see, e.g., Xiao et al. 2006, 2007). In

a most recent study (Xiao 2013, 2014a), finite strain elastoplastic J2−flow

models have been established to achieve an explicit, direct simulation of

pseudo-elastic SMAs. A departure from usual elastoplastic models is that a

general case of combined hardening with a yield strength relying both on the
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plastic work and on the the back stress should be introduced in a sense of

coupling the changing of the size of the yield surface with the moving of the

yield surface center. The new model introduced below may be established

following the procedures in Xiao (2014a), in which the usual plastic work is

replaced by the effective plastic work. Here, such procedures are omitted and

details may be found in the foregoing reference.

Here and henceforth, F and D are used to denote the deformation gradi-

ent and the stretching and τ stands for the Kirchhoff stress, i.e. the Cauchy

stress σ weighted by the deformation Jacobian J = detF and then τ = J σ.

The deviatoric part of the latter is denoted τ̃ . Throughout, the superimposed

dot means the material time derivative.

The starting point is to assume that the stretching D for finite elasto-

plastic deformations is formed by an elastic part, De, and a plastic part, Dp,

namely (cf., Khan ang Huang 1995)

D = De +Dp . (1)

Objective rate constitutive equations should be prescribed for the two parts

in the above decomposition, as will be done below, separately.

2.1. Elastic rate equation

Firstly, the elastic part De is assumed to be governed by the following

elastic rate equation of hypoelastic type:

De =
1 + ν

E

o
τ − ν

E
(tr

o
τ ) I . (2)
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In the above,
o
τ is the co-rotational logarithmic rate of the Kirchhoff stress

τ and of the form

o
τ = τ̇ + τ ·Ω−Ω · τ , (3)

where Ω is the logarithmic spin (cf., e.g. Xiao et al. 1997), and, moreover,

I is the second-order identity tensor.

2.2. Plastic flow rule with substantial coupling

Next, the plastic part Dp is governed by the normality flow rule (cf.

Bruhns et al. 2005):

Dp =
ξ

u

(
∂f

∂τ
:

o
τ

)
∂f

∂τ
. (4)

As in Eq. (2),
o
τ is the corotational logarithmic rate of the Kirchhoff stress τ .

Use of the latter ensures that both the elastic and the plastic rate equations

(2) and (4) fulfill certain consistency requirements. Details in this respect

may be found in, e.g., Bruhns et al. (1999, 2003), Xiao et al. (2000a,b), and

Xiao et al. (2006).

The plastic indicator ξ takes values 1 and 0 in the loading and unloading

cases, respectively, as given in Bruhns et al. (2003). The plastic modulus u

will be given slightly later.

The yield function f in Eq. (4) is taken to be of von Mises type:

f =
1

2
tr(τ̃ −α)2 − 1

3
r2 . (5)

In the above, the yield strength r prescribes the radius of the current yield

surface f = 0 and the back stress α specifies the center of the current yield
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surface f = 0. In general, both of them are changing in development of plastic

flow and such changes just characterize combined hardening behavior.

Usually, it is assumed that there is no coupling between the changing of

the yield strength r (i.e., the size of the current yield surface) and the moving

of the yield surface center. Most recently (Xiao 2014a), it has been found

that coupling between the latter two may play a substantial role in modeling

pseudo-elastic hysteresis. Here, the yield strength r is taken to be dependent

on both the effective plastic work κ̃ and the back stress α as shown below:

r = r(κ̃, ζ) > 0 , (6)

with the effective plastic work:

˙̃κ = (τ̃ −α) : Dp (7)

and the magnitude of the back stress:

ζ =
√

trα2 . (8)

It should be pointed out that here the introduction of the effective plastic

work (cf., Eq. (7)) represents a new development of the model in the previous

study (Xiao 2014a). The latter is based on the usual plastic work below:

κ = τ : Dp .

It may be noted that the effective plastic work κ̃ is monotonically increasing

with development of plastic flow, whereas that may not be the case for the

plastic work κ. These two agree with each other only in the absence of

anisotropic hardening.
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2.3. Nonlinear combined hardening

The traceless back stress α is governed by the following new nonlinear

anisotropic hardening rule:

o
α = cDp − γ

r
˙̃κα , (9)

with

c = c(κ̃, ζ), γ = γ(κ̃, τ̃ ,α) . (10)

On account of certain consistency requirements, it has been demonstrated

(cf. Xiao et al. 2000a) that the objective rate
o
α in Eq. (9) should also be

the co-rotational logarithmic rate.

Now the plastic modulus u in Eq. (4) is given as follows:

u =
2

3
cr2 +

4

9
r3r′ − 4

9
γ r2 r̄′ζ +

2

3
r
(
1.5c r̄′ζ−1 − γ

)
(τ̃ −α) : α . (11)

Here and henceforth, the following notations are used:

r′ =
∂ r

∂ κ̃
, r̄′ =

∂r

∂ζ
. (12)

In the above, a new nonlinear combined hardening J2−flow model has

been established with coupling effects between the changing of the size of the

yield surface and the moving of the yield surface center. Its thermodynamic

consistency may be treated following the procedures in § 2.2 in Xiao (2014a).

It has been shown in a previous study (Xiao 2014a) that suitable forms

of the hardening moduli c and γ as well as the yield strength r may be

explicitly given for the purpose that SMA pseudo-elastic behavior with any

given shape of hysteresis loops may be simulated. In fact, explicit expressions

10
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for the former are obtainable in terms of certain shape functions specifying

pseudo-elastic hysteresis loops. In the subsequent development, we are going

to show that further results may be presented for the purpose of achieving an

explicit, comprehensive simulation of all three deformation stages of pseudo-

elastic SMAs up to failure.

2.4. Three stages of SMA uniaxial behavior up to failure

Consider a peudoelastic SMA sample that undergoes uniaxial straining.

As indicated at the outset of the introduction section, three stages of distinct

deformation behaviors may be expected, including a pseudo-elastic stage with

perfect strain recovery, a hardening stage with partial strain recovery and a

softening stage up to failure, as shown in Fig. 1. In Fig. 1, the upper

stress-strain curve is generated in a monotonically straining process from

an initial state up to failure and referred to as the primary plastic curve.

An unloading process at each point on the primary plastic curve produces a

stress-strain curve starting at this point. For a pseudo-elastic SMA sample,

a new understanding from the standpoint of classical elastoplasticity is that

a subsequent yield point may emerge above the strain axis, thus leading to

subsequent plastic flow just in the unloading process. Each such curve is

named a subsequent plastic curve. The three stages at issue correspond with

the three parts of the primary plastic curve, including a slowly rising part

from point A to point B and a relatively fast rising part from point B to

point C as well as a softening part falling down from point C toward the

strain axis.

At the pseudo-elastic stage, hysteresis loops will be generated by loading-

unloading processes. A typical loop, i.e. OP ∗P∗O, is shown in Fig. 1, where

11
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Figure 1: Three stages for deformation behavior of pseudo-elastic SMAs

P ∗ and P∗ are the unloading point and the subsequent yield point. At the

hardening stage, however, no loops will be produced by loading-unloading

processes. A typical stress-strain curve, OH∗H∗O∗, is shown in Fig. 1,

where H∗ and H∗ are the unloading point and the subsequent yield point

and, moreover, O∗ is the point at the end of unloading. A marked difference

may be noted, namely, at the end of unloading, the former produces negligibly

small irrecoverable strain, whereas the latter gives appreciable irrecoverable

strain.

The elastic part P ∗P∗ or H∗H∗ is given by

τ − τ ∗ = E(h− h∗) , (13)

where τ ∗ and h∗ are the axial Kirchhoff stress and Hencky’s logarithmic strain

at point P ∗ or H∗. The slope of the elastic part is given just by the Young’s

modulus E.

One of the main issues in modeling SMAs is to establish a comprehensive

12
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constitutive model that can simultaneously simulate the above three stages

of distinct inelastic behaviors, in a broad sense with any given shapes of the

primary plastic curve OABC and the subsequent plastic curves P ∗P∗O and

H∗H∗O∗ for both stages with perfect and partial recovery, as well as the

softening part up to failure.

Suitable test dada should be given for each of the above curves. Constitu-

tive models are then established to fit test data as closely as possible. Usually,

each such model is given by a strongly coupled system of nonlinear rate type

constitutive equations with a number of unknown parameters incorporated,

in conjunction with certain switching rules associated with various cases of

phase transition mechanisms between austenite and martensite. As such, the

unknown parameters have to be identified implicitly by complicated numer-

ical procedures of treating a coupled system of nonlinear equations in fitting

test data and such procedures would have to be repeatedly carried out for

data sets for different samples.

We are going to show that an explicit, direct approach to modeling SMAs

is possible. Toward this objective, in the succeeding sections the hardening

moduli c and γ as well as the yield strength r will be presented explicitly in

terms of certain shape functions prescribing the primary plastic curve and

the subsequent plastic curves in Fig. 1, in the sense that any given shapes

of the latter may be automatically reproduced.

In the sequel, results will be derived first for each of the foregoing three

stages, separately, and, then, these results will be combined into a unified

form for all the stages.
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3. Pseudo-elastic stage with perfect strain recovery

In this section, we are going to present explicit expressions for c, γ and

r in terms of the shape functions for the primary and subsequent plastic

curves. Results in this respect have been obtained in a previous study (Xiao

2014a) based on the usual plastic work. Here, results may be derived for the

new model following the same procedures. Detail will no longer be given and

may be referred to the foregoing reference.

3.1. Shape functions for the primary and subsequent plastic curves

Toward our purpose, the two curves at issue will be represented by two

shape functions described below. On the one hand, a strain-stress function

is given to prescribe the primary plastic curve, namely,

h = p(τ), p(r0) =
r0
E
. (14)

Given suitable test data for the primary plastic curve, the above function is

obtainable either directly from usual interpolating approaches or from other

approaches. In the above, r0 is the intial yield strength at the initial yield

point A (cf., Fig. 1), and τ and h are the axial Kirchhoff stress and the axial

Hencky strain at each point on the primary plastic curve (cf., Fig. 1).

On the other hand, a function below is given to specify the subsequent

plastic curve in a hysteresis loop (cf., Fig. 1)

τ = φ(τ), φ(0) = r0 . (15)

The above function, named the bridging function for the primary and sub-

sequent plastic curves, establishes the correlation between the axial stresses

14
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τ and τ at each pair of primary and subsequent yield points linked by an

elastic unloading line, as shown in Fig. 1. At the initial yield point A (cf.,

Fig. 1), we have τ = r0. In particular, we have τ = 0 at the origin O. The

latter is just the strain recovery condition at the origin O.

Eqs. (13)-(15) produce

h = q(τ) ≡ p(φ(τ)) +
1

E
(τ − φ(τ)) (16)

for the axial strain h and the axial stress τ on the subsequent plastic curve.

From this it follows that the subsequent plastic curve may be determined

jointly by the shape function Eq. (14) and the bridging function Eq. (15).

Detail may be referred to Xiao (2014a). Usually, it suffices to consider a

linear bridging function below:

τ = bτ + r0 , (17)

where b > 0 is a dimensionless parameter.

3.2. Plastic slope relations with multi-axial extension

From the constitutive equations established in the last section, two re-

lations in the uniaxial case may be derived for the primary and subsequent

plastic curves. Such relations relate the hardening moduli c and γ as well

as the yield strength r to the geometric features of the two curves at issue.

Then, each of the former is derivable from a multi-axial extension of these

relations.

The axial stress τ on either the primary or the subsequent plastic curve

may alternatively be reformulated as a function of the effective plastic work

15
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κ̃. With this understanding, let τ ′ represent the derivative with respect to κ̃,

namely, τ ′ = dτ
dκ̃

with τ = τ(κ̃). Then, the following relation may be derived:

1

(τ − α)τ ′
=
dh

dτ
− 1

E
(18)

for either of the primary and subsequent plastic curves with (τ, h) = (τ , h)

and (τ, h) = (τ , h). The combination (τ − α)τ ′ is referred to as the plastic

slope of either of the two plastic curves.

By applying the constitutive equations in the last section, the plastic

slope relations below may be derived (Xiao 2013, 2014a):

1.5c
(
1 + ζ−1r̄′Λ

)
+ r′r − γ(Λ + r̄′ζ) = τ(τ ′ − α) =





K(τ) ,

K(τ) ,
(19)

for the primary and subsequent plastic curves, respectively, where

Λ =
1.5

r
(τ̃ −α) : α (20)

and the plastic slopes for the two plastic curves may be given by

(τ − α) τ ′ = K(τ) ≡ 1

p′(τ)− E−1 , (21)

(τ − α) τ ′ = K(τ) ≡ 1

q′(τ)− E−1 =
b−1

p′(bτ + r0)− E−1
(22)

The two relations given by Eq. (19) are merely applicable to the uniax-

ial case. Toward obtaining results for general multi-axial cases, it may be

essential to have an appropriate multi-axial extension of Eq. (19). Such an

extension has been proposed in Xiao (2014a) and given below:

1.5c
(
1 + ζ−1r̄′Λ

)
+ r′r − γ(Λ + r̄′ζ) = K(Λ, r) , (23)
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where

K(Λ, r) ≡ [Λ + r]

|Λ|+ r
K(|Λ|+ r) +

(
1− [Λ + r]

|Λ|+ r

)
K(|Λ| − r) , (24)

with

[Λ + r] =
1

2
(Λ + r + |Λ + r|) .

In the uniaxial case, the multi-axial extension Eq. (24) exactly yields the

two plastic slopes K(τ) and K(τ) (cf., Eqs. (21)-(22)) for the primary and

subsequent plastic curves (cf., Fig. 1) and, therefore, Eq. (23) reduces to

Eq. (19) in the uniaxial case. Moreover, the two plastic slopes given by Eqs.

(21)-(22) may be extended to cover the whole range (−∞,+∞) for the stress

variable by assuming symmetry in tension and compression (Xiao 2014a). A

general case with tension-compression asymmetry has been treated in Wang

et al. (2014). Further discussion may be referred to these recent references.

3.3. Multi-axial anisotropic hardening moduli

Now the two hardening moduli c and γ may be derived from Eq. (23)

following the procedures in Xiao (2013, 2014a). Results are as follows:

c =
2

3

K(−ζr̄′, r)− rr′
1− r̄′2 , (25)

γ =
1 + ζ−1r′Λ

(1− r′2)(Λ + r′ζ)
(K(−r′ζ, r)− rr′) +

rr′ −K(Λ, r)

Λ + r′ζ
(26)

with

r̄′(κ̃, 0) = 0, r̄
′2 < 1 . (27)

The latter two ensure that multi-axial hardening moduli c and γ given above

are well-defined for all possible cases.
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3.4. Multi-axial yield strength

The yield strength r is of localized properties at both κ̃ = 0 and ζ = 0,

as explained in the previous study (Xiao 2013, 2014a). Two localized terms

may be introduced to characterize these localized properties. For a linear

bridging function given by Eq. (17), result is given below:

r =
b− 1

b+ 1

√
1.5ζ

(
1− e−%

ζ
r0

)
+

r0
b+ 1

(
1 + b e

−β κ̃
r0

)
, (28)

where % > 0 and β > 0 are two parameters characterizing the localized

properties at ζ = 0 and κ̃ = 0. Note that the requirements specified by Eq.

(27) are satisfied. Details may be found in Xiao (2013, 2014a). In the case

when the primary and subsequent plastic curves are parallel to each other, in

particular, we have b = 1 and then recover the yield strength given in (Xiao

2013).

4. Two stages beyond the pseudo-elastic stage

In this section, results will be provided for the two stages outside the

pseudo-elastic stage, namely, the fast rising part between points B and C

and the softening part after point C (cf., Fig. 1). These two stages will be

treated separately.

4.1. Hardening stage with irrecoverable strains

The primary plastic curve is still prescribed by a shape function as shown

by Eq. (14). Unlike the case in the pseudo-elastic stage, however, each

subsequent plastic curve intersects the strain axis not at the origin O but

at an other point O∗ (cf., Fig. 1), thus leading to appreciable irrecoverable
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strain upon unloading. It is expected that the latter will be growing as

the unloading point H∗ moves toward point C. Moreover, the shape of the

subsequent plastic curve may be different from that of the counterpart in the

pseudo-elastic stage.

We are going to show that the above new features may be character-

ized simply by introducing changes in two respects, namely, by adding a

κ̃−dependent term, denoted g = g(κ̃), to the expression Eq. (28) for the

yield strength and by prescribing the plastic slope of the subsequent plastic

curve in a slightly modified form of Eq. (22). These changes come into play

only in the hardening stage, as shown below:





(τ − α)τ ′ = K(τ) ≡ 1
dh/dτ−E−1 =

b−1
0

p′(b0τ+d0)−E−1 ,

κ̃ > κ̃0 ,

(29)

for the plastic slope for the subsequent plastic curve, and




r = g(κ̃)

b0+1
+ b0−1

b0+1

√
1.5ζ + d0

b0+1
,

κ̃ > κ̃0 ,

(30)

for the yield strength, where κ̃0 is the effective plastic work at point B.

Moreover, the plastic slope of the primary plastic curve is given as before

(cf., Eq. (21)). Now the hardening moduli c and γ are still of the same forms

as those given in the last section, namely, by Eqs. (25)-(26) with Eqs. (14),

(21) and (29), where the plastic slope for the subsequent plastic curve should

be given by Eq. (29) and the yield strength r by Eq. (30).

Now the shape function for the subsequent plastic curve is no longer

given by Eq. (16). In what follows we are in a position to derive this shape
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function. Firstly, from the yield conditions at points H∗ and H∗, namely,

τ ∗ − α∗ = r∗ ,

τ∗ − α∗ = −r∗ ,

where α∗ = α∗ and r∗ = r∗, we deduce



τ∗ = τ ∗ − 2r∗ ,

α∗ = τ ∗ − r∗ .
(31)

Then, by applying the elastic equation Eq. (13) at point H∗ we infer that

the strain at point H∗ is given by

h∗ = p(τ ∗)− 1

E
(τ ∗ − τ∗) , (32)

where p(τ ∗) is the strain at the unloading point H∗. Since the plastic slope

for the subsequent plastic curve is given by Eq. (29), we deduce

dh

dτ
= b0 p

′(b0τ + d0) +
1− b0
E

. (33)

This results in

h = p(b0τ + d0)− p(d0) +
1− b0
E

τ + hp∗ (34)

for the subsequent plastic curve starting at point H∗, where

hp∗ = h∗ + p(d0)− p(b0τ∗ + d0)−
1− b0
E

τ∗ . (35)

The latter is just the irrecoverable strain at τ = 0. By using Eqs. (30)-(32)

we deduce

b0τ∗ + d0 = τ ∗ − g∗ , (36)

20



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

hp∗ = p(d0) + [p(τ ∗)− p(τ ∗ − g∗)]− 1

E
(g∗ + d0) . (37)

From this it follows that the term g = g(κ̃) may be given in fitting any

given data for irrecoverable strains. In particular, from Eqs. (35) and (37)

the meaning of the hardening term may be clear: it determines both the

subsequent yield stress and the irrecoverable strain upon unloading.

4.2. Softening stage up to failure

Results for the softening stage up to failure may be given by following

the main procedures in the last subsection, with changes in shape functions

and plastic slopes.

In the softening stage starting at point C (cf., Fig. 1), the primary plastic

curve goes invariably down toward the strain axis and, accordingly, the stress

goes to asymptotically vanish, namely,

lim
κ̃→∞

τ = 0 . (38)

As a result, there will be two strains corresponding with each stress τ below

the maximum stress τs at point C. This implies that an increasing strain-

stress function as shown in Eq. (14) could not cover the falling part.

With the above fact in mind, the falling part of the primary plastic curve

is prescribed by a decreasing strain-stress function below:





h = ps(τ), κ̃ > κ̃s ,

p′s(τ) < 0 ,

limτ→0 p
′
s(τ) = −∞, limτ→0 ps(τ) = +∞ .

(39)
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Here, κ̃s is the effective plastic work at point C. As in Eq. (21), the plastic

slope for the falling part is given by

(τ − α) τ ′ = Ks(τ) ≡ 1

p′s(τ)− E−1 . (40)

On the other hand, the plastic slope for the subsequent plastic curve is given

by

(τ − α) τ ′ = Ks(τ) ≡ 1

q′s(τ)− E−1 =
b−1s

p′s(bsτ)− E−1 (41)

In the above, bs > 0 is a dimensionless parameter.

Now the yield strength is given by (cf., Eq. (30))




r = gs(κ̃)
bs+1

+
√

1.5 bs−1
bs+1

ζ ,

g′s(κ̃) < 0, limκ̃→+∞ gs(κ̃) = 0 ,

κ̃ > κ̃s ,

(42)

As shown above, here gs = gs(κ̃) > 0 is a softening term. Moreover, the

hardening moduli c and γ are given by Eqs. (24)-(26) by replacing the

plastic slopes K(·) and K(·) in Eq. (24) with Ks(·) and Ks(·) given by Eqs.

(40)-(41).

In the softening stage, the subsequent plastic curve starting from the

subseqnent yield point (τ∗, h∗) may be derived following the same procedures

in the last subsection and given by (cf., Eqs. (34) and (37))

h = ps(bsτ) +
1− bs
E

τ + ω∗ (43)

with

ω∗ = [ps(τ
∗)− ps(τ ∗ − g∗s)]−

g∗s
E
. (44)
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Here, the constant ω∗ given in the above does not represent the irrecoverable

strain. In fact, it follows from Eqs.(39) and (43) that, along each subsequent

plastic curve, the strain becomes indefinitely large as the stress goes mono-

tonically down to vanish, just as the case along the falling part of the primary

plastic curve.

Now we study the case when κ̃→ +∞ at failure. Let (τ∗, h∗) be the sub-

sequent yield point corresponding with the unloading point (τ ∗, h∗). Then,

the following relation may be derived from Eq. (31) and Eq. (42)1:

r∗ =
bs − 1

2bs
τ ∗ +

1

2

g∗s
bs
, (45)

α∗ =
bs + 1

2bs
τ ∗ − 1

2

g∗s
bs
, (46)

τ∗ =
τ ∗ − g∗s
bs

. (47)

The last indicates that the softening term gs = gs(κ̃) determines the subse-

quent yield stress in the softening stage. Moreover, from Eqs. (39)-(42) and

Eqs. (45)-(47) it follows that the following asymptotic properties hold true:

lim
κ̃→+∞

τ ∗ = 0, lim
κ̃→+∞

τ∗ = 0, lim
κ̃→+∞

α∗ = 0 ,

lim
κ̃→+∞

Ks = lim
τ→0

Ks(τ) = 0, lim
κ̃→+∞

Ks = lim
τ→0

Ks(τ) = 0 ,

and 



limκ̃→+∞ r = 0 ,

limκ̃→+∞ c = 0 ,

limκ̃→+∞
γ
r
≥ ω0 > 0 ,

(48)

The latter are just the failure conditions derived in a previous study (Xiao

2014b).

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

5. Combining all three stages up to failure

In the last two sections, the three different deformation stages have been

isolatedly treated and, therefore, results presented are merely applicable to

their respective stages. In this section, such isolated results will be combined

into unified results for all three stages up to failure.

5.1. Results in unified form

Toward the above objective, we introduce two hyperbolic tangent func-

tions as follows (Xiao 2014b; Wang and Xiao 2015):

π0 = tanh β0

(
1− κ̃

κ̃0

)
, (49)

πs = tanh βs

(
1− κ̃

κ̃s

)
. (50)

In the above, κ̃0 and κ̃s are the effective plastic works close to points B and C

(Fig. 1), respectively, and, besides, β0 > 0 and βs > 0 are large dimensionless

parameters. The properties of these functions will be indicated slightly later.

In what follows the three constitutive quantities for all three stages will

be presented in unified forms, separately. Firstly, the yield strength in unified

form is given by:

r =
ĝ

b̂+ 1
+
b̂− 1

b̂+ 1

√
1.5ζ +

d̂

b̂+ 1
+

br0
b+ 1

e
−β κ̃

r0 −
√

1.5
b− 1

b+ 1
ζe
−% ζ

r0 , (51)

where

ĝ = g(κ̃)
(1− π0)(1 + πs)

4
+ gs(κ̃)

1− πs
2

, (52)

b̂ =

(
b

1 + π0
2

+ b0
1− π0

2

)
1 + πs

2
+ bs

1− πs
2

, (53)
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d̂ =

(
r0

1 + π0
2

+ d0
1− π0

2

)
1 + πs

2
. (54)

For the parameters and quantities emerging in the above, refer to §3 and §4
for detail.

Next, the two moduli c and γ in unified forms are obtained following the

same procedures as in obtaining Eqs. (25)-(26) and given by

c =
K(−ζr̄′, r, κ̃)− rr′

1− r̄′2 , (55)

γ =
1 + ζ−1r′Λ

(1− r′2)(Λ + r′ζ)
(K(−r′ζ, r, κ̃)− rr′) +

rr′ −K(Λ, r, κ̃)

Λ + r′ζ
(56)

where (cf., Eq. (24))

K(Λ, r, κ̃) ≡ [Λ + r]

|Λ|+ r
K(|Λ|+ r, κ̃) +

(
1− [Λ + r]

|Λ|+ r

)
K(|Λ| − r, κ̃) (57)

with (cf., Eqs. (21)-(22))

K(τ , κ̃)−1 = p′(τ)
1 + πs

2
+ p′s(τ)

1− πs
2
− E−1 , (58)

K(τ , κ̃)−1 = b

(
p′(b̂τ + d̂)− 1

E

)
1 + πs

2
+ bs

(
p′s(bsτ)− 1

E

)
1− πs

2
. (59)

Now we demonstrate that the isolated results in the last two sections

are indeed incorporated into the above results in unified forms. In fact, the

parameters β0 and βs may be taken to be fairly large, say 5 or so. In this

case, the two hyperbolic tangent functions given by Eqs. (49)-(50) are of the

following properties:

π0 ≈





+1 for κ̃ < κ̃0(1− ε) ,
−1 for κ̃ > κ̃0(1 + ε) ,

(60)
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πs ≈





+1 for κ̃ < κ̃s(1− ε) ,
−1 for κ̃ > κ̃s(1 + ε) ,

(61)

In the above, ε is small for fairly large β0 and βs. From the above properties

it follows that the unified results may reduce to the isolated results separately

for three stages in §3 and §4, except for two small neighborhoods at κ̃0 and

κ̃c, separately. Within either of these two neighborhoods emerges a smooth

transition between two neighboring stages.

In fact, by using Eqs. (60)-(61) we may deduce

1 + π0
2
≈





1 for κ̃ < κ̃0(1− ε) ,

0 for κ̃ > κ̃0(1 + ε) ,

(62)

1− π0
2
≈





0 for κ̃ < κ̃0(1− ε) ,

1 for κ̃ > κ̃0(1 + ε) ,

(63)

1 + πs
2
≈





1 for κ̃ < κ̃s(1− ε) ,

0 for κ̃ > κ̃s(1 + ε) ,

(64)

1− πs
2
≈





0 for κ̃ < κ̃s(1− ε) ,

1 for κ̃ > κ̃s(1 + ε) ,

(65)

Thus, for the first stage with κ̃ < κ̃0 and the second stage with κ̃0 < κ̃ <

κ̃s and κ̃ > κ̃s for the softening stage, it follows from Eqs. (52)-(59) and Eqs.

(62)-(65) that Eq. (51) and Eqs. (55)-(56) reduce to the results in §3 and

§4, separately.
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5.2. Determination of the shape function

In the unified results presented, the constitutive quantities except β0 and

βs are obtainable from relevant data for the three deformation stages by

means of uncoupled procedures, as indicated in the last two sections. These

quantities are expressed explicitly in terms of uniaxial shape functions for

the primary and subsequent plastic curves and apply to a general case of

multi-axial deformations. As such, the finite elastoplastic J2−flow models

established in §2 may simultaneously represent all three deformation stages

of pseudo-elastic SMAs over the entire range of strain up to failure. Per-

haps more essentially, the proposed model is explicit in the following sense,

namely, both the primary and the subsequent plastic curves determined from

this model in respective deformation stages are nothing else but exactly those

prescribed by the shape functions therein incorporated. As a result, the pro-

posed model may automatically fit any given test data for such curves, when-

ever suitable forms of shape functions may be chosen to fit any given data.

The implication of this respect will further be explained in the concluding

section.

Now a comprehensive simulation of pseudo-elastic SMAs up to failure

becomes explicit and straightforward and may be reduced to prescribing the

shape functions from relevant uniaxial data, among other things. It is noted

that the shape function eq. (14) may be presented to precisely fit any given

data for any shape of the loading curve ABC in Fig. 1. In fact, let (hs, τ s)

with s = 1, 2, · · · , N be any given set of data for the axial stress and strain.

The shape function eq. (14) may be given straightforwardly by the interpo-
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lating polynomial below:

h = p(τ) =
N∑

s=1

hsLs(τ) ,

where

Ls(τ) =
N∏

r=16=s

τ − τ r
τ s − τ r

, s = 1, 2, · · · , N ,

are the Lagrangean base functions. Then,

p(τ s) = hs, s = 1, 2, · · · , N .

Thus, the test data given are precisely fitted.

The interpolating approach as shown above is straightforward with no

adjustable parameters and apples to any given data. Another approach is to

prescribe certain well-chosen forms of shape functions with certain param-

eters associated with direct geometric and physical features of SMA stress-

strain curves. Such parameters are determined in fitting test data.

Unlike the interpolating approach, the latter approach involves proce-

dures of parameter identification and need not be applicable for all cases.

However, this approach may supply parameters characterizing typical geo-

metrical and physical features of SMAs. Detail will be shown in the next

section.

6. Numerical examples for comprehensive simulation

In this section, we are going to present numerical examples for simulating

all three stages of SMAs up to failure. As indicated before, with the proposed

model it suffices to supply two shape functions (cf., Eqs. (15)-(16)) that can
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match test data for primary and subsequent plastic curves. Toward this goal,

the second approach indicated at the end of the last section will be adopted

below.

6.1. Shape functions for SMAs with flag-like hysteresis loops

Pseudo-elastic hysteresis loops for SMAs, in particular, Ti-Ni alloys, are

of flag-like shape, as shown in Fig. 1. The main features of such loops

may be sketchily described as follows. For the primary stress-strain curve,

after an initial almost linear part with a big slope follows an almost linear

part with a small slope in the pseudo-elastic stage and then a rising part in

the hardening stage, and, moreover, within small intervals there are smooth

transitions between neighboring parts. In an unloading process of removing

the stress, the stress-strain curve displays similar features as just described.

It has been shown (Xiao 2013, 2014a) that two simple forms of shape

functions may be introduced to capture the main features in the foregoing

and given by




h = r0

E
+ ξ0(τ − r0) +

+ 1
2
(aτ 2 + ξ1(τ − r0 − s) + a0) (tanh(m(τ − r0 − s)) + tanh(ms)) ,

(66)

for the primary plastic curve, and




h = (ξ0b+ (1− b)E−1) τ +

+ 1
2
(a(bτ + r0)

2 + ξ1(b τ − s) + a0) (tanh(m(b τ − s)) + tanh(ms)) ,

(67)
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for the subsequent plastic curve. The latter is obtained from Eqs. (15)-(17).

All the nine parameters therein are intrinsic in the sense of representing

intrinsic geometric features of loops, as explained in the foregoing references.

The above shape functions are for the first, i.e., the pseudo-elastic stage

with perfect recovery. For the second, i.e., the hardening stage with partial

recovery, the shape function for the primary plastic curve is still given by

Eq. (66), while the shape function for the subsequent plastic curve is given

by Eq. (34) with Eq. (37). The shape function for the falling part (cf., Eq.

(39)) is given by

h = ps(τ) = hs

[
1 +

(
− 1

λs
ln
τ

τs

)d ]
, 0 < τ ≤ τs , (68)

where hs and τs are the strain and the stress at point C (Fig. 1) and n > 0,

a > 0 and λs > 0 are dimensionless parameters.

With suitable values of the parameters κ̃ and βs, the falling part in the

softening stage up to failure should be determined by numerically integrating

the rate constitutive equations with the yield strength r and the hardening

moduli c and γ given by Eqs. (42)-(44). That is also the case for the smooth

transitions from the first to the second stage and from the second to the third

stage.

It may be straightforward to fit relevant test data using the above shape

functions. This may be done by directly finding out the parameters incorpo-

rated. As has been indicated before, usual tedious numerical procedures in

treating nonlinear constitutive equations are now rendered irrelevant.
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6.2. Numerical results

Numerical results incorporating the test data in Shaw and Kyriakides

(1995) are now presented. Of them, data in the second stage with partial

recovery are provided for one subsequent plastic curve. The irrecoverable

strain in this case may be determined and denoted hp∗, as has been done in

Eq. (34).

It should be noted that the strain in Fig. 5 in Shaw and Kyriakides

(1995) represents the average strain in the monitored gauge length of the wire

sample. The deformation response in the tested sample is inhomegeneous due

to austenitic phase showing Lüders band-like localization during forward and

reverse martensitic transformation, as elaborated in Shaw and Kyriakides

(1995, 1997, 1998) and Hallai and Kyriakides (2013).

Results will be presented below for three stages, separately. Firstly, the

parameters in the two shape functions in Eqs. (66)-(67) are identified in

fitting the data for the pseudo-elastic hysteresis loop (Shaw and Kyriakides

1995) and given by

E = 60GPa, r0 = 266MPa, ξ0 = 1.5× 10−5/MPa, a = 1.0× 10−8/MPa2,

ξ1 = 1.6× 10−5/MPa, s = 280MPa, a0 = 3.7× 10−2, m = 0.2, b = 0.95.

Moreover, the effective plastic work κ̃00 at the first unloading point may be

obtained by integrating Eq. (21) with τ − α = r from τ = r0 = 266MPa to

τ = 720MPa and given by

κ̃00 = 6.07MPa.

Results are shown in Fig. 2.
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Secondly, the parameters b0, d0 and hp∗ are determined in fitting the data

for the subsequent plastic curve in the second stage (Shaw and Kyriakides

1995) and given by

b0 = 1, d0 = 620MPa, hp∗ = 6.3× 10−2.

Again, the effective plastic work κ̃∗ at the second unloading point is obtained

by integrating Eq. (29) with τ − α = r from τ = 720MPa to τ = 1407MPa

and, besides, the value g∗ = g(κ̃∗) is obtained from Eq. (37) with τ ∗ =

1407MPa, as given below:

κ̃∗ = 31.26MPa, g∗ = 321.8MPa.

Here, for the sake of simplicity the hardening term g = g(κ̃) in Eq. (30) is

taken to be of the linear form given below:

g =
g∗

κ̃∗
κ̃ = 0.2287κ̃ . (69)

Results are shown in Fig. 3.

Thirdly, the falling part of the curve in the softening stage in case of

monotonic straining up to failure is generated by the shape function given

by Eq. (68) with

hs = 0.125, τs = 1700MPa, λs = 6.

Moreover, the softening curve in case of unloading is produced by Eqs. (43),

(44), (47) and (68) with

τ ∗ = 1185MPa, bs = 1.5, ω∗ = −2.65, g∗s = 495MPa, τ∗ = 460MPa.

Results are shown in Fig. 4.
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The above results are combined into Fig. 5 to display a comprehensive

simulation of all three stages up to failure. The four figures show good

agreement with test data.

Figure 2: Fitting test data (solid points, Shaw and Kyriakides 1995) in the pseudo-elastic

stage with perfect strain recovery

Details may further be given for smooth transitions from the first to the

second stages and from the second to the third stage, which occurs in two

small intervals (κ̃0(1 − ε), κ̃0(1 + ε)) and (κ̃s(1 − ε), κ̃s(1 + ε)), separately.

It may be noted that the transition from the first to the second stage is

characterized by the two parameters κ̃0 and β0 (cf. Eq. (49)), while that

from the second to the third stage is described by the two parameters κ̃s and

βs (Ed. (50)). With a lack of relevant data, here estimated values of these
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Figure 3: Fitting test data (solid points, Shaw and Kyriakides 1995) in the hardeing stage

with partial strain recovery

parameters are taken into consideration, e.g.,

κ̃0 = 7MPa, β0 = 21,

κ̃s = 70MPa, βs = 21.

Moreover, here the softening term gs = gs(κ̃) in Eq. (42) is taken to be of

the simple form:

gs = g∗
κ̃0

κ̃∗
κ̃0

κ̃
. (70)

Note that both g and gs agree with each other at κ̃ = κ̃0.

Results for the foregoing two transitions may be obtained by integrating

the constitutive equations in §2 with the yield strength and hardening moduli

in unified form.
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Figure 4: Monotonic straining up to failure with test data (solid points, Shaw and Kyri-

akides 1995; broken line for softening part).

In the numerical examples given in the above, test data are only for part

of the second irrecoverable stage and no data for the sofening part up to

failure is involved, as may be seen in Fig. 4. Toward further validating the

shape function Eq. (66) prior to the softening and the shape function Eq.

(68) for the sofening part, test data given in Fig. 2(a) in Gollerthan et al.

(2009) and in Fig. 2 in Giroux et al (2010) for the strain rate 2.5×10−4/s

are taken into consideration, separately. In the former, complete data are

given for the first two stages of a SMA sample except the softening stage,

while data incorporating the softening stage are given in the latter. Results

in simulating these two sets of data are given below.

For the data in Gollerthan et al. (2009), the parameter values are as
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Figure 5: Comprehensive simulation of three stages up to failure with test data (solid

points, Shaw and Kyriakides 1995; upper broken line for softening part in case of monotonic

straining; lower broken line for softening part in case of unloading)

follows:

r0 = 100MPa, E = 5GPa, ξ0 = 2.2× 10−4/MPa, a = 4.0× 10−7/MPa2,

ξ1 = 1.5× 10−5 × /MPa, s = 110MPa, a0 = 0.0545, m = 0.2/MPa,

for the shape function eq. (66), and

hs = 0.67, τs = 960MPa λs = 2, d = 2,

for the shape function Eq. (68) for the softening stage. The simulation result

is shown in Fig. 6.

Moreover, for the data in Giroux et al. (2010), the parameter values are

given by

r0 = 330MPa, E = 100GPa, ξ0 = 1.25× 10−5, a = 0,

ξ1 = 0, s = 96MPa, a0 = 16, m = 0.15/MPa,
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Figure 6: Fitting test data (solid points, Gollerthan et al. 2009) up to failure

for the shape function eq. (66) for the first two stages, and

hs = 0.06, τs = 424MPa λs = 0.032, d = 3.06,

for the shape function Eq. (68) for the softening stage. The simulation result

is shown in Fig. 7.

7. Concluding remarks

In the previous sections, a new constitutive model for pseudo-elastic

SMAs up to failure has been proposed in the framework of classical J2−flow

elastoplasticity. The new model accomplishes for the first time a compre-

hensive simulation of all three stages over the entire range of strain. In

comparison with various usual models, the new model exhibits new features

in an explicit, unified sense as explained below.

(i) With each usual model, complexities in two respects would have to be

treated. Firstly, a number of adjustable constitutive parameters and func-
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Figure 7: Fitting test data (solid points, Giroux et al. 2010) up to failure

tions from either microscopic or mesoscopic or phenomenological standpoint

are incorporated in both nonlinear constitutive equations and switching con-

ditions as well as micro-to-macro averaged procedures. Given values of such

parameters and forms of such functions, model predictions for both the pri-

mary plastic curve upon loading and each subsequent plastic curve upon

unloading may not be explicitly obtainable but, on the contrary, would have

to be found by means of numerical procedures of treating a coupled system of

nonlinear constitutive equations with a number of switching conditions and

micro-to-macro averaging procedures.

(ii) Secondly, for data sets given for a certain SMA sample, such numerical

procedures would have to be iteratively carried out until suitable values of

constitutive parameters and forms of constitutive functions may be found

to fit such data sets as closely as possible. In so doing, much effort and

complexity in numerical treatment would be expected.

(iii) The applicability of a model can be validated for given data sets for
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a sample only after the foregoing process is favorably completed. Even if a

model has been validated for a sample, however, there would be no certainty

that that may be the case for any other sample. For different SMA samples,

the foregoing process would have to be repeated one by one and give rise to

different results for both constitutive parameters and functions for different

samples. As such, it may be evident that the validation of a model not only

could never be completed by exhausting all possible samples, but could not

supply results in unified form.

(iv) The complexities and, in particular, the uncertainty as indicated

above may be bypassed with the new model proposed. In fact, both the yield

strength and the hardening moduli presented in §5 are explicitly expressed

in terms of any given shape functions for the primary and subsequent plastic

curves, in such a sense that the latter two may be exactly, automatically

reproduced from the model. As a consequence, with the proposed model,

the modeling of pseudo-elastic SMAs up to failure may substantially be re-

duced to choosing suitable forms of shape functions, thus bypassing usual

complicated numerical procedures indicated above. In fact, as explained in

§5.2, it may be a straightforward matter to obtain the shape function by

means of interpolating procedures. Since explicit results in unified form are

presented in terms of any form of the shape function and the latter can

prescribe any given shape of uniaxial stress-strain, it may be clear that the

proposed model provides a unified means of simulating SMAs, in an explicit

sense of accurately fitting any given uniaxial test data.

On the other hand, the particular forms of the shape functions as given by

eqs. (66)-(68) are intended for NiTi SMAs with flag-like recovery loops. In
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this case, procedures of parameter identification are indeed involved. How-

ever, the parameters incorporated in these functions may be determined by

directly fitting these functions to test data, without involving the complicated

procedures indicated in (i) and (ii).

(v) It may follow from the above that the proposed model supplies unified

results for all possible shapes of uniaxial stress-strain curves, in an explicit

sense without involving both phase variables and usual complicated proce-

dures as indicated in the above.

It should be pointed out that the above discussion is concerned with

determination of the constitutive quantities and parameters based on uniaxial

test data. Whenever the model is ready, responses in multi-axial cases should

be calculated by means of usual numerical procedures for 3-dimmensional

problems of elastoplastic bodies.

From the above explanations it may be concluded that the novelty of

the new model lies not only in achieving for the first time a comprehensive

simulation up to failure, but, perhaps more essentially, in presenting explicit,

unified results in terms of two shape functions and others. Developments

may be expected in the four respects indicated below.

Firstly, the pseudoelasticity behavior and fatiguing failure under repeated

loadings need to be studied. This will be done by combining the new model

here with the free, smooth elastoplasticity model suggested in a newest study

(Xiao et al. 2014; Xiao 2014b; Wang and Xiao 2015).

Secondly, rate effects need be considered in many cases. A new rate-

dependent elastoplasticity model has been established most recently (Xiao

2015). With this development, the new model here will be extended to treat
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rate effects in various cases.

Thirdly, SMA samples are known to exhibit distinct behaviors over dif-

ferent ranges of temperature. The pseudo-elastic behavior is observed and

changes over a certain range of temperature. Outside this range, usual elasto-

plastic behavior is observed over the whole range of strain. A thermo-coupled

model for SMAs need be established to simulate such distinct behaviors over

the whole range of temperature. This will be done by extending the new

model here to thermo-coupled cases.

Finally, since phase transitions between austenite and martensite at the

microscopic level are the physical mechanisms of SMA macroscopic behavior,

it may be of significance to establish links between these mechanisms and the

macroscopic constitutive quantities in the proposed model, namely, the yield

strength and the hardening moduli. An initial understanding of these links

may be evident. In fact, both phases and phase boundaries at the microscopic

level are undergoing constant changes in course of phase transitions. As such,

transitions between different phases may result in appreciable change in the

yield strength, while interactions between changing phase boundaries may

lead to strong anisotropic hardening effect. On account of the fact that

changes in phases and in associated phase boundaries are coupled with each

other, there exists substantial coupling between the foregoing two kinds of

hardening effects, as is the case in the proposed model. Quantitative links in

a further sense need to be studied.
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