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Abstract

A new damage detection technique using irregularity profile of a structural mode shape is proposed in this paper. The
mode-shape of a cracked beam is first obtained analytically by using a general function. Its irregularity profile is then
extracted from the mode shape by a numerical filter. The location and size of the crack in the beam can be determined
by the peak value appearing on the irregularity profile. Two types of numerical filters, i.e., triangular and Gaussian, are
examined. It has been found that the former filter is more effective in damage detection than the latter one. Numerical
simulations suggest that the irregularity-based method requires a relatively low measurement resolution. Noise stress tests
are carried out to demonstrate the effectiveness and robustness of this method under the influence of noise. As a validation,
the proposed method is applied to detect crack damage in an E-glass/epoxy laminated composite beam. The successful
detection of the crack in the composite beam demonstrates that the irregularity-based method is capable of assessing both
the location and size of the crack and can be used efficiently and effectively in damage identification and health monitoring
of beam-type structures.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Structural health monitoring (SHM) is one of the most important keys in maintaining safety and integ-
rity of the structures and avoiding loss of human life and/or monetary due to the catastrophic failure of
structures. Among many SHM techniques, the dynamic response-based damage detection method (Doebling
et al., 1998; Carden and Fanning, 2004) attracts most attention due to its simplicity for implementation.
This technique makes use of the dynamic response of structures which offers unique information on the
defects contained with these structures. Changes of physical properties of structures induced by damage
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can alter the dynamic responses, such as natural frequency and mode shape of the structures (Lestari et al.,
2007). These parameter changes can be extracted to predict damage information, such as the presence, loca-
tion and severity of damage in structures. The natural frequency provides the simplest damage detection
method. Because damage tends to reduce the stiffness of the structure, a reduction of natural frequency
may indicate the existence of damage in the structure. However, the natural frequency is a global feature
of the structure, from which the location of the damage is difficult to be determined. To locate damage,
the modal parameters (e.g., the mode shape and flexibility) are used widely, because they can capture the
local perturbation induced by damage. Most recently, a general solution of the vibration of an Euler–Ber-
noulli beam with arbitrary type of discontinuity (e.g., crack) at arbitrary number of locations was developed
by the authors Wang and Qiao (2007a), and it can be used in generic smart structures modeling and struc-
tural health monitoring of beam-type structures.

A lot of damage detection algorithms (Doebling et al., 1998; Carden and Fanning, 2004) have been devel-
oped, and they are capable of locating and sizing the damage. Most of them require the data of the health
structures which are difficult to obtain and sometime unavailable. To address this issue, a few damage detec-
tion techniques which do not require the priori knowledge of healthy structures have been developed. Among
them, the spatial wavelet transform method (Wang and Deng, 1999; Quek et al., 2001; Douka et al., 2003) is
the most popular one. In this method, the wavelet transform is performed on the static displacement or
dynamic mode shape of a cracked beam to obtain the spatially distributed wavelet coefficients. A sudden
change of wavelet coefficient indicates a strong local perturbation induced by damage, and it is thus used
to locate the crack. To achieve the best result of damage detection, proper mother wavelet and scale must
be chosen. Numerical simulation (Quek et al., 2001) showed that it is difficult to determine the size of a vertical
crack in the beam by merely examining the wavelet coefficients. To address this issue, Douka et al. (2003) pro-
posed to use an intensity factor as an indicator of the size of the vertical crack. However, considerable extra
computational effort is required. The gapped-smoothing method proposed by Ratcliffe and Bagaria (1998) is
another efficient damage detection algorithm without knowing the data of undamaged structure. This method
fits a gapped cubic polynomial to the modal curvature shape. The square of the difference between the curva-
ture and the gapped cubic is defined as damage index which is then used to determine the location and size of
the damage. Compared to the wavelet transform, this method has a simpler calculation scheme, but exhibiting
lower accuracy in determining the location of damage. In a recent study by Hadjileontiadis et al. (2005), a
novel damage detection algorithm using fractal dimension (FD) was presented. This method calculated the
fractal dimension of a mode shape using a moving window. Damage location and size were determined by
a peak on the FD curve indicating the local irregularity of mode shape introduced by the damage. This
method successfully detected the location and size of the crack in a cantilever beam when the first mode shape
was used. If the higher mode shapes were considered, this method might give misleading information as dem-
onstrated in their study. To overcome this shortcoming, a modified FD method was recently proposed by the
authors Wang and Qiao (2007b). The modified FD bears no physical meaning of the conventional FD, and
therefore, it is referred to as generalized fractal dimension (GFD) (Wang and Qiao, 2007b). Three different
types of damage in laminated composite beams have been successfully detected by GFD (Wang and Qiao,
2007b; Qiao et al., 2007a). However, a scale factor S has to be carefully chosen in order to detect damage
successfully.

In all the above methods, the spatially distributed displacement or curvature mode shape of a beam is used,
and damage is detected through looking into the local irregularity induced by the damage. In such a process,
the mode shape is analogously treated as a profile of a curve. The change induced by damage becomes the
irregularity of this curve. Hence, damage can be detected by directly examining the irregularity of the curve.
To this end, a novel irregularity-based damage detection technique was recently proposed by Wang (2006). As
a further effort, this paper tackles some fundamental application issues of this new technique which have not
been addressed in the previous work (Wang, 2006).

2. Simulation of damaged beams

In this section, the analytical solutions of the free vibration of cantilever beams with single and multiple
cracks are presented.
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2.1. Free vibration of cracked cantilever beams

The free vibration of a cantilever beam of length L with a transverse edge crack at x0 as shown in Fig. 1(a) is
first considered. The edge crack introduces the local flexibility at the crack location, and is conventionally
modeled as a rotational spring with infinitesimal thickness at the crack location (see Fig. 1(b)) (Paipetis
and Dimarogonas, 1986). The rotational stiffness of the spring is determined by the fracture mechanics prin-
ciple and given as (Paipetis and Dimarogonas, 1986):
KT ¼
1

c
¼ 5:346

h
EI

f ða=hÞ ð1Þ
where h and a are the thickness of the beam and the depth of the crack, respectively; E and I are the modulus
of elasticity and the moment inertia of the beam, respectively; f(a/h) is a non-dimensional parameter deter-
mined by the crack geometry (Paipetis and Dimarogonas, 1986).

The equation of motion of the free vibration of the cracked beam shown in Fig. 1 is:
EIw
0000

1 ðx; tÞ þ qA€w1ðx; tÞ ¼ 0 ð2Þ
EIw

0000

2 ðx; tÞ þ qA€w2ðx; tÞ ¼ 0 ð3Þ
where w1(x, t) and w2(x, t) are the transverse deflections of the beams I and II, respectively; the prime and dot
over wi(i = 1, 2) are the derivatives of the transverse deflection with respect to x and t, respectively; q and A are
the density and cross section area of the beam, respectively. Denoting Dw(x, t) = w2(x, t) � w1(x, t), we can ex-
press the deflection of the cracked beam in term of a general function w(x, t) as:
wðx; tÞ ¼ w1ðx; tÞ þ Dwðx; tÞHðx� x0Þ ð4Þ
where w(x, t) is a generalized function with discontinuity at the crack location x0. H(x � x0) is Heaveside func-
tion which jumps from zero to unit at location x0. Differentiating both sides of Eq. (4) with respect to x four
times, we have:
w
0000 ðx; tÞ ¼ w

0000

1 ðx; tÞ þ Dw
0000 ðx; tÞHðx� x0Þ þ Dw0ðx0; tÞd00ðx� x0Þ ð5Þ
where d(x � x0) is Dirac delta function. Combining Eqs. (2) and (3) with Eq. (5) leads to:
w
0000

1 ðx; tÞ þ
qA
EI

€w1ðx; tÞ þ w
0000

2 ðx; tÞ þ
qA
EI

€w2ðx; tÞ � w
0000

1 ðx; tÞ þ
qA
EI

€w1ðx; tÞ
� �� �

Hðx� x0Þ ¼ 0 ð6Þ
Rearranging the above equation gives:
w
0000

1 ðx; tÞ þ Dw
0000 ðx; tÞHðx� x0Þ ¼ �

qA
EI

€w1ðx; tÞ þ D€wðx; tÞHðx� x0Þð Þ ð7Þ
Substituting Eq. (7) into Eq. (5) yields the equation of motion of the total cracked beam:
w
0000 ðx; tÞ þ qA

EI
€wðx; tÞ ¼ Dw0ðx0; tÞd00ðx� x0Þ ð8Þ
Fig. 1. Cracked cantilever beam model.
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Eq. (8) can be solved by the variable separation method. Let
wðx; tÞ ¼ W ðxÞejxt ð9Þ

Substituting Eq. (9) into Eq. (8) yields
W
0000 ðxÞ � qAx2

EI
W ðxÞ ¼ DW 0ðx0Þd00ðx� x0Þ ð10Þ
Applying Laplace transform to both sides of Eq. (10), we have:
W ðsÞ ¼ s3

s4 � k4
W ð0Þ þ s2

s4 � k4
W 0ð0Þ þ s

s4 � k4
W 00ð0Þ þ 1

s4 � k4
W 000ð0Þ þ s2e�sx0

s4 � k4
DW 0ðx0Þ ð11Þ
where k ¼
ffiffiffiffiffiffiffiffi
qAx2

EI
4

q
.

Considering the boundary conditions at the clamped end given by W(0) = 0 and W 0(0) = 0, the solution of
Eq. (10) can be obtained by applying inverse Laplace transform to Eq. (11) as:
W ðxÞ ¼ W 00ð0Þ
k2

S2ðkxÞ þ W 000ð0Þ
k3

S3ðkxÞ þ DW 0ðx0Þ
k

S1ðkðx� x0ÞÞHðx� x0Þ ð12Þ
where,
S1ðkxÞ ¼ sinhðkxÞ þ sinðkxÞ; S2ðkxÞ ¼ coshðkxÞ � cosðkxÞ; S3ðkxÞ ¼ sinhðkxÞ � sinðkxÞ ð13Þ

The boundary conditions at the free end read
W 00ðLÞ ¼ 0; W 000ðLÞ ¼ 0 ð14Þ

The continuity conditions at the location of the crack are given by
W 0ðxþ0 Þ � W 0ðx�0 Þ ¼
EI
KT

W 00ðx0Þ ð15Þ
Substituting Eqs. (12) and (15) into Eq. (14) yields an eigenvalue equation of k, which can only be solved
numerically.

2.2. Free vibration of multi-cracked beams

Free vibration of a cantilever beam with multiple cracks can be solved by a similar approach as demon-
strated in the above section. Consider a cantilever beam with n cracks dividing the beam into n + 1 segments
connected together through n rotational springs at the locations of the cracks in sequence. By using general
function, the deflection of the cracked beam can be written as:
wðx; tÞ ¼ w1ðx; tÞ þ
Xn

i¼1

wiþ1ðx; tÞ � wiðx; tÞð ÞHðx� xiÞ ð16Þ
where wi(x, t) is the deflection of the i-th segment of the beam; xi is the location of the i-th crack. Following the
similar procedure in the above section, the equation of motion of the multi-cracked beam is obtained as:
w
0000 ðx; tÞ þ qA

EI
€wðx; tÞ ¼

Xn

i¼1

w0iþ1ðxi; tÞ � w0iðxi; tÞ
� �

d00ðx� xiÞ ð17Þ
By using Eq. (9), the characteristic equation of mode shape reads:
W
0000 ðxÞ � qAx2

EI
W ðxÞ ¼

Xn

i¼1

W 0ðxiþÞ � W 0ðxi�Þð Þd00ðx� xiÞ ð18Þ
Following the same approach described in the above section, we have:
W ðxÞ ¼ W 00ð0Þ
k2

S2ðkxÞ þ W 000ð0Þ
k3

S3ðkxÞ þ
Xn

i¼1

W 0
1ðxiþÞ � W 0ðxi�Þ

k
S1ðkðx� xiÞÞHðx� xiÞ ð19Þ
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where
W 0ðxiþÞ � W 0ðxi�Þ ¼
EI
KTi

W 00ðxiÞ ð20Þ
and KTi is the stiffness of the rotational spring at location xi and given by Eq. (1).
By using the boundary conditions at the free end (Eq. (14)), an eigenvalue problem can be established, from

which the natural frequency and mode shape of the cantilever beam with n-cracks can be obtained. Noting
that only two boundary conditions are used, the resultant eigenvalue problem is significantly simpler com-
pared to the one obtained through a conventional way. The more detail of solution and application for vibra-
tion of beams with arbitrary discontinuities and boundary conditions is presented in Wang and Qiao (2007a).
3. Damage detection using irregularity

Most existing model-based damage detection methods require the baseline data of healthy structures. The
damage index is usually calculated using the difference between the damaged and intact structural model data.
To avoid the extra and difficult task of obtaining the data of baseline or healthy structures, a new damage
detection algorithm called ‘‘irregularity-based damage detection method’’ was recently proposed by Wang
(2006). This method is capable of detecting the damage without the knowledge of the intact structures. Some
fundamental application details of this novel technique are presented in this section.
3.1. Extracting irregularity from mode shape

Consider a measured mode shape of a damaged beam shown by the solid line in Fig. 2(a). It consists
of two parts: (1) the smooth part (Fig. 2(b)) showing the mode shape of the structure without damage
and measurement noise, and (2) the non-smooth part (Fig. 2(c)) showing the irregularities induced by
the damage in the structure and measurement noise. Only the latter part contains the information of
damage. This irregular part in Fig. 2(c), however, is generally overshadowed by the smooth part of
the mode shape because the signal prompting the smooth part is much stronger, as demonstrated in
Fig. 2. Extracting irregularity from total mode shape.
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Fig. 2(a). It is thus difficult to detect damage by merely examining the mode shape. To overcome this
difficulty, we can extract the irregular part from the whole mode shape. Without the influence of the
smooth part of the mode shape, the irregularity induced by damage can be magnified significantly as
shown in Fig. 2(c). Thus, the damage can be detected easily by visual examining the irregular part of
the mode shape (Fig. 2(c)). Bearing in mind the analogy between the mode shape and profile of a curve,
the damage (Fig. 2(c)) can be easily extracted as the irregularity of the curve (the mode shape,
Fig. 2(a)). To this end, a filter is used to eliminate the global effect (the smooth part of the mode shape
(Fig. 2(b)) from the measured mode shape. Consequently, only the irregularities indicating local features
of the mode shape are left and magnified on the irregularity profile. The irregularity profile (R) of a
given mode shape is thus defined as
wðx0Þ ¼
Z 1

�1
zðx0 þ xÞhðxÞdx ð21Þ

Rðx0Þ ¼ zðx0Þ � wðx0Þ ð22Þ
where z is the height of the mode shape; h(x) is the weighted function used to smooth the mode shape. Eq. (21)
is used to calculate the smooth part of the mode shape, and the resulting w is referred to as waviness of the
curve (the mode shape) (Fig. 2(b)). Thus, the irregularity part (R) of the mode shape is obtained by subtracting
the smooth part from the total model shape, as expressed by Eq. (22).

There are many filters available in the literature (ASME B46.1-1995, 1996; Raju et al., 2002). The most
widely used one is Gaussian filter. This filter uses the following weighted function:
hðxÞ ¼ 1

akc

exp �p
x

akc

� �2
 !

ð23Þ
where a ¼
ffiffiffiffiffiffi
ln 2
p

q
, and kc is the cutoff wave-length. Triangular filter is another frequently-used one with

weighted function given by:
hðxÞ ¼ 1

B
� 1

B

� �2

jxj ð24Þ
where B is the cut-off length of the filter. Compared with Gaussian filter, the triangular filter is much simpler.

3.2. Determination of crack location using irregularity profile

Numerical simulation is conducted in this section to demonstrate the feasibility of detecting damage in
beams using the irregularity profiles of their vibration mode shapes. A steel cantilever beam with a length
of L = 500 mm and thickness h = 5.0 mm is considered in the following simulations (Fig. 1(a)). To simulate
the damage, a crack with relative depth a/h = 0.10 is introduced at a distance x0 from the clamped end of
the beam. In the following calculations, the resolution of mode shape is chosen as 301 uniformly distributed
points along the whole beam, and the triangular filter (Eq. (24)) is employed with B = 6.67 mm, if not spec-
ified. By using the dynamic model established before, the first three mode shapes of the damaged beam can be
obtained. A typical example of these mode shapes are presented in Fig. 3(a) for a crack locating at x0 = 0.3L.
It is not surprising to observe that there is no visually distinguishable irregularity on these mode shapes.
Fig. 3(a) clearly shows that the crack is undetectable merely based on the mode shapes. To detect the damage,
the irregularity profiles of mode shapes are obtained as shown in Fig. 3(b)–(d). The irregularity profiles of the
first three respective mode shapes are obtained by Eqs. (21) and (22). Three different crack locations, i.e.,
x0 = 0.1L, 0.4L, and 0.7L, are considered in Fig. 3. Note that only the absolute value of R matters when rep-
resenting the severity of damage. To avoid the inconvenience in handling the sign of R, R2 is used to construct
the irregularity profiles (see Fig. 3(b)–(d) for the first three respective mode shapes), instead of the irregularity
(R) itself.

In all these cases, a peak appears on the irregularity profile at the location of the crack, and it clearly indi-
cates the existence and location of the crack. Fig. 3(b)–(d) suggest that the crack can be detected and located
by the irregularity profile of the displacement mode shape.



Fig. 3. Crack detection using irregularity profiles of first three mode shapes: (a) first three mode shapes of the cantilever beam with a crack
at x0 = 0.3L; (b) irregularity profile of the first mode shape; (c) irregularity profile of the second mode shape; (d) irregularity profile of the
third mode shape.
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Fig. 4. Irregularity profiles of the first mode shape for three different crack depths.
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3.3. Determination of crack size

The peak R2 value at the location of the crack can be used to indicate the relative magnitude of the local
irregularity induced by the crack. The trend of peak R2 value varies with the crack size is revealed by Fig. 4. In
this figure, the R2 profiles of the previously studied cantilever beam (Fig. 1(a)) with a crack at 0.3L are
obtained for three different crack depths, i.e., 0.05h, 0.1h and 0.20h. It can be seen that all the three irregularity
(R2) profiles are almost identical except that the peak R2 values are different at the location of the crack. It is
easy to find that the larger the crack size, the higher the peak R2 value. This suggests that the peak R2 value is
viable of acting as an index of the relative crack size.

As demonstrated in Fig. 3(b)–(d), different peak R2 values can be induced by cracks with the same size but
at different locations. Therefore, the location of the crack must be considered in determining the size of the
crack if the peak R2 value is used. Calculations show that the peak R2 value reduces with respect to the dis-
tance from the location of the crack to the clamped end of the beam. This is because the local perturbation
induced by damage is also affected by the local bending moment, which is proportional to the second deriv-
ative of the displacement mode shape (i.e., the curvature). If the local bending moment happens to be zero, the
peak R2 value at that location is zero too. Thus a ‘‘zero location’’ is introduced to the peak R2 curve (the free
end for the first mode shape). If damage coincidently exists at the zero location, damage is then undetectable
by the current method because the peak R2 is zero regardless of its size. Bearing in mind that different mode
shapes have different zero locations, a crack at a zero location for one mode can usually be detected by the
irregularity profiles of other mode shapes.
3.4. Multiple cracks detection

In this section, a cantilever beam with two cracks at a distance of 0.3L and 0.5L from the clamped end,
respectively, is examined. The relative depths (sizes) of these two cracks are the same and chosen as a/
h = 0.1. The irregularity profile of the first mode shape is obtained using the triangular filter, and it is pre-
sented in Fig. 5. Not surprisingly, two peaks appear at the locations of the cracks on the irregularity profile,
clearly indicating the existence and locations of the cracks. This suggests that multiple cracks can also be
detected by the irregularity profile of mode shape. Comparing the peak R2 values for a given crack depth,
no noticeable difference is found between the present two-crack case (Fig. 5) and the single crack case
(Fig. 4). This suggests that the peak R2 value can also be used to determine the size of cracks in multi-cracked
beams.
3.5. Filter effect

Although the triangular filter is used in the above calculations, other filters can also be used to calculate the
irregularity profile. In Fig. 6(a), the irregularity profile of the first mode shape of a cracked beam (Fig. 1(a)) is



Fig. 5. Irregularity profile of the first mode shape of a beam with two cracks.

Fig. 6. Damage detection using different filters: (a) irregularity profile of the first mode shape using Gaussian filter, a/h = 0.05;
(b) irregularity profile of the first mode shape using Gaussian filter, a/h = 0.01, resolution = 1000; (c) irregularity profile of the first mode
shape using triangular filter, a/h = 0.01, resolution = 1000.
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obtained using Gaussian filter (Eq. (23)) with akc = 6.67 mm. In this case, the crack is located at 0.3L from the
clamped end with a relative depth of a/h = 0.05. A sharp peak appears on the irregularity profile at the loca-
tion of the crack, indicating that the location of the damage can be successfully determined by Gaussian filter
as well. In Fig. 6(b), Gaussian filter is used to detect a very small crack a/h = 0.01 at 0.3L. Although a very
higher resolution (1000) and very short cut-off length akc = 2 mm, are used, there is no distinguishable peak
appearing on the irregularity profile (Fig. 6(b)). Nevertheless, if a triangular filter with B = 2 mm is used, the
irregularity profile of the first mode shape clearly shows a peak at the location of the crack (Fig. 6(c)). Com-
parison of Fig. 6(b) and (c) suggests that the triangular filter is not only much simpler in calculation, but also
more sensitive to damage compared with Gaussian filter. Therefore, the triangular filter is more suitable than
Gaussian filter for the sake of damage detection of cracked beams.

Eq. (24) shows that B is the only parameter used in the triangular weighted function. To achieve the best
damage detection result, a proper B value should be chosen. To this end, the effect of B value on damage detec-
tion is examined. Consider a cantilever beam with a crack at x0 = 0.4L. The relative depth of the crack is
a/h = 0.05. Three different B values, i.e., 3.33, 13.33, and 26.66 mm, are used to construct the irregularity pro-
file of the first mode shape. As shown in Fig. 7, the smaller the B value, the more distinct the peak R2 is on the
Fig. 7. Irregularity profile of the first mode shape with crack at x0 = 0.3L and crack depth of a/h = 0.05: (a) B = 3.33 mm; (b)
B = 13.33 mm; (c) B = 26.67 mm.
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irregularity profile. This is because B defines the cut-off length of the filter. With a smaller B, the local feature
of the mode shape is more pronounced because any wavelength larger than B is filtered out. To increase the
sensitivity of the irregularity profile to damage, a smaller B should be adopted. However, a smaller B requires
higher resolution of mode shape and also increases the sensitivity to the measurement noise of the irregularity
profile, as illustrated in the following sections.

3.6. Resolution requirement

The resolution requirement on the measurement of mode shape is very important for practical application
of the proposed damage detection method. High resolution requirement may prohibit the practical application
of the present method because of the high expense associated with the measurement of mode shape. In Fig. 8,
the resolution requirement of the present damage detection method is examined. In Fig. 8(a), the irregularity
profile of the cantilever beam with a crack of a/h = 0.05 at x0 = 0.4L is obtained using 56 uniformly distrib-
Fig. 8. Resolution effect on damage detection: (a) resolution = 56; (b) resolution = 26; (c) resolution = 16.
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uted points of the first mode shape. Clearly, the damage is detectable with this resolution as shown in Fig. 8(a).
Reducing the measurement points to 26, damage is still detected successfully by the irregularity profile, as
shown in Fig. 8(b). Fig. 8(c) suggests that the damage can even be detected by just using 16 measurement
points. Such a low resolution requirement makes the present method very viable for practical application.

3.7. Noise effect

The experimentally measured mode shape is inevitably corrupted by measurement noise and errors. The
measurement noise and errors introduce local perturbations to the mode shape which can be picked up by
the irregularity profile as peak values. On one hand, these peak values could be mistakenly interpreted as
induced by damage and lead to false detection of damage in beams. On the other hand, they could overshadow
the peak value induced by real damage in the beam and lead to missed detection of damage. Therefore, effec-
tiveness and robustness of the present irregularity-based damage detection method under the influence of noise
must be carefully examined before it can be used in real life applications confidently.

To introduce noise effect, a series of random noise is generated from a uniform distribution on the interval
[�0.5, 0.5] of different levels and added to the exact mode shape obtained analytically. For the convenience of
calculation, the signal-to-noise ratio (SNR) at the location of the crack is used to determine the level of noise
(and therefore referred as LSNR, following the same definition as in Hadjileontiadis et al. (2005)). In Fig. 9(a),
the irregularity profile for a cantilever beam with a crack of a/h = 0.3 at x0 = 0.3L from the clamped end is
presented with noise at LSNR = 40 dB. It can be seen that a lot of peak values appear on the irregularity pro-
file due to the existence of noise. However, the most pronounced one appears at the location of the crack sug-
gesting that damage is still detectable even with such a high level of noise. If the crack is smaller, i.e., a/h = 0.1,
as shown in Fig. 9(b), the peak R2 value induced by the crack becomes much smaller and indistinguishable
from the others caused by the noise. In this case, damage is missed by the present method due to the presence
of noise. However, if we increase the value of B from 6.67 mm used in Fig. 9(a) and (b) to 13.33 mm, the peak
R2 value induced by the real damage becomes distinguishable again at the location of the crack as shown in
Fig. 9(c). As demonstrated before, a lower B value can improve the sensitivity of the irregularity to the dam-
age. But as expense, the sensitivity of the irregularity to the measurement noise is also magnified. Therefore, a
higher B value should be used to improve the robustness of the irregularity-based damage detection method
under the influence of measurement noise.

The measurement noise not only affects the peak R2 value at the location of crack, but also influences the
determination of the crack size, as illustrated in Fig. 10 for a cantilevered beam with a crack at x0 = 0.3L

(Fig. 1(a)). In all the subfigures of Fig. 10, 100 samples of peak R2 values at the location of the crack are
obtained for the first mode shape of the beam. The mean values of the peak R2 values are calculated and pre-
sented by the solid lines. The upper and lower bounds of peak R2, which are defined by the mean-value ± the
standard deviation, are also presented in Fig. 10. As a reference, the corresponding peak R2 values from the
exact first mode shape with noise interference (i.e., noise-free) are also presented by a dotted line in Fig. 10.
When LSNR = 70 dB, the mean value of peak R2 is almost identical with the one from the exact mode shape
as shown in Fig. 10(a); meanwhile, the standard deviation is very small in this case. This suggests that the effect
of noise of LSNR = 70 dB on the determination of crack size is negligible. However, if the noise level is
increased to LSNR = 60 dB, its effect on the crack size is much more pronounced and cannot be neglected
any more as shown in Fig. 10(b). In this case, not only does the mean value of peak R2 deviate from the exact
solution, but also the standard deviation of peak R2 values increases significantly, leading to unstable estima-
tion of the crack size. As aforementioned, a higher B value can be used to improve the damage detection effect
under the influence of the measurement noise. Fig. 10(b) is recalculated by using B = 13.33 mm instead of
6.67 mm, and the results are presented in Fig. 10(c). As expected, the deviation of the mean value from the
exact solution and the standard deviation are reduced significantly (see Fig. 10(c)).

4. Application example

In this study, the experimental data (i.e., the curvature mode shapes) of a cantilever composite beam with a
saw-cut crack obtained by Qiao et al. (2007a) are used to validate the proposed irregularity-based damage



Fig. 9. Noise effect on irregularity profile: (a) a/h = 0.3, LSNR = 40 dB, B = 6.67 mm; (b) a/h = 0.1, LSNR = 60 dB, B = 6.67 mm;
(c) a/h = 0.1, LSNR = 60 dB, B = 13.33 mm.
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detection method. The tested composite beam specimens were made of E-glass fiber and epoxy resins with a
[CSM/0(90/0)3]S lay-up of total 16 layers. The size of the beam is 609.6 · 50.8 · 4.8 mm. After clamped in the
cantilever configuration, the free span of the specimens was 558.8 mm. A lead–zirconate–titanate (PZT) cera-
mic patch of 8 · 12 mm was attached to the specimen near the clamped end, and it acts as an actuator. The
polyvinylidene fluoride (PVDF) thin polymer films of 30 · 12 · 28 lm were used as sensors to obtain the cur-
vature mode shapes. The locations of PVDF measurement points with a spacing of 25.4 mm are shown in
Fig. 11. The saw-cut damage was introduced at x0 = 279.4 mm (around the location of sensor 9) from the can-
tilevered end to simulate the crack-type damage in the composite beam. The depth of the through-width saw-
cut is about half of the specimen thickness. The ‘‘curvature’’ mode shapes measured by the PDVF sensors are
shown in Fig. 12 (due to significant noise present in the first mode shape, only the three consecutive modes
from the 2nd to 4th are considered). It should be pointed out that the resulting mode shape based on the
PVDF sensors is referred as ‘‘curvature’’ shape in Qiao et al. (2007a), which is not the actual curvature shape
of the beam, rather than a linear combination of slope mode shapes of the beam (Wang and Wang, 1997).



Fig. 10. Noise effect on the determination of crack size: (a) peak R2 value varies with the size of the crack, LSNR = 70 dB, B = 6.67 mm;
(b) peak R2 value varies with the size of the crack, LSNR = 60 dB, B = 6.67 mm; (c) peak R2 value varies with size of the crack,
LSNR = 60 dB, B = 13.33 mm.

Fig. 11. Sensor layout for the composite beam with a saw-cut crack.
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As demonstrated before, the slope mode shape can also be used to detect damage. By using triangular filter
with B chosen as three times of the sensor spacing, the R2 profiles of the mode shapes are obtained and pre-
sented in Fig. 13. As shown in Fig. 13, there are a few peaks appearing on the R2 profile, of which some are
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Fig. 12. ‘‘Curvature’’ mode shapes of saw-cut damaged beam.

Fig. 13. R2 profiles of the saw-cut beam: (a) mode 2; (b) mode 3; (c) mode 4.
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attributed to the environmental noise or boundary conditions. As expected, the largest peak value appears at
the location of the saw-cut (Sensor 9), clearly demonstrating that the proposed method can successfully detect
the existence of the crack in the composite beam. Although the location of the crack could be approximated
directly from the ‘‘curvature’’ mode shapes (Fig. 12) due to the large crack depth of the existing beam spec-
imen (Qiao et al., 2007a), the irregularity profiles of the mode shapes exhibiting in Fig. 13 further magnify the
effect of the damage at the location of crack by a much sharper peak comparing to the adjacent R2 values.

5. Conclusions

In this paper, the fundamental issues (e.g., single crack vs. multiple cracks, crack size, Gaussian vs. trian-
gular filters, resolution requirements, and noise effect) of irregularity-based damage detection method are
addressed. It is shown that the proposed method can successfully detect not only a single crack, but also multi-
ple cracks in beams. The location and size of a crack in beams are determined by a peak value at the location
of the damage on the irregularity profile of mode shape. Compared with existing damage detection methods
such as wavelet transform, the proposed method has a much easier calculation scheme and more straightfor-
ward physical meaning. For the two filters used in this study, the triangular filter demonstrates a superior
potential than Gaussian filter in damage detection. The important effect of the cut-off length of the triangular
filter on damage detection is also studied. It has been demonstrated that the smaller cut-off length can improve
the sensitivity of the irregularity to damage; while the higher cut-off length on the other hand can enhance the
robustness of the present method under the influence of noise. The potential practical application of this
method is further confirmed by its low requirement on measurement resolution. The effectiveness and robust-
ness of this method under the influence of noise has been demonstrated by the noise stress tests. The present
method is then implemented on the experimentally-measured curvature mode shapes, and it successfully
detects the saw-cut crack in the laminated composite beam. This method is simple to be implemented and does
not require the knowledge of the healthy structure. However, it requires multiple sensors to obtain the mode
shapes of structures. This is the major drawback for most of mode shape-based damage detection techniques.
Nevertheless, this drawback can be overcome by more efficient and autonomous measurement techniques to
obtain the mode shapes, such as scanning laser vibrometer (SLV) (Qiao et al., 2007a). The novel irregularity-
based damage detection techniques examined in detail in this study can be not only used effectively and effi-
ciently in assessing damage (in terms of location and size) in beam-type structures but also extended to two-
dimensional problems such as damage detection in plates (Qiao et al., 2007b) (e.g., irregularity profile of the
surface).
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