
International Journal of Solids and Structures 49 (2012) 1947–1960
Contents lists available at SciVerse ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
Effect of spherical micro-voids in shape memory alloys subjected to uniaxial loading

J.S. Olsen, Z.L. Zhang ⇑
Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
a r t i c l e i n f o

Article history:
Received 21 November 2011
Received in revised form 4 February 2012
Available online 16 April 2012

Keywords:
Shape memory alloys
Superelastic–plastic
Micro-voids
Constitutive model
0020-7683/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.ijsolstr.2012.03.041

⇑ Corresponding author.
E-mail address: Zhiliang.Zhang@ntnu.no (Z.L. Zhan
a b s t r a c t

In this study the effect of micro-voids on the superelastic–plastic behavior of shape memory alloys is
investigated. A new constitutive model for porous shape memory alloys, based on the Gurson–
Tvergaard–Needleman formulation, is proposed. The model is able to reproduce both forward and reverse
stress induced phase transformation, as well as plastic deformation. In addition, the model accounts for
the presence of micro-voids and void-growth through a void volume fraction. A one dimensional imple-
mentation has been conducted, and results from the new constitutive model is compared with finite
element unit-cell analyses. The model does well in reproducing results from unit-cells with void volume
fractions f0 < 0:05. However, some discrepancy is found for void volume fractions f0 P 0:05 that can be
attributed to the highly inhomogeneous stress field in the unit-cells which the new model does not
account for. The main results show that even for relatively small micro-voids the stress at which trans-
formation and plastic yielding is initiated is lowered. Also, the presence of micro-voids leads to a narrow-
ing of the stress–strain hysteresis which affects the amount of energy dissipated during a superelastic
cycle.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there have been an increased focus on failure of
shape memory alloys. The main efforts have been invested in
understanding the fatigue behavior (McKelvey and Ritchie, 2001;
Robertson et al., 2007; Robertson and Ritchie, 2007; Gollerthan
et al., 2008), but there have also been conducted studies devoted
to understand what fracture mechanisms are dominating for shape
memory alloys (see e.g. Gall et al., 2001; Chen et al., 2005). The re-
sults found in the literature do not provide distinct conclusions,
but rather show that fracture of shape memory alloys is governed
by several mechanisms.

Microstructural aspects have been shown to significantly affect
the fracture behavior of single crystalline NiTi. In a study Gall et al.
(2001) found that governing fracture mechanisms ranged from al-
most pure cleavage to a combination of cleavage and void-growth,
depending on the grain-orientation and presence and size of sec-
ond-phase precipitates. In the same study, fracture of polycrystal-
line NiTi was investigated and it was concluded that one of the
main fracture mechanisms for the investigated material is ductile
rupture through void-growth and coalescence. Other authors have
also shown results which indicate that ductile fracture mechanisms
are present during the fracture process of shape memory alloys
(Vaidyanathan et al., 2000; Wang et al., 2009). It is well established
ll rights reserved.
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that the nucleation, growth and coalescence of micro-voids play a
crucial role in ductile rupture (Rice and Tracey, 1969; Gurson,
1977; Koplik and Needleman, 1988; Zhang et al., 2000).

The effect of pores on shape memory alloy behavior has been
investigated by various authors (Qidwai et al., 2001; Entchev and
Lagoudas, 2002, 2004; Nemat-Nasser et al., 2005; Panico and
Brinson, 2008). Qidwai et al. (2001) compared three-dimensional
unit-cell finite element analyses with results from an averaging
micromechanics method based on the Mori–Tanaka method;
Entchev and Lagoudas (2002) developed a constitutive model
accounting for the effect of pores on superelastic shape memory al-
loy, which has been extended to account for transformation in-
duced plasticity by Lagoudas and Entchev (2004) and Entchev
and Lagoudas (2004). The latter works are also based on an averag-
ing technique where it is assumed that the material consists of
pores, which are considered to be inhomogeneities with zero stiff-
ness, and a dense matrix with superelastic–plastic properties;
Panico and Brinson (2008) simulated the effect of pores on the
shape memory alloy behavior by introducing a random distribu-
tion of elements with zero stiffness in a representative volume.

The common denominator for all of the works conducted on
porous shape memory alloys is that they consider materials with
large porosity (10–60%). To the author’s knowledge no studies have
been conducted on the superelastic–plastic shape memory alloys
with void volume fractions that is less than 10%. The existence of
micro-voids might influence the fracture behavior of shape mem-
ory alloys, as a first step we aim to investigate what effect the
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micro-voids can have on the behavior of shape memory alloys
prior to fracture.

In this work, a new superelastic–plastic constitutive model
based on the Gurson–Tvergaard–Needleman model is proposed
for shape memory alloys containing micro-voids. The model is able
to reproduce the stress–strain hysteresis, the stress drop due to the
presence of micro-voids and the void-growth in the material. The
model is implemented in Matlab for a one dimensional stress state
using a forward Euler integration scheme. Results from the new
model are compared with results from finite element unit cell
analyses conducted with the commercial finite element software
Abaqus. The effect of micro-voids on the superelastic–plastic
behavior of shape memory alloys is investigated.

In the following, a thorough description of the constitutive
model will be given in Section 2. Section 3 outlines the finite ele-
ment procedures and set up for the unit cell analyses, and shows
the material parameter fitting between the new constitutive model
and the finite element analyses. Results and discussion are pre-
sented in Section 4 before conclusions are given in Section 5.

2. Constitutive model accounting for effect of micro-voids in
shape memory alloys

Deformation of superelastic shape memory alloys leads to a
stress induced phase transformation from austenite to martensite.
Generally, up to 24 martensite variants may form in a shape mem-
ory alloy (Otsuka and Ren, 2005). However, when the material is
deformed in the austenite phase, only one variant, which is ori-
ented energetically most favorable relative to the direction of the
stress, will form (Brinson, 1993). It is therefore convenient to sim-
plify the problem to account for only one martensite variant. This
simplification is similar to the approaches found in several other
superelastic constitutive models, see e.g. (Brinson, 1993; Auricchio
and Taylor, 1997). Represented through their volume fractions, the
austenite and martensite phase, denoted na and nm respectively,
have to satisfy the following conditions

na þ nm ¼ 1; ð1Þ

and

dna þ dnm ¼ 0; ð2Þ

Eq. (1) allows the austenite volume fraction to be expressed
through the martensite volume fraction as

na ¼ 1� nm: ð3Þ

In the following, n is used without subscript and denotes the mar-
tensite volume fraction.

As martensite transformation in shape memory alloys is consid-
ered a thermoelastic process (Funakubo, 1987), the mechanical
behavior is influenced by both temperature and stress. In this work
we consider the transformation as an isothermal process, i.e. the
temperature is constant and only the mechanical contribution is
considered. This allows us to construct a constitutive relation on
the form

dr ¼ C : deel: ð4Þ

where dr is the incremental 2nd-order stress tensor, C is the
4th-order isotropic elasticity tensor and deel is the incremental
2nd-order elastic strain tensor. Considering the superelastic–plastic
deformation to be a three stage deformation, the total strain incre-
ment, de, can be expressed through an additive decomposition on
the form

de ¼ deel þ detr þ depl; ð5Þ

with detr and depl as the incremental 2nd-order transformation and
plastic strain tensors, respectively. Usually the yield stress needed
to initiate plastic deformation through dislocation movement is
higher than the critical stress to initiate martensite transformation
(Yan et al., 2003). It is therefore convenient to treat the two cases
separately. Accordingly, the stress increment can be written for
n < 1 and n ¼ 1, respectively:

dr ¼ C : ðde� detrÞ; n < 1 ð6Þ

dr ¼ C : ðde� deplÞ; n ¼ 1: ð7Þ
2.1. Martensite transformation

In this work, the goal is to establish a constitutive relation that
accounts for the effect of micro-voids during martensite transfor-
mation as well as plastic deformation. Simultaneously the model
should inhibit the ability to reproduce the superelastic hysteresis
that separates shape memory alloys from conventional materials.
In order to accomplish this, a transformation potential similar to
the Gurson–Tvergaard–Needleman potential (Gurson, 1977;
Tvergaard, 1981; Tvergaard and Needleman, 1984) has been
adopted. For forward transformation (i.e. transformation from aus-
tenite to martensite) we have a potential on the form

Uforðr; f ; nÞ ¼ q2

rfor
f

2 þ 2k1f cosh
3k2p

2rfor
f

 !
� 1þ ðk1f Þ2
� �

¼ 0; ð8Þ

where qðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2 S : S

q
and pðrÞ ¼ 1

3 trðrÞ are the equivalent Von
Mises stress and hydrostatic stress, respectively. S is the deviatoric
stress tensor and rfor

f ¼ rfor
f ðnÞ is the transformation flow stress for

forward transformation. k1 and k2 are constants introduced to the
original Gurson model by Tvergaard (1981) and Tvergaard and
Needleman (1984) to better describe the stress carrying capacity
during void-growth and coalescence. The void volume fraction, f,
and n are chosen as internal variables. Similarly a potential,
Urevðr; f ; nÞ, can be written for reverse transformation (i.e. transfor-
mation from martensite to austenite due to unloading) by substitut-
ing rfor

f with rrev
f ¼ rrev

f ðnÞ which is the transformation flow stress
for reverse transformation.

It is assumed that the transformation strain increment is pro-
portional to the transformation potential normal, @U=@r, following
the notation of Auricchio and Taylor (1997) and Yan et al. (2003),
the normality rule gives for forward transformation

detr ¼ bfordn
@Ufor

@r
; ð9Þ

In Eq. (9) bfor is a material parameter which is connected to the
transformation length, �L, and the transformation flow stress. This
point will be revisited at a later stage. dn is the martensite volume
fraction increment which needs to be determined. In order to de-
scribe the transformation strain for reverse transformation, the po-
tential Urev and a material parameter brev is employed in Eq. (9).
Further it has been used that (not separating between forward
and reverse transformation)

@U
@r
¼ @U
@q

@q
@r
þ @U
@p

@p
@r
¼ 3S

r2
f

þ k1k2f
rf

sinh
3k2p
2rf

� �
I: ð10Þ

It is in this work assumed that the evolution of the void volume
fraction during forward transformation is determined by the
growth of existing micro-voids (nucleation of new micro-voids is ig-
nored). In this work, phase transformation is phenomenologically
treated to behave similar to plastic deformation, which is consistent
with the work presented by Lubliner and Auricchio (1996).
Following this assumption, and the governing practice regarding
void-growth (Gurson, 1977; Zhang et al., 2000), the effect of elastic
volumetric strains is considered negligible. Therefore, as long as no
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plastic deformation has developed, the change in the void volume
fraction is determined by transformation incompressibility:

df ¼ ð1� f ÞtrðdetrÞ ¼ ð1� f Þdetr
V : ð11Þ

where detr
V ¼ detr : I is the volumetric transformation strain. Using

Eq. (9) in Eq. (11) yields for forward transformation

df for ¼ ð1� f Þbfor @U
for

@r
: Idn ¼ bforhfor

f dn: ð12Þ

when modeling martensite transformation kinetics, it is common to
use an empirically fitted relation to describe the martensite evolu-
tion (Tanaka, 1986; Brinson, 1993; Auricchio and Taylor, 1997). In
this work, motivated by the approach of Yan et al. (2003), the con-
sistency condition dUfor ¼ dUrev ¼ 0 is used in order to establish an
evolution equation for the martensite volume fraction. Accordingly
the change in martensite during forward transformation can be ex-
pressed as

dn ¼
@Ufor

@r : C : de

@Ufor

@r : C : @U
for

@r bfor � @Ufor

@f hfor
f bfor � @Ufor

@rfor
f

@rfor
f

@n

ð13Þ

¼ hfor
n : de: ð14Þ

Only the expressions relating to forward transformation is given for
both the change in void volume fraction and the martensite evolu-
tion. Similar expressions can easily be established for reverse trans-
formation by substituting the transformation potential, Ufor , the
material parameter, bfor , and the transformation flow stress, rfor

f

so that they are appropriate for reverse transformation. In Eq. (13)
it has been used that (not distinguishing forward and reverse
transformation)

@U
@f
¼ 2k1 cosh

3k2p
2rf

� �
� 2k2

1f ð15Þ

and

@U
@rf
¼ �

3k1k2fprf sinh 3k2p
2rf

� �
þ 2q2

r3
f

: ð16Þ

@rf =@n governs the transformation hardening. It is assumed that the
Kuhn–Tucker conditions

dn P 0; dUfor
6 0; dndUfor ¼ 0 ð17Þ

dn 6 0; dUrev P 0; dndUrev ¼ 0 ð18Þ

are satisfied for both forward and reverse transformation,
respectively.

2.2. Plastic deformation after ended forward transformation

Given that forward transformation has finished (n ¼ 1), contin-
ued loading will lead to an elastic deformation of the martensite
phase before plastic deformation by dislocation movement sets
in at a given yield stress, rpl

y . Accounting for micro-voids, the plas-
tic flow potential can be written as (Gurson, 1977; Tvergaard,
1981; Tvergaard and Needleman, 1984)

Uplðr; f ;rpl
f Þ ¼

q2

rpl
f

2 þ 2k1f cosh
3k2p

2rpl
f

 !
� 1þ ðk1f Þ2
� �

¼ 0; ð19Þ

Now the void volume fraction, f, and the plastic flow stress, rpl
f , are

chosen as internal variables. Assuming normality, the flow rule
gives the incremental second-order plastic strain tensor:
depl ¼ dk
@Upl

@r
; ð20Þ

where dk is the plastic multiplier, which needs to be determined. As
during transformation, void growth is assumed to be determined by
growth of existing micro-voids. The change in void volume fraction
becomes

df ¼ ð1� f ÞtrðdeplÞ ¼ ð1� f Þdepl
V : ð21Þ

with depl
V ¼ depl : I as the volumetric plastic strain increment. Insert-

ing Eq. (20) in Eq. (21) yields

df ¼ ð1� f Þdk
@Upl

@r
: I ¼ hpl

f dk: ð22Þ

The plastic work rate balance yields

r : depl ¼ ð1� f Þrf depl
eq ð23Þ

) depl
eq ¼

r : depl

ð1� f Þrf
: ð24Þ

The consistency condition, dUpl ¼ 0, yields for the plastic multiplier:

dk ¼
@Upl

@r : C : de
@Upl

@r : C : @U
pl

@r � @Upl

@f hpl
f � @Upl

@rpl
f

hrpl
f

ð25Þ

¼ hdk : de: ð26Þ

For a one-dimensional stress state Eq. (25) becomes

dk ¼
@Upl

@r11
Dde11

@Upl

@r11
D� @U

pl

@r11
� @Upl

@f hpl
f � @Upl

@rpl
f

hrpl
f

ð27Þ

¼ hdkde11: ð28Þ

where hrpl
f

is the evolution of the plastic flow stress which is deter-
mined in Section 2.3. D is the elasticity modulus. It is assumed that
the Kuhn–Tucker conditions are satisfied:

dk P 0; dUpl
6 0; dkdUpl ¼ 0: ð29Þ
2.3. Hardening rules

In the model suggested in this work, transformation hardening
is governed by a relationship between the transformation flow
stress and the martensite volume fraction. It is assumed that the
hardening mechanisms are the similar for forward and reverse
transformation, and for the sake of simplicity the two cases are
not separated in the following discussion.

When choosing a hardening rule, several options are available
and three approaches are considered herein. As mentioned,
@rf =@n controls the transformation hardening and it has been sta-
ted that rf ¼ rf ðnÞ. The simplest option is to assume no hardening,
i.e. the transformation flow stress is kept constant throughout the
transformation:

rf ðnÞ ¼ rcr
s )

@rf

@n
¼ 0: ð30Þ

rcr
s is the critical stress for starting transformation. Generally the

critical stresses governing the stress induced martensite transfor-
mation are temperature dependent (Brinson, 1993). Since, in this
work, the transformation process is considered isothermal, the crit-
ical stresses are treated as material constants.

Considering linear hardening, the transformation flow stress
can be expressed as

rf ðnÞ ¼ rcr
s þ Drcrn) @rf

@n
¼ Drcr : ð31Þ
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with

Drcr ¼ rcr
e � rcr

s ð32Þ

rcr
e is the critical stress when transformation is finished. Martensite

transformation is generally considered to be non-linear. To describe
the non-linear transformation kinetics both exponential and trigo-
nometrical functions have been employed (Tanaka, 1986; Brinson,
1993; Liang and Rogers, 1997). In this work polynomial functions
of 5th-degree have been chosen to capture the non-linear hardening
during both forward and reverse transformation. It is a numerically
stable approach, and it is similar to the approach used in Abaqus
(Rebelo, 2003), which this constitutive model is to be compared
with. The polynomial function for the transformation flow stress
can be written as

rf ðnÞ ¼ p�1n
5 þ p�2n

4 þ p�3n
3 þ p�4n

2 þ p�5nþ p�6 ð33Þ

The constants p�1;p
�
2;p

�
3; p

�
4;p

�
5 and p�6 need to be determined through

numerical fitting. The hardening rule becomes

@rf

@n
¼ 5p�1n

4 þ 4p�2n
3 þ 3p�3n

2 þ 2p�4nþ p�5: ð34Þ

The change in flow stress can now be determined as

drf ¼
@rf

@n
dn ¼ 5p�1n

4 þ 4p�2n
3 þ 3p�3n

2 þ 2p�4nþ p�5
� �

dn ð35Þ

The sign of drf is controlled by the sign of dn. It should be empha-
sized that the constants p�i ; i ¼ 1� 6, are different for forward and
reverse transformation.

In order to describe strain hardening during plastic deforma-
tion, an approach suggested by Aravas (1987) is used:

rpl
f

ry
¼

rpl
f

ry
þ 3G

ry
epl

eq

 !N

: ð36Þ

where ry is the yield stress, G ¼ D=2ð1þ mÞ is the shear modulus
and N is the hardening exponent. By rewriting Eq. (36) to

F ¼
rpl

f

ry
�

rpl
f

ry
þ 3G

ry
epl

eq

 !N

¼ 0; ð37Þ

it is possible to establish the incremental change of the plastic flow
stress as

drpl
f ¼

@F
@epl

eq
depl

eq

@F
@rpl

f

ð38Þ

¼
@F
@epl

eq

@F
@rpl

f

r : @U
@r

ð1� f Þrpl
f

dk ð39Þ

¼ hrpl
f

dk; ð40Þ

with

@F

@epl
eq

¼ �3GN
ry

rpl
f

ry
þ 3G

ry
epl

eq

 !N�1

ð41Þ

and

@F

@rpl
f

¼
1� N

rpl
f

ry
þ 3G

ry
epl

eq

� �N�1

ry
: ð42Þ
Fig. 1. Schematic stress–strain.
2.4. Effect of non-constant elasticity modulus

To this point the effect of elastic mismatch has not been
discussed. For some shape memory alloys (e.g. NiTi-alloys) the
elasticity modulus for austenite can be as much as three times lar-
ger, than for martensite. Accordingly, accounting for the elastic
mismatch in a constitutive model becomes important as it has a
considerable effect on the overall behavior of the material.

Stress induced martensite firstly develops in an austenite ma-
trix at locations that experience stress concentrations (e.g. in the
vicinity of inclusions) (Brinson et al., 2004). Several small martens-
ite islands may arise from these locations simultaneously and grow
as the stress is increased. In order to get an average elasticity mod-
ulus during transformation some homogenization scheme is
needed. Auricchio and Sacco (1997) suggest two schemes that they
consider realistically can describe the evolution of the equivalent
elasticity modulus during transformation. For a three-dimensional
case a Mori–Tanaka scheme derived from the Eshelby inclusion
problem is used, while for a one-dimensional case they found that
the simpler Reuss scheme to be appropriate (Auricchio and Sacco,
1997). In this work a one-dimensional formulation is implemented
to compare the constitutive model with uniaxially loaded unit-
cells in Abaqus, and the Reuss scheme is chosen. Accordingly the
equivalent elasticity modulus can be written as

DðnÞ ¼ Da

1þ ðDa
Dm
� 1Þn

: ð43Þ

Subscript a and m denotes austenite and martensite, respectively.
For details on the derivation of Eq. (43) please refer to the afore-
mentioned work by Auricchio and Sacco (1997).

The most significant effect of the elastic mismatch is a differ-
ence between the total strain during forward and reverse transfor-
mation, respectively. In a previous work, (Yan et al., 2003) stated
that the elastic strain contribution is near equal during both for-
ward and reverse transformation, and argued that as a conse-
quence the transformation length is different for the two cases.
More specific: reverse transformation length is smaller than the
forward transformation length. In our opinion, however, there is
a significant difference in the elastic strain contribution during for-
ward and reverse transformation. With this in mind, consider the
schematic one-dimensional stress–strain curve in Fig. 1. It is as-
sumed that f0 ¼ 0 for which case it can be shown that etr

eq ¼ etr
11.

Accordingly, after completed forward and reverse transformation
etr

11 ¼ �
for
L and etr

11 ¼ �rev
L , respectively. From Fig. 1 it is obvious that

eel
AB þ eel

BC þ etr
BC ¼ eel

CD þ eel
DA þ etr

DA ð44Þ

Now, let rB ¼ rfor
s ; rC ¼ rfor

e ; rD ¼ rrev
s ; rA ¼ rrev

e ; eBC ¼ eel
BC þ �

for
L

and eDA ¼ eel
DA þ �rev

L . Rewriting Eq. (44) using Hooke’s law yields

rfor
s � rrev

e

Da
þ rfor

e

Dm
� rfor

s

Da
þ �for

L ¼
rfor

e � rrev
s

Dm
þ rrev

s

Dm
� rrev

e

Da
þ �rev

L ð45Þ

) �rev
L ¼ �for

L ð46Þ
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This shows that the forward and reverse transformation length is
equal. �for

L , can be determined from mechanical testing (Brinson,
1993).

When the Gurson–Tvergaard–Needleman model is used with
conventional materials, the effect of initial void volume fraction
on the elasticity modulus is ignored. This can generally be accepted
since the plastic strain is usually several orders larger than the
elastic strain. However, when considering the superelastic behav-
ior of shape memory alloys with non-constant elasticity modulus,
the elastic strain and the transformation strain are almost of the
same order. Therefore, particularly for larger void volume fractions,
the effect of the initial void volume fraction on the elasticity mod-
ulus has to be accounted for. By considering elastic finite element
analyses of axis-symmetric unit-cells (see Section 3 for finite ele-
ment set-up) it is found that the effect of the initial void volume
fraction on the elasticity modulus of austenite, Da, can be written
as

D�a ¼ ð1þ af0ÞDa: ð47Þ

where a is a constant. During phase transformation, void growth is
relatively small so it is reasonable to assume that it does not signif-
icantly affect the elasticity modulus. Consequently it is assumed
that Eq. (47) also holds for the case of a non-constant elasticity
modulus. The equivalent elasticity modulus then becomes

D�ðf0; nÞ ¼ ð1þ af0ÞDðnÞ: ð48Þ

Here DðnÞ is expressed through Eq. (43).
Returning to the effect of elastic mismatch on the behavior of

shape memory alloys: since the elasticity modulus changes during
transformation, it can no longer be treated as a constant. As a con-
sequence, Hooke’s law must now be written as (assuming a one-
dimensional stress state)

r11 ¼ r11ðD�; e11Þ ¼ D�eel
11 ð49Þ

The change in stress may be written as

dr11 ¼
@r11

@eel
11

deel
11 þ

@r11

@D�
dD� ¼ D�deel

11 þ eel
11dD�

¼ D�ðde11 � detr
11Þ þ

r11

D�
dD�: ð50Þ

Since f0 is constant, the change of the elasticity modulus during
transformation can be written as

dD� ¼ @D�

@n
dn ¼ �ð1þ af0Þ

DaDm Da � Dmð Þ
Dmðn� 1Þ � Dan½ �2

dn: ð51Þ

Employing the result in Eqs. (50) and (51) in conjunction with the
consistency condition dU ¼ 0 for a one dimensional stress-state
yields for the change in martensite volume fraction (not separating
between forward and reverse transformation):

dn ¼
@U
@r11

D�de11

@U
@r11

D� @U
@r11

b� @U
@r11

r11
D�

@D�

@n � @U
@f hf b� @U

@rf

@rf

@n

ð52Þ

¼ hnde11 ð53Þ
2.5. Material parameters bfor and brev

In order to determine the material parameter bfor we have to re-
visit Eq. (9) and perform an integration from transformation start
to transformation finish. As transformation only can occur in the
matrix of the material we assume that bfor and brev can be estab-
lished for the case f0 ¼ 0, and be valid for all values of f0. According
to Eq. (8) the equivalent stress during forward transformation now
becomes:
q ¼ rfor
f ð54Þ

Eq. (9) can then be written as (considering the 11-direction only)

detr
11 ¼ bfordn

@Ufor

@r11
¼ bfor 2

rfor
f ðnÞ

dn ð55Þ

Definite integrals on both sides yieldZ �for
L

0
detr

11 ¼ bfor
Z 1

0

2

rfor
f

dn) bfor ¼ �for
L

2
R 1

0
1

rfor
f
ðnÞ

dn
ð56Þ

Similarly we get for reverse transformation

brev ¼ �rev
L

2
R 1

0
1

rrev
f
ðnÞ dn

: ð57Þ

Eqs. (56) and (57) show that bfor and brev depend on the hardening
function used in the constitutive model. They are easily derived for
non-hardening and linearly hardening materials, and can be written
as

bfor ¼ 1
2
�for

L rfor
s ; brev ¼ 1

2
�rev

L rrev
s ð58Þ

for a non-hardening material, and

bfor ¼ �
for
L ðr

for
e � rfor

s Þ

2 ln rfor
e

rfor
s

� � ; brev ¼ �
rev
L ðrrev

e � rrev
s Þ

2 ln rrev
e

rrev
s

� � ð59Þ

for a linearly hardening material, respectively. For the 5th-degree
polynomial used as a non-linear hardening function in this work,
bfor and brev are best determined through numerical integration.

3. Finite element analyses of axis-symmetric unit-cell models

In previous works the axis-symmetric void cell model has been
employed to investigate the effect of micro-voids on ductile frac-
ture in elasto-plastic materials (Koplik and Needleman, 1988;
Pardoen and Hutchinson, 2000; Zhang et al., 2000). In this work
a similar approach is adopted. Several unit-cell models with vary-
ing initial void volume fraction, f0, are investigated. The finite ele-
ment analyses will serve as a basis for verification of the proposed
constitutive model, as well as a tool to investigate inherent effects
of micro-voids on shape memory alloys. A sketch of the unit-cell
model used in the finite element analyses is depicted in Fig. 2. To
save computational time only a quarter of the unit-cell is modeled
and it consists of 288 linear 4-node axis-symmetric elements. At-
tempts were made with quadratic 8-node axis-symmetric ele-
ments, however, convergence issues lead to unsatisfactory
deformation levels. The unit-cell has a total height 2Ly and a radius
Lx. The ellipsoidal micro-voids have radii ry and rx, in the axial
direction and radial direction of the unit-cell, respectively. In
Fig. 2 Py and Px denotes the load in the axial and radial direction,
respectively. The micro-void geometrical characteristics can be
represented by initial void volume fraction and the aspect ratio
by the equations

f0 ¼
2ry0r2

x0

3Ly0L2
x0

; h0 ¼
ry0

rx0
ð60Þ

where subscript ‘‘0’’ denotes initial value. This approach is limited
by the cases when h0 ! 0 and h0 !1 (Pardoen and Hutchinson,
2000). In the current study, only cases with h0 ¼ 1 have been inves-
tigated, i.e. spherical micro-voids.

The mesoscopic logarithmic principal strains, Ex and Ey, and the
effective strain, Ee, are given by



Fig. 2. Unit-cell model used in the finite element simulations.
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Table 3
bfor and brev calculated for different types of hardening.

No hardening Linear hardening Non-linear hardening

bfor ½MPa� 4.56 5.01 5.02
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Ex ¼ ln
Lx

Lx0

� �
; Ey ¼ ln

Ly

Ly0

� �
; Ee ¼

2
3
jEy � Exj; ð61Þ

while the mesoscopic principal stresses, Ry and Rx, and the effective
stress, Re are calculated as

Ry ¼
Py

A
; Rx ¼ Ryq; Re ¼ jRy 1� qð Þj: ð62Þ

where A ¼ pL2
x is the current area, and q is the stress proportionality

factor. The hydrostatic stress, Rh, and the stress triaxiality, T, are gi-
ven by

Rh ¼
1
3

Ry 1þ 2qð Þ; T ¼ Rh

Re
¼ 1

3
1þ 2q
1� q

	 

: ð63Þ

In order to have the possibility to impose a triaxial stress state, a
multi-point constraint user subroutine, MPC, has been used; two
linear springs, A and B, are added to the axis-symmetric model –
one at the top left corner and one at the bottom right corner.
Through the load proportionality condition it is possible to establish
a relationship between the deformation in spring A and spring B
(Søvik, 1996):
Table 1
Material parameters needed in Rebelo’s model, and used in the finite element
simulations.

Parameter Value Description

DA [MPa] 47,000 Elasticity modulus for austenite
DM [MPa] 15,667 Elasticity modulus for martensite
mA; mM 0.33 Poisson ratio for austenite and martensite

rfor
s [MPa] 351 Critical stress for start of forw. trans.

rfor
e [MPa] 422 Critical stress for end of forw. trans.

rrev
s [MPa] 250 Critical stress for start of rev. trans.

rrev
e [MPa] 175 Critical stress for end of rev. trans.
�L 0.026 Transformation length

epl
1 ;r

pl
1 � � �e

pl
N ;r

pl
N

Stress–strain pairs during plastic deformation

Table 2
Constants used in polynomial hardening functions.

p1 p2 p3 p4 p5

Forw. trans. 1.75 �4.51 4.40 �2.01 0.56
Rev. trans. 8.03 �22.5 23.6 �11.6 2.90
ua
x ¼ ub

x þ 2q
kA

kB

ðud
y � uc

yÞðLy0 þ uc
yÞ

ðLx0 þ ub
xÞ

ð64Þ

where ua
x ;u

b
x ; u

c
y;u

d
y; kA and kB are displacements and stiffnesses in

springs A and B, respectively. During analyses in Abaqus, displace-
ment ud

y is applied, and displacement ua
x follows from Eq. (64) which

is included in the MPC. As the constitutive model to be compared
with the finite element analyses is only implemented for a one
dimensional stress state, all simulations where conducted with a
load proportionality factor, q ¼ 0, i.e. T ¼ 0:33.

The constitutive model is developed and implemented in the
commercial finite element software Abaqus at SIMULIA/west by
brev ½MPa� 3.25 2.73 2.99
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Rebelo (2003). It is an extension of Auricchio’s model that accounts
for plastic deformations, and is readily available as a user subrou-
tine, UMAT, in Abaqus (SIMULIA, 2010). A description of the model
can be found in a paper by Rebelo (2003). The material data needed
for Rebelo’s model, and used in the finite element simulations are
presented in Table 1.

As the problem at hand is of a highly non-linear nature and con-
vergence becomes difficult at large deformation levels, selected
convergence criteria were relaxed to be able to reach satisfactory
deformation levels (Olsen et al., 2011).

3.1. Fitting material parameters in the new constitutive model

All material parameters presented in Table 1 which are origi-
nally used in accordance with the shape memory alloy model used
in Abaqus are also valid for the new constitutive model presented
in this work. In addition, constants p�i ; i ¼ 1� 6 from Eq. (34), a; bfor

and brev need to be calculated.
By evaluating Eq. (34) at n ¼ 0 it is obvious that p�for

6 ¼ rfor
s and

p�rev
6 ¼ rrev

e . This allows us to rewrite Eq. (34) on the form

rfor
f ðnÞ ¼ rfor

s pfor
1 n5 þ pfor

2 n4 þ pfor
3 n3 þ pfor

4 n2 þ pfor
5 nþ 1

� �
ð65Þ

rrev
f ðnÞ ¼ rrev

e prev
1 n5 þ prev

2 n4 þ prev
3 n3 þ prev

4 n2 þ prev
5 nþ 1

� �
; ð66Þ

for forward and reverse transformation, respectively. The remaining
constants have been determined from the finite element results
through a linear least square curve fitting and are presented in
Table 2. A comparison between the finite element analyses and
the fitted new constitutive model is shown in a n-rf curve in
Fig. 3. The figure shows a full transformation hysteresis from the fi-
nite element analysis for a unit-cell with f0 ¼ 0 and Eqs. (65) and
(66) for forward and reverse transformation, respectively.

The material parameters bfor and brev are calculated by using the
material parameters presented in Table 1 in Eqs. (58) and (59) for
the cases of no hardening and linear hardening, respectively. For
the case of non-linear hardening the same material parameters
have been calculated by performing a numerical integration of
Eqs. (56) and (57). The calculated values of bfor and brev are pre-
sented for all types of hardening in Table 3.

As mentioned, the effect of initial void volume fraction on the
average elasticity modulus is accounted for in the new constitutive
model. It is assumed that the constant a in Eq. (47) is the same for
all initial values of the elasticity modulus, D. In order to verify this,
elastic finite element analyses have been conducted for unit-cells
with void volume fractions in the range f0 ¼ 0� 0:1 for two cases:
one with D ¼ Da and one with D ¼ Dm. Fig. 4 shows the elasticity
moduli calculated from the numerical analyses, and a linear fit
which is used to determine a. It is found that the case of D ¼ Da,
the constant is aa ¼ �1:729 and for the case D ¼ Dm it is
am ¼ �1:726. This gives a deviation of 0.16% which is considered
accurate enough to assume that a remains constant during trans-
formation eventhough the elasticity modulus changes.

The last constants in this constitutive model that need to be
determined, are k1 and k2. If k1 ¼ k2 ¼ 1, the transformation poten-
tial is similar to the original Gurson formulation. For the cases
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Fig. 7. Superelastic stress–strain hystereses comparing between results from finite element unit-cell analyses and the new constitutive model when initial void-volume
fraction is (a) f0 ¼ 0, (b) f0 ¼ 0:001, (c) f0 ¼ 0:01, (d) f0 ¼ 0:05 and (e) f0 ¼ 0:1.
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investigated herein it is found that stress levels calculated with the
new constitutive model are more accurately described if the
constants k1 and k2 are set to 1.5 and 1, respectively.
4. Results and discussion

4.1. Effect of transformation hardening and elastic mismatch

It has previously in this paper been argued that the behavior of
shape memory alloys is considerably affected if a non-constant
elasticity modulus is accounted for. To quantify this effect, a case
where Dm ¼ Da is compared with a case where Dm ¼ 1

3 Da. For both
cases the initial void volume fraction is set to f0 ¼ 0. Fig. 5(a) shows
the stress–strain curves, and the main difference is that the trans-
formation plateaus is much larger when Dm ¼ 1

3 Da than for the case
when Dm ¼ Da. This effect can be exclusively attributed to an in-
crease of the elastic strains during transformation. In Fig. 5(b)
the elastic strain in the axial direction is compared for the two
cases, and when a non-constant elasticity modulus is considered,
the elastic strain contribution during both forward and reverse
transformation is more than three times higher than when a con-
stant elasticity modulus is considered.

The proposed constitutive model has been developed so that
any desired transformation hardening rule can be used. Changing
the hardening rule will ultimately affect the stress in the material
during transformation, and should not affect the length of the
transformation plateaus. It is noted that to ensure this, the material
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Fig. 8. Superelastic–plastic stress–strain curves comparing between results from finite element unit-cell analyses and the new constitutive model when initial void-volume
fraction is (a) f0 ¼ 0, (b) f0 ¼ 0:001, (c) f0 ¼ 0:01, (d) f0 ¼ 0:05 and (e) f0 ¼ 0:1.
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parameters bfor and brev , which indirectly controls the length of
transformation plateau, need to be adapted to whatever hardening
rule is chosen (refer Section 2.5). Fig. 6 shows the stress strain
curves for materials with f0 ¼ 0 and f0 ¼ 0:1 where the effect of
no hardening, linear hardening and non-linear hardening is
compared. Here non-linear hardening is represented through the
5th-degree polynomials presented in Section 2.3. The linear and
non-linear hardening rules are both able to well capture all the
critical stresses for transformation start and finish, while the case
with no hardening exhibit a good fit for the critical stress for onset
of transformation only. For the latter case there is actually a slight
decrease in the stress during forward transformation and a corre-
sponding increase during reverse transformation. However, most
important is that there is no discrepancy when it comes to length
of the transformation plateaus for any of the three cases. This
shows that the proposed model has the potential to function well
for any kind of transformation hardening rule.

4.2. Comparison of finite element analyses and the new constitutive
model

In Fig. 7 stress–strain hystereses are shown for five different ini-
tial void volume fractions, ranging from f0 ¼ 0 to f0 ¼ 0:1. The figure
presents results from both finite element unit-cell analyses and the
new constitutive model. All analyses are conducted with uni-axial
loading, and for the unit-cells maximum strain before unloading,
is set to be when the response is close to linear elastic. The results
show that for small void volume fractions, f0 = 0–0.01, the new
constitutive model capture well the stress–strain response of the
unit-cells. For larger void volume fractions, f0 = 0.05–0.1, the elastic



Fig. 9. The three phases coexisting at Ex ¼ 0:15 in a unit-cell with (a) f0 ¼ 0:01 (b) f0 ¼ 0:05. Phase transformation, elastic deformation and plastic deformation are indicated
by black, gray and light gray colors, respectively.
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Fig. 10. Curves comparing void-growth as a function of strain between results from finite element unit-cell analyses and the new constitutive model, for one superelastic
cycle, when initial void-volume fraction is (a) f0 ¼ 0:001, (b) f0 ¼ 0:01, (c) f0 ¼ 0:05 and (d) f0 ¼ 0:1.
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deformation prior to, and the onset of, forward transformation are
well described by the new constitutive model. However, as phase
transformation comes closer to completion (e11 � 0:03), the stress
recorded from the unit-cell models increase faster. Also, it can be
seen that the transformation plateau is longer and not as clearly
defined as it is for the new constitutive model.

The stress field in a unit-cell with micro-void is highly inhomo-
geneous, and a stress concentration will arise close to the micro-
void at the base of the unit-cell. As the phase transformation is
stress driven, the martensite volume fraction exhibits the same
inhomogeneous behavior. The consequence is that the mechanical
properties will differ within the matrix of the unit-cell, with parts
behaving elastically after completed transformation while other
parts still undergo phase transformation. In the proposed constitu-
tive model, it is assumed that phase transformation is homoge-
neous in the matrix with a clearly defined start and finish. It
does not capture the inhomogeneous stress field in the material.
Consequently the stress–strain response will deviate somewhat
from that of the unit-cells with larger void volume fractions.

Stress–strain curves exhibiting superelastic–plastic response are
shown in Fig. 8 for the aforementioned void volume fraction range.
As with the superelastic hystereses, the proposed constitutive mod-
el is also capable of well describing the elastic–plastic behavior sub-
sequent to forward phase transformation for the smaller void
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Fig. 11. Curves comparing void-growth as a function of strain between results from finite element unit-cell analyses and the new constitutive model, for forward
transformation and subsequent plastic deformation, when initial void-volume fraction is (a) f0 ¼ 0:001, (b) f0 ¼ 0:01, (c) f0 ¼ 0:05 and (d) f0 ¼ 0:1.
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Fig. 12. Results showing the effect of micro-voids on (a) stress–strain relations, (b) the equivalent critical stress and (c) the dissipated energy after a full superelastic cycle.
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volume fractions (f0 < 0:05). However, for the larger void volume
fractions (f0 P 0:05) there is a significant discrepancy between
the unit-cell analyses and the new constitutive model. For the case
of f0 ¼ 0:05 there is a relatively good fit up to e11 � 0:24 before the
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Fig. 13. Results showing the effect of micro-voids on (a) superelastic–plastic stress–strain relations, (b) the equivalent yield stress.

0 0.06 0.12 0.18
0

400

800

1200

1600
ε=0.125

Strain

St
re

ss
 [M

Pa
]

ε=0.125ε=0.125ε=0.125ε=0.125

f0=0
f0=0.001
f0=0.01
f0=0.05
f0=0.1

(a)

0 0.06 0.12 0.18
0

400

800

1200

1600
ε=0.135

Strain

St
re

ss
 [M

Pa
]

ε=0.135ε=0.135ε=0.135ε=0.135

f0=0
f0=0.001
f0=0.01
f0=0.05
f0=0.1

(b)

0 0.06 0.12 0.18
0

400

800

1200

1600
ε=0.165

Strain

St
re

ss
 [M

Pa
]

ε=0.165ε=0.165ε=0.165ε=0.165

f0=0
f0=0.001
f0=0.01
f0=0.05
f0=0.1

(c)
Fig. 14. Results showing the effect of micro-voids on (a) stress–strain relations, (b) the equivalent critical stress and (c) the dissipated energy after a full superelastic cycle.
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curves start to deviate. When f0 ¼ 0:1 the proposed model is able
to predict the average yield stress (onset of plastic deformation),
but the stress is significantly lower for our model than the unit-cell
analysis as the plastic deformation continues. Again, the reason for
the difference in the results for larger void volume fractions can be
explained by the assumption of a homogeneous stress field within
the matrix of the material. In the unit-cells, the matrix essentially
consists of three different materials after plastic deformation is ini-
tiated: elastic deformation, phase transformation and plastic defor-
mation coexist. This is shown in Fig. 9 where a comparison
between a unit-cell with f0 ¼ 0:01 and a unit-cell with f0 ¼ 0:05
is made at a strain of Ex ¼ 0:15. The parts of the unit-cell which
experience phase transformation, elastic deformation subsequent
to phase transformation and plastic deformation are indicated by
black, gray and light gray colors, respectively. For the larger void
volume fractions the inhomogeneity effect is much more pro-
nounced as the volume of the material experiencing non-plastic
deformation is considerably larger than for the smaller void
volume fractions. As parts of the unit-cell experience elastic
deformation the average stress will become higher than for the
proposed constitutive model which assumes pure plastic deforma-
tion at this stage. It should be noted that the different phases are
represented trough the equivalent von Mises stress, i.e. phase
transformation occurs when the Mises stress is lower than rfor

e ,
plastic deformation occurs when the Mises stress is higher than
ry and elastic deformation occur in between these values.

From Fig. 10 it can be seen that there is a considerable discrep-
ancy between void-growth in the unit-cells and that calculated by
the proposed constitutive model. Void-growth is in this work de-
fined as an increase in the void volume fraction. In the proposed
model it is assumed that void-growth due to elastic strain is neg-
ligible, an approach commonly used with GTN-like constitutive
models, and that it is only affected by the volumetric transforma-
tion strain. By examining the void-growth curves extracted from
the finite element unit-cell analyses it is obvious that for a super-
elastic material, the elastic strain is of significance for the degree of
void-growth. For strain up to onset of transformation start
(e11 � 0:007), the unit-cell analyses all exhibit some degree of
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void-growth. Also, when unloading the unit-cells a negative void-
growth can be observed that is directly associated with elastic
deformation (e.g. for the unit-cell with f0 ¼ 0:001 this can be seen
when unloading from strain e11 ¼ 0:0548 to e11 ¼ 0:0485). For the
unit-cells, when the deformation is dominated by phase transfor-
mation, the void-growth attains a close to linear response until a
certain degree of fully transformed material is present. In the
proposed model, the influence of void-growth on the superelastic
behavior has been investigated by performing analyses at which
df ¼ 0 (not shown here). The results showed that there is no signif-
icant effect on the superelastic stress–strain relations for any of the
cases investigated herein.

An interesting feature can be observed in Fig. 10(a) and
Fig. 10(b) at a certain strain level (e11 � 0:04) the total void volume
fraction peaks, and subsequently decreases as the strain increases.
Reduction of the void volume fraction occurs for the smaller micro-
voids because the volume of the matrix increases more than the
void volume. The elasticity modulus changes during transforma-
tion which leads to a considerable increase of the elastic strains
in the matrix. Void-growth is mainly driven by inelastic strains.
At the start of phase transformation, the transformation strains
increase faster than the elastic strains, and consequently promotes
void-growth. In the unit-cells, after a certain deformation level, the
micro-voids gradually becomes engulfed by a fully transformed
volume which is now behaving purely elastic. This elastic deforma-
tion will somewhat hinder increase of the void volume, while at
the same time the matrix experience an increase of the elastic
strains. Accordingly, the matrix volume increases faster than the
void volume thus causing a decrease in the void volume fraction.
This effect is not present for the larger void-volume fractions. It
is noted that the void volume fractions calculated from the unit-
cells exhibit an increase of � 4% before unloading for all the cases
investigated herein.

In Fig. 11 the void-growth is shown for analyses from both
the unit-cell model and the new constitutive model. The unit-cell
analyses consistently predicts a higher void volume fraction than
the proposed constitutive model for strains, e11 < 0:3. However, for
strains, e11 > 0:3 the void-growth is higher for the new constitutive
model.

4.3. Effect of micro-voids on stress–strain relations

The most pronounced effect of introducing micro-voids in the
material is that with increasing initial void volume fraction, the
average stress level is overall reduced. In Fig. 12(a) it can be seen
that there is a downward shift of the stress–strain hystereses as
the initial void volume fraction increases. This means that for a
material with micro-voids, transformation will be induced, and
completed, at a lower stress than a homogeneous material.
Fig. 12(b) shows the equivalent critical stresses at n ¼ 0 and
n ¼ 1, for both forward (qfor

s ; qrev
s ) and reverse (qfor

e ; qrev
e ) transforma-

tion when f0 is increased from 0 to 0:1. For the same cases the
results show that there is a linear relation between the equivalent
critical stresses and the initial void volume fraction, and that
qfor

s ; qfor
e ; qrev

s and qrev
e are reduced by 20%, 21.6%, 20.4% and 19.9%,

respectively. A similar observation can be made for the average
yield stress (see Fig. 13): there is a 20% reduction when the void
volume fraction is increased from f0 ¼ 0 to f0 ¼ 0:1.

Another effect attributed to the introduction of micro-voids that
is not as easily observed from the stress–strain curves, is a narrow-
ing of the hystereses as the initial void volume fraction increases.
This effect is best measured by calculating the energy dissipated
after a complete superelastic cycle. The dissipated energy is shown
as a function of initial void volume fraction in Fig. 12(c). Approxi-
mately 24% less energy is dissipated when f0 ¼ 0:1 than for the
case where f0 ¼ 0.
If plastic deformation occurs in a superelasic shape memory
alloy, the ability for the material to completely regain its shape
after unloading is reduced. In Fig. 14 stress–strain curves are
shown for three different cases of plastic deformation. The total
strain was chosen so that the plastic strain would amount to
approximately 0.01, 0.02 and 0.05 for the different cases. It is inter-
esting to observe that the initial void volume fraction has an
increasing effect on the residual strain as the plastic strain is
increased. When the plastic strain is approximately 0.01 there is
almost no difference between residual strains for the various void
volume fractions. However, if the plastic strain is increased to 0.05
the residual strain is approximately 4.5% larger when f0 ¼ 0:1,
compared to the case when f0 ¼ 0.

5. Conclusions

In this work a new constitutive model has been proposed
for shape memory alloys. The model is based on the Gurson–
Tvergaard–Needleman model for elastic–plastic materials
containing micro-voids and is modified to account for the super-
elastic–plastic behavior found in shape memory alloys. A one
dimensional implementation using a forward Euler integrations
scheme has been conducted.

Analyses from uniaxially loaded axis-symmetric unit-cells have
been used to validate the model, and it is able to well replicate the
stress–strain results from the finite element analyses for smaller
void volume fractions (f0 < 0:05). For void volume fractions
f0 P 0:05, however, there is a discrepancy between the finite ele-
ment results and the results from the new constitutive model.
The reason is that the proposed model does not account for the
considerable inhomogeneous stress field that arise within the
unit-cell matrix, which consists of three different phases.

Comparing results for different void volume fractions show that
introducing micro-voids lowers the average stress level, and that
both phase transformation and plastic yielding occur at consider-
ably lower stress than for a homogeneous material. In addition, it
is found that the superelastic stress–strain hystereses becomes
narrower with increasing void volume fraction, i.e. the amount of
energy dissipated during a stress–strain cycle is reduced.
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