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Abstract

A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a
solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation
law specified on the crack plane. A phenomenological elastic–viscoplastic material model is applied, using an anisotropic
yield criterion, and in each case analyzed the effect of non-normality is compared with results for the standard normality
flow rule. Due to the mismatch of elastic properties across the interface the corresponding elastic solution has an oscillating
stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer
edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode
mixity on the steady-state fracture toughness is determined. It is found that the steady-state fracture toughness is quite
sensitive to differences in the initial orientation of the principal axes of the anisotropy relative to the interface.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Results found by using an abrupt strain path change to determine the shape of the subsequent yield surface
in the vicinity of a current loading point (Kuroda and Tvergaard, 1999) have led to the proposal of a vertex-
type plastic flow rule on a smooth yield surface for an anisotropic solid (Kuroda and Tvergaard, 2001a).
Polycrystal plasticity, using the Taylor model for either f.c.c. or b.c.c. crystal structure, has shown a clear
non-normality of the small amount of plastic flow while the stress point moves along the yield surface. This
apparent non-normality must be a vertex-type effect resulting from the Taylor model, since normality of each
of the slip systems involved is an integral part of the crystal plasticity model (Kuroda and Tvergaard, 1999).
Such non-normality has also been found in corresponding experiments for an aluminum alloy and a steel
(Kuwabara et al., 2000).
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Crack growth in metals has been modeled in a number of studies by representing the local fracture process
in terms of a traction-separation law along the crack plane with a specified work of separation per unit area,
while the surrounding material is represented as elastic–plastic (Tvergaard and Hutchinson, 1992, 1993;
Tvergaard, 2001). The analyses have shown that plastic work in the material surrounding the crack-tip con-
tributes significantly to the fracture toughness, such that the macroscopic work of fracture is much larger than
that of the local fracture process. Recently, this type of analysis has been used to study crack growth along an
interface between an anisotropic ductile material and an elastic material that does not yield plastically (Tverg-
aard and Legarth, to appear). Two anisotropic plasticity models, by Hill (1948) and Barlat et al. (1991), have
been applied, using elastic–viscoplastic versions of the material models, so that strain-rate sensitivity was
accounted for. As in the previous interface crack growth studies for isotropic plasticity, mixed mode loading
was considered and it was found that plastic flow near the crack-tip results in much increased resistance to
crack growth when mode II conditions dominate, rather than mode I conditions.

The material model using a vertex-type plastic flow rule on a smooth yield surface for an anisotropic solid
(Kuroda and Tvergaard, 2001a) has been recently applied to study crack growth in a homogeneous solid with
different rotations of the principal axes of the anisotropy relative to the crack plane (Tvergaard and Legarth,
2006). It was found that at practically all the parameter values considered the non-normality flow rule gives a
smaller value of the fracture toughness than that found by using the standard normality flow rule.

In the present paper, the problem of interface crack growth studied in Tvergaard and Legarth (to appear) is
reconsidered with the effect of the vertex-type plastic flow rule on a smooth anisotropic yield surface. As in the
previous studies, the analyses are carried out for crack growth along an interface between an anisotropic duc-
tile material and an elastic material that does not yield plastically.

2. Material model

The constitutive model with non-normality of the plastic flow rule (Kuroda and Tvergaard, 2001a,b) is used
here to analyse interface crack growth under mixed mode I mode II loading. The substrate (see Fig. 1) is taken
to be elastic with Young’s modulus E2 and Poissons ratio m2 , while material No. 1 above the interface shows
anisotropic plasticity, with the elastic properties E1 and m1, and the plane strain analyses are carried out for
conditions of small-scale yielding.

The result of the Eulerian kinematics, assuming small elastic and finite plastic deformations, can be
expressed by
D ¼ De þDp ¼ De þ _UNp; W ¼ xþWp ð2:1Þ
where D and W are the symmetric and anti-symmetric parts of the spatial velocity gradient L = ovi/oxj ei � ej

(v is the velocity of a material particle, x is the current position and ei the Cartesian basis). The superscripts e
and p denote elastic and plastic parts, respectively, x is the spin of the substructure, and Wp is the plastic spin.
Fig. 1. Interface crack with elastic–plastic material properties above the interface and elastic properties below.
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Here it is assumed that Wp = 0, so that W = x. The value of the variable _U is specified below for the rate-
dependent case to be considered here.

The elasticity relation is assumed to be given by Hooke’s law
r
o ¼ _r� xrþ rx ¼ C : De ¼ C : D� _UC : Np ð2:2Þ
where r is the Cauchy stress and C is a fourth order isotropic elastic moduli tensor, determined by Young’s
modulus E and Poisson’s ratio m . The superposed o denotes an objective rate with respect to the spin x and
the superposed dot denotes a material time derivative.

For the anisotropic plasticity representing material No. 1, orthotropic symmetry is assumed. The structure
variables to be considered are the orthonormal unit vectors pi and the equivalent plastic strain ep, where pi are
defined along the axes of orthotropy, x̂i, which evolve according to
_pi ¼ xpi ð2:3Þ
since p
o

i � 0. The stress components with respect to the orthotropic axes, x̂i, are denoted by (^), so that
r̂ij ¼ pi � r � pj for i, j = 1,2,3, see Fig. 2. The initial angle of orientation of plastic anisotropy is denoted by h0.

The variable _U in the flow rule Dp ¼ _UNp is given by
_U ¼ _U0

K
gðepÞ

� �1=m

ð2:4Þ
Here _U0 is a material constant having the dimension of (time)�1, m is the strain-rate sensitivity exponent, K is
an effective stress value, and ep is the effective plastic strain defined as
ep ¼
Z

_ep dt ¼
Z ffiffiffiffiffiffiffiffi

2=3
p

_Udt ð2:5Þ
The function g(ep) in (2.4) represents the effective tensile flow stress in a tensile test in the x̂1 direction, carried
out at a strain-rate such that _U ¼ _U0 (or _ep ¼

ffiffiffiffiffiffiffiffi
2=3

p
_U0). This function is taken to follow a power law
gðepÞ ¼ rY1 1þ ep

e0

� �N1

ð2:6Þ
where rY1 is the initial yield stress, e0 is a material constant and N1 is the strain hardening exponent.
An anisotropic yield condition can be written as
f ¼ Jðr; piÞ � K ¼ 0 ð2:7Þ
where J is a function of the stress components and the orientation of the axes of orthotropy. In the present
rate-dependent formulation the expression f = 0 from (2.7) serves as a plastic potential, from which the effec-
tive stress value K is determined to be substituted into (2.4).

The material is assumed to be pressure insensitive, i.e. oJ/or is a deviatoric quantity. The unit outward nor-
mal n to the potential function is given by
n ¼ oJ
or

� ��
oJ
or

����
���� ð2:8Þ
Fig. 2. Definition of the orthonormal basis of plastic anisotropy.
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where kð�Þk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr½ð�ÞTð�Þ�

q
. An expression for the direction Np of the plastic strain rate Dp is derived in the

following manner. Introducing the notation for a deviatoric quantity, (•) 0 = (•) � (1/3)(I � I):(•), with the
unity tensor I, a direction m normal to n is defined as
m ¼ D0 � ðn : D0Þn
kD0 � ðn : D0Þnk ð2:9Þ
Then, the direction Np of the plastic strain-rate Dp is taken to be
Np ¼ nþ d̂m ð2:10Þ
where d̂ is a scalar-valued function to be specified below. Using (2.10) in (2.1), Dp ¼ _UNp specifies the plasticity
model with the vertex-type effect (Simo, 1987), expressing the non-normality of the plastic flow. The value of d̂
is taken to be given by (Kuroda and Tvergaard, 2001a,b)
d̂ ¼ tan up; up ¼
au for au 6 up

crit;

up
crit for au > up

crit

�
ð2:11Þ

u ¼ cos�1 n : D0

kD0k

� 	
; a ¼ 1

cg=lþ 1
ð2:12Þ
where the coefficient c specifies the degree of noncoaxiality between D 0 and Dp, and l = E1/{2(1 + m1)} is the
elastic shear modulus. The ratio l/g represents the elastic modulus normalised by the current stress level g in
(2.6). For usual elastic–viscoplastic materials a is close to unity, but a small deviation from unity has a large
effect on predictions of strain localization (Kuroda and Tvergaard, 2001a,b). It is noted that when up

crit ! 0�
the present flow rule reduces to that of normality.

Plastic anisotropy is here accounted for by using the phenomenological theory proposed by Hill (1948,
1950), which is quadratic in terms of the stress components. Here the expression J in (2.7) is given by
J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Gþ H

r
F ðr̂22 � r̂33Þ2 þ Gðr̂33 � r̂11Þ2 þ Hðr̂11 � r̂22Þ2 þ 2P r̂2

12 þ 2Lr̂2
23 þ 2M r̂2

13

h i1=2

ð2:13Þ
for F = G = H = 1 and P = L = M = 3 this expression simplifies to the effective von Mises stress. For plane
strain conditions, where r̂13 ¼ r̂23 ¼ 0, the two coefficients of anisotropy M and L are left out of the consid-
erations. The material described by (2.13) is denoted Hill-48 in the following.

For the non-associated model (2.9), in presence of anisotropy, there is the possibility that the plastic work
rate is negative, even for up

crit < p=2 . The angle up
crit should not exceed p=2� unr0 , where unr0 is the angle

between the normal and the stress deviator at the current point on the yield surface. This requirement will
be satisfied for moderate intensity of anisotropy and moderate up

crit. The maximum allowable value of up
crit

has been calculated numerically to be about 54� for the particular parameter values used here, and thus the
applied value up

crit ¼ 20� is well within the limits.

3. Cohesive zone at interface

The elastic interface crack problem has been treated by many authors (e.g. England, 1965). Following the
formulation of Rice (1988) (see also Tvergaard and Hutchinson, 1993), the crack has tractions acting on the
interface which are given by
r22 þ ir12 ¼ ðKI þ iKIIÞð2prÞ�1=2rie ð3:1Þ
where KI and KII are the two stress intensity factor components. Here, r is the distance from the tip, i ¼
ffiffiffiffiffiffiffi
�1
p

,
e is the oscillation index
e ¼ 1

2p
ln

1� b
1þ b

� �
ð3:2Þ
and b is the second Dundurs’ parameter
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b ¼ 1

2

l1 1� 2m2ð Þ � l2ð1� 2m1Þ
l1ð1� m2Þ þ l2ð1� m1Þ

ð3:3Þ
where the shear moduli are l1 = E1/(2(1 + m1)) and l2 = E2/(2(1 + m2)). The relation between the energy
release rate G and the magnitude jKj of stress intensity factors is
G ¼ 1

2
ð1� b2Þ 1� m2

1

E1

þ 1� m2
2

E2

� 	
jKj2; jKj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ K2
II

q
ð3:4Þ
with a reference length L chosen to characterize the remote field, an L-dependent measure of mode mixity w is
defined by
tan w ¼ Im½ðKI þ iKIIÞLie�
Re½ðKI þ iKIIÞLie�

ð3:5Þ
which reduces to the more familiar measure, tanw = KII/KI, when e = 0. The displacement components asso-
ciated with the singularity field, with amplitude jKj, are specified in (Tvergaard and Hutchinson, 1993).

The x1-axis is in the crack plane and the initial crack-tip is located at x1 = x2 = 0 (see Fig. 2). The traction-
separation relation used to model the fracture process (Fig. 3) is specified everywhere on the boundary x1 > 0,
x2 = 0 of the region analyzed, while zero tractions are specified for x1 6 0, x2 = 0.

The traction-separation law used by Tvergaard and Hutchinson (1993) is a special version of that proposed
by Tvergaard (1990) as a generalization of the model of Needleman (1987). Here, dn and dt denote the normal
and tangential components of the relative displacement of the crack faces across the interface in the zone
where the fracture processes are occurring (Fig. 3). When dc

n and dc
t are critical values of these displacement

components and a single non-dimensional separation measure is defined as k ¼ ½ðdn=d
c
nÞ

2 þ ðdt=d
c
t Þ

2�1=2 the
tractions drop to zero when k = 1. With r(k) displayed in Fig. 3, a potential from which the tractions are
derived is defined as
U�ðdn; dtÞ ¼ dc
n

Z k

0

rðk0Þdk0 ð3:6Þ
The normal and tangential components of the traction acting on the interface in the fracture process zone are
given by
T n ¼
oU�

odn

¼ rðkÞ
k

dn

dc
n

; T t ¼
oU�

odt

¼ rðkÞ
k

dt

dc
t

dc
n

dc
t

ð3:7Þ
The peak normal traction under pure normal separation is r̂, and the peak shear traction is ðdc
n=d

c
t Þr̂ in a pure

tangential separation. The work of separation per unit area of interface is given by Eq. (3.6) with k = 1, and
for the separation function r(k) in Fig. 3 the work is
C0 ¼
1

2
r̂dc

nð1� k1 þ k2Þ ð3:8Þ
Fig. 3. Specification of traction-separation relation.
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It has been found in (Tvergaard and Hutchinson, 1992, 1993) that the two most important parameters char-
acterizing the fracture process in this model are C0 and r̂. Scheider and Brocks (2003) have found cases where
also differences in the shape of the separation law have an important effect.

Based on (3.4) and (3.8) a reference stress intensity factor is defined as
K0 ¼
1� m2

1

E1

þ 1� m2
2

E2

� 	�1=2
2C0

1� b2

� �1=2

ð3:9Þ
here, K0 represents the value of jKj needed to advance the interface crack in the absence of any plasticity. This
value is independent of w since a potential is used to generate the relation of tractions to crack face displace-
ments of the interface. A length quantity R0, which scales with the size of the plastic zone in material No. 1
(when jKj ffi K0), is defined by
R0 ¼
1

3p
K0

rY1

� �2

¼ 2

3p
1� m2

1

E1

þ 1� m2
2

E2

� 	�1
C0

ð1� b2Þr2
Y1

ð3:10Þ
While the mode mixity measure w refers to the distance L from the tip, it is natural to define a reference mea-
sure of mixity, w0, based on the reference length R0. The relation between w0 and w is
w0 ¼ wþ e lnðR0=LÞ ð3:11Þ
4. Numerical method

The numerical crack growth procedure follows that of Tvergaard and Legarth (2004). Thus, the finite-ele-
ment approximation of the displacement fields is used in the context of an updated Lagrangian formulation
(McMeeking and Rice, 1975) based on the principle of virtual work. The incremental form of the principle of
virtual work in terms of the 1st Piola–Kirchhoff stress, sij 5 sji, is (Yamada and Hirakawa, 1978; Tvergaard,
1990; Yamada and Sasaki, 1995)
Dt
Z

V
_sijdvj;i dVþ Dt

Z
SI

f _T ndð _dnÞ þ _T tdð _dtÞgdS ¼ Dt
Z

S

_T idvi dS

�
Z

V
sijdvj;i dV�

Z
S

T idvi dSþ
Z

SI

fT ndð _dnÞ þ T tdð _dtÞgdS
� 	

ð4:1Þ

T i ¼ sjinj
where V is the volume, S is the surface and SI denotes the debonding interface, Ti are the nominal tractions
and dvi are the virtual velocities in the current deformed configuration. Therefore, in the updated Lagrangian
formulation sij is identical to rij before the increment, but _sij is not equal to _rij, i.e. _s ¼ _r� Lrþ trðLÞr. The
bracketed terms in Eq. (4.1) are equilibrium correction terms.

An example of the mesh used for the computations is shown in Fig. 4, where it is seen that a uniform mesh
region is used in the range where crack growth is studied. The length of one square element inside the uniform
mesh is denoted D0, and the initial crack tip is located at x1 = 0. The computations are carried out with 120 · 6
quadrilaterals in the uniform mesh along the interface. The elements used are quadrilaterals each built-up of
four triangular, linear displacement elements. The outer radius of the region analysed is chosen to be A0/
D0 = 800,000, in order that the plastic zone size should not exceed A0/10.

During the initial part of the crack growth resistance curve an increment of jKj is prescribed, but when jKj
approaches its asymptote, a Rayleigh–Ritz finite-element method (Tvergaard, 1976) is needed to ensure that
the crack keeps growing, even though the value of jKj may decrease slightly. Thus, at the point of the crack
surface, where the displacement difference across the crack has increased most in the previous increment, the
displacement difference is prescribed to keep increasing. It is noted that full finite strain effects are accounted
for so that crack-tip blunting can be represented, and this is important if the peak stress r̂ of the debonding
model is near or above the maximum possible stress during blunting, as discussed by Tvergaard and Hutch-
inson (1992). In each increment the time step, Dt, for the next increment is corrected according to



Fig. 4. Mesh used for some of the crack growth analyses.
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ð_epÞmax � Dt 6 c1 and ð _kÞmax � Dt 6 c2, where the label max refers to the maximum effective plastic strain rate in
any triangular element, or the maximum rate of the debonding separation measure k, at the current increment.
The values of the constants c1 and c2 are in several computations chosen as c1 = 0.02 and c2 = 0.004, but in
some cases smaller values of the constants have been needed, to avoid numerical instabilities.

5. Results

The plastically anisotropic metal represented here as material No. 1 above the interface (see Fig. 1) is an
aluminium alloy Al 7108-T7, for which Moen et al. (1998) (see also Legarth et al., 2002) used a fitting in terms
of Hill-48. In the yield function (2.13) the parameter values are
F ¼ 0:699; G ¼ 3:33; H ¼ 1; P ¼ 9:60 ð5:1Þ

Additional material parameters, used to fit a uniaxial tensile test with only r1150, are rY1/E1 = 0.003,
e0 = 0.005, m1 = 0.3, N1 = 0.1, m = 0.005 and _U0 ¼ 0:002 s�1 . In the traction-separation law the values
dc

n=d
c
t ¼ 1, dc

n ¼ 0:1D0, k1 = 0.15 and k2 = 0.50 are used, while r̂=rY1 is varied. In the analyses to be presented
here, with m2 = m1, it will be assumed that the substrate (Fig. 1) has a higher elastic stiffness, such that
E2/E1 = 6, and does not yield plastically.

Uniaxial plane strain tension in the x1-direction has been used (Tvergaard and Legarth, 2004) to illustrate
the variation of the plane strain yield stress with the initial angle of anisotropy orientation, h0, relative to the
x1-direction. The lowest yield stress was found for h0 = 45�, below the isotropic yield stress, while the yield
stress near h0 = 0� and h0 = 90� was above the isotropic yield stress.

Crack growth resistance curves have been calculated for different values of the material parameters, and for
several values of the initial angle h0 between the x1 axis and the principal axis of the anisotropy. Fig. 5 shows
examples of the calculated resistance curves for the Hill-48 material, for r̂=rY1 ¼ 2:5 and the values 45� or 135�
of the initial angle of inclination, h0, of the anisotropy, with the mode mixity near the crack-tip specified by
w0 = 3.52� . These curves are compared with corresponding curves for the Mises material, and in all cases the
crack growth resistance curves have been calculated for the materials with the normality flow rule, as well as
for non-normality with c = 2 and up

crit ¼ 20�. The jKj-axis is normalised by the reference value K0 in (3.9) and
the amount of crack growth Da is normalised by the reference length R0 in (3.10).

In all cases in Fig. 5 it is seen that crack growth initiates at jKj = K0. The resistance curves for the Hill-48
material as well as those for the Mises material show that the maximum levels of fracture toughness are
reduced when the non-normality flow rule is applied. Furthermore, the curves for the Mises materials have
lower maxima than those for Hill-48. Also, the maxima occur at significantly larger values of Da/Ro for the
anisotropic materials than for isotropic plasticity.



Fig. 5. Interface crack growth resistance curves for r̂=rY1 ¼ 2:5 and two different values of the initial angle of inclination h0 of the
anisotropy. Curves for the non-normality flow rule are compared with the results for normality, and results for the Mises yield condition
are also shown. The near-tip mode mixity is specified by w0 = 3.52�.
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Similar resistance curves are shown in Fig. 6 for h0 = 0� and h0 = 90�, again compared with the correspond-
ing Mises materials. Here, the curves for the two different orientations of the Hill-48 material differ a great
deal, and the lower toughnesses, for h0 = 0� are of the same order of magnitude as those found for the Mises
materials. The maxima of the curves for h0 = 90� are only a little below those found for other values of h0 in
Fig. 5, but the maxima occur at smaller values of Da/Ro.

In the initial parts of the resistance curves for the elastic–viscoplastic materials considered the rate of
increase of the stress intensity factor jKj is taken to be j _K j¼ K0=tR, where tR is a reference time. When the
resistance curve flattens out, approaching the maximum value of jKj, the value of j _Kj will have to approach
zero, so that a positive value of j _Kj cannot be specified. Instead, the rate of crack growth is specified such that
the rate of crack opening at the crack-tip is _dn ¼ dc

n=tR . In most of the analyses the value of the reference time
is chosen as tR ¼ 0:2=_e0, but the calculated resistance curves will show some dependence on the rate of loading,
since the material is described as elastic–viscoplastic. To quantify this rate-dependence, one of the curves from
Fig. 5 (for Hill-48, h0 = 45�, c = 2 and up

crit ¼ 20�Þ has been recomputed with a ten times larger and a ten times
smaller value of tR, as shown in Fig. 7. For the ten times larger value of tR the rate of crack growth is ten times
smaller, and the smaller strain rates give lower stress levels in the viscoplastic material. But it is seen in Fig. 7,
for the low value of the rate-hardening exponent m applied here, that the sensitivity to the value of tR is quite
small.
Fig. 6. Interface crack growth resistance curves for r̂=rY1 ¼ 2:5 and two different values of the initial angle of inclination h0 of the
anisotropy. Curves for the non-normality flow rule are compared with the results for normality, and results for the Mises yield condition
are also shown. The near-tip mode mixity is specified by w0 = 3.52�.



Fig. 7. Interface crack growth resistance curves for three different values of the loading rate, as specified by the reference time tR, where
j _Kj ¼ K0=tR or _dn ¼ dc

n=tR. Here, the non-normality flow rule is applied, for h0 = 45�, r̂=rY1 ¼ 2:5 and w0 = 3.52�.
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A limiting value of jKj, to be denoted jKjss, is attained as the crack grows and approaches a steady-state.
Some of the predicted resistance curves go slightly downwards after reaching the maximum, so that jKjss is
approached from above, as has been discussed by Tvergaard and Hutchinson (1993), but in these cases the
values jK jss are here identified as the peak values of the resistance curves.

In Fig. 8 the variation of the steady-state values jKjss/K0 with the mode mixity parameter w0 is plotted for
six different cases, corresponding to the resistance curves shown in Fig. 5, i.e. for the Hill-48 material, with
r̂=rY1 ¼ 2:5 and the values 45� or 135� of the initial angle of inclination, h0, of the anisotropy relative to
the interface. In Fig. 5, for w0 = 3.52�, the peak values of the two curves for h0 = 135� are in between the peak
values of the two curves for h0 = 45�, but Fig. 8 shows that the two curves for non-normality intersect at a
negative value of w0 . In all of the range considered the two curves for the Mises materials are below the cor-
responding curves for the Hill-48 materials, and all three curves accounting for non-normality are below the
corresponding curves calculated for up

crit ¼ 0�. All six curves in Fig. 8 have minima in the near vicinity of
w0 
 0�, where the conditions near the crack-tip are close to pure mode I.

For h0 = 0� and h0 = 90� curves of the steady-state value jKjss/K0 versus the mode mixity parameter w0 are
plotted in Fig. 9, including the peak values of the resistance curves in Fig. 6 for w0 = 3.52� . The relative levels
of the peak values for the different cases found in Fig. 6 are not maintained in the whole range of Fig. 9, as a
Fig. 8. Steady-state interface toughness as a function of the local mixity measure w0 for r̂=rY1 ¼ 2:5, and for two different values of the
initial angle of inclination h0 of the anisotropy. Curves for the non-normality flow rule are compared with the results for normality, and
results for the Mises yield condition are also shown.



Fig. 9. Steady-state interface toughness as a function of the local mixity measure w0 for r̂=rY1 ¼ 2:5, and for two different values of the
initial angle of inclination h0 of the anisotropy. Curves for the non-normality flow rule are compared with the results for normality, and
results for the Mises yield condition are also shown.
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number of the curves intersect. However, the three curves accounting for non-normality are all below the cor-
responding curves calculated for up

crit ¼ 0�. At positive values of w0 these three curves show little dependence
on increasing mode mixity, whereas the three curves for up

crit ¼ 0� show a steep increase of the fracture tough-
ness as the value of w0 increases.

For h0 = 45� the influence of different values of the peak stress, r̂, in the traction-separation law for the
interface is studied in Fig. 10, still considering the steady-state value jKjss/K0 versus the mode mixity parameter
w0. For the low value, r̂=rY1 ¼ 1:25, the characteristic feature is illustrated (see also Tvergaard and Hutchin-
son, 1993) that the fracture toughness is constant, jKjss/K0 
 1.0, in a rather wide range around w0 
 0�, where
crack growth is not affected by plasticity. Also for r̂=rY1 ¼ 1:5 there is a central range of nearly constant frac-
ture toughness, whereas such a range is not seen for r̂=rY1 ¼ 2:5 (this curve was also shown in Fig. 8). Three of
the curves in Fig. 10 are predictions based on non-normality, but for r̂=rY1 ¼ 1:5 the curve calculated for
up

crit ¼ 0� is included, again showing that this gives higher toughness in the range affected by plasticity.
In Fig. 11 the dependence of the steady-state interface toughness on the value of the peak stress r̂=rY1 is

studied for values of w0 that range from 1.6� at the lowest value of r̂=rY1 to 4.5� at the highest value. The
curves compared are calculated for h0 = 45� and for h0 = 135�, thus relating to the results displayed in Figs.
5, 8 and 10 for Hill-48. Generally, the curves obtained by the non-normality model are below those for nor-
mality, but in the case of h0 = 135� there is a range for r̂=rY1 < 2:3, where the trend is opposite but the dif-
Fig. 10. Steady-state interface toughness as a function of the local mixity measure w0 for three different values of r̂=rY1, and for h0 = 45�.



Fig. 11. Steady-state interface toughness vs. peak stress in the cohesive zone model. The values of w0 range from 1.6� at the lowest value of
r̂=rY1 to 4.5� at the highest value. Two different values of the initial angle of inclination h0 of the anisotropy are considered, for the non-
normality flow rule as well as for standard normality.
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ference is very small. Fig. 12 shows similar curves for h0 = 0� and h0 = 90�, relating to the results displayed in
Figs. 6 and 9. As in the previous figure the fracture toughness increases rapidly for increasing value of r̂=rY1,
and the curves show significant sensitivity to the value of h0.
Fig. 12. Steady-state interface toughness vs. peak stress in the cohesive zone model. The values of w0 range from 1.6� at the lowest value of
r̂=rY1 to 4.5� at the highest value. Two different values of the initial angle of inclination h0 of the anisotropy are considered, for the non-
normality flow rule as well as for standard normality.
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6. Discussion

A vertex on the yield surface, such as that represented by J2 corner theory (Christoffersen and Hutchinson,
1979), results in a reduced resistance to non-proportional stress history, as is found for polycrystal plasticity.
The same type of effect is represented by the non-normality flow rule for an anisotropic solid, as has been
shown by Kuroda and Tvergaard (2001a,b). Therefore, a significant effect of the vertex-type plastic flow rule
is expected in crack growth predictions, where the stress history is not proportional. In the present paper the
focus is on a metal-ceramic system, where a crack grows along the interface between an aluminium and a cera-
mic and the interest is in the possibility that the aluminium shows a vertex-type response. Experimental stud-
ies, in which yield surfaces are determined by following stress paths in different radial directions do usually not
show clear evidence of a vertex. However, Hecker (1976) has studied the existence of a corner on yield sur-
faces, based on experiments using zig–zag loading, and has found indications of a corner for several materials.
The previous study for crack growth under mode I conditions in a homogeneous anisotropic solid (Tvergaard
and Legarth, 2006) has shown that the fracture toughness predicted by the non-normality model is much
reduced relative to that obtained by the standard normality flow rule. The same general result is found here
for crack growth along an interface between an anisotropic elastic–plastic solid and an elastic substrate, for a
wide range of mixed-mode loading on the crack-tip.

Although yield surface measurements frequently show no evidence of a vertex, there is much indirect evi-
dence in results for plastic instabilities, where predictions based on the normality rule for a smooth yield sur-
face often give a poor approximation, or fail to predict the instabilities that have been observed
experimentally. This is well-known in plastic buckling of plate and shell structures, as has been discussed
by Hutchinson (1974), and is also found for localized necking in biaxially stretched metal sheets (Støren
and Rice, 1975) or for shear band instabilities in a plane strain tensile test (Tvergaard et al., 1981).

The predicted steady-state fracture toughness jKjss/K0 is very sensitive to the value of the peak stress in the
cohesive zone model, i.e. to the value of the ratio r̂=rY1, as has been found in a number of previous investi-
gations using a cohesive zone to model crack growth in a ductile solid. Also, in agreement with earlier studies
of interface crack growth, for different material systems, it is found here that for a given interface strength the
fracture toughness is lowest when the value of the mode-mixity parameter w0 is somewhere in the near vicinity
of zero, i.e. near mode 1 conditions at the crack-tip. The flat part of the lower curve in Fig. 10 illustrates that
the fracture toughness depends only on the local work of separation C0 on the crack plane, when r̂=rY1 is
small enough so that plasticity at the crack-tip plays only a minor role. Since the inelastic material above
the interface is described as elastic–viscoplastic, while the traction-separation law for the interface is indepen-
dent of the rate of deformation, the predicted fracture toughnesses will show some dependence on the rate of
loading, but the crack growth resistance curves in Fig. 7 illustrate that this dependence is weak in the present
cases, where the value of the rate-hardening exponent is small, m = 0.005.

The anisotropic material considered here is an aluminium alloy, which is approximated in terms of the Hill-
48 yield criterion. In previous studies for crack growth in anisotropic solids the present authors have also con-
sidered materials approximated by the yield criterion Barlat et al. (1991), but similar features are found for
both models of anisotropy, and therefore only one has been considered here.

The results in Figs. 5, 6, 8 and 9 confirm that the initial orientation of the principal axes of the anisotropy,
as specified by the value of the angle h0, has a significant influence on the fracture toughness, as was also found
in the previous study of interface crack growth (Tvergaard and Legarth, to appear). Also the amount of crack
growth needed to reach the maximum fracture toughness varies a great deal as a function of h0. Furthermore,
it is clear from these figures, and from Figs. 11 and 12, that the effect of the non-normality flow rule is to
reduce the fracture toughness in all the cases analysed.

It is important to mention here that the analyses are based on the assumption that the growing crack
remains on the interface. In a real material system the crack could grow away from the initial crack plane,
but the assumption here is that the interface bonding is weaker than the most weak directions in the aniso-
tropic solid, so that crack growth will not deviate from the interface. Other numerical techniques can be used
to study crack growth along a path deviating from the interface (Rashid and Tvergaard, 2003, 2004), but then
a fracture criterion has to be established for the anisotropic metal, defining the fracture strength along different
orientations of a crack path.
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7. Conclusions

Plastic anisotropy is frequently found in structural metals, due to texture or due to the microstructure. This
means that the stress levels during plastic flow depend strongly on the orientation of the anisotropy. As a con-
sequence the present analyses show that the resistance to interface crack growth is very sensitive to the orien-
tation of the principal axes of the anisotropy relative to the interface.

A number of structural metals show a vertex-type response during plastic flow. It has been found here that
the interface crack growth resistance will be reduced for such materials.
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