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Abstract

The effective elasticity tensors of two-phase composites are estimated by

solving the localization problem in the wave-vector domain for the case of non

overlapping spherical or ellipsoidal inclusions. With previous works showing

that the effective properties can be computed from lattice sums, we propose a

method to compute the sums analytically and obtain the explicit expressions

for the effective tensors. In the case of different periodic cells leading to cubic

or orthotropic elasticity tensors, the effective elasticity tensors are obtained

in closed forms that are in good agreement with the exact solutions for a

large range of physical parameters. In the random distribution cases, the

statistical connection of the effective tensor to the structure factor is shown

and a closed-form expression is obtained in the infinite volume limit.
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1. Introduction

One objective of micromechanics is to model the overall behavior of com-

posites by studying physical problems at the scale of heterogeneities, fol-

lowed by averaging the physical quantities on volumes of interest. The usual

homogenization procedure is to construct a representative volume element

(RVE) containing the distribution of different constituting phases and then

to use continuum mechanics to analyze the localization problem. For elastic

periodic media, it was shown that the effective elasticity tensor is rigorously

defined from the average stress/strain linear relation (Sanchez-Palencia, 1974,

1980) obtained by studying only a unit cell.

Most closed-form estimations of the effective elasticity tensor are based on

simplifications of RVE containing assemblages of coated spheres or ellip-

soids (Eshelby, 1957; Christensen and Lo, 1979; Benveniste and Milton, 2003;

Tsukrov and Kachanov, 2000). For periodic problems, the solutions are usu-

ally obtained from numerical methods such as the finite element method

(FEM), boundary element method (BEM) and fast Fourier transform (FFT)

(Kaminski, 1999, 2005; Liu et al., 2005; Michel et al., 1999; Eyre and Milton,

1999; Monchiet and Bonnet, 2012). Generally, it is more difficult to apply

analytical techniques to periodic microstructures due to the special bound-

ary conditions and the geometry of the unit cell. The most sophisticated

complete semi-analytical methods use an expansion of the solution on the

basis of periodic functions and expand the basis functions on spherical har-

monics or spheroidal functions (Nunan and Keller, 1984; Sangani and Lu,

1987; Kushch, 1997, 2013), whereas estimates can be obtained by perturba-

tion methods (Cohen, 2004).

In this paper, we use the Nemat-Nasser-Iwakuma-Hejazi (NIH) approxima-

tion (Nemat-Nasser et al., 1982) to treat the specific case of two-phase pe-

riodic composites with spherical or ellipsoidal inclusions. This method has
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the same level of approximation as provided by the Clausius-Mossotti (CM)

assumption, that is, it provides good estimates for a large range of inclusion

concentrations. It takes into account the distribution of inclusions, but it is

not more accurate for very large concentrations of inclusions. In this con-

text, it rests on Fourier expansion and is very versatile, thus accounting for

the interaction between inclusions or cracks of different kinds: such as ellip-

soids, and cuboids. Further, it can address a fully anisotropic behavior. This

method is much easier to use than fully numerical methods. Nevertheless,

it necessitates the computation of lattice sums, which requires obviously a

minimum of numerical calculations: storing a large number of Fourier com-

ponents, checking the convergence of the lattice sums, etc. In some cases, like

for some cubic cases, alternative methods provided, under similar assump-

tions, simple expressions of the effective elasticity tensors (Cohen, 2004).

For further applications, the computation of lattice sums for further appli-

cations has been to interpolate can also be avoided by interpolating some

results coming from the NIH method, like for fiber composites (Luciano and

Barbero, 1994). The main contribution of our work is also to avoid the com-

putation of the lattice sums, but by estimating these sums analytically in

more general periodic cells containing spheres or ellipsoids. By considering

such different arrangements inside the unit cell (e.g., simple orthorhombic

(SO), body-centered orthorhombic (BCO), and face-centered orthorhombic

(FCO)), we derive explicit closed-form expressions of the effective elasticity

tensors.

The next part of this work deals with the random distribution case. As an

extension of our previous work on conduction phenomena (To et al., 2013; To

and Bonnet, 2015), we establish the statistical connections between the effec-

tive tensor and local arrangement factors such as the form factor P(ξ), the

structure factor S(ξ), and the scattering intensity I(ξ) used in the scatter-

ing theory (Hunter and White, 2001; Bohren and Huffman, 1998) and more
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generally in solid-state physics (Rössler, 2009). These factors provide useful

insight into the local structure of the particles, and it is worth noting that

they can be obtained experimentally. Finally, a closed-form solution is also

obtained in this case.

The present paper is composed of five sections. After the Introduction, Sec-

tion 2 is dedicated to the homogenization theory of periodic media using the

integral equation approach and NIH estimation. In Section 3, closed-form

solutions for elasticity tensors related to different arrangements of spherical

or ellipsoidal inclusions are derived. Section 4 deals with the random cases;

some numerical applications and comparisons with different solutions of the

literature are reported in Section 5 and finally, the summary and remarks

are presented in Section 6.

The usual notations of tensor algebra are adopted throughout the paper.

For example, tensors are in bold characters, tensor products are denoted by

”⊗” (tensor products) and ”., : ” (inner products). The Einstein summation

convention is used for repeated indices.

2. Homogenization of elastic periodic composites

First, the governing integral equations of the homogenization problem

are derived along classical means (Christensen, 1979; Milton, 2002), how-

ever with more attention given to the periodic case and the use of Fourier

transforms. Next, the estimation of effective elasticity tensors based on the

integral equations (Nemat-Nasser et al., 1982) is introduced.

2.1. Governing integral equations

We consider an infinite elastic composite the fourth-order elasticity tensor

C of which is a periodic function of the local coordinates x(x1, x2, x3) with
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periods a1, a2, a3:

C(x1, x2, x3) = C(x1 + n1a1, x2 + n2a2, x3 + n3a3), ∀n1, n2, n3 ∈ Z (1)

The homogenization procedure of the periodic material was rigourously es-

tablished from the asymptotic development of the involved quantities, stress

σ, strain ε, and displacement u in terms of the scaling parameter ε (Sanchez-

Palencia, 1974, 1980). Matching the powers of ε in the elasticity equations

yields different relations between the quantities, including the definition

of the effective elasticity tensor Ce. To summarize, the following periodic

boundary value problem in a unit cell V :

σ(x) = C(x) : ε(x) ∀x ∈ V
ε(x) =

1

2
(∇u(x) +∇Tu(x)), ∀x ∈ V

∇ · σ(x) = 0, ∀x ∈ V
u(x)− E.x periodic,

σ(x).n antiperiodic (2)

must be solved, allowing finally the computation of the effective elasticity

tensor Ce from the relation between macroscopic strain E and stress Σ:

Σ = Ce : E, Σ = 〈σ〉V , E = 〈ε〉V . (3)

Here, we adopt the notation 〈〉V to refer to the average over volume V of the

quantity inside the brackets, for example,

〈φ〉V =
1

V

∫
φdV. (4)

Due to the periodicity of the problem, it is useful to express the periodic

quantities in the form of Fourier series and apply Fourier analysis to the

elasticity equations (2). For example, if φ is a periodic function of x1, x2, x3,
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it can be expressed as a Fourier series:

φ(x) =
∑

ξ 6=0

φ(ξ)eiξ.x, φ(ξ) =
〈
φ(x)e−iξ.x

〉
V
, (5)

where φ can be stress σ, strain ε, elasticity tensor C, etc. For the sake of

simplicity, we differentiate quantities in Fourier space and in real space by

adding the variable after the same symbol: φ(ξ) is the Fourier transform of

the real function φ(x) defined by (5)2. We note that the infinite sum in (5)1

involves all discrete wave vectors ξ with components ξ1, ξ2 and ξ3 satisfying

ξi =
2πni
ai

, i = 1, 2, 3, n1, n2, n3 ∈ Z. (6)

The periodic boundary value problem (2) can be solved by an integral equa-

tion approach. By introducing a constant reference elasticity tensor C0 and

polarization tensor σ∗ (or eigenstress tensor) defined by

σ(x) = C0 : ε(x) + σ∗(x), (7)

it can be shown that ε,σ can be determined via the expressions

ε(ξ) = −Γ0(ξ) : σ∗(ξ). (8)

In (8), Γ0(ξ) is the Green operator for strain in Fourier space. When the

reference material is isotropic with Lamé constants λ0 and µ0, for example,

C0
ijkl = λ0δijδkl + µ0(δikδjl + δilδjk), (9)
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tensor Γ0 admits the following form:

Γ0
ijkl(ξ) =

1

4µ0

(δikξ̄j ξ̄l + δilξ̄j ξ̄k + δjkξ̄iξ̄l + δjlξ̄iξ̄k)

− λ0 + µ0

µ0(λ0 + 2µ0)
ξ̄iξ̄j ξ̄kξ̄l. (10)

In (9,10), δij is the usual delta Kronecker symbol and ξ̄i is the direction cosine

of the wave vector ξ. By using the definition of the polarization tensor (7)

and relation (8), we obtain the integral equation in ε(x):

ε(x) = E− Γ0 ∗ (C(x)− C0) : ε(x). (11)

The transformation of (11) into an equation for eigenstrain ε∗ is straightfor-

ward by making use of the relations defining the eigenstrain ε∗:

σ = C0 : [ε(x)− ε∗(x)],

or equivalently (C0 − C(x)) : ε(x) = C0 : ε∗(x) = −σ∗. (12)

Finally, we obtain the same equation as that reported by Nemat-Nasser et al.

(1982):

C0 : ε∗(x) = (C0 − C(x)) :

[
E +

∑

ξ 6=0

eiξ.xΓ0(ξ) : C0 : ε∗(ξ)

]
. (13)

2.2. Estimations of effective elasticity tensors based on integral equations

From now on, we consider the specific case of a matrix-inclusion composite

where each phase is isotropic with elasticity tensors and Lamé constants being

Cm, λm, µm (matrix), and Ci, λi, µi (inclusion). Following the NIH procedure

(Nemat-Nasser et al., 1982), we shall estimate the effective elastic properties

on the basis of integral equation (13). Taking the matrix as the reference

material, that is, C0 = Cm and averaging both sides of (13) over the inclusion
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volume Ω with fraction f = Ω/V yields

Cm : 〈ε∗(x)〉Ω = (Cm − Ci) :

[
E +

∑

ξ 6=0

〈eiξ.x〉ΩΓm(ξ) : Cm : ε∗(ξ)

]
. (14)

Nemat-Nasser et al. (1982) noted that the eigenstrain vanishes outside the

inclusion and thus proposed the following approximate evaluation of ε∗(ξ):

ε∗(ξ) = f〈ε∗(x)e−iξ.x〉Ω ' f〈ε∗(x)〉Ω〈e−iξ.x〉Ω. (15)

By defining the following shape functions I(ξ) and P (ξ)

I(ξ) = Ω
〈
eiξ.x

〉
Ω
, P (ξ) =

f

Ω2
I(ξ)I(−ξ), (16)

and applying the approximation (15) to (14), we obtain

Cm : 〈ε∗(x)〉Ω ' (Cm − Ci) : [E + Υ : Cm : 〈ε∗(x)〉Ω] , (17)

where the tensor Υ is the following lattice sum in the reciprocal space:

Υ =
∑

ξ 6=0

P (ξ)Γm(ξ). (18)

Inverting (17) yields the average eigenstrain 〈ε∗(x)〉Ω

〈ε∗(x)〉Ω =
[
(Cm − Ci)−1 : Cm −Υ : Cm

]−1
: E. (19)

Next, we average (12) with the matrix as the reference material, and we find

the relation between E, Σ, and 〈ε∗(x)〉Ω:

Σ = Cm : (E− 〈ε∗(x)〉V ), or Σ = Cm : (E− f〈ε∗(x)〉Ω). (20)

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Finally, comparing (20) with (3) and accounting for (19), we can derive the

overall tensor Ce:

Ce = Cm − f
[
(Cm − Ci)−1 −Υ

]−1
. (21)

The success of the NIH estimation relies on the accuracy of Eq. (15). The-

oretically speaking, if the inclusions have an ellipsoidal shape and occupy

a sufficiently small volume fraction f , approximation (15) is valid. Indeed,

Eshelby (1957) proved that the stress/strain fields inside an ellipsoidal inclu-

sion embedded in an infinite matrix and subject to homogeneous stress/strain

boundary conditions at infinity are also homogeneous. For interacting inclu-

sions, the inclusion stress/strain fields are no longer uniform, although (15)

is still expected to yield accurate results for a large range of volume fractions.

2.3. Tensor Υ and its relation with the periodic Eshelby tensor

The periodic Eshelby problem can also be addressed, where the inclusions

in the above study are made of the same material as the matrix (i.e., Ci =

Cm) but are subjected to a uniform eigenstrain ε∗ = E∗ inside their domains

Ω. Different from the classical Eshelby problems, the strain field inside each

inclusion is generally not uniform. However, if we average this strain field

over each inclusion, we can still define the periodic Eshelby tensor Sp as

follows:

〈ε(x)〉Ω = Sp : E∗, (22)

As strain field ε can be computed from ε∗ via (8,12) with relation (15) be-

coming exact, this tensor can be determined by

Sp =
∑

ξ 6=0

P (ξ)Γm(ξ) : Cm. (23)

It is clear that if the domain V is sufficiently large compared with the size

of the inclusion, Sp should be equal to the classical Eshelby tensor S∞. Nev-
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ertheless, there is always a simple connection between Sp and Υ:

Sp = Υ : Cm. (24)

This leads to an alternative interpretation of NIH approximation: the NIH

approximation corresponds to an estimation of the mean strain over the in-

clusions produced by the periodic Eshelby tensor. From (24), we find that the

tensor Υ plays the same role as the classical Hill tensor, but here in the pe-

riodic setting. This ”periodic Hill tensor” provides the average deformation

inside the inclusions due to a constant polarization field.1

On returning to our original problem, combining (74) with (10), this ten-

sor Υ can be written as follows:

Υ =
1

2µm
W− λm + µm

µm(λm + 2µm)
U (25)

where W and U are fourth-order tensors that depend only on the geometry.

In the following, the unit cell is assumed to be symmetrical with respect

to three orthogonal planes. Under this condition, the matrix representations

of W and U are given in Kelvin’s notation by:

[W] =




2S1 0 0 0 0 0

0 2S2 0 0 0 0

0 0 2S3 0 0 0

0 0 0 S2 + S3 0 0

0 0 0 0 S3 + S1 0

0 0 0 0 0 S1 + S2




(26)

1The classical Hill tensor, frequently used in micromechanics, is defined as the product
between the compliance tensor (Cm)−1 and the classical Eshelby tensor S∞ (Hill, 1965)

10
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and

[U] =




S4 S9 S8 0 0 0

S9 S5 S7 0 0 0

S8 S7 S6 0 0 0

0 0 0 2S7 0 0

0 0 0 0 2S8 0

0 0 0 0 0 2S9




(27)

where Si with i = 1, 2, .., 9 are the lattice sums given by

Si =
∑

ξ 6=0

P (ξ)ξ̄2
i , Si+3 =

∑

ξ 6=0

P (ξ)ξ̄4
i , Si+6 =

∑

ξ 6=0

P (ξ)ξ̄2
j ξ̄

2
k,

i, j, k = 1, 2, 3, i 6= j 6= k 6= i. (28)

These lattice sums are not independent because of the relation ξ̄2
2+ξ̄2

2+ξ̄2
3 = 1,

which leads to three relations:

Si+3 + Sj+6 + Sk+6 = Si, i, j, k = 1, 2, 3, i 6= j 6= k 6= i. (29)

It implies that only six of these lattice sums are independent and that not

all of the elastic constants are independent, as shown, for example, by Cohen

(2004) in the cubic case. It is worth noting that the symmetry of the effective

tensor is the same as that of tensor Υ and that this tensor is orthotropic,

which corresponds to the symmetry assumptions on the periodic cell. To

obtain the overall elasticity tensor, we need to invert (Cm − Ci)−1 − Υ in

(21). These tensors can be inverted through lengthy expressions for a general

distribution with orthotropic symmetry (Luciano and Barbero, 1994). Fur-

ther, in some special cases (for example, cubic symmetries), we can obtain

simple analytical expressions, as recalled thereafter.

11
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3. Closed-form expressions for effective tensors in the case of in-

clusions centered on periodic lattices

3.1. Lattice sum computation and integral approximation

Before obtaining the effective properties, the method for analytical esti-

mation of the lattice sums Si with i = 1, 2, .., 9 is introduced in the general

form ∑

η 6=0

η̄2α
i η̄

2β
j H(η), i, j = 1, 2, 3 (30)

with

η = Rξ, H(η) = P (ξ), η̄ =
η

η
, η = |η|. (31)

Here, α and β are non negative integers and R is the inclusion characteristic

length used to generate the dimensionless wave vectors η from ξ. It is noted

that the η points form a rectangular lattice in three-dimensional (3D) space

with density:

ρ =
a1a2a3

(2πR)3
. (32)

If H(η) is a decaying function of η, we can reasonably estimate the sum

∑

ξ∈D
η̄2α
i η̄

2β
j H(η) ' ρ

∫

D

ξ̄2α
i ξ̄

2β
j H(η)dη, (33)

for a sufficiently remote and large region D where H(η) varies slowly. As

a result, the infinite lattice sum can be estimated by a finite sum of several

leading terms and a continuous integral for longer wave vectors, for example,

∑

η 6=0

η̄2α
i η̄

2β
j H(η) '

∑

|η|<ηc

η̄2α
i η̄

2β
j H(η) + ρ

∫ ∞

ηc

H(η)η̄2α
i η̄

2β
j dη. (34)

The cutoff radius ηc in (34) determines the number of leading terms from

the series that are retained in the new formula. In many cases where H(η)

depends on its modulus η alone, we can calculate the integral in the right-

12
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Figure 1: Grid η and η′ in Fourier space

hand side (RHS) of (34):

ρ

∫ ∞

ηc

H(η)η̄2α
i η̄

2β
j dη = ρ

∫ ∞

ηc

H(η)η2dη

∫

|η|=1

η̄2α
i η̄

2β
j dS (35)

The second integral of the RHS involving the unit sphere surface |η| = 1

can be evaluated analytically in numerous cases. The first integral can also

be computed if the explicit expression of H(η) is known. For example, the

simple cubic distribution of spherical inclusions studied in the next section

corresponds to the following expression of H(η):

H(η) = fϕ(η), ϕ(η) =
9[sin(η)− η cos(η)]2

η6
. (36)

The associated integrals involving H(η) can be computed by

ρ

∫ ∞

ηc

H(η)η2dη = 9ρfJ(ηc) (37)

where

J(η) =
π

6
− cos 2η

6η
− 1

3
Si(2η) +

1

2η
+

1

6η3
− sin 2η

3η2
− cos 2η

6η3
(38)

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

and Si(η) is the sine integral

Si(η) =

∫ η

0

sin η′

η′
dη′. (39)

The above summation method can be extended to the more general cases

where H(η) is the function of the modulus |L−1.η| with L−1 being any linear

transformation. Indeed, by simply posing

η′ = L−1.η, H(η) = H ′(η′), (40)

we can calculate the sum using grid η′ as follows:

∑

η′ 6=0

(Likη
′
k)

2α(Ljlη
′
l)

2βH ′(η′)

[(L1kη′k)
2 + (L2kη′k)

2 + (L3kη′k)
2]α+β

(41)

We can keep several leading terms by using the radius η′c and estimating the

remaining series with an integral. The integral estimation method introduced

previously can be applied as the grid η′ is obtained from η by a homogeneous

deformation L−1; thus, the grid η′ is also uniform. The only difference now

is to compute the integral on the unit sphere surface. Taking the example of

an ellipsoidal inclusion studied in the next section, we have

H(η) = fϕ(η′), η′ =
√
η2

1/χ
2
1 + η2

2/χ
2
2 + η2

2/χ
2
2 (42)

where χi are dilatation coefficients. The associated surface integral becomes

∫

|η′|=1

(χiη
′
i)

2α(χjη
′
j)

2β

[(χ1η′1)2 + (χ2η′2)2 + (χ3η′3)2]α+β
dS, i, j not summed (43)

which can yield closed-form solutions in numerous cases.

Finally, we note that if the ratio R/ai → 0 ∀i = 1, 2, 3, the η grid becomes

infinitely dense. As a result, the relation (33) must hold for all domain D,

14
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and the infinite lattice sum is equivalent to the integral over the whole space:

∑

η 6=0

η̄2α
i η̄

2β
j H(η) =

∫
η̄2α
i η̄

2β
j H(η)ρdη. (44)

Although ρ → ∞, the product H(η)ρ is generally bounded for the cases

examined in the later section. As a result, the integral in RHS of (44) is

well defined. Further, one can also expect to recover analytical results cor-

responding to the infinite volume domain limit.

3.2. Cubic lattice arrangements

In this subsection, we consider microstructures composed of identical

spheres of radius R arranged in a cubic lattice of period a (see Fig. 2).

We note that the Fourier transform of the indicator function of a spherical

inclusion of radius R located at xc admits the simple closed form

∫

Vs

eiξ.xdx = 3Vs
sin η − η cos η

η3
eiξ.xc , Vs =

4πR3

3
, η = ξR. (45)

Using the elementary result (45), one can determine I(ξ) and P (ξ) for any

distribution of spheres inside the unit cell. For cubic crystal system arrange-

ments (see Fig. 2), To et al. (2013) derived the following expressions for P (ξ)

(or equivalently H(η)):

P (ξ) = H(η) = αfϕ(η), (46)

with ϕ(η) being defined in (36). The coefficient α depends on the geometry,

equal to 1 for simple cubic arrangement. For other arrangements, it can be

computed as follows:

• Body-centered cubic (BCC)

α = 1 if n1 + n2 + n3 is even, otherwise α = 0, (47)

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Face-centered cubic (FCC)

α = 1 if n1, n2, n3 are all even or odd, otherwise α = 0. (48)

Due to the symmetry of the cell and the definition of P (ξ) in (16), the lattice

sums present the equalities

S1 = S2 = S3, S4 = S5 = S6, S7 = S8 = S9,

whereas S1, S4, and S7 are linked via the property

S4 + 2S7 = S1. (49)

As a result, Υ is a cubic tensor and one can easily compute the effective

tensor Ce from the results of Appendix A.

• The effective bulk modulus κe is determined by

κe = κm −
f

1
κm−κi −

9S3

3κm+4µm

(50)

• The first and the second effective shear modulus µe and µe∗ are deter-

mined by

µe = µm −
f(µi − µm)

1− β , µe∗ = µm −
f(µi − µm)

1− β∗ (51)

where the coefficients β and β∗ are defined as

β =
2(µi − µm)

µm
.
(3κm + 4µm)S1 − 2(3κm + µm)S7

3κm + 4µm

β∗ =
6(µi − µm)

µm
.
µmS4 + 3 (κm + µm)S7

3κm + 4µm
(52)
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Figure 2: Unit cell of cubic lattice structures (from left to right: simple cubic, body-
centered cubic, and face-centered cubic)

It is worth noting that these expressions are identical in form to those given by

Cohen (2004). Using this latter work, the terms depending on the geometry

and concentration are given by

S1 =
1− f

3
, (53)

S4 =
1

5
[1− f − 2(A1f + A2f

5/3)], (54)

S7 =
1

15
[1− f + 3(A1f + A2f

5/3)], (55)

where A1 and A2 are coefficients depending on the geometry that character-

ize the kind of lattice up to second order. They were computed by Cohen

(2004). This shows the very similarity between the present approach and

that of Cohen (2004) despite the difference in nature. It is clear that the

result of Cohen (2004) is easier to use than ours, because the expressions for

S1, S4 and S7 are the same for any cubic lattice of the same kind. However,

as shown subsequently, the previously described results and their expressions

in closed forms that are described thereafter can be extended readily to other

geometries of the microstructure.

Equations (50–51) can be further simplified by evaluating the lattice sums

S1, S4, and S7 analytically using the method described in subsection 3.1 with
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grid density ρ = a3/8π3R3. It has been previously reported that S7 can be

easily computed from S1 and S4 via relation (49). For BCC and FCC ar-

rangements, due to the fluctuation of α (see Eqs. 47 and 48), H(η) in the

integral (34) should be replaced by its average H̄(η). Generally, we have

H̄(η) = ᾱfϕ(η) (56)

where ᾱ = 1(SC), 1
2
(BCC) and 1

4
(FCC). However, we note that the composite

coefficient

ρᾱf =
1

2π2
(57)

is independent of the microstructure, leading to a unique expression for the

long wave integral

ρ

∫ ∞

ηc

H̄(η)η2dη =
3

2π2
J(ηc) (58)

Assuming ε = 2πR/a, the expressions of S1 and S4 for different cubic sys-

tems are finally presented by keeping the first terms of the lattice sums. The

numerical evidence shows that keeping four to six leading terms produces

satisfying results. The terms that are kept corresponding to the value of ηc

are given as follows:

- Simple cubic system (SC) with ηc = 2ε

S1 =
2

π
J(2ε) + f [2ϕ(ε) + 4ϕ(

√
2ε) +

8

3
ϕ(
√

3ε) + 2ϕ(2ε)],

S4 =
6

5π
J(2ε) + f [2ϕ(ε) + 2ϕ(

√
2ε) +

8

9
ϕ(
√

3ε) + 2ϕ(2ε)]. (59)
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- BCC with ηc =
√

12ε

S1 =
2

π
J(
√

12ε) + f [4ϕ(
√

2ε) + 2ϕ(2ε) + 8ϕ(
√

6ε) + 4ϕ(
√

8ε) +

+8ϕ(
√

10ε) +
8

3
ϕ(
√

12ε)],

S4 =
6

5π
J(
√

12ε) + f [2ϕ(
√

2ε) + 2ϕ(2ε) + 4ϕ(
√

6ε) + 2ϕ(
√

8ε) +

+
164

25
ϕ(
√

10ε) +
8

9
ϕ(
√

12ε)]. (60)

- FCC with ηc = 4ε

S1 =
2

π
J(4ε) + f [

8

3
ϕ(
√

3ε) + 2ϕ(2ε) + 4ϕ(
√

8ε) + 8ϕ(
√

11ε)

+
8

3
ϕ(
√

12ε) + 2ϕ(4ε)],

S4 =
6

5π
J(4ε) + f [

8

9
ϕ(
√

3ε) + 2ϕ(2ε) + 2ϕ(
√

8ε) +
664

121
ϕ(
√

11ε)

+
8

9
ϕ(
√

12ε) + 2ϕ(4ε)]. (61)

The maximal relative difference between the analytical expressions and the

full lattice sums is 2% (see Fig. 3). For FCC and BCC, more leading terms

than in the SC case are retained to achieve the high precision level, due to

the fluctuation of the coefficient α. Using four leading terms for FCC and

BCC cases can result in a simpler expression but a higher maximal error (up

to 8%). Even if this error was found to have a small impact on the effective

properties in the case of thermal conduction, we shall use the accurate ex-

pressions (60,61) in the remaining part of the paper.

As mentioned earlier (see Eq. 44), when the ratio R/a → 0 and f → 0,

we obtain the limit that is independent of the microstructure and volume
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Figure 3: Comparison between the full lattice sums with resolution −128 < ni ≤ 128
and Eq. (59) for the simple cubic case. At f = 0, the lattice sums take the limit values
S1 = 1/3, S4 = 1/5, and S7 = 1/15.

fraction f :

S1 =
2

π
J(0) =

1

3
, S4 =

6

5π
J(0) =

1

5
. (62)

This interesting property can be explained in relation to the Eshelby tensor

for periodic spheres discussed in Section 2.3 (which becomes equal to the

classical Eshelby tensor in the dilute case), as also observed in Fig. 3.

3.3. Orthorhombic arrangements of spheres

As will be seen thereafter in the numerical examples, the previously de-

scribed closed-form solution for the effective properties of cubic lattices leads

to results that are very similar to those of Cohen (2004). In addition, this

earlier solution is expressed by simple expressions of the effective elasticity

tensor. Thus, in this section and the following, we show that the solution

described in the previous subsection can be readily extended to other kinds
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of periodic cells.

First, the case of an array of spheres with orthorhombic symmetry is consid-

ered, the center of the spheres being lattice points of an orthorhombic lattice

characterized by a1, a2, a3, with a1 6= a2 6= a3 6= a1. In this case, the effective

elasticity tensor is again given by expression (21). It can be seen that all

tensors appearing in this expression are isotropic except the orthotropic ten-

sor Υ that is characterized by the symmetry of the lattice. Expressions for

all effective elasticity components are explicit, but cumbersome, as a 3 × 3

matrix needs to be inverted, except for the shear components that are listed

below:

Ce
jkjk = µm −

fµm
µm

µm−µi − (Sj + Sk) + 4 λm+µm
λm+2µm

Si+6

,

i, j, k = 1, 2, 3, i 6= j 6= k 6= i. (63)

Regarding the computation of the lattice sum Si, it is clear that the continu-

ous integral estimation of the remaining series is identical to the cubic lattice

case, except for the density that is now given by the general expression (32).

This implies that the contribution of longer wave vectors to the sum does

not contribute to the orthotropic anisotropy of the material. The related

anisotropic terms are contained in the complementary finite sum, and the

number of independent terms to keep in the finite sum is usually higher than

in the case of the cubic lattice.

The infinite sum in (63) can be computed as follows:

Si =
2

π
J(ηc) + f

∑

η<ηc

η̄2
i αϕ(η), Si+6 =

2

5π
J(ηc) + f

∑

η<ηc

η̄2
j η̄

2
kαϕ(η),

i, j, k = 1, 2, 3, i 6= j 6= k 6= i (64)
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The lattice sums S4, S5, and S6 contributing to the effective components

other than Ce
2323, C

e
1313, and Ce

1212 are given as follows for completeness:

Si+3 =
6

5π
J(ηc) + f

∑

η<ηc

η̄4
i αϕ(η), i = 1, 2, 3. (65)

The coefficient α is a function of n1, n2, n3 with the same meaning as in

(47,48). It can be translated to the SO, BCO, and FCO cases.

3.4. Orthorhombic arrangements of ellipsoids

For an ellipsoid of principal radii R/χ1, R/χ2, and R/χ3 located at xc,

we know the elementary result

∫

Ve

eiξ.xdx = 3Ve
sin η′ − η′ cos η′

η3
eiξ.xc , Ve =

4πR3

3χ1χ2χ3

,

η′ = (η2
1/χ

2
1 + η2

2/χ
2
2 + η2

3/χ
2
3)1/2, η = Rξ. (66)

Again, the procedure described in subsection 3.1 is used to obtain the ana-

lytical solution. Assuming that the ellipsoid is located at the center of the

rectangular cuboid of dimension a1 × a2 × a3 and performing the transfor-

mation η′1 = η1/χ1,η′2 = η2/χ2 and η′3 = η3/χ3, the lattice sums can now be

evaluated by

Si =
3

2π2
TiJ(η′c) + f

∑

η′<η′c

η′2i χ
2
i

η′21 χ
2
1 + η′22 χ

2
2 + η′23 χ

2
3

αϕ(η′),

Si+3 =
3

2π2
Ti+3J(η′c) + f

∑

η′<η′c

[
η′2i χ

2
i

η′21 χ
2
1 + η′22 χ

2
2 + η′23 χ

2
3

]2

αϕ(η′),

Si+6 =
3

2π2
Ti+6J(η′c) + f

∑

η′<η′c

η′2j χ
2
jη
′2
k χ

2
k

[η′21 χ
2
1 + η′22 χ

2
2 + η′23 χ

2
3]2
αϕ(η′),

i, j, k = 1, 2, 3, i 6= j 6= k 6= i. (67)
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The surface integrals on the unit sphere surface Ti are defined by

Ti =

∫

|η′|=1

(χiη
′
i)

2dS

[(χ1η′1)2 + (χ2η′2)2 + (χ3η′3)2]

Ti+3 =

∫

|η′|=1

(χiη
′
i)

4dS

[(χ1η′1)2 + (χ2η′2)2 + (χ3η′3)2]2

Ti+6 =

∫

|η′|=1

(χjη
′
j)

2(χkη
′
k)

2dS

[(χ1η′1)2 + (χ2η′2)2 + (χ3η′3)2]2
,

i, j, k = 1, 2, 3, i 6= j 6= k 6= i. (68)

Regarding the cutoff radius η′c in function of ε, it can be set to the same

value as ηc in (59) with ε = max(2πR/χ1a1, 2πR/χ2a2, 2πR/χ3a3). It is

interesting to note that if χ1a1 = χ2a2 = χ3a3, that is, if the ellipsoid and

the unit cell have the same aspect ratio, the grid η′ is a cubic grid and the

leading terms kept in the series are as simple as for the cubic lattice cases

(59–61). Figure 4 is an example showing that the analytical expression for

the FCO arrangement is highly accurate, compared to the full computation

of the lattice sums.

It can be shown that T1, T2, and T3 are expressed as functions of elliptical

integrals (see, e.g., Eshelby, 1957; Mura, 1987). Assuming that χ1 < χ2 < χ3,

these integrals read

T1 =
4πχ3

1χ
2
2χ3

(χ2
2 − χ2

1)
√
χ2

3 − χ2
1

[F (θ, k)− E(θ, k)]

T3 =
4πχ1χ

2
2χ

3
3

(χ2
3 − χ2

2)
√
χ2

3 − χ2
1

[
1

χ2

√
χ2

3 − χ2
1 − E(θ, k)

]

T2 = 4π − T1 − T3 (69)
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Figure 4: Comparison between the full lattice sums with resolution −128 < ni ≤ 128 and
Eqs. (67,68) for the FCO case. The spheroids and the unit cell have the same dimension
ratio a× a× 0.5a and R×R× 0.5R. The cutoff radius is η′c = 4ε and ε = 2πR/a. For the
sake of clarity, only the sums S1, S4 and S7 are presented.

where

F (θ, k) =

∫ θ

0

dw√
1− k2 sin2w

, E(θ, k) =

∫ θ

0

√
1− k2 sin2wdw

θ = arcsin
√

1− χ2
1/χ

2
3, k =

√
χ2

3(χ2
2 − χ2

1)

χ2
2(χ2

3 − χ2
1)
. (70)

In the general case, there are no available explicit analytical expressions for

the remaining integrals Ti, i = 4, 5, .., 9 except for spheroidal inclusions. Ob-

viously, only Ti, i = 4, 5, 6 are necessary, due to the general relation between

Si. It can be shown that each of these coefficients can be obtained from one

simple scalar integral, which is in any case easier to compute than the full

lattice sum. The related scalar integrals are provided in Appendix C.

For the case of spheroids where the axes of cylindrical symmetry are ori-
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ented along the x3 axis, we can set χ1 = χ2 = 1 and χ3 = χ and evaluate

analytically Ti in spherical coordinates (see Appendix B). The final results

are given as follows:

T1 = T2 =
2π

γ3
(δχ2 − γ), T3 =

4πχ2

γ3
(γ − δ)

T4 = T5 =
3π

4γ5
(χ2(χ2 − 4)δ + γ(χ2 + 2)),

T6 =
2πχ2

γ5
(γ(2χ2 + 1)− 3χ2δ)

T7 = T8 =
πχ2

γ5
((χ2 + 2)δ′ − 3γ),

T9 =
π

4γ5
(χ2(χ2 − 4)δ + γ(χ2 + 2)), (71)

with γ =
√
χ2 − 1 and δ = arctan γ for oblate inclusions (χ > 1) and

γ =
√

1− χ2 and δ = tanh−1 γ for prolate inclusions (χ < 1).

4. Closed-form expressions for random distributions of spheres or

ellipsoids

In the previous sections, we considered only the cases of lattice distri-

butions of spheres and ellipsoids. This section is devoted to random distri-

butions of spheres and ellipsoids. Therefore, the periodic cell now contains

a random distribution of aligned inclusions. To proceed, the ergodic media

hypothesis (Torquato, 2001) is adopted, that is, the ensemble average results,

notation 〈...〉ens, are identical results for one sample in the infinite-volume

limit. This assumption guarantees the existence and uniqueness of the effec-

tive tensor Ce.

Obviously, the ergodic assumption is not sufficient to estimate the effective

properties. It is necessary to introduce also probabilistic assumptions on the

distributions of inclusions to reach this objective. These assumptions can be
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based on the introduction of probability density functions, correlation func-

tions in the real space, but also on quantities defined in Fourier space. Let

us consider in a first step the notions defined in the real space that sustain

our work. Following Torquato (2001), it is convenient to introduce the prob-

ability density function PN such that PN(r1, r2, ...)dr1dr2... represents the

probability of finding the center of inclusion 1 in dr1, the center of inclusion

2 in dr2,... By a convenient partial integration of this probability function,

the pair correlation function can be simplified into the radial distribution

function g2(r12) (with r12 = ||r2 − r1||) under the assumption of statistical

isotropy.

However, our method uses quantities defined in Fourier space and it is pos-

sible to define also ensemble average on functions defined in Fourier space.

So, in a first step, such functions will be defined. In a second step the link

between such ensemble averages and the radial distribution function g2 de-

fined by using the full probabilistic machinery will be provided.

As a result of the ergodic assumption, from (20), we can find that the fol-

lowing relation must hold true:

〈ε∗(x)〉Ω = 〈〈ε∗(x)〉Ω〉ens if V →∞ (72)

Taking the ensemble average of (17) and accounting for (72), we find that

Cm : 〈ε∗(x)〉Ω ' (Cm − Ci) : [E + 〈Υ〉ens : Cm : 〈ε∗(x)〉Ω] , (73)

Consequently, the final expression of the effective tensor (21) for random

media is slightly modified, Υ now being replaced by its ensemble average

〈Υ〉ens. In what follows, we shall examine the properties of 〈Υ〉ens given by
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the expression

〈Υ〉ens =
∑

ξ 6=0

〈P (ξ)〉ensΓm(ξ). (74)

Considering the integral over the volume of one particle Vp of arbitrary shape

located at xc and the definition of two functions F(ξ) and P(ξ)

∫

Vp

eiξ.xdx = F(ξ).eiξ.xc , P(ξ) =
1

V 2
p

F(ξ)F(−ξ) (75)

Here, F(ξ) is the integral on the same volume Vp located at the origin. In the

scattering theory, F(ξ) and P(ξ) are called form factors and are equivalent

to the definitions I(ξ) and P (ξ) for the case of one particle. For random

distribution of particles, P (ξ) in (14–74) can be replaced by the ensemble

average 〈P (ξ)〉ens. The latter is linked to the form factor P(ξ), structure

factor S(ξ), and scattering intensity I(ξ) of the system via the relations

〈P (ξ)〉ens =
Vp
V
I(ξ), I(ξ) = P(ξ)S(ξ),

S(ξ) =
1

N

〈
N∑

i

eiξ·xi

N∑

i

e−iξ·xi

〉

ens

. (76)

In (76), we assume that there are N particles of characteristic dimension R

in a cubic cell of dimension a and xi is the location of the particle number i in

the cell. It is interesting to note that I(ξ) can be obtained experimentally by

scattering techniques. Conversely, theoretical results of I(ξ) for some ideal

systems are known, for example, those governed by Ornstein–Zernike (OZ)

equation and Percus–Yevick (PY) closure approximation. As long as I(ξ)

is known, the infinite lattice sums Si can also be computed. At the infinite

volume limit R/a→ 0, taking R as the radius of the sphere having the same
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volume as Vp (i.e., Vp = 4πR3/3), those sums can be replaced by the integrals

Si =
1

6π2

∫
η̄2
i I(ξ)dη, Si+3 =

1

6π2

∫
η̄4
i I(ξ)dη,

Si+6 =
1

6π2

∫
η̄2
j η̄

2
kI(ξ)dη, η = Rξ,

i, j, k = 1, 2, 3, i 6= j 6= k 6= i. (77)

In the case where the particles are identical spheres of radius R with isotropic

distribution (see Fig. 5a), the associated isotropic quantities (iso as super-

script) I iso(ξ), P iso(ξ), and Siso(ξ) are all functions of the modulus ξ (or η).

In addition, the structure factor Siso(ξ) is related to the radial distribution

function g(r) via the relation

Siso(ξ) = 1 + 3f

∫ ∞

0

sin ηr̄

η
[g(r)− 1]r̄dr̄, r̄ =

r

R
, (78)

For nonoverlapping spheres g(r) = 0 when r̄ < 2, the following property

holds:

∫ ∞

0

[η cos η − sin η]2

η5
sin(ηr̄)dη = 0, ∀r̄ ≥ 2. (79)

As a result, the integrals Si admit the simple expressions

S1 = S2 = S3 =
(1− f)

3
, S4 = S5 = S6 =

(1− f)

5
,

S7 = S8 = S9 =
(1− f)

15
. (80)
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Figure 5: Randomly distributed spheres (left) and ellipsoids (right). The distribution of
spheres of radius R is isotropic. The latter is obtained by scaling the former with ratios
1/χ1, 1/χ2, and 1/χ3 along directions 1, 2, and 3.

Substituting (80) back into (50, 51, 52), we obtain:

κe = κm −
f

1
κm−κi −

3(1−f)
3κm+4µm

,

µe = µe∗ = µm −
f

1
µm−µi −

6(κm+2µm)(1−f)
5µm(3κm+4µm)

, (81)

Equations (81) show that, at the infinite volume limit, the effective mate-

rial is isotropic and that its effective elasticity tensor corresponds to the

Hashin–Shtrikman bound (Hashin and Shtrikman, 1963), or equivalently to

the Mori–Tanaka estimation for spherical inclusions (Mori and Tanaka, 1973).

Interestingly, this equivalence has been noted previously in the issue of heat

conduction (To et al., 2013) and has recently been rediscovered in linear elas-

ticity.

It is worth noting that the Mori–Tanaka estimate has been recovered along

the previous lines using statistical information, including the ergodic hypoth-

esis, although this estimate is usually presented by using different ad hoc as-

sumptions. Indeed, following Benveniste (1987), such an ad hoc assumption
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can be expressed as ”if introducing a single inclusion into a homogeneous ma-

trix under boundary conditions corresponding to an overall strain ε0 results

in an average strain in the inclusion given by εI = T.ε0, then introducing

a single inclusion into a deformed matrix having an average strain εM will

result in an average strain in the inclusion given by εI = T.εM .”

Our results can be compared with full results on random distributions of

particles. For example, Segurado and Llorca (2002) modeled the behaviour

of composites containing randomly distributed spherical inclusions using fi-

nite elements. For low concentrations of inclusions, their results are very close

to the Mori–Tanaka estimates, as predicted previously by our developments.

However, for higher concentrations where the inclusions strongly interact,

the present approach is not sufficiently accurate. In this case, higher-order

correlation functions can be used to address these issues, as done by Nguyen

et al. (2016) for the heat conduction phenomenon.

For anisotropic distributions of identical ellipsoids, there exists an analyt-

ical solution for the special case where the distribution of inclusions can be

obtained from an isotropic distribution by uniform dilatation transforma-

tion with coefficients 1/χ1, 1/χ2, and 1/χ3 along the three directions 1, 2,

and 3 (see Fig. 5b). In other words, not only are the spherical inclusions

transformed into ellipsoids of dimensions R/χ1, R/χ2, and R/χ3 but their co-

ordinates are scaled with the same ratios as well. In doing so, we also obtain a

system containing nonoverlapping ellipsoids with the same volume fraction f .

To respect the definition of the characteristic length R defined in the begin-

ning of the present subsection, χ1χ2χ3 = 1 is assumed. The anisotropic (ani

as superscript) and isotropic statistical quantities associated to two systems
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are interconnected, say

Pani(ξ) = P iso
(√

ξ2
1/χ

2
1 + ξ2

2/χ
2
2 + ξ2

3/χ
2
3

)
,

Sani(ξ) = Siso
(√

ξ2
1/χ

2
1 + ξ2

2/χ
2
2 + ξ2

3/χ
2
3

)
,

Iani(ξ) = I iso
(√

ξ2
1/χ

2
1 + ξ2

2/χ
2
2 + ξ2

3/χ
2
3

)
. (82)

Again, by changing the variable, we obtain

Si =
Ti

6π2

∫ ∞

0

I iso(ξ′)dη′,

ξ′ =
√
ξ2

1/χ
2
1 + ξ2

2/χ
2
2 + ξ2

3/χ
2
3, η′ = Rξ′. (83)

Combined with the results for the isotropic case, Si admits the simple form

Si =
Ti
4π

(1− f), (84)

which results again in a closed-form expression of the effective constants.

5. Numerical examples and comparisons

To illustrate the method described previously, we first consider numerical

applications in the case of cubic microstructures. The closed-form solutions

derived in this work are used to compute the effective properties, and these

results will be compared with exact semi-analytical, numerical, and approx-

imate solutions from the literature including

- Numerical results with NIH approximation (Iwakuma and Nemat-Nasser,

1983; Nemat-Nasser et al., 1982)

- CM-type approximation in electrostatics, which was applied to linear elas-

ticity and carefully compared with other types of solutions by Cohen (2004)
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- Exact series expansion of elastic polarizabilities and approximation up to

third-order correlation (To) (Torquato, 1997, 1998)

- Semi-analytical solution based on periodic singular distribution (SL) (San-

gani and Lu, 1987), using an expansion onto a basis of periodic functions and

projection onto a basis of spherical harmonics.

- The multipole expansion (ME) method, which can provide accurate solu-

tions by keeping a high number of terms in the series (Kushch, 2013).

As an example, we choose a specific composite with the same Poisson’s ratio

in both the matrix and inclusions νi = νm = 0.3. Next, the dimensionless

effective coefficient Ce
1111/µm is computed at different contrast ratios µi/µm.

The results tabulated in Table 2 show that the closed-form solution, which is

based on NIH approximation, agrees very well with CM and ME solutions in

the range µi/µm ≤ 100 and f ≤ 0.5. At higher contrasts, some discrepancies

are observed between the approaches. However, as noted in previous works

(Hoang and Bonnet, 2013; Cohen, 2004), both methods (NH and CM) fail in

this range. In this case, only the ME solution provides an accurate solution

(Kushch, 2013).

Table 1: Ratio of the effective elastic constants C1111/µm of a simple cubic array of
sphere, νi = νm = 0.3. Comparison between the closed-form solution of the present work
(PR), Clausius–Mossotti (CM)-type solution from Cohen (2004), and solutions based on
multipole expansion (ME) from Kushch (2013).

µi/µm f = 0.1 f = 0.3 f = 0.5
PR CM ME PR CM ME PR CM ME

0 2.794 2.799 2.799 1.852 1.836 1.818 1.137 1.148 1.048
10 4.097 4.101 4.102 5.913 5.880 5.930 8.580 8.645 9.646
100 4.226 4.248 4.248 6.720 6.758 6.887 10.94 11.453 17.71

The first extreme case is related to void inclusions. By making µi/µm → 0,
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the limit of (50–51) yields the following simple expressions:

κe

κm
= 1− f(1− νm)

1− νm − (1 + νm)S3

, (85)

µe

µm
= 1− f(1− νm)

2(S2 − (1− νm)S3) + 1− νm
, (86)

µe∗

µm
= 1− f(1− νm)

1− νm − (1− 2νm)S1 − (5− 4νm)S2

. (87)

In the other extreme case of rigid inclusions, that is, µi/µm →∞, the effective

properties can be determined as follows:

κe

κm
= 1 +

f(1− νm)

(1 + νm)S3

, (88)

µe

µm
= 1 +

f(1− νm)

2((1− νm)S3 − S2)
, (89)

µe∗

µm
= 1 +

f(1− νm)

(1− 2νm)S1 + (5− 4νm)S2

. (90)

In these examples, the Poisson’s ratio of the matrix is fixed at νm = 0.3. The

resulting effective properties are plotted in Fig. 6 for spherical voids and Fig.

7 for rigid inclusions.

All figures show that the results obtained by our closed-form solution com-

pare well with Cohen’s results. For voids, a discrepancy with Sangani and

Lu’s results is observed, as with Cohen’s results. However, in this case, Cohen

(2004) expressed doubts with Sangani and Lu’s results. For rigid inclusions,

our results coincide in the range of concentrations up to 0.5 with Cohen’s

results. Cohen compared these results with a few semi-analytical or approxi-

mate models, which were found to be accurate in this range of concentrations

of inclusions.

In the case of orthotropic materials, one considers distributions of ellipsoids
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Figure 6: Effective bulk modulus κe/κm for a simple cubic array of void spheres.
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Figure 7: Effective shear modulus µe∗/µm for a simple cubic array of rigid spheres.

located at central positions of a cubic lattice. Table 2 shows the compari-

son between our estimation of Si, i = 1..6 and the results obtained by the

computation of the full lattice sums (Iwakuma and Nemat-Nasser, 1983) for
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two examples characterized by χ1 = χ2 and the values of χ3/χ1 = 4/3 or

χ3/χ1 = 2. This comparison proves that the closed-form expressions obtained

in the previous section accurately reproduce the values of Si computed from

the full lattice sum.

Table 2: Comparison between Si results of the present work (present) and those from
Table 3 in Iwakuma and Nemat-Nasser (1983) (IN). The unit cell is cubic of dimension a
and the aspect ratio χ1 : χ2 : χ3 of the spheroids in SO arrangement are 3 : 3 : 4 (case 1)
and 1 : 1 : 2 (case 2). Note that results presented by Iwakuma and Nemat-Nasser (1983)
are obtained from full lattice sums with resolution −50 < ni < 50.

f 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Case 1
S1 = S2 Present 0.268 0.240 0.230 0.216 0.196 0.171 0.148

IN 0.273 0.255 0.236 0.217 0.196 0.175 0.154
S3 Present 0.397 0.387 0.376 0.363 0.353 0.345 0.340

IN 0.392 0.380 0.369 0.359 0.351 0.343 0.337
S4 = S5 Present 0.172 0.172 0.170 0.164 0.153 0.139 0.123

IN 0.170 0.171 0.168 0.161 0.152 0.139 0.124
S6 Present 0.279 0.286 0.292 0.294 0.295 0.297 0.299

IN 0.275 0.281 0.286 0.290 0.293 0.295 0.297

Case 2
S1 = S2 Present 0.218 0.196 0.174 0.148 0.120

IN 0.216 0.195 0.172 0.147 0.119
S3 Present 0.514 0.505 0.502 0.502 0.508

IN 0.507 0.500 0.496 0.497 0.504
S4 = S5 Present 0.129 0.126 0.120 0.107 0.088

IN 0.127 0.126 0.119 0.107 0.089
S6 Present 0.397 0.407 0.422 0.439 0.458

IN 0.391 0.403 0.418 0.436 0.455

Finally, we consider examples concerning orthorhombic and random arrange-

ments of spheroids. For orthorhombic arrangements, the unit cell has the

dimensions a × a × 0.5a and the spheroids has axes R × R × 0.5R. Re-

garding the constitutive materials, the Poisson’s ratios of both materials are
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νi = νm = 0.3 and the Young modulus ratio is Ei/Em = 10. Figures 8 and

9 display the results of analytical solutions for the shear constant obtained

in this paper. It is noted that all the curves are relatively close at a small

volume fraction (f ≤ 0.15), which can be explained by the independent be-

havior of each inclusions. In this range, the dilute estimation is valid, that

is, the effective properties only depend on the volume fraction f . At higher

f , the interaction of the inclusions is significant and their relative positions

in the matrix are not negligible. Although curves start to deviate from each

other, the FCO curves are still close to the random curves. This observation

suggests that the structure of the FCO arrangements is comparable to the

random structures proposed previously.
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Figure 8: Dimensionless effective shear moduli Ce
1212/µm for FCO, BCO, SO, and random

arrangements of spheroids.

6. Concluding remarks

Effective elasticity tensors of two-phase matrix inclusion composite mate-

rials have been obtained when the inclusions are spherical or ellipsoidal and

distributed either along the sites of an orthorhombic crystal system or ran-

domly. The basis of the analysis is the eigenstrain integral equation and the
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Figure 9: Dimensionless effective shear moduli Ce
1313/µm for FCO, BCO, SO, and random

arrangements of spheroids.

NIH-type estimation (Nemat-Nasser et al., 1982). We have shown that this

estimation is related to the use of the ”periodic Eshelby tensor” which allows

to recover the mean strain within the inclusions when a constant eigenstrain

is applied over the periodic set of inclusions.

A first validation is provided in the specific case of cubic materials: all our

results fully reproduce those of Cohen (2004), which were obtained by a per-

turbation method, in relation to the CM approximation of electrostatics. We

have shown that the expressions of the components of the elasticity tensor

reproduce those of Cohen (2004), in the sense that the lattice sums Si of

the NIH approximation can be obtained using the coefficients obtained by

Cohen’s perturbation method.

We have shown that our method can also estimate the orthotropic elasticity

tensor in the case of arrangements obtained by parallelelipedic lattice cells of

spheres or ellipsoids. All closed-form solutions are fully extended to the case

of cells containing spheroids. For the case of fully ellipsoidal inclusions, only
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lattice sums S1, S2, S3 can be obtained in a closed form, whereas S4, S5, S6 are

provided by simple scalar integrals, which are in any case easier to compute

than full lattice sums. Our results compare well with those obtained by the

full computation of lattice sums as shown by Iwakuma and Nemat-Nasser

(1983).

In the case of a random distribution of spheres, the statistical connection

of the effective tensor to the structure factor is shown. A closed-form expres-

sion is obtained in the infinite volume limit for an isotropic distribution of

spheres, which reproduces the Mori–Tanaka estimate. Although this approx-

imation is usually obtained by ”ad hoc” assumptions, our work shows that

this estimate can be based on precise statistical information, thus extending

a result obtained similarily in the case of conduction through a random dis-

tribution of spheres (To et al., 2013).

As a final remark, the present method can also be extended to a more general

case where the principal axes of ellipsoids (or spheroids) do not necessarily

coincide with the axes x1, x2, and x3 of a rectangular unit cell, as considered

in this paper. In such situations, it is sufficient to use the linear transforma-

tion L as discussed in section 2; that is, the grid η′ is obtained by rotation

and dilatation of the grid η. However, in this case, the effective elasticity

tensor is no longer orthotropic, and it leads to a larger number of lattice

sums Si to be computed.
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Appendix A. Algebraic operations between cubic tensors

Algebraic operations between cubic tensors can be made simple using the

base B = {I, i ⊗ i,N} and Table A.3 where I is the fourth-order identity

tensor and i the second-order identity tensor. Tensor N in this case is equal

to

N = e1 ⊗ e1 ⊗ e1 ⊗ e1 + e2 ⊗ e2 ⊗ e2 ⊗ e2 + e3 ⊗ e3 ⊗ e3 ⊗ e3,

(A.1)

in which e1, e2, and e3 are the unit vectors along directions 1, 2, and 3 of the

coordinate system. The inversion of cubic tensors is also simple enough to

work with symbolic notations, for example,

[λi⊗ i + 2µI + αN]−1 = − λ

(2µ+ α)(3λ+ 2µ+ α)
i⊗ i +

1

2µ
I−

− α

2µ(2µ+ α)
N (A.2)
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Table A.3: Basic algebraic operations between tensors in base B

: I i⊗ i N
I I i⊗ i N

i⊗ i i⊗ i 3i⊗ i i⊗ i
N N i⊗ i N

Thus, when combined with (10), the tensor Υ can be rewritten in base B as

Υ = AI +Bi⊗ i + CN (A.3)

where the coefficients A, B, C are defined by the formulae:

A = − 2 (λm + µm)

µm (λm + 2µm)
S7 +

1

µm
S1,

B = − (λm + µm)

µm (λm + 2µm)
S7,

C = − (λm + µm)

µm (λm + 2µm)
S4 +

3 (λm + µm)

µm (λm + 2µm)
S7.

(A.4)

Only three lattice sums appear, due to the cubic symmetry (49). In addition,

due to (29), these sums are interdependent via the relation S4 + 2S7 = S1.

As each phase is an isotropic material, the tensors Cm and (Ci−Cm)−1, etc.

in (21) can be expressed in base B. This evidence leads to the final cubic

effective tensor Ce

Ce = λei⊗ i + 2µeI + αeN (A.5)

where the coefficients λe, µe, and αe can be used to determine the three

effective elasticity coefficients κe, µe∗ by

κe =
3λe + 2µe + αe

3
, µe∗ =

2µe + αe

2
(A.6)
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The final explicit expressions of κe, µe, and µe∗ are given in (50) and (51).

Appendix B. Computation of Ti coefficients for spheroidal inclu-

sions

In the spherical coordinate system (r, θ, φ), the surface integrals have the

following forms:

T1 = T2 =

∫
sin2 φ sin2 θ sin θdθdφ

sin2 θ + χ2 cos2 θ
, T3 =

∫
χ2 cos2 θ sin θdθdφ

sin2 θ + χ2 cos2 θ
,

T4 = T5 =

∫
sin4 φ sin4 θ sin θdθdφ

[sin2 θ + χ2 cos2 θ]2
, T6 =

∫
χ4 cos4 θ sin θdθdφ

[sin2 θ + χ2 cos2 θ]2
,

T7 = T8 =

∫
χ2 cos2 θ sin2 θ sin2 φ sin θdθdφ

[sin2 θ + χ2 cos2 θ]2
,

T9 =

∫
sin4 θ sin2 φ cos2 φ sin θdθdφ

[sin2 θ + χ2 cos2 θ]2
, θ ∈ [0, π], φ ∈ [0, 2π]. (B.1)

Eliminating φ and making variable change t = cos θ, the integrals Ti can be

reduced to more tractable forms:

T1 = T2 = π

∫ 1

−1

(1− t2)dt

(1− t2) + χ2t2
, T3 = 2π

∫ 1

−1

χ2t2dt

(1− t2) + χ2t2
,

T4 = T5 =
3π

4

∫ 1

−1

(1− t2)2dt

[(1− t2) + χ2t2]2
, T6 = 2π

∫ 1

−1

χ4t4dt

[(1− t2) + χ2t2]2
,

T7 = T8 = π

∫ 1

−1

χ2(1− t2)t2dt

[(1− t2) + χ2t2]2
, T9 =

π

4

∫ 1

−1

(1− t2)2dt

[(1− t2) + χ2t2]2
.

(B.2)

Finally, the integration leads to the closed-form expressions given in (71).
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Appendix C. Computation of tensors Ti, i = 4..6 for fully ellip-

soidal inclusions

For fully ellipsoidal inclusions, coefficients Ti, i = 4..6 are given by the

scalar integrals

Ti = 4
χ4
i

χ4
3

∫ π/2

0

Fi(φ)dφ (C.1)

where Fi are the following functions:

F4 =
M(1− 4ζ) + ζ(2ζ + 1)Q

ζ4Q5
cos4(φ)

F5 = tan4 φF4

F6 =
Pζ(ζ + 2)− 3ζM

ζ3Q5
(C.2)

where ζ =
cos2 φχ2

1+sin2 φχ2
2

χ2
3

,

Q =

√
ζ − 1

ζ
(C.3)

M = tanh−1(Q) (C.4)

for ζ > 1,

Q =

√
1− ζ
ζ

(C.5)

M = arctan(Q) (C.6)

for ζ < 1, whereas

F4 =
16

5
cos4(φ) (C.7)

F5 = tan4 φF4

F6 =
2

5
(C.8)
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for ζ = 1.
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