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This paper develops a new functional form for the inelastic spin that influences the orientation of
microstructural vectors during large inelastic deformations in a recently developed Eulerian formulation
of sheet metal. For the problems under consideration, a single constant determines the inelastic spin, and
the results of the New model are compared to those of a common Lagrangian sheet metal model. It is
shown that the same value of this constant causes the New model to predict good results relative to mea-
sured data for uniaxial stress at angles relative to the RD, equibiaxial stress and the R-value distribution
for AA6022-T4 sheet metal. In contrast, the Lagrangian model predicts zero inelastic spin, which is incon-
sistent with the measured data. The example of large deformation simple shear is used to further exam-
ine the influence of inelastic spin predicted by the New model and the Lagrangian model. The results
show that the predictions of the New model, which is insensitive to arbitrariness of a reference configu-
ration, are reasonable, while those of the Lagrangian model exhibit an unphysical dependence on the ref-
erence configuration.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, Lee and Rubin (2020) presented the theory and valida-
tion of an elastically isotropic, inelastically orthotropic model for
sheet metals, which is based on an Eulerian formulation of evolu-
tion equations for microstructural vectors mi that characterize
elastic deformations and material orientations. In a zero-stress
state, the microstructural vectors can be initially aligned to the
orthotropic axes - rolling direction (RD), transverse direction
(TD), and thickness axes. The Eulerian evolution equations for mi

depend on constitutive equations for inelastic deformation rate
and inelastic spin. As the material is deformed, the vectors mi

deform and rotate. Elastic deformations cause mi to become a
skewed and stretched triad which is used in a hyperelastic consti-
tutive equation to determine the Cauchy stress.

Deformation theory has been widely studied to define inelastic
deformation rate (Budiansky, 1959; Hutchinson, 1974; Stören and
Rice, 1975; Levy et al., 1978; Chung and Lee, 1984; Sklad, 1986;
Batoz et al., 1989; Neale, 1989). The minimum plastic work theory
is often employed to define a deformation path (Hill, 1957; Hill,
1986; Nádai and Hodge, 1963; Ponter and Martin, 1972; Chung
and Richmond, 1992; Chung and Richmond, 1993; Yoon et al.,
1999), and this theory has provided good numerical results in engi-
neering problems (Park et al., 1999; Kim et al., 2000; Kim and Yang,
2007; Lee et al., 2015; Lee et al., 2017). Many of these models
employed the standard Lagrangian formulation of plasticity (A
et al., 1957; Kröner, 1959; Lee, 1969) that introduces a multiplica-
tive form for elastic deformation as a function of total deformation
and plastic deformation. A more recent model (Vladimirov et al.,
2010) uses the mulitplicative formulation with structural tensors
to characterize anisotropy.

As shown in (Rubin, 1996; Rubin, 2001), the Lagranian formula-
tion contains unphysical arbitrariness of: a reference configuration,
a zero-stress intermediate configuration, a measure of total defor-
mation and a measure of inelastic deformation. The Eulerian for-
mulation in (Eckart, 1948; Leonov, 1976) was generalized in
(Rubin, 1994) by introducing evolution equations for the
microstructural vectors mi, and it was shown in (Rubin, 2012) that
this model removes the aforementioned arbitrariness.

The constitutive equations for inelastic deformation rate and
inelastic spin proposed in (Lee and Rubin, 2020) ensure that inelas-
tic deformation rate is dissipative and were calibrated to predict
the R-value distribution of sheet metal with respect to the angle
of loading from the RD for MP980 and AA6022-T4 sheet metals.
This Eulerian formulation yields stress components relative to elas-
tic distortional deformation vectors m0

i which are insensitive to
Superposed Rigid Body Motions SRBMð Þ and can be used directly
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in existing anisotropic yield functions (Hill, 1948; Barlat et al.,
1991; Barlat et al., 1997; Barlat et al., 2003; Banabic et al., 2005;
Hu et al., 2017; Lou and Yoon, 2018; Yoon et al., 1999). Specifically,
in (Lee and Rubin, 2020) use was made of the Coupled Quadratic-
Nonquadratic (CQN) yield function proposed in (Lee et al., 2017),
which was shown to model observed anisotropic evolution of
hardening observed for MP980 and AA6022-T4 sheet metals.

Many sheet metal models do not include the effect of inelastic
spin (Chung and Richmond, 1992; Chung and Richmond, 1993;
Yoon et al., 1999; Kim and Yang, 2007; Lee et al., 2015; Lee
et al., 2017). However some papers report that inelastic spin
has a significant influence even for uniaxial tension (Dafalias
and Rashid, 1989; Kim and Yin, 1997; Bunge and Nielsen, 1997;
Dafalias, 1998; Tong et al., 2004). The objective of this paper is
to develop a functional form for inelastic spin that is calibrated
relative to measured data (Tong et al., 2004) on the rotation of
orthotropic axes during uniaxial stress at angles relative to the
RD for sheet metal. Predictions of this Eulerian formulation are
compared with those of a common Lagrangian formulation based
on the rotation tensor in the polar decomposition of the deforma-
tion gradient. The results of uniaxial tension examples show that
the Eulerian model can be calibrated to predict measured orienta-
tion changes in the directions of orthotropy, whereas the predic-
tions of the Lagrangian model are inconsistent with the measured
data since it does not model inelastic spin. Predictions of these
models are also compared for large simple shear deformation.
The results for simple shear show that the Lagrangian model
exhibits unphysical dependence on the reference configuration.
In contrast, the Eulerian formulation based on the microstructural
vectors mi predicts reasonable inelastic spin and is insensitive to
this arbitrariness.

An outline of the paper is as follows. Section 2 presents a sum-
mary of the Eulerian formulation presented in (Rubin, 1994) and
the specific constitutive model discussed in (Lee and Rubin,
2020). It also presents a new functional form for the inelastic spin.
Section 3 describes the Lagrangian and Eulerian models used for
comparison and records the material properties of AA6022-T4
sheet metal used in the example problems. This section also
defines orientation angles which are used for comparison of the
new and reference models. Section 4 uses measured data of the
rotation angle in (Tong et al., 2004) for uniaxial stress at angles rel-
ative to the RD to calibrate the new constant �X12 in the inelastic
spin function. The calibrated model is shown to predict good
results relative to measured data for the strain-strain curves for
uniaxial stress at angles relative to the RD and for Equibiaxial
stress (EB), as well as the R-value distribution for AA6022-T4 sheet
metal. Section 5 studies the influence inelastic spin for large defor-
mation simple shear and Section 6 presents conclusions.

2. Summary of the constitutive model

2.1. Kinematics

A material point is located by the position vector x at time t and
its velocity is defined by

v ¼ _x; ð1Þ
where a superposed dot _ð Þ denotes material time differentiation.
Also, the velocity gradient L, the deformation rate D and the spin
W are defined by

L ¼ @v=@x ¼ DþW; D ¼ 1
2

L þ LT
� �

; W ¼ 1
2

L � LT
� �

: ð2Þ
2

2.2. Elastic deformation measures and orthotropic invariants

In (Lee and Rubin, 2020) use was made of the recent work in
(Rubin, 2019) for thermomechanical response of orthotropic
elastic-inelastic soft materials to develop a model for metal form-
ing. Specifically, in the absence of inelastic dilatational rate, the
elastic dilatation Je satisfies the equations

Je ¼
q0

q
;

_Je
Je
¼ D � I; ð3Þ

where q is the current mass density, q0 is the zero-stress mass den-

sity, A � B ¼ tr ABT
� �

is the inner product between two second order

tensors A;B and I is the second order identity tensor. Also, the dis-
tortional elastic microstructural vectors m0

i i ¼ 1;2;3ð Þ are deter-
mined by the evolution equations

_m0
i ¼ L00 � CL00

p

� �
m0

i; Dp ¼ 1
2

L00
p þ L00T

p

� �
; Wp

¼ 1
2

L00
p � L00T

p

� �
; ð4Þ

where L00 is the deviatoric part of L;C is a non-negative function that
controls the magnitude of inelastic rate, L00

p is a deviatoric tensor

that controls the direction of inelastic rate, Dp is a deviatoric tensor
that controls the direction of inelastic distortional deformation rate
and Wp is a deviatoric tensor that controls the direction of inelastic
spin. Alternatively, as briefly discussed in (Lee and Rubin, 2020),
functional forms for crystal plasticity can be used to motivate an
expression for Lp in terms of the microstructural vectors m0

i.
The elastic distortional deformation metric m0

ij, the elastic dis-

tortional deformation reciprocal vectors mi0 and the elastic distor-
tional deformation reciprocal metric mij0 satisfy the equations

m0
ij ¼ m0

i �m0
j; m0

i �mj0 ¼ dji; mij0 ¼ mi0 �mj0;

_m0
ij ¼ Mij � D� CDp

� �
; Mij ¼ m0

i �m0
j þm0

j �m0
i � 2

3m
0
ijI;

ð5Þ

where a� b denotes the tensor product between two vectors a;b

and dji is the Kronecker delta. Also, for the special case of isotropic
elastic response, the orthotropic invariants bi reduce to

b1 ¼ m0
11 þm110;b2 ¼ m0

22 þm220;b3 ¼ m0
33 þm330;

b4 ¼ m20
12

m0
11 m0

22
;b5 ¼ m20

13
m0

11 m0
33
;b6 ¼ m20

23
m0

22 m0
33
;

ð6Þ

which satisfy the evolution equations

_bi ¼ 2B00
i � D� CDp

� �
; ð7Þ

where the deviatoric tensors B00
i are functions of m0

i defined in
(Rubin, 2019; Lee and Rubin, 2020) and are recorded in A for
convenience.

2.3. Constitutive equations

For elastically isotropic isothermal response, the Helmholtz free
energy w per unit mass was specified in (Lee and Rubin, 2020) by

q0w ¼ 1
2
K Je � 1ð Þ2 þ l

4

X3
i¼1

bi � 2ð Þ; ð8Þ

where K;l are the zero-stress bulk and shear modulus, respectively.
Also, the associated Cauchy stress T is given by

T ¼ �pIþ T00; p ¼ K 1� Jeð Þ; T00 ¼ l
2
J�1
e

X3
i¼1

B00
i : ð9Þ



Table 1
Material properties of AA6022-T4: Data from (Stoughton and Yoon, 2009).

Loading Yield stress R-values Isotropic elastic
direction [MPa] properies [GPa]

0� 136 1.029
15� 137 1.010
30� 138 0.703 K ¼ 58:33
45� 136 0.532
60� 134 0.553 l ¼ 26:92
75� 131 0.689
90� 128 0.728
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where p is the pressure and T00 is the deviatoric part of T. Moreover,
the components Tij of T relative to m0

i are defined by

Tij ¼ Tij Je;m
0
rs

� � ¼ T �m0
i �m0

j ¼ �pm0
ij þ T 00

ij;

T 00
ij ¼ T00 � m0

i �m0
j

� �
¼ T 00

ji; T 00
ij m

ij0 ¼ 0:
ð10Þ

In particular, notice that although T00 is a deviatoric tensor its matrix
of components T 00

ij relative to m0
i is not a deviatoric matrix since m0

i

are not necessarily orthonormal vectors in nonzero states of stress.
However, for metals, m0

i remain nearly orthonormal.

2.4. Inelastic deformation rate and spin

In (Lee and Rubin, 2020) the direction of the inelastic deforma-
tion rate was specified by

Dp ¼
X6
i¼1

diB
00
i ; d1 ¼ 1; ð11Þ

where the material constants di must be restricted so that the mate-
rial dissipation inequality is satisfied. Necessary restrictions on the
values of di where developed which ensure that inelastic deforma-
tion rate is dissipative for the small elastic distortional strain
approximation. Here, it is noted that since Dp ¼ C�Dp, the function
C multiplies all of the constants di so the constant d1 can be set
equal to unity without loss in generality. Furthermore, since the
tensors B00

i in (7) depend on the microstructural vectors m0
i and

the deviatoric stress T00 in (9) depends on B00
i , the direction of inelas-

tic deformation rate �Dp in (11) also depends on the stress through
the microstructural vectors m0

i.
In addition, the direction of inelastic spin was specified by

�Wp ¼ X12
�Dp � m0

1 �m0
2

� �� �
m10 �m20 �m20 �m10� �

þX31
�Dp � m0

3 �m0
1

� �� �
m30 �m10 �m10 �m30� �

þX23
�Dp � m0

2 �m0
3

� �� �
m20 �m30 �m30 �m10� �

; ð12Þ
where X12;X31 and X23 were material constants and for conve-
nience the indices of X13 have been reversed. In this paper, this
functional form for inelastic spin is modified by specifying the coef-
ficients to be functions

X12 ¼ �X12v12; X31 ¼ �X31v31; X23 ¼ �X23v23; ð13Þ

where �X12; �X31 and �X23 are constants, the auxiliary variables v12;v31

and v23 are specified by

v12 ¼ 2
p tan�1 e0022�e0011

2e0012

� �
; v31 ¼ 2

p tan�1 e0011�e0033
2e0013

� �
;

v23 ¼ 2
p tan�1 e0033�e0022

2e00
23

� �
;

ð14Þ

and the deviatoric elastic distortional strains e00ij are defined by

e00ij ¼
1
2

m0
ij �

1
3
m0

nndij

� 	
: ð15Þ

From (11), (12) and (A.1) it can be seen that �Wp vanishes when m0
i

are parallel to the principal directions of �Dp, independently of the
functions Xij. The function v12 vanishes when m0

1 and m0
2 are nearly

aligned with vectors that are averages of the principal directions of
the matrix of components of �Dp in the m0

1-m
0
2 plane, which would

again cause the component of �Wp in the m0
1-m

0
2 plane to vanish.

Also, the magnitude of v12 is bounded by unity and has the sign
of its argument. It will be seen later that this functional form for
v12 allows the proposed model to be calibrated to measured data
for the orientation change of the principal directions of inelastic
orthotropy for uniaxial stress loadings at angles to the RD. In addi-
3

tion, since a plane stress constitutive equation is used for sheet
metal, the values of �X13 and �X23 are set equal to zero

�X13 ¼ �X23 ¼ 0: ð16Þ
2.5. Yield function and loading conditions

In (Lee and Rubin, 2020) the Coupled Quadratic-Nonquadratic
yield function F proposed in (Lee et al., 2017) for sheet metal in
terms of stress was reformulated as the yield function g in terms
of the elastic dilatation Je, the microstructural elastic distortional
deformationmetricm0

ij and a non-dimensional hardening variablej

F Tij;j
� � ¼ g Je;m

0
ij;j

� �
; ð17Þ

with j determined by the evolution equation

_j ¼ CH; H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
Dp � Dp

r
; ð18Þ

which can be identified as an equivalent inelastic deformation rate.
Details of this yield function, especially related to the material con-
stants recorded in Tables 2 and 3 introduced later, can be found in
(Lee and Rubin, 2020).

To determine the function C in (4) and (18) it is convenient to
write the material derivatives of the stress components Tij in the
forms

_Tij ¼ Cij � D� CRij � Dp; Cij ¼ @Tij

@Je
Je Iþ Rij; Rij ¼ @Tij

@m0
rs
Mrs; ð19Þ

with Mij defined in (5). Also, use can be made of the results

@m0
ij

@m0
rs
¼ dri d

s
j ;

@mij0

@m0
rs
¼ �mir0mjs0; ð20Þ

to evaluate the tensors Rij. It then follows that

_g ¼ ĝ � Cg; ĝ ¼ @F
@Tij

Cij � D; g ¼ @F
@Tij

Rij � �Dp � @F
@j

H; ð21Þ

so the loading conditions in strain space [e.g. Naghdi and Trapp
(1975)] require

C ¼ 0 for g < 0 or g ¼ 0; ĝ 6 0½ �;
C ¼ ĝ

g > 0 for ½g ¼ 0; ĝ > 0�: ð22Þ

Furthermore, using these expressions the stress rates _Tij are given by

_Tij ¼ Kij � D; Kij ¼ Kji; KT
ij ¼ Kij;

Kij ¼ Cij for C ¼ 0;

Kij ¼ Cij � Rij �Dp

g

� �
@F
@Trs

Crs for C > 0:

ð23Þ
3. The Lagrangian and Eulerian models used for comparison

The objective of this section is to a specify a Lagrangian model
for comparison with the Eulerian model summarized in Section 2.



Table 2
Parameters in the New model for the CQN yield function Yld2000-2d for AA6022-T4.

Anisotropic yield function parameters

Loading Hardening parameters Exponent

direction Ah Bh Ch Dh Eh nð Þ
[MPa] [MPa] [MPa]

0� 333.86 202.29 10.38 1.00 0.42
45� 335.22 199.10 8.99 1.00 0.38 10
90� 322.13 193.64 9.20 1.00 0
EB 362.06 233.21 7.35 1.00 2.55

Anisotropic inelastic parameters

d1 d2 d3 d4
1 1.469 1.436 �0.5854

Table 3
Parameters in the Ref Model for yield function Yld2000-2d model for AA6022-T4.

Yld2000-2d model n ¼ 8ð Þ
a1 a2 a3 a4 a5 a6 a7 a8

0.9699 1.0760 1.0339 1.0700 1.0287 1.1312 0.96640 1.0074
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Common Lagrangian formulations for sheet metal [e.g., (Chung and
Richmond, 1992; Chung and Richmond, 1993; Yoon et al., 1999;
Kim and Yang, 2007) do not model inelastic spin. Instead, the prin-
cipal directions of orthotropic inelastic deformation rate in this
model are referred to an evolving orthonormal triad of vectors ni,
which is determined by integrating the evolution equations

_ni ¼ _RRT
� �

ni; ð24Þ

where R is the rotation tensor defined by the polar representation of
the total deformation gradient F. Here, this model with the
Yld2000-2d yield function developed in (Barlat et al., 2003) is refer-
ence model and is referred to as the Ref model.

The second model, developed in (Lee and Rubin, 2020) and
reviewed and modified in Section 2, is based on the microstruc-
tural vectors m0

i determined by the evolution Eqs. (4) and employs
the CQN yield function developed in (Lee et al., 2017). For conve-
nience this model is referred to here as the New model since it uses
the new constitutive Eqs. (13) for inelastic spin. It is emphasized
that the orientation of the principal directions of inelastic deforma-
tion rate are determined naturally by the microstructural vectors
m0

i even though elastic deformation causes the triad m0
i to become

stretched and skewed. Moreover, it will be seen later that the
inelastic spin in (12) controls orientation changes of m0

i.
For all of the following examples, the simulations consider

AA6022-T4 sheet metal, whose properties are summarized in
Table 1. The model parameters for the yield function (CQN model)
and the anisotropic inelastic deformation rate are presented in
Table 2. The constants d2; d3 and d4 characterizing the orthotropic
inelastic deformation rate were determined analytically from the
R-values measured for the loading angles 0�;45� and 90� from
the RD, as explained in (Lee and Rubin, 2020). The other parame-
ters in the CQN yield function were determined by the evolution
of strength anisotropy using data for uniaxial stress loading at
angles 0�;45� and 90� relative the RD and for equibiaxial loading
(EB). In (Lee and Rubin, 2020), the distortional hardening in the
model was verified for four levels of strain (4%, 10%, 20% and 30%).

For the examples in this paper it is sufficient to specify
�X31 ¼ �X23 ¼ 0 in (13) because the sheet metal model uses a consti-
tutive equation for plane stress. Also, in the initial zero-stress con-
figuration, the initial values of m0

i and ni are specified to coincide

m0
i 0ð Þ ¼ ni 0ð Þ ¼ ei; ð25Þ
4

where ei is a fixed orthonormal triad with e1 parallel to the RD
direction, e2 parallel to the TD direction and e3 parallel to the thick-
ness direction.

To study differences in the orientations predicted by these two
models for the examples of plane strain deformations in the e1-e2

plane, it is convenient to define the orientation angles h1; h2 and h
by the expressions

m0
1

jm0
1
j ¼ cos h1e1 þ sin h1e2;

m0
2

j m0
2
j ¼ � sin h2e1 þ cos h2e2;

n1 ¼ cos he1 þ sin he2; n2 ¼ � sin he1 þ cos he2:
ð26Þ

Also, Matlab codes were used to predict the response of a single ele-
ment for the analysis of plane strain problems discussed in Sections
5 and 6.
4. Uniaxial stress response

Simulations were performed for uniaxial stress loading of a sin-
gle element at angles 0� to 90� from the rolling direction RD (with
15� intervals) to validate the model. These simulations used the
material parameters for AA6022-T4 recorded in Table 1. The New
model uses the parameters recorded in Table 2 and the Ref model
uses the parameters recorded in Table 3.

4.1. Calibration of the value of �X12

To calibrate the value of �X12, use is made of the measured data
for the rotation angle h of the orthotropic axes in (Tong et al.,
2004). Specifically, the value of this angle was measured for uniax-
ial stress loading at a range of angles relative to the RD and at the
value of inelastic strain j ¼ 0:2. Fig. 1 shows that the predictions of
the New model for h1 and h2 using the inelastic spin (12) based on
the modified function (13) are in reasonable agreement with the
measured data for X12 calibrated to the value

�X12 ¼ 500: ð27Þ
In contrast, the rotation tensor for uniaxial tension is given by R ¼ I
so the Ref model predicts that h ¼ 0, which is inconsistent with the
measured data. Since the elastic deformations in sheet metal
remain small, the value of h1, which characterizes the direction of
m0

1, and the value of h2, which characterizes the direction of m0
2

defined in (26) are close to each other. Fig. 1 shows the importance



Fig. 1. Calibration of the value �X12 ¼ 500 in the New model which shows that
predictions of the angles h1 and h2 are in reasonable agreement with the
experimental data for uniaxial stress in (Tong et al., 2004) with j ¼ 0:2.
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of modeling inelastic spin as suggested in (Dafalias and Rashid,
1989; Kim, 1992; Kim and Yin, 1997; Hill, 1998; Hahm and Kim,
2008).
4.2. Predictions of the stress–strain response and R-value distribution

Fig. 2 shows predictions of the New model [using the specifica-
tion (27)] together with experimental data from (Stoughton and
Yoon, 2009). Fig. 2a shows stress–strain curves for uniaxial stress
and EB loadings and Fig. 2b shows the R-value distribution for
Fig. 2. Predictions of the new model with �X12 ¼ 500 compared with measured data
(Stoughton and Yoon, 2009): (a) Stress–strain responses for uniaxial stress and EB
loadings; and (b) the R-value distribution for uniaxial stress at j ¼ 0:2.

5

j ¼ 0:2. From these figures it can be seen that the value
�X12 ¼ 500 also causes the predictions of the New model to be in
good agreement with this experimental data. These results are also
consistent with the measured data in (Hahm and Kim, 2008),
where it was shown that rotation of the orthotropic axes does
not significantly influence the R-value distribution because the dis-
tribution of the rotation angle is symmetrical about 45 degree.

5. Large deformation simple shear loading

5.1. Eulerian formulation

For simple shear _c P 0ð Þ, the velocity gradient L is given by

L ¼ _ce1 � e2; ð28Þ
where _c is the shear rate. Also, specifying Je ¼ 1 in the zero-stress
initial state and using the fact that simple shear is isochoric, it fol-
lows that the solution of (3) requires

Je ¼ 1: ð29Þ
Furthermore, the normal component r and shear component s of
the traction vector applied to the top surface of a block, with unit
normal n ¼ e2, are defined by

r ¼ T � e2 � e2; s ¼ T � e1 � e2: ð30Þ
5.2. Lagrangian formulation based on ni

The total deformation gradient F from a zero-stress reference
configuration and the rotation tensor R in the polar representation
of F are given by

F ¼ Iþ ce1 � e2;

R ¼ 1ffiffiffiffiffiffiffiffi
4þc2

p 2 e1 � e1 þ e2 � e2ð Þ þ c e1 � e2 � e2 � e1ð Þ½ � þ e3 � e3;

ð31Þ
where c is the shear strain from the reference configuration. Now,
using (24) and (26), the evolution equation for h is given by

_h ¼ _RRT
� �

� n2 � n1 ¼ � 2 _c
4þ c2

; ð32Þ

which with the help of the initial conditions (25) can be integrated
to obtain

h ¼ � tan�1 c
2

� �
: ð33Þ
5.3. Unphysical influence of the reference configuration in the
Lagrangian formulation

Fig. 3 shows the undeformed (c ¼ 0) configuration, which is
skewed to the left, the partially deformed configuration (c ¼ 2:5),
which is a square and the deformed (c ¼ 5), which is skewed to
the right. This unusual skewed shape in the zero-stress reference
configuration is introduced to help interpret the unphysical influ-
ence of the reference configuration on the formulation based on ni.

A fundamental difference between the Eulerian formulation
based on Je and m0

i, recorded in Section 2, and the Lagrangian for-
mulation based on the evolution Eq. (24) for ni is that the Eulerian
formulation is insensitive to arbitrariness of: a reference configura-
tion; a zero-stress intermediate configuration; a total deformation
measure; and an inelastic deformation measure (Rubin, 1996;
Rubin, 2001; Rubin, 2012). Specifically, from (33) it is clear that h
and ni depend explicitly on the choice of the reference configura-
tion and on the total shear c from the reference configuration.



;

Fig. 3. Simple shear showing the undeformed (c ¼ 0), partially deformed (c ¼ 2:5)
and fully deformed (c ¼ 5:0) shapes.

Fig. 4. Simple shear: Comparison of the orientation angle h of ni for the reference
configuration defined by c ¼ 0 and the orientation angle hr associated with
resetting the reference configuration at c ¼ 2:5.
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Given knowledge of the material only in its partially deformed
state at c ¼ 2:5 in Fig. 3, it is not possible to determine the arbitrary
choice of the reference configuration or the value of c from this
arbitrary reference configuration. Consequently, c is not an internal
state variable in the sense discussed by Onat (1968). However, the
stress state (which determines the elastic deformation measures),
the orientations of ni and the values of the hardening variables can
be determined by experiments on identical samples of the material
in its current state, independent of any choice of the reference con-
figuration. In particular, the measured orientations of ni determine
the value of h at c ¼ 2:5

h 2:5ð Þ ¼ � tan�1 1:25ð Þ: ð34Þ
As already mentioned, it is not possible to measure the value of c.

Since the choice of the reference configuration is arbitrary, it
should be possible to reset the reference configuration to be the
loaded configuration at c ¼ 2:5 and define the relative deformation
gradient Fr , the relative shear strain cr , the relative rotation Rr and
the relative rotation rate _hr by the expressions

Fr ¼ Iþ cre1 � e2; _cr ¼ _c; L ¼ _FrF
�1
r ¼ _ce1 � e2;

Rr ¼ 1ffiffiffiffiffiffiffiffi
4þc2r

p 2 e1 � e1 þ e2 � e2ð Þ þ cr e1 � e2 � e2 � e1ð Þ½ � þ e3 � e3

_hr ¼ � _cr
4þc2r

:

ð35Þ
Then, integrating the evolution for hr subject to the value (34) yields

hr ¼ � tan�1 1:25ð Þ � tan�1 cr
2

� �
for cr P 0;

cr ¼ c� 2:5:
ð36Þ

Fig. 4 compares the orientation angle h of ni in (33) based on the
reference configuration at c ¼ 0 with the angle hr in (36) deter-
mined by resetting the reference configuration at c ¼ 2:5. Since
hr does not follow the same curve as h after changing the reference
configuration at c ¼ 2:5, this figure clearly shows the significant
unphysical influence of the choice of the reference configuration
on the Lagrangian formulation based on ni. In contrast, the evolu-
6

tion equations for m0
i in the Eulerian model discussed here are

determined by the evolution Eqs. (4) with the function v12 in
(13). These evolution equations depend on the current state of
the material and on the current velocity gradient, which are unin-
fluenced by any choice of the reference configuration.

5.4. Parameter study of �X12 for large deformation simple shear

Fig. 5 shows predictions of the rotation angle h1 (Fig. 5a), the
normal stress r (Fig. 5a), and the shear stress s (Fig. 5c) for differ-
ent increasing values of �X12. Fig. 6 shows similar plots for different
decreasing values of �X12. From these figures it can be seen that s is
uninfluenced by the value of �X12 but the values of h1 and r are sig-
nificantly influenced by its value. In this regard, it is recalled that
the value �X12 ¼ 500 was calibrated relative to the measured data
in Fig. 1. Also, it is observed from Fig. 5a that h1 tends to asymptot-
ically approach the value of h1 ¼ 45� for large positive values of �X12

and from Fig. 6a that h1 tends to asymptotically approach the value
of h1 ¼ 0� for large negative values of �X12.

From the results in Figs. 5 and 6, it is not clear if positive or
negative values of �X12 are more physical. Fig. 1 shows that the
positive value �X12 ¼ 500 predicts the measured data for uniaxial
stress in (Tong et al., 2004) with j ¼ 0:2. However, Fig. 7 shows
that the negative value �X12 ¼ �500 predicts the opposite trend
to the data.

Furthermore, Fig. 8 considers large deformation simple shear
and compares the orientation angle h1 predicted by the Newmodel
with �X12 ¼ 0;500, and the orientation angle h in (33) predicted by
the Ref model with the reference configuration defined by c ¼ 0
and predicted by the esim strain path model in (Barlat et al.,
1993), which is another Lagrangian model. As discussed in
(Barlat et al., 1993), the esim strain path model predicts excessive
rotation of the orthotropic axes. From Fig. 8 it can be seen that h1
predicted by the New model with no inelastic spin �X12 ¼ 0

� �
is

the same as h predicted by the esim strain path model. Although
the value of h1 predicted by the New model with �X12 ¼ 500 is sim-
ilar to the value of h predicted by the Ref model, this value of �X12

has been calibrated to match the measured rotation for uniaxial
stress in (Tong et al., 2004). Moreover, it is recalled that, in contrast
with the Eulerian formulation of the New model, the Lagrangian
formulation of the Ref model exhibits unphysical dependence on
the reference configuration.



Fig. 5. Simple shear: Influence of increasing values of �X12 on: (a) the rotation angle
h1; (b) the normal stress r; and (c) the shear stress s.

Fig. 6. Simple shear: Influence of decreasing values of �X12 on: (a) the rotation angle
h1; (b) the normal stress r; and (c) the shear stress s.
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6. Conclusions

Using the developments in (Lee and Rubin, 2020) and the new
functional forms (13) for inelastic spin proposed in this paper,
the Eulerian formulation based on the evolution of the microstruc-
tural vectors m0

i has been shown to predict results that are in good
agreement with measured data for AA6022-T4. Specifically, the
7

New model predicts the stress–strain response to uniaxial stress
at angles relative to the RD and for equibiaxial loading as well as
the R-value distribution. Also, the new material constant �X12,
which controls inelastic spin, has been calibrated to predict good
agreement with measured data for the rotation angle h1 for uniax-
ial stress loading at angles relative to the RD.



Fig. 7. Predictions of h1 for �X12 ¼ �500 together with measured data for uniaxial
stress in (Tong et al., 2004) with. j ¼ 0:2.

Fig. 8. Simple shear: Comparison of the orientation angle h1 predicted by the
Eulerian formulation of the New model and the orientation angle h predicted by the
Lagrangian formulations of the Ref model and the esim strain model in (Barlat et al.,
1993).
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In addition, it has been shown that a common Lagrangian for-
mulation which determines the orientation of the axes of inelastic
orthotropy based on the rotation tensor in the polar representation
of the total deformation gradient exhibits unphysical dependence
on the reference configuration. In contrast, the Eulerian formula-
tion based on the microstructural vectors is insensitive to arbitrari-
ness of a reference configuration.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

EH Lee acknowledges partial support from theNational Research
Foundation of Korea (NRF) grant (No. 2020R1F1A1069535) funded
by the Korea government.
8

Appendix A. Details of some tensors

The tensors B00
i in (7) are given by

B00
1 ¼ m0

1 �m0
1 �m10 �m10 � 1

3 m0
11 �m110� �

I
� �

;

B00
2 ¼ m0

2 �m0
2 �m20 �m20 � 1

3 m0
22 �m220� �

I
� �

;

B00
3 ¼ m0

3 �m0
3 �m30 �m30 � 1

3 m0
33 �m330� �

I
� �

;

B00
4 ¼ m0

12
m0

11
m0

22
m0

1 �m0
2 þm0

2 �m0
1

� �� m0
12

m0
11

m0
1 �m0

1

� �� m0
12

m0
22

m0
2 �m0

2

� �h i
;

B00
5 ¼ m0

13
m0

11m
0
33

m0
1 �m0

3 þm0
3 �m0

1

� �� m0
13

m0
11

m0
1 �m0

1

� �� m0
13

m0
33

m0
3 �m0

3

� �h i
;

B00
6 ¼ m0

23
m0

22m
0
33

m0
2 �m0

3 þm0
3 �m0

2

� �� m0
23

m0
22

m0
2 �m0

2

� �� m0
23

m0
33

m0
3 �m0

3

� �h i
:

ðA:1Þ
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