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Abstract

Imperfection sensitivity properties are derived for finite dimensional elastic conservative systems exhibiting hill-top
branching at which arbitrary many bifurcation points coincide with a limit point. The critical load at a hill-top branch-
ing point is demonstrated to be insensitive to initial imperfections when all the bifurcation points are individually sym-
metric. Therefore, it is not dangerous to design a frame or truss so that many members buckle simultaneously at the
limit point, although the notion of the danger of optimization by compound bifurcation is widespread.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The simultaneous buckling was studied in association with optimization. The principle of simultaneous
mode design states, ‘‘A given form will be optimum if all failure modes which can possibly intersect occur
simultaneously (Spunt, 1971)’’. The danger of naive optimization without due regard to imperfection sen-
sitivity and the erosion of optimization by compound branching were suggested (Thompson and Supple,
1973). Various kinds of structures were found highly imperfection-sensitive when two or more bifurcation
points are nearly or strictly coincident, and are subjected to interaction of buckling modes, such as local
and global modes (Hutchinson and Amazigo, 1967; Koiter and Kuiken, 1971; Thompson and Lewis,
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1972; Tvergaard, 1973). Thompson and Hunt (1974) suggested extreme enhancement of imperfection
sensitivity due to modal interaction as a result of optimization; imperfection sensitivity of coincident critical
points was studied thereafter (Thompson and Hunt, 1984; Hunt, 1986).

Yet such severe enhancement of imperfection sensitivity is absent for another kind of coincident critical
points. A nearly coincident pair of a bifurcation point and a limit point of loading parameter was found in
(a) numerical simulation of a long tensile steel specimen undergoing plastic instability (Needleman, 1972),
and (b) mechanical instability of stressed atomic crystal lattices (Thompson and Schorrock, 1975). Such a
pair of points was approximated by a hill-top branching (bifurcation) point, at which the pair of points
coincide strictly. This hill-top point was shown to enjoy locally piecewise linear imperfection sensitivity
(Thompson and Schorrock, 1975; Thompson, 1982; Ikeda et al., 2002; Okazawa et al., 2002), which is less
severe than the two-thirds power-law for a simple pitchfork bifurcation point. A piecewise linear relation-
ship was also observed for other hill-top branching points that occur as the coincidence of

(i) an asymmetric bifurcation point and a limit point (Ohsaki, 2003), and
(ii) a limit point and a double bifurcation point studied by a group-theoretic approach (Ikeda et al.,

2005).

Ohsaki (2000) optimized shallow trusses under constraints on nonlinear buckling and found that the
optimum solution usually has a hill-top branching point, which is not sensitive to imperfections. Thus
the optimization for nonlinear buckling does not always produce a dangerous structure.

It is noteworthy that, for a pin-jointed truss, member buckling can occur almost independently from glo-
bal buckling (Peek and Triantafyllidis, 1992). Therefore, it is possible to create a hill-top branching point at
which arbitrary many symmetric bifurcation points can exist at a limit point; i.e. many members buckle
simultaneously with global buckling.

The basic framework to deal with coincident critical points can be found in the static perturbation meth-
od (Supple, 1967, 1968; Thompson and Hunt, 1973, 1984; Godoy, 1999); in this framework, compound
bifurcations were studied in detail (Hunt, 1981). Critical points can be classified by investigating the linear,
quadratic, cubic, quartic, etc., terms of the total potential energy (Thompson and Hunt, 1973). The inter-
action between bifurcation modes is classified into third-order and fourth-order interactions; the third-
order interaction exists if one of the bifurcation modes is asymmetric. The maximum load of an imperfect
symmetric system is reduced if the fourth-order cross-term is negative (Thompson and Hunt, 1984).

In this paper, imperfection sensitivity of a hill-top branching point with many symmetric bifurcation
points is investigated. This point is actually created for a pin-jointed truss with simultaneously buckling
members. The bifurcation modes are individually symmetric among themselves, but some modes have infin-
itesimally small third-order interaction. The symmetry conditions with respect to bifurcation modes and
limit-point-type mode are relaxed by ignoring such interaction to account for practical situation of member
buckling at the limit point.
2. Illustrative example of a hill-top branching

We start with a simple illustrative example: a two-bar truss as shown in Fig. 1, where H = 100 mm and
L = 1000 mm. The members are connected to the nodes by pin joints. Each member is divided into four
beam elements to implement member buckling. Green�s strain is used for representing geometrically non-
linear strain–displacement relation. In the following, the units of length and force are mm and kN,
respectively.

Maple 9, a symbolic computation software, is used for the differentiation of the total potential
energy with respect to displacements, imperfection parameters, etc. The equilibrium paths are traced by
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Fig. 1. A two-bar pin-jointed truss.
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a displacement increment method with sufficiently small increments, and it has been confirmed that unbal-
anced loads at every incremental step are very small.

Let I and A, respectively, denote the second moment of area and the cross-sectional area of the members
which have a D · D solid square cross-section; i.e. I = D4/12 = A2/12. The elastic modulus is denoted by E.
The vertical load is defined by a unit load P and load factor K as KP, and K is increased to find the critical
load factor Kc where the lowest eigenvalue of the tangent stiffness matrix vanishes. Fig. 2 shows the variation
of the critical load ratio KcP/(EA) plotted against A. For a large value of A, the critical point is governed by a
limit point. On the other hand, if A is small, member buckling occurs before reaching the limit point.

Consider an optimization problem of maximizing KcP/(EA) that is conceived as the critical load for the
unit cost. It is seen from Fig. 2 that KcP/(EA) increases as A is increased from 0. At A = A* ’ 3984.0, bifur-
cation points exist at the limit point, which is called a hill-top branching point. For A P A*, Pc/(EA) is con-
stant; accordingly, the structure with A = A* can be regarded as the optimal solution that achieves the
maximum KcP/(EA) with the smallest A. As we have seen, structural optimization entails hill-top
branching.

Fig. 3 shows the relation between KP and the vertical displacement v at the center node for A = 3000.0
that has a double bifurcation point before reaching a limit point, where E = 1 for simplicity. The eigen-
modes p̂1 and p̂2 for zero eigenvalues at the double bifurcation point are shown in Fig. 4. Notice that only
member buckling occurs in both p̂1 and p̂2. Let Uc denote the nodal displacement vector at the double bifur-
cation point. Deformation in the vicinity of Uc is defined as
U ¼ Uc þ q1p̂1 þ q2p̂2 ð1Þ

where q1 and q2 are called generalized coordinates. The contour map of the total potential energy V scaled
as 10,000(V + 12.2896) is plotted in Fig. 5 with respect to q1 and q2. Since p̂1 is antisymmetric with respect
0
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Fig. 2. Relation between the cross-sectional area and critical load ratio of the two-bar truss.
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Fig. 5. Contour map of the scaled total potential energy 10,000(V + 12.2896) at the double bifurcation point for A = 3000.0.
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Fig. 3. Relation between vertical displacement and load for A = 3000.0.

Fig. 4. Eigenmodes corresponding to the two zero eigenvalues at the double bifurcation point for A = 3000.0.
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to the vertical reflection axis of the truss, V is a symmetric (even) function of q1. Although the deformations
defined by Uc þ q2p̂2 and Uc � q2p̂2 have different properties, V is almost symmetric with respect to q2 as
can be seen from Fig. 5, because only member buckling occurs in p̂2 and is not influential on nodal
displacements.

Fig. 6 shows the relation between KP and the vertical displacement v at the center node for A = A*. It is
confirmed from Fig. 6 that a limit point is reached as v is increased. The eigenvalues of the tangent stiffness
matrix are plotted in Fig. 7. It should be noted that the three lowest eigenvalues do not coincide before
reaching the hill-top point, where they simultaneously vanish. The eigenmodes corresponding to the three
eigenvalues are as shown in Fig. 8. The eigenmode p̂2 corresponds to a symmetric bifurcation due to mem-
ber buckling without displacement at the center node, and p̂1 and p̂3 are the mixture of limit-point mode
and bifurcation mode due to member buckling. Thus the coincidence of a limit point and bifurcation points
incurs the mixing of eigenmodes.

Since any linear combination of critical modes at a coincident critical point is also a critical mode, it is
possible to extract the limit point mode and the bifurcation mode due to member buckling from the critical
modes mixed in this manner. From the general theory of elastic stability (Thompson and Hunt, 1973), the
limit-point mode can be obtained from the incremental displacement along the fundamental equilibrium
path at the limit point, which turns out to be the third mode p3 in Fig. 9. The bifurcation mode p1 in
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Fig. 7. Relation between vertical displacement and eigenvalues for A = A*.
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Fig. 8. Orthogonal eigenmodes corresponding to the three zero eigenvalues at the hill-top point.

Fig. 9. Nonorthogonal eigenmodes corresponding to the three zero eigenvalues at the hill-top point.
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Fig. 9 is obtained as a pertinent linear combination of p̂1 and p̂3 in Fig. 8 so that the vertical displacement of
the center node vanishes.

The third-order differential coefficients Vijk of the total potential energy in the directions of modes i, j, k

(=1, 2, 3) in Fig. 9 are obtained as
V 111 ¼ 2.8454� 10�10; V 112 ¼ 5.0485� 10�15; V 113 ¼ 7.8384� 10�5;

V 122 ¼ �2.6232� 10�10; V 123 ¼ 1.2865� 10�11; V 133 ¼ 2.8728� 10�13;

V 222 ¼ 2.6394� 10�15; V 223 ¼ 7.8385� 10�5; V 233 ¼ 1.2026� 10�12;

V 333 ¼ 7.4097� 10�5

ð2Þ
Since the loaded center node moves in p3, and V333 has larger value than V111 and V222, p3 can be confirmed
to be a limit-point mode. p2 is a symmetric bifurcation mode, because it is antisymmetric with respect to y-
axis. p1 is an almost symmetric (slightly asymmetric) mode, because V111 has a very small value, although
the mode shape is not antisymmetric. The symmetricity may be further investigated by computing the fifth
and higher differential coefficients of V. In the following sections, general formulations are presented for
imperfection sensitivity for a hill-top branching point with arbitrary many symmetric bifurcation points.
3. Hill-top branching of the perfect system

We next consider a general case of finite dimensional geometrically nonlinear structure, of which the
deformation is described by the nodal displacement vector U = (U1, . . . , Un), where n is the number of de-
grees of freedom. We assume the existence of the total potential energy V ðU ;KÞ that is a smooth function of
U and loading parameter K.
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Denote by H the Hessian of V with respect to U, which is called tangent stiffness matrix. The eigenvalue
problem of H is formulated as
Hp̂i ¼ eip̂i ði ¼ 1; . . . ; nÞ ð3Þ
where ei is the ith lowest eigenvalue (ei 6 ei+1), and p̂i is the associated eigenvector normalized by p̂T
i p̂i ¼ 1

(i = 1, . . . , n), where ( )T denotes the transpose of a vector.
Consider a case where m � 1 bifurcation points exist at a limit point; i.e. the critical point is a hill-top

branching point with m lowest eigenvalues vanishing simultaneously. To separate the bifurcation modes
and the limit-point mode, the increment of U at the limit point along the fundamental equilibrium path
is used for defining the limit point mode pm as demonstrated in the previous section. The bifurcation modes
pi (i = 1, . . . , m � 1) are obtained by removing the component of pm from p̂i as
pi ¼ p̂i þ cipm ði ¼ 1; . . . ;m� 1Þ ð4Þ
where the coefficient ci is computed from
pT
mðp̂i þ cipmÞ ¼ 0 ði ¼ 1; . . . ;m� 1Þ ð5Þ
The generalized coordinate qj in the direction of pj is defined by the transformation
U ¼ Uc þ
Xn

j¼1

qjpj ð6Þ
where Uc is the displacement vector at the critical point.
Denote by q1, . . . , qm�1 the generalized coordinates in the direction of bifurcation modes measured from

the hill-top point, and by qm that in the direction of limit-point mode. Then q1, . . . , qm serve as active coor-
dinates and qm+1, . . . , qn as passive coordinates. The increment of the loading parameter from the hill-top
point is denoted by k.

The total potential energy is defined as a function of q = (q1, . . . , qn) and k and is written as V(q, k). Dif-
ferentiation with respect to qi is indicated by a subscript i. The equilibrium equations are written as
V i ¼ 0 ði ¼ 1; . . . ; nÞ ð7Þ

Since m lowest eigenvalues ei (i = 1, . . . , m) vanish at the hill-top point, the following relations hold:
V ij ¼ 0 ði; j ¼ 1; . . . ;mÞ ð8Þ

For the modes pi (i = m + 1, . . . , n) higher than m, orthogonality conditions
pT
i pj ¼ 0 ði; j ¼ mþ 1; . . . ; n; i 6¼ jÞ ð9Þ
should be satisfied so that Vij is diagonalized such that
V ij ¼ 0 ði; j ¼ mþ 1; . . . ; n; i 6¼ jÞ ð10Þ
V ij ¼ V ji ¼ 0 ði ¼ 1; . . . ;m; j ¼ mþ 1; . . . ; nÞ ð11Þ
Note that the orthogonality among the eigenvectors pi (i = 1, . . . , m) need not be satisfied, because, for
multiple eigenvalues, any linear combination of the eigenvectors is also an eigenvector.

From the conditions of limit point and bifurcation points,
V 0i ¼ 0 ði ¼ 1; . . . ;m� 1Þ ð12Þ
V 0m 6¼ 0 ð13Þ
are to be satisfied, where ( ) 0 indicates differentiation with respect to k.
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4. Imperfection sensitivity analysis at hill-top point

We move on to consider a critical point of an imperfect system. Let e denote the imperfection parameter.
The total potential energy of an imperfect system, which is a function of n + 2 variables k, q1, . . . , qn and e,
is written as V(q, k, e). Since n equilibrium equations (7) should be satisfied for n + 2 variables, an equilib-
rium state is to be determined by specifying two variables; say, e.g., e and k.

Suppose without loss of generality that the imperfection is influential both on the bifurcation modes and
the limit-point mode; i.e. q1 and qm are assumed to have nonzero values at a critical point of the imperfect
system. Then q1 and qm can be taken as two independent parameters, and the following relations hold:
q1m ¼ qm1 ¼ 0; q11 ¼ qmm ¼ 1 ð14Þ

where qij denote differentiation of qi with respect to qj.

Differentiating the ith equilibrium equation Vi = 0 in (7) with respect to qs (s = 1 or m) leads to
Xn

j¼1

V ijqjs þ V 0iks þ _V ies ¼ 0 ði ¼ 1; . . . ; n; s ¼ 1 or mÞ ð15Þ
where a dot denotes differentiation with respect to e.
For i = 1 or m, incorporating (8), (10)–(12) into (15) results in
ks ¼ es ¼ 0 ðs ¼ 1 or mÞ ð16Þ

For i = m + 1, . . . , n, incorporating (16) into (15) results in
qis ¼ 0 ðs ¼ 1 or mÞ ð17Þ

Therefore, the differential coefficients of the passive coordinates qi (i = m + 1, . . . , n) vanish, and, in turn,
the passive coordinates have lower order than the two active coordinates q1 and qm; i.e.
jqij � jqsj ði ¼ mþ 1; . . . ; n; s ¼ 1 or mÞ ð18Þ

By further differentiating (15) with respect to qt (t = 1 or m) and using (8), (10), (11), (16), and (17), we
obtain
V iiqist þ
Xm

j¼1

Xm

k¼1

V ijkqjsqkt þ V 0ikst þ _V iest ¼ 0 ðs; t ¼ 1;m; i ¼ 1; . . . ; nÞ ð19Þ
Letting (i, s, t) = (1, 1, m) in (19),
V 11m þ _V 1e1m ¼ 0 ð20Þ

is obtained; i.e. e1m 5 0 and e has the quadratic order of the two active coordinates. Similarly, if we set
(i, s, t) = (m, m, m) in (19),
V mmm þ V 0mkmm ¼ 0 ð21Þ

is obtained; i.e. kmm 5 0 and k also has the quadratic order. Finally, it is easily observed from (19) for i > m

that qist 5 0 is satisfied; i.e. the passive coordinates are also quadratic function of the active coordinates.
Note that these relations are satisfied if at least one bifurcation point exists at a limit point.

Hence, the following relations hold:
jqij ¼ Oðe1=2Þ ði ¼ 1; . . . ;mÞ
jqij ¼ OðeÞ ði ¼ mþ 1; . . . ; nÞ
jkj ¼ OðeÞ

8><
>: ð22Þ
i.e. the load factor k has the linear order of the imperfection parameter e.
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As the objective of this paper, quantitative imperfection sensitivity analysis is conducted by using the
third-order systems along with the static perturbation procedure by Thompson (1982). In the following,
all variables are evaluated at the hill-top point.

Assumptions on the derivatives of V employed are

• All m � 1 bifurcation points are symmetric, and V is individually symmetric (Thompson and Hunt,
1984) up to the third-order terms in the subspace of the bifurcation modes; i.e.
V ijk ¼ 0 ði; j; k ¼ 1; . . . ;m� 1Þ ð23Þ

• To account for the practical situation of multiple member buckling, the cross-terms between bifurcation

modes and the limit-point mode satisfy:
V ijm 6¼ 0 ði; j ¼ 1; . . . ;m� 1; i 6¼ jÞ ð24Þ
V imm ¼ 0 ði ¼ 1; . . . ;m� 1Þ ð25Þ
• The term for the the limit point enjoys:
V mmm 6¼ 0 ð26Þ
On the basis of (12), (13), (18) and the assumptions (25) and (26), it suffices to consider the following
third-order system of the total potential energy:
V ¼ 1

2

Xm�1

i¼1

Xm�1

j¼1

V ijmqiqjqm þ
1

6
V mmmq3

m þ
Xm

i¼1

_V iqieþ V 0mqmk ð27Þ
Differentiating V with respect to qi (i = 1, . . . , m � 1) and qm leads to
Xm�1

j¼1

V ijmqjqm þ _V ie ¼ 0 ði ¼ 1; . . . ;m� 1Þ ð28Þ

1

2

Xm�1

i¼1

Xm�1

j¼1

V ijmqiqj þ
1

2
V mmmq2

m þ _V meþ V 0mk ¼ 0 ð29Þ
It is natural to consider an imperfection in the direction involving all the active coordinates. However, we
have to investigate a special imperfection in the direction of one of the active coordinates to verify the fol-
lowing scaling process by qm. If _V i 6¼ 0 for some i = 1, . . . , m � 1, qm 5 0 can be derived from (28). If
_V i ¼ 0 for i = 1, . . . , m � 1 and _V m 6¼ 0, (29) is generally satisfied by qm 5 0. Therefore, we can assume
qm 5 0 in the sequel without loss of generality.

By dividing (28) by qm, we can derive
Xm�1

j¼1

V ijmqj þ _V i
e

qm

¼ 0 ði ¼ 1; . . . ;m� 1Þ ð30Þ
which is to be interpreted as a set of simultaneous linear equations of qj (j = 1, . . . , m � 1). Since Viim 5 0
(i = 1, . . . , m � 1) are satisfied as the bifurcations are not degenerate (Ohsaki, 2001), qj can be successfully
found by solving (30) as
qj ¼ ~qj
e

qm

ðj ¼ 1; . . . ;m� 1Þ ð31Þ
for a set of constants ~qj (j = 1, . . . , m � 1). Then (30) is rewritten as
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Xm�1

j¼1

V ijm~qj þ _V i ¼ 0 ði ¼ 1; . . . ;m� 1Þ ð32Þ
With the use of (31) and (29) becomes
1

2

Xm�1

i¼1

Xm�1

j¼1

V ijm~qi~qj

 !
e2

q2
m

þ 1

2
V mmmq2

m þ _V meþ V 0mk ¼ 0 ð33Þ
For each specified value of e and ~qiði ¼ 1; . . . ;m� 1Þ, the independent variables in (33) are considered to be
qm and k.

The condition for the critical point is written as
ok
oqm

¼ 0 ð34Þ
By differentiating (33) with respect to qm and by using (34), we can obtain the following equation:
�
Xm�1

i¼1

Xm�1

j¼1

V ijm~qi~qj

 !
e2

q3
m

þ V mmmqm ¼ 0 ð35Þ
Eq. (35) is solved as
q2
m ¼

ffiffiffiffiffiffiffiffiffiffiffi
Cm

V mmm

r
jej ð36Þ
where
Cm ¼
Xm�1

i¼1

Xm�1

j¼1

V ijm~qi~qj ð37Þ
By incorporating (36) into (33), we can obtain an imperfection sensitivity law
k ¼ �
_V m

V 0m
e� 1

V 0m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V mmmCm

p
jej ð38Þ
in which Cm is a function of ~qi and ~qj by (37) and, in general, cannot be expressed explicitly.
If there exist two symmetric bifurcation points at the limit point; i.e. m = 3, and V12m = 0,
~qj ¼ �
_V j

V jjm
ðj ¼ 1; 2Þ ð39Þ
is obtained from (32). Therefore, (37) is expressed explicitly and, in turn, (38) reduces to
k ¼ �
_V 3

V 03
e� 1

V 03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 333

_V
2

1

V 113

þ
_V

2

2

V 223

 !vuut jej ð40Þ
which agrees with the existing result (Thompson, 1982; Ikeda et al., 2005).
A fold line has come to be employed as an alternative means to deal with imperfection sensitivity (see,

e.g., Eriksson et al., 1999; Lopez and Otranto, 2004). However, general properties of imperfection sensitiv-
ity can be obtained by the perturbation approach presented in this paper.
5. Numerical examples

Consider an arch-type truss as shown in Fig. 10, where L = 250, H = 200. A load KP is applied in ver-
tical direction at the center node. The details of the analysis procedure are the same as those for the two-bar
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truss in Section 2. The elastic modulus E is 1 for simplicity, and P = 0.001. The members are divided into
four groups as shown in Fig. 10. Let Ai and Ii, respectively, denote the cross-sectional area and second mo-
ment of area of the members in the ith group. The relation between Ii and Ai is assumed as
I i ¼ h2
i Ai ð41Þ
where hi is independent of Ai.
Fig. 11 shows the relation between K and the vertical displacement v of the center node for the perfect

system with (A1, A2, A3, A4) = (100, 100, 1000, 300) and (h1, h2, h3, h4) = (18.15, 18.05, 30.0, 100.0). A limit
point is attained at K = 4.7681 as K is increased from 0.

Fig. 12 shows the variation of the five lowest eigenvalues ei (i = 1, . . . , 5) with respect to v. Note that e1

and e2 are exactly coincident, and e3 and e4 are nearly coincident. The mode p̂5 corresponds to the limit-
point mode. The five eigenvalues vanish simultaneously at the hill-top point.

The eigenmodes p̂1; . . . ; p̂5 are as shown in Fig. 13. Since a set of modes that are orthogonal with respect
to the Hessian of V is found by eigenvalue analysis, (25) is not usually satisfied. For example, p̂3 and p̂4 in
Fig. 13 are symmetric with respect to the y-axis, and nodal displacements should exist to satisfy orthogo-
nality with the limit-point mode p̂5, which is also symmetric. Hence p̂3 and p̂4 are the mixture of the limit-
point mode and the member buckling mode. V333 does not vanish since p̂3 and �p̂3 correspond to different
physical behaviors; V444 also does not vanish. Note that p̂1 and p̂2 are antisymmetric with respect to the y-
axis, and vertical displacements of the center node vanish; therefore, V111 = V222 = 0 is satisfied.

In order to distinguish limit-point mode and member buckling modes, the limit-point mode p̂5 is first
defined as the increment of displacements at the limit point while tracing the equilibrium path by the dis-
placement increment method. The components of p̂5 are subtracted from p̂3 and p̂4 to arrive at pure member
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Fig. 11. Relation between load factor and vertical displacement of the center node.



Fig. 13. Eigenmodes corresponding to the five zero eigenvalues satisfying orthogonality condition.
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buckling modes p3 and p4 shown in Fig. 14. Note that symmetric modes p3, p4 and p5 do not satisfy the
orthogonality condition.

The third differential coefficients of V are obtained as
V 115 ¼ V 335 ¼ �2.0842� 10�7; V 225 ¼ V 445 ¼ �2.1415� 10�7;

V 345 ¼ �2.2262� 10�9; V 555 ¼ �1.8214� 10�8
ð42Þ
It has been confirmed that the absolute values of the coefficients that are assumed to vanish in (23) and (25)
are nonzero but are small enough compared with those in (42). Other coefficients are
_V 1 ¼ _V 2 ¼ �9.7979� 10�5; _V 3 ¼ _V 4 ¼ �9.7963� 10�5;

_V 5 ¼ �4.7352� 10�5; V 05 ¼ �7.0748� 10�11
ð43Þ



Fig. 14. Eigenmodes corresponding to the five zero eigenvalues satisfying Viii = 0 (i = 1, 2, 3, 4).
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First consider an imperfection in the direction of the sum e
P5

i¼1pi of five modes shown in Fig. 14. The use of
(42) and (43) in 38 leads to
k ¼ �1.8393� 10�2e� 0.22176jej ð44Þ

The relation between k and e is plotted in Fig. 15, where �+� mark is the maximum load factor of an imper-
fect system obtained by nonlinear path-following analysis, and the solid line is the piecewise linear estima-
tion by (44). Note that the maximum load factor of an imperfect system is attained at a limit point. It is
observed from Fig. 15 that the maximum load factors of imperfect systems can be estimated with good
accuracy by the linear sensitivity relation (44). Note that each member is divided into four elements, and
the initial imperfection is given as a piecewise linear shape for path-following analysis of an imperfect sys-
tem. On the other hand, a curved shape is assumed in computing _V i. However, it has been ensured from the
numerical results that discretizing errors due to the modeling stated above are negligible.

For the imperfection ep5 in the direction of limit-point mode, the second term in the right-hand side of
(44) vanishes, and the relation between k and e is given by a linear law
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Fig. 15. Relation between maximum load and imperfection parameter that includes five modes.
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k ¼ �1.8393� 10�2e ð45Þ
which is plotted in Fig. 16.
For the imperfection ep1, the first term in the right-hand side of (44) vanishes, and the relation between k

and e is given by a piecewise linear law
k ¼ �0.11134jej ð46Þ
which is plotted in Fig. 17. For the third mode ep3, the relation is
k ¼ �0.11249jej ð47Þ
which is plotted in Fig. 18. Note that although the mode ep3 corresponds to a slightly asymmetric bifurca-
tion, the linear term e is negligibly small.

The maximum loads have thus been accurately estimated by linear and piecewise linear relations for all
the cases to assess the validity of the proposed formula (44).
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Fig. 16. Relation between maximum load and imperfection parameter for ep5 (limit-point mode).
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Fig. 17. Relation between maximum load and imperfection parameter for ep1.
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Fig. 18. Relation between maximum loads and imperfection parameter for ep2.
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6. Conclusions

Imperfection sensitivity formulas have been developed for a hill-top branching point that has many sym-
metric bifurcation points at the limit point. The problem considered here is practically very important for
estimating the imperfection sensitivity of interaction of global snapthrough and local member buckling.
The maximum loads of imperfect systems are piecewise linear functions of imperfection parameter. There-
fore, the existence of member buckling at the limit point is not dangerous in view of imperfection sensitivity.
The ‘‘simultaneous mode design’’ for this case is not that pessimistic as was cautioned the ‘‘erosion of opti-
mization by compound bifurcation.’’
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