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We study closed form solutions for the perfect bonding and the delamination case for a monolayer gra-
phene sheet resting on an elastic foundation. The theoretical framework we adopt is restricted to the
materially and geometrically linear case. Graphene is modeled as a hexagonal 2-lattice, while the sub-
strate is assumed to behave in an isotropic linearly elastic manner. Initially, we ignore out-of-surface
motions and study the case of biaxial tension/compression and simple shear. We find the components
of the shift vector by solving the equations ruling the shift vector. We then substitute this expression
for the shift vector components to the momentum equation. This way we obtain conditions that the field
of the internal strains, the strain constants and the material parameters should satisfy in order biaxial
tension/compression and simple shear to be solutions for all equilibrium equations. For the particular
case of axial strain and for the simple shear case we plot the mean stress components versus strain for
three different substrates. Then, we take into account out-of-surface motions. We assume the
out-of-surface displacement to be the product of a wave-like function and an unknown function, which
we determine under certain conditions. These conditions are constraints that the field of the internal
strains, the strain constant and the material characteristics of the substrate and graphene should satisfy
in order the equilibrium equations to be satisfied. These cases pertain to the perfect bonding case.
Distinguishing film’s displacement from the bulk (substrate) displacement we study the case where
delamination occur. We again use a semi-inverse method: we assume film’s displacement to be the pro-
duct of a wave-like function with an unknown function. The bulk’s displacement is assumed to be differ-
ent from the one of the film, in areas of delamination. We determine the unknown function present in the
displacement of the film, by requiring the momentum equations to be satisfied.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene is a two-dimensional sheet that constitutes the build-
ing unit of all graphitic forms of matter, such as graphite, carbon
nanotubes and carbon fibers. Graphene attract much attention to
the mechanics community due to its very high strength of approx-
imately 1 TPa (Lee et al., 2008). This together with its very small
thickness, of approximately 0.335 nm, makes graphene an ideal
potential candidate for strengthening composite structures. In a
recent article we review the mechanical properties of graphene
as probed by spectroscopic measurements and as calculated by
ab initio, molecular simulation and continuum mechanical meth-
ods (Galiotis et al., in press).
On the other hand, graphene’s very small thickness has some
unpleasant consequences when trying to subject it to experiments:
it is very difficult to grab graphene and apply some kind of loading.
To remedy this situation workers embed graphene samples on a
polymer substrate and load the system graphene/substrate. Then
the technique of Raman spectroscopy can be applied to measure
the mechanical properties of graphene by measuring the G and
2D peak of the Raman spectra. In Androulidakis et al. (2014) we
embed a graphene flake on a substrate and apply a tensional load-
ing to the system graphene/substrate using either the technique of
cantilever beam or the four point bending technique.

The present work is motivated from the above described use of
the substrate. It targets to mathematically model the graphene/-
substrate system when subjected to simple loadings. In a sense,
this is a continuation of our previous efforts to model
free-standing graphene (Sfyris and Galiotis, in press; Sfyris et al.,
2014a,b; Sfyris et al., in press), by taking into account substrate’s
n case.
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presence. In Sfyris and Galiotis (in press), Sfyris et al. (2014a,b) and
Sfyris et al. (in press) we present the mathematical background for
modeling graphene at the continuum level. In particular, adopting
the framework of Steigmann and Ogden (1999) we utilize a surface
free energy for graphene based on three arguments. The first argu-
ment is an in-surface stain measure describing changes taking
place on the surface. The second argument is the curvature tensor
which describe the out-of-surface motion and introduce bending
into the model. The third argument is the shift vector. The motiva-
tion for assuming the shift vector as an argument stem from well
established theories of crystalline materials (Parry, 1978;
Ericksen, 1970; Ericksen, 1979; Fadda and Zanzotto, 2000; Fadda
and Zanzotto, 2001; Pitteri, 1984; Pitteri, 1985; Pitteri and
Zanzotto, 2003).

In this sense we stress that graphene is modeled as a hexagonal
2-lattice (Sfyris and Galiotis, in press; Sfyris et al., 2014a,b).The
need for viewing graphene as a multilattice stem from the fact that
graphene’s lattice cannot be seen as a Bravais simple lattice. In
standard terminology of applied crystallography (Fadda and
Zanzotto, 2000; Fadda and Zanzotto, 2001; Pitteri, 1985), gra-
phene’s lattice belong to a special category of multilattices: it is a
hexagonal 2-lattice. The unit cell for all possible plane 2-lattices
is given in Fadda and Zanzotto (2000). The fact that graphene is
at the discrete level a 2-lattice has some important consequences
when scaling up to the continuum. The most important conse-
quence is that the shift vector should be an independent argument
at the continuum energy (Parry, 1978; Ericksen, 1970, 1979; Fadda
and Zanzotto, 2000, 2001; Pitteri, 1984, 1985; Pitteri and Zanzotto,
2003). The shift vector is the vector connecting the two simple
hexagonal lattices that constitute the hexagonal 2-lattice of gra-
phene (see also the Figures in Sfyris and Galiotis, in press; Sfyris
et al., 2014a,b; Sfyris et al., in press). So, at the continuum level
the energy should depend on the shift vector as well.

Lamdmark works on the continuum modeling of graphene stem
from the fundamental work of Lee et al. (2008) who use a
nanoidentation experiment in an atomic force microscope to mea-
sure the elastic properties and intrinsic strength of graphene. Using
second order elasticity these authors evaluate Young’s modulus,
the second order elastic constant as well as graphene’s breaking
strength. Their analysis model graphene as an isotropic body in
one dimension, due to symmetry in the loading. Generalization
of their approach to two dimensions is done by Cadelano et al.
(2009). These authors view graphene as an isotropic body and they
utilize an energy cubic in strains (second order elasticity in words
of Murnaghan (1951) and Rivlin (1963)). Utilizing tight-binding
atomistic simulations they calculate Young’s modulus, Poisson
ratio as well as higher order constants for graphene. While inter-
esting and novel their approach is, it lacks the treatment of bend-
ing effects. It also model graphene as an isotropic body;
dependence on the zigzag and the armchair direction is not incor-
porated to the constitutive law through dependence on a structural
tensor. Fifth order models for graphene are presented by Wei et al.
(2009). These authors utilize an energy that depends on strains of
the fifth order. Using density functional theory for simple loading
histories they evaluate higher order constants for graphene. Their
approach does not include bending effects neither anisotropy; gra-
phene is modeled as an isotropic body.

Compared to these fundamental and interesting works, our line
of work for modeling graphene as a 2-lattice (Sfyris and Galiotis, in
press; Sfyris et al., 2014a,b; Sfyris et al., in press) add novelty in
three levels: a. we include bending effects into our analysis by
dependence of the energy on the curvature tensor, b. symmetries
of graphene are properly taken into account starting from the dis-
crete picture and passing consistently to the continuum using the
structural tensor in line with the classical theories of invariants of
nonlinear elasticity, c. our analysis is devoid of the endless Taylor
Please cite this article in press as: Sfyris, D., et al. Graphene resting on substrate
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expansion of the energy the abovementioned works utilize: evalu-
ating the invariants we find the exact number of material parame-
ters for a most generic energy describing the material at hand. To
all these we add that graphene is a monoatomic 2-lattice and not
a simple lattice that almost all works in literature assume. Thus,
at the continuum energy the shift vector should be taken into
account in line with well established theories of multilattices
(see e.g. Chapter 11 of Pitteri and Zanzotto (2003)).

In the literature there are many works related with thin film/-
substrate interactions, from the theoretical point of view. We refer
to the paper by Mishnaevsky and Gross (2005) for a concise review
of this topic as well as to its numerous references. We draw partic-
ular attention to the fundamental paper by Huang (2005). There,
the substrate behave viscoelastically while for the thin film the
von-Karman assumptions are adopted. Using plane strain analysis
and the standard Laplace transformation method for converting a
viscoelastic problem to an elastic one, the author solve the vis-
coelastic problem of the substrate. The effect of the thin film is pre-
sent on the boundary condition of the equations governing the
bulk material.

Another interesting study is the approach of Cao and Hutchinson
(2012) who adopt a neo-Hookean expression for the energy of the
film as well as for the substrate in order to study the effect of the
pre-stretch of the substrate. Fried and Todres (2005), study the
effect of curvature and residual stress to the buckling of a half space
with free surface near a contactor. They assume that the bulk and
the boundary body are made of the same material and use the geo-
metrical symmetry to reduce the problem to one dimension only. It
is important to note that these authors introduce van der Waals
effects in their analysis. The effect of the surface tension of a free
surface on the bulk material is studied by Wang et al. (2010) who
also assume that the free surface and the bulk body are made of
the same material. The case of partial delamination of the thin film
from the substrate is an undesirable phenomenon which appears
frequently in the manufacturing process. Bedrossian and Kohn
(2015) lay down a specific expression for the displacement function
that describe partial delamination in the form of a blister.

The main novelty of the present contribution lies on the fact
that we take into account the presence of the substrate on closed
form solutions related with simple loadings. This is done for the
case where graphene and substrate are perfectly bonded and also
for the case where delamination take place. Additionally, we retain
throughout the analysis terms related with residual strains for
both the thin film and the substrate. We adopt the field equations
as reported by Chhapadia et al. (2011). These are the momentum
and the moment of momentum equations for the thin film (gra-
phene) in the absence of body forces and inertia. The effect of
the substrate enter through terms present in these equations. To
these equations one should add the equation ruling the shift vector
(Parry, 1978; Ericksen, 1970, 1979; Fadda and Zanzotto, 2000,
2001; Pitteri, 1984, 1985; Pitteri and Zanzotto, 2003) since gra-
phene is a multilattices.

To bring our framework closer to more applied approaches and
to give a rough order of magnitude for plotting purposes, we pre-
sent the mean stress–strain diagrams for the axial tension test
and the simple shear problem. For the substrate we make three dif-
ferent assumptions corresponding to three common materials used
as substrate: Polyethylene terephthalate (PET), Polymethyl
methacrylate (PMMA) and Polydimethylsiloxane (PDMS). In the
mathematical model these are introduced through their Lame con-
stants, k; l. Being aware that these polymeric substrate’s behave
in a viscoelastic manner, we assume the viscous response to be
negligible, since we have in mind experiments with slow rate such
as those in Androulidakis et al. (2014).

For graphene we adopt the linear framework of Sfyris et al.
(2014b), so the whole theory is confined to geometrical and
: Closed form solutions for the perfect bonding and the delamination case.
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material linearities for both film and substrate. For this linear mod-
eling the in-surface material constants are four: c1; c2; c5; c9. In a
recent work (Sfyris et al., submitted for publication) we evaluate
them using molecular mechanics calculations. There (Sfyris et al.,
submitted for publication) we focus on graphene’s unit cell and
distinguish between the measured length of the shift vector and
the length of the lattice vectors. Then we apply a tensional strain
and evaluate the radial distribution diagram describing length
changes due to the applied loading for carbon–carbon connections.
At zero strain level we find two peaks on the radial distribution
diagram: one corresponding to the equal length of the lattice vec-
tors (approximately 0.242 nm) while the other peak correspond to
the shift vector (approximately 0.140 nm). As strain is gradually
applied, we find that these two peaks split into two new peaks
each. To these four peaks we correspond at the continuum level
the four required material parameters. Comparison with standard
literature render then the values ðc1; c2; c5; c9Þ ¼ ð1:102;1:534;
3:117;�12:07Þ TPa. These values for graphene together with the
substrate’s material parameters are used in Section 3 to produce
the mean stress–strain diagrams for the axial strain and the simple
shear problem.

Throughout our analysis we distinguish between two displace-
ment fields: one for the film and the second for the substrate and
study two groups of solutions: one where the bonding is perfect
and one where delamination take place. For the perfect bonding
case we divide into two categories: one where only in-surface
motions are considered and another where we treat in-surface
motions together with out-of-surface motions.

For the perfect bonding case we study biaxial tension/compres-
sion as well as shear loading.We find the components of the shift
vector by solving the equations ruling the shift vector. We then
substitute this expression for the shift vector components to the
momentum equation. This way we obtain conditions that the field
of the internal strains, the strain constants and the material param-
eters should satisfy in order biaxial tension/compression and sim-
ple shear to be solutions for all equilibrium equations. We
particularize to the axial strain problem and produce the mean
stress–strain curves for all stress components. Taking three differ-
ent choices for the substrate we highlight the role a stiffer or softer
substrate has in the mean stress components. A similar analysis is
done for the simple shear problem. For both problems we also take
into account how a field of in-surface internal strain affect the
mean stress–strain curves.

For the out-of-surface case we use a semi-inverse method.
Motivated by the work of Puntel et al. (2011) we assume a specific
form for the out-of-surface displacement. This displacement is the
product of a wave-like function with an unknown function, f,
which turns out to be the basic unknown for the problem at hand.
Solving the equations ruling the shift vector we evaluate the shift
vector components as a function of all other measures: the internal
strains, the in-surface strain and curvature. We substitute these
expressions to the momentum equation to obtain an equation for
the unknown function f. We find conditions in order the momen-
tum equation to be explicitly solvable for the unknown function
f. These conditions are constraints that the field of the internal
strains, the strain constants and the material parameters should
satisfy.

Distinguishing film’s displacement from the displacement of
the substrate, we introduce delamination in our analysis.
Motivated by the work of Bedrossian and Kohn (2015) we make
a specific assumption for the delamination function. This function
has two parts: one trivial describing the perfect bonding areas and
one non-trivial describing the delaminated areas. The delaminated
part is described by a displacement which is a product of a
wave-like function together with an unknown function, g. We find
the shift vector components solving the equations ruling the shift
Please cite this article in press as: Sfyris, D., et al. Graphene resting on substrate
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vector and substitute them to the momentum equation. This way
we obtain an equation for the unknown function g, which we
determine explicitly under some conditions. These conditions are
constraints that the field of the internal strains, the strain constant
and the material parameters should satisfy. This procedure is done
twice: one for the perfect bonding areas and one for the delam-
inted areas.

The paper is organized as follows. Section 2 give a short remin-
der of the constitutive modeling of graphene as a hexagonal
2-lattice (Sfyris and Galiotis, in press; Sfyris et al., 2014a,b; Sfyris
et al., in press). In the same section, we also give the constitutive
modeling of the substrate and lay down the field equations in
terms of stress and strain quantities. Section 3 treats the
in-surface perfect bonding case. We apply biaxial tension/com-
pression to the film/substrate system and evaluate the shift vector
components by solving the equation ruling the shift vector. We
then substitute them to the momentum equation to obtain con-
straints that should be satisfied by the field of the internal strains,
the material parameters and the strain constants, in order the equi-
librium equations to be satisfied. We then particularize to the case
of axial strain and produce the mean stress–strain diagrams for
three different choices for the substrate’s. The same procedure is
done for the simple shear case. We also examine the role a field
of internal strains has in the mean stress–strain diagrams.

Section 4 treat out-of-surface motions of perfectly bonded sur-
faces; we find specific solutions for the out-of-surface motions
under certain conditions. These are conditions that the strain con-
stants, the field of internal strains and the material parameters of
the substrate should satisfy in order all field equations to be satis-
fied trivially. Section 5 studies the debonding case. By making a
suitable assumption for the film’s displacement that now differ
from the substrate’s one, we find specific solutions under certain
conditions. These again are conditions that the field of the internal
strains, the loading constants and the material moduli should sat-
isfy in order all field equations to be satisfied trivially. These con-
ditions then guarantee that the delamination function chosen is a
solution for the problem at hand. Section 6, conclude the paper
with discussion of the results.
2. Mathematical prerequisites

Graphene is modeled as a hexagonal 2-lattice, in line with pre-
vious approaches on relevant topics (Sfyris and Galiotis, in press;
Sfyris et al., 2014a,b; Sfyris et al., in press). The need for viewing
graphene as a multilattice stem from the fact that graphene’s lat-
tice cannot be seen as a Bravais simple lattice. In standard termi-
nology of applied crystallography (Fadda and Zanzotto, 2000,
2001; Pitteri, 1985), graphene’s lattice belong to a special category
of multilattices: it is a hexagonal 2-lattice. The unit cell for all pos-
sible plane 2-lattices is given in Fadda and Zanzotto (2000). The
fact that graphene is at the discrete level a 2-lattice has some
important consequences when scaling up to the continuum. The
most important consequence is that the shift vector should be an
independent argument at the continuum energy (Parry, 1978;
Ericksen, 1970, 1979; Fadda and Zanzotto, 2000, 2001; Pitteri,
1984, 1985; Pitteri and Zanzotto, 2003). The shift vector is the vec-
tor connecting the two simple hexagonal lattices that constitute
the hexagonal 2-lattice of graphene (see Figs. in Sfyris and
Galiotis, in press; Sfyris et al., 2014a,b). So, at the continuum level
the energy should depend on the shift vector as well.

For the geometrical and materially linear case graphene’s
energy depend on an in-surface strain measure, the curvature ten-
sor and the shift vector. Dependence on the curvature tensor is
motivated by the work of Steigmann and Ogden (1999).
Dependence on the shift vector result from well established
: Closed form solutions for the perfect bonding and the delamination case.
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theories of multilattices (Parry, 1978; Ericksen, 1970, 1979; Fadda
and Zanzotto, 2000; Fadda and Zanzotto, 2001; Pitteri, 1984, 1985;
Pitteri and Zanzotto, 2003). So, all in all, graphene’s elastic energy
has the form (Sfyris et al., 2014b)
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where e f
ij ¼ 1

2 ðu
f
i;j þ u f

j;iÞ is the in-surface strain measure of the film, u f

is the displacement of the film, b f is film’s curvature, while p is gra-
phene’s shift vector. Tensors Ci; i ¼ 1; . . . ;6 are related with the
material parameters of the problem at hand (see Sfyris et al., 2014b).

Geometrical nonlinearities are absent, since we neglect terms of

the form u f
i;ju

f
i;j on e f

ij . Material linearities are expressed by the fact

that graphene’s energy is a quadratic function of e f ; b f
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ij , the out-of-surface residual strains

measured by the term b0 f : the residual part of the curvature. Term
p0 is related to residual strains from the shift vector dependence.

The stress tensor, the couple stress tensor and the stress-like
quantity related with the shift vector, for the thin film read
(Sfyris et al., 2014b) respectively
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Ultimately these expressions render for the components of the
stress tensor
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For the couple stress tensor we obtain
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For the stress-like quantities related with the shift vector we find
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In the above equations constants ci; i ¼ 1; . . . ;9 correspond to the
material parameters of graphene when it is modeled as a hexagonal
2-lattice in the linear case (see Sfyris et al., 2014b).

For this linear modeling the in-surface material constants are
four: c1; c2; c5; c9. In a recent work (Sfyris et al., submitted for
publication) we evaluate them using molecular mechanics calcula-
tions. There (Sfyris et al., submitted for publication) we focus on
graphene’s unit cell and distinguish between the measured length
of the shift vector and the length of the lattice vectors. Then we
apply a tensional strain and evaluate the radial distribution dia-
gram describing length changes due to the applied loading for car-
bon–carbon connections. At zero strain level we find two peaks on
the radial distribution diagram: one corresponding to the equal
length of the lattice vectors (approximately 0.242 nm) while the
other peak correspond to the shift vector (approximately
0.140 nm). As strain is gradually applied, we find that these two
peaks split into two new peaks each. To these four peaks we corre-
spond, at the continuum level, the four required material parame-
ters. Comparison with standard literature render then the values
ðc1; c2; c5; c9Þ ¼ ð1:102;1:534;3:117;�12:07Þ TPa.

On the other hand, the substrate is assumed to behave as a lin-
ear isotropic elastic material. Thus the constitutive law read

rb
ij ¼ ke0 b

kk dij þ 2le0 b
ij þ keb

kkdij þ 2leb
ij; ð13Þ

where eb
ij ¼ 1

2 ub
i;j þ ub

j;i

� �
is the strain tensor for the substrate and ub

is the displacement of the bulk material (the substrate). k; l are the
Lame constants of the substrate. We disregard viscous effects, since
we have in mind experiments with slow rate such as the one’s per-
formed in Androulidakis et al. (2014). e0 b denotes the internal
strain field the substrate has.

From the above analysis one observe that essentially into the
mathematical framework there are two displacement fields: one
for the thin film (u f ) and one for the substrate (ub). In the case
of perfect bonding these two quantities are equal. When delamina-
tion take place they differ in some areas; these are the areas where
debonding occur. It is also worth mentioning that u f has compo-

nents u f
1 ; u f

2; namely it is a two dimensional quantity.
Out-of-surface motions for the film are described through the term

b f : the curvature tensor (see Sfyris et al., 2014a,b). On the other
hand, ub is a three dimensional quantity; it has three components.
Deformations out of the bounding surface of the substrate are
therefore introduced into the mathematical framework by ub

3.
Both u f and ub are parametrized by two surface coordinates
Ha; a ¼ 1;2 (see Sfyris et al., 2014b).

The field equations are then (Chhapadia et al., 2011)

rb
ijn

b
j þ r f

ij;j ¼ 0; ð14Þ

�mnub
mnb

qr
b
nqei þm f

ij;j � ð�mnr f
miu

f
nepÞ;p ¼ 0; ð15Þ

rb
ijn

b
j þ

@W
@pi
¼ 0: ð16Þ
: Closed form solutions for the perfect bonding and the delamination case.
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Eq. (14) is the momentum equation in the absence of body forces
and inertia; it is the balance of forces for the surface. Eq. (15) is
the moment of momentum equation in the absence of inertia and
body couples. From the physical point of view it describe the couple
balance in the surface. Eq. (16) express that the shift vector adjust
so as equilibrium is reached (Ericksen, 1979; Pitteri and Zanzotto,
2003). It is interesting here to note that the presence of the
out-of-surface unit normal, nb, explicitly in the field equations lead
to dependence of the solutions in this field.

Using Eqs. (5)–(7) and (13) on Eq. (14) for the first of the
momentum equation we obtain

kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

1 þ 2le0 b
11 nb

1 þ 2le0 b
12 nb

2 þ 2le0 b
13 nb

3 þ kub
1;1nb

1

þ kub
2;2nb

1 þ 2lub
1;1nb

1 þ lðub
1;2 þ ub

2;1Þnb
2 þ lub

3;1nb
3 þ c1e0 f

11;1

þ c2e0 f
22;1 þ c3b0 f

11;1 þ c4b0 f
22;1 � c5p0

2;1 þ
c1 � c2

2
e0 f

12;2

þ c3 � c4

2
b0 f

12;2 � 2c5p0
1;2 þ c1u f

1;11 þ c2u f
2;21 þ c3b f

11;1 þ c4b f
22;1

� c5p2;1 þ
c1 � c2

4
ðu f

1;22 þ u f
2;12Þ þ

c3 � c4

2
b f

12;2 � 2c5p1;2 ¼ 0:

ð17Þ

For the second equation of momentum we take

kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

2 þ 2le0 b
21 nb

1 þ 2le0 b
22 nb

2 þ 2le0 b
23 nb

3

þ kðub
1;1 þ ub

2;2Þnb
2 þ lðub

1;2 þ ub
2;1Þnb

1 þ 2lub
2;2nb

2 þ lub
3;2nb

3

þ c2e0 f
11;2 þ c1e0 f

22;2 þ c4b0 f
11;2 þ c3b0 f

22;2 þ c5p0
2;2 þ

c1 � c2

2
e0 f

12;1

þ c3 � c4

2
b0 f

12;1 � 2c5p0
1;1 þ

c1 � c2

4
ðu f

1;21 þ u f
2;11Þ þ

c3 � c4

2
b f

12;1

� 2c5p1;1 þ c2u f
1;12 þ c1u f

2;22 þ c4b f
11;2 þ c3b f

22;2 þ c5p2;2 ¼ 0: ð18Þ

Using Eqs. (11)–(13) on Eq. (16) for the first equation ruling the
shift vector we evaluate

kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

1 þ 2le0 b
11 nb

1 þ 2le0 b
12 nb

2 þ 2le0 b
13 nb

3

þ kub
1;1nb

1 þ kub
2;2nb

1 þ 2lub
1;1nb

1 þ c9p0
1 � 2c5e0 f

12 � 2c8b0f
12

þ lðub
1;2 þ ub

2;1Þnb
2 þ lub

3;1nb
3 þ c9p1 � c5ðu f

1;2 þ u f
2;1Þ � 2c8b f

12 ¼ 0:

ð19Þ

For the second equation ruling the shift vector we find

kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

2 þ 2le0 b
21 nb

1 þ 2le0 b
22 nb

2 þ 2le0 b
23 nb

3

þ kðub
1;1 þ ub

2;2Þnb
2 þ lðub

1;2 þ ub
2;1Þnb

1 þ c9p0
2 � c5e0 f

11 � c5e0 f
22

� c8b0 f
11 þ c8b0 f

22 þ 2lub
2;2nb

2 þ lub
3;2nb

3 þ c9p2 � c5u f
1;1 þ c5u f

2;2

� c8b f
11 þ c8b f

22 ¼ 0: ð20Þ

In a similar fashion using Eqs. (5)–(10) to Eq. (15) one may
obtain the moment of momentum equation in terms of the dis-
placement fields. Since this equation is not explicitly used in later
Sections we refrain from writing it down, but we stress that one
can obtain this equation in a straightforwrd manner.

Next sections utilize the above equations by making suitable
assumptions for the displacement field of the film and the sub-
strate. Essentially, there are two cases studied: first, the case of
perfect bonding between the film and the substrate, and second,
the case of debonding between them. In the case of perfect bond-
ing, i.e., when u f ¼ ub, we distinguish between a case without
out-of-surface motion and a case where out-of-surface motion take
place. When there are no out-of-surface motions we need not use
the moment of momentum equation neither the curvature tensor
comes into play. We also treat the case where delamination occur;
in this case the displacement of the film differs from the one of the
bulk in the delaminated areas.
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3. In-surface motions-perfect bonding

Since we restrict ourselves to in-surface motions only we set
film’s curvature equal. Also, for the component ub

3 we have that it
is zero, since this describe out-of-surface motions of the bulk mate-
rial. Perfect bonding means u f ¼ ub. We study biaxial tension/com-
pression and simple shear for the case of perfect bonding using a
semi-inverse method. We assume the form the displacement has
and evaluate all other quantities in order the field equations to
be satisfied trivially.

3.1. Biaxial tension/compression

Following our previous works (Sfyris et al., 2014a,b) we intro-
duce biaxial tension/compression by assuming for the displace-
ment components (ub ¼ u f ¼ u)

u1 ¼ �1H
1; u2 ¼ �2H

2: ð21Þ

When �i > 1 then the material is under tension in the i-direction.
When �i < 1 the material is under compression in this direction.
Then, the first equation for the shift vector, Eq. (19), can be solved
in terms of p1 to give

p1 ¼
1
c9
�k�1nb

1 � k�2nb
2 � 2l�1nb

1 � kðe0 b
11 þ e0 b

22 Þnb
1 � 2le0 b

11 nb
1

�
�2le0 b

12 nb
2 � c9p0

1 þ 2c5e0 f
12

i
: ð22Þ

The second equation ruling the shift vector, Eq. (20), render

p2 ¼
1
c9
½�kð�1 þ �2Þnb

2 � 2l�2nb
2 þ c5�1 � c5�2 � kðe0 b

11 þ e0 b
22 Þnb

2

� 2le0 b
21 nb

1 � 2le0 b
22 nb

2 � c9p0
2 þ c5e0 f

11 þ c5e0 f
22 �: ð23Þ

Substituting Eqs. (22) and (23) to the first of the momentum equa-
tion, Eq. (17), we take

kðe0 b
11 þ e0 b

22 Þnb
1 þ 2le0 b

11 nb
1 þ 2le0 b

12 nb
2 þ k�1nb

1 þ k�2nb
1 þ 2l�1nb

1

þ c1e0 f
11;1 þ c2e0 f

22;1 þ c3b0 f
11;1 þ c4b0 f

22;1 � c5p0
2;1 þ

c1 � c2

2
e0 f

12;2

þ c3 � c4

2
b0 f

12;2 � 2c5p0
1;2 þ

c5

c9
½kð�1 þ �2Þnb

2 þ 2l�2nb
2�;1

þ 2
c5

c9
½k�1nb

1 þ k�2nb
2 þ 2l�1nb

1�;2 þ
c5

c9
½kðe0 b

11 þ e0 b
22 Þnb

2

þ2le0 b
21 nb

1 þ 2le0 b
22 nb

2 þ c9p0
2 � c5e0 f

11 � c5e0 f
22 �;1

þ2
c5

c9
½þkðe0 b

11 þ e0 b
22 Þnb

1 þ 2le0 b
11 nb

1

þ2le0 b
12 nb

2 þ c9p0
1 � 2c5e0 f

12 �;2 ¼ 0: ð24Þ

The second equation of momentum, Eq. (18), render then

kðe0 b
11 þ e0 b

22 Þnb
2 þ 2le0 b

21 nb
1 þ 2le0 b

22 nb
2 þ kð�1 þ �2Þnb

2

þ 2l�2nb
2 þ c2e0 f

11;2 þ c1e0 f
22;2 þ c4b0 f

11;2 þ c3b0 f
22;2 þ c5p0

2;2

þ c1 � c2

2
e0 f

12;1 þ
c3 � c4

2
b0 f

12;1 � 2c5p0
1;1 þ 2

c5

c9
½k�1nb

1 þ k�2nb
2

þ2l�1nb
1�;1 �

c5

c9
½kð�1 þ �2Þnb

2 þ 2l�2nb
2�;2

þ2
c5

c9
kðe0 b

11 þ e0 b
22 Þnb

1 þ 2le0 b
11 nb

1 þ 2le0 b
12 nb

2 þ c9p0
1 � 2c5e0 f

12

h i
;1

þ c5

c9
½�kðe0 b

11 þ e0 b
22 Þnb

2 � 2le0 b
21 nb

1 � 2le0 b
22 nb

2 � c9p0
2

þc5e0 f
11 þ c5e0 f

22 �;2 ¼ 0: ð25Þ

The equations of momentum, Eqs. (24) and (25), render conditions
that the field of internal strains, the strain constants, �1; �2, the vec-
tor nb and the material parameters, c1; c2; c5; c9; k; l, should sat-
isfy in order Eq. (21) to be a solution for all field equations.
: Closed form solutions for the perfect bonding and the delamination case.
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The constitutive laws for graphene at this case read

r f
11 ¼ c1e0 f

11 þ c2e0 f
22 � c5p0

2 þ c1�1 þ c2�2 �
c5

c9
½�kð�1 þ �2Þnb

2

� 2l�2nb
2 þ c5�1 � c5�2 � kðe0 b

11 þ e0 b
22 Þnb

2 � 2le0 b
21 nb

1

� 2le0 b
22 nb

2 � c9p0
2 þ c5e0 f

11 þ c5e0 f
22 �; ð26Þ

r f
22 ¼ c2e0 f

11 þ c1e0 f
22 þ c5p0

2 þ c2�1 þ c1�2 þ
c5

c9
½�kð�1 þ �2Þnb

2

� 2l�2nb
2 þ c5�1 � c5�2 � kðe0 b

11 þ e0 b
22 Þnb

2 � 2le0 b
21 nb

1

� 2le0 b
22 nb

2 � c9p0
2 þ c5e0 f

11 þ c5e0 f
22 �; ð27Þ

r f
12 ¼

c1 � c2

2
e0 f

12 � 2c5p0
1 � 2

c5

c9
½�k�1nb

1 � k�2nb
2 � 2l�1nb

1

� kðe0 b
11 þ e0 b

22 Þnb
1 � 2le0 b

11 nb
1 � 2le0 b

12 nb
2 � c9p0

1

þ 2c5e0 f
12 �: ð28Þ

For the particular case where the applied strain is axial, namely
when �2 ¼ 1, and there are no internal strains, we obtain for the
components of the shift vector from Eqs. (22) and (23)

p1 ¼
1
c9
½�k�1nb

1 � 2l�1nb
1�; ð29Þ

p2 ¼
1
c9
½�k�1nb

2 þ c5�1 � c5�: ð30Þ

The constitutive expression for the stress tensor components, Eqs.
(26)–(28), then simplify to

r f
11 ¼ c1�1 �

c5

c9
½�k�1nb

2 þ c5�1�; ð31Þ

r f
22 ¼ c2�1 þ

c5

c9
½�k�1nb

2 þ c5�1�; ð32Þ

r f
12 ¼ �2

c5

c9
½�k�1nb

1 � 2l�1nb
1�: ð33Þ

These are the pointwise expressions for the components of the

stress tensor, namely r f
ij ¼ r f

ijðH
1;H2Þ. We notice that the inhomo-

geneity of these quantities stem from the explicit dependence on
nb, the outward unit normal of the substrate. We now assume that
nb is the outward unit normal to a plane, namely, we assume that
the film is a plane. So, we take nb ¼ ðH1;H2;1Þ, such that

ðH1Þ
2
þ ðH2Þ

2
þ 1 ¼ 1 and further assume that

0 6 H1
6 1; 0 6 H2

6 1. We now define the mean stress tensor
components as

rf mean
ij ¼

Z 1

0

Z 1

0
r f

ijðH
1;H2ÞdH1dH2: ð34Þ

The introduction of the mean stress of Eq. (34) rules out the inho-
mogeneity of the stress components. So, for the components of
the mean stress we obtain

rf mean
11 ¼ c1�1 �

c5

c9
� k

2
�1 þ c5�1

� �
; ð35Þ

rf mean
22 ¼ c2�1 þ

c5

c9
� k

2
�1 þ c5�1

� �
; ð36Þ

rf mean
12 ¼ �2

c5

c9
� k

2
�1 � 2

l
2
�1

� �
: ð37Þ

Fig. 1 give the mean stress–strain diagrams for the mean stress

components rf mean
ij from Eqs. (35)–(37). For producing all curves in

this Section we assume the values ðc1; c2; c5; c9Þ ¼ ð1:102;
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1:534;3:117;�12:07Þ TPa for the material parameters of graphene
(Sfyris et al., submitted for publication). For the Lame constants of
the substrate we use the pairs ðk;lÞ ¼ ð0:00259;0:00111Þ TPa for
the PMMA, ðk;lÞ ¼ ð0:00429;0:00107Þ TPa for PET and
ðk;lÞ ¼ ð9:8� 10�6;2� 10�7Þ TPa. Certainly, the PDMS is much
softer that the PMMA and the PET (www.mit.edu/6.777/matprops).

Fig. 1(a) plot rf mean
11 versus �1; �1 is the measure of strain in %

and all our diagrams are for �1 ¼ 0—1:6%. Fig. 1(b) plot rf mean
22 ver-

sus �1, while Fig. 1(c) plot rf mean
12 versus �1. For Fig. 1(a) and (b) we

see that the effect of the substrate is negligible in the mean stress

components rf mean
11 ; rf mean

22 . Whether the substrate is stiff or soft

does not affect rf mean
11 ; rf mean

22 significantly. This can be seen from
Eqs. (35) and (36): the first and the third term are the dominant
terms. These are terms resulting from graphene solely; the sub-
strate is not present in them. The second term of Eqs. (35) and
(36) is much smaller since the modulus of the substrate is much
smaller than the in-plane material parameters of graphene. So,

for rf mean
11 ; rf mean

22 the effect of the substrate is very small. Also,

we observe that rf mean
11 is larger in magnitude compared to

rf mean
22 ; a reasonable result, since the strain is along the H1

direction.

For the case of rf mean
12 of Fig. 1(c) the effect of the substrate is

significant. This is due to the fact that in Eq. (37) there is no term
solely from graphene in order to dominate. All terms in this equa-

tion contain the substrate’s modulus k; l. Thus, rf mean
12 is affected

significantly from the substrate. Fig. 1(c) has two scales on the y-
axis. The left scale measure stress in GPa for the PMMA and the
PET substrate, while the right scale measure stress in MPa for the
PDMS substrate which is significantly softer than the other two

choices. So, for the component rf mean
12 the effect of the substrate

is significant. Also, we observe that rf mean
12 is much smaller in mag-

nitude (more than three orders of magnitude) compared to

rf mean
11 ; rf mean

22 and this difference become even more intense with
a softer substrate.

In real world it is sometime common to have a field of internal
strain for the film or the substrate after the production process. To
take this into account into our model, we add in the above analysis
a field of in-surface internal strain, 0 – e0 bulk

11 – e0 bulk
11 – 0, to obtain

for the shift vector components

p1 ¼
1
c9
½�ke0 b

11 nb
1 � 2le0 b

11 nb
1 � k�1nb

1 � 2l�1nb
1�; ð38Þ

p2 ¼
1
c9
½�ke0 b

11 nb
2 � k�1n2 þ c5e0 f

11 þ c5�1�: ð39Þ

The constitutive law for this case then read

r f
11 ¼ c1e0 f

11 þ c1�1 �
c5

c9
½�ke0 b

11 nb
2 � k�1nb

2 þ c5e0 f
11 þ c5�1�; ð40Þ

r f
22 ¼ c2e0 f

11 þ c2�1 þ
c5

c9
½�ke0 b

11 nb
2 � k�1nb

2 þ c5e0 f
11 þ c5�1�; ð41Þ

r f
12 ¼ �2

c5

c9
½�ke0 b

11 nb
1 � 2le0 b

11 nb
1 � k�1nb

1 � 2l�1nb
1�: ð42Þ

We define again the mean stress components as

rf mean
ij ¼

Z 1

0

Z 1

0
r f

ijðH
1;H2ÞdH1dH2; ð43Þ

to obtain

rf mean
11 ¼ c1e0 f

11 þ c1�1 �
c5

c9
� k

2
e0 b

11 �
k
2
�1 þ c5e0 f

11 þ c5�1

� �
; ð44Þ
: Closed form solutions for the perfect bonding and the delamination case.
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Fig. 1. (a) rf mean
11 versus �1, (b) rf mean

22 versus �1, (c) rf mean
12 versus �1 for the axial strain problem from Eqs. (35)–(37).
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rf mean
22 ¼ c2e0 f

11 þ c2�1 þ
c5

c9
� k

2
e0 b

11 �
k
2
�1 þ c5e0 f

11 þ c5�1

� �
; ð45Þ

rf mean
12 ¼ �2

c5

c9
� k

2
e0 b

11 � 2
l
2

e0 b
11 �

k
2
�1 � 2

l
2
�1nb

1

� �
: ð46Þ

Fig. 2(a) give rf mean
11 versus �1 for e0 f

11 ¼ 0:2%; e0 b
11 ¼ 0:1%.

Fig. 2(b) give rf mean
22 versus �1 while Fig. 2(c) give rf mean

12 versus

�1 for e0 f
11 ¼ 0:2%; e0 b

11 ¼ 0:1%. These Figures take into account

the effect the residual strains has on the rf mean
ij versus �1 curves.

Strain is again measured through �1 and we evaluate the curves
for �1 ¼ 0� 1:6%. As expected, the presence of the field of internal
strains does not alter the form the diagrams have. It shifts them up
in the y-axis to describe the residual strain field. So all comments
concerning Fig. 1 are valid here as well with the only difference
that the curve does not meet the origin of the axis. Since this effect
is very small, within each Fig. 2(a)–(c) we make a smaller plot
where we magnify the neighborhood of ð0;0Þ. This smaller figure
highlight the effect of the residual strains in the neighborhood of
the origin of the axis.

3.2. Simple shear

We introduce simple shear by assuming for the displacement
components (Sfyris et al., 2014a,b) (ub ¼ u f ¼ u)

u1 ¼ H1 þ �H2; u2 ¼ H2: ð47Þ
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The first equation ruling the shift vector can then be solved to
give

p1 ¼
1
c9
�kðe0 b

11 þ e0 b
22 Þnb

1 � 2le0 b
11 nb

1 � 2le0 b
12 nb

2 � c9p0
1

�
þ2c5e0 f

12 � l�nb
2 þ c5�

i
: ð48Þ

The second equation ruling the shift vector finally lead at

p2 ¼
1
c9
½�kðe0 b

11 þ e0 b
22 Þnb

2 � 2le0 b
21 nb

1 � 2le0 b
22 nb

2 � l�nb
1

� c9p0
2 þ c5e0 f

11 þ c5e0 f
22 �: ð49Þ

The first equation of momentum then read

kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

1 þ 2le0 b
11 nb

1 þ 2le0 b
12 nb

2 þ 2le0 b
13 nb

3 þ l�nb
2

þ c1e0 f
11;1 þ c2e0 f

22;1 þ c3b0 f
11;1 þ c4b0 f

22;1 � c5p0
2;1 þ

c1 � c2

2
e0 f

12;2

þ c3 � c4

2
b0 f

12;2 � 2c5p0
1;2 þ�

c5

c9
�kðe0 b

11 þ e0 b
22 Þnb

2

�
�2le0 b

21 nb
1 � 2le0 b

22 nb
2 � l�nb

1 � c9p0
2 þ c5e0 f

11 þ c5e0 f
22

i
;1

�2
c5

c9
�kðe0 b

11 þ e0 b
22 Þnb

1 � 2le0 b
11 nb

1 � 2le0 b
12 nb

2 � c9p0
1

�
þ2c5e0 f

12 � l�nb
2 þ c5�

i
;2
¼ 0: ð50Þ

For the second equation of momentum we take
: Closed form solutions for the perfect bonding and the delamination case.
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Fig. 2. rf mean
11 versus �1, (b) rf mean

22 versus �1, (c) rf mean
12 versus �1 for the axial strain problem with internal strains, e0 f

11 ¼ 0:2%; e0 b
11 ¼ 0:1%, from Eqs. (44)–(46).
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kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

2 þ 2le0 b
21 nb

1 þ 2le0 b
22 nb

2 þ 2le0 b
23 nb

3 þ l�nb
1

þ c2e0 f
11;2 þ c1e0 f

22;2 þ c4b0 f
11;2 þ c3b0 f

22;2 þ c5p0
2;2 þ

c1 � c2

2
e0 f

12;1

þ c3 � c4

2
b0 f

12;1 � 2c5p0
1;1 þ�2

c5

c9
�kðe0 b

11 þ e0 b
22 Þnb

1 � 2le0 b
11 nb

1

�
�2le0 b

12 nb
2 � c9p0

1 þ 2c5e0 f
12 � l�nb

2 þ c5�
i
;1

þ c5

c9
�kðe0 b

11 þ e0 b
22 Þnb

2 � 2le0 b
21 nb

1 � 2le0 b
22 nb

2 � l�nb
1 � c9p0

2

�
þc5e0 f

11 þ c5e0 f
22

i
;2
¼ 0: ð51Þ

The equations of momentum, Eqs. (50) and (51), render conditions
that the field of internal strains, the strain constant, �, the vector nb

and the material parameters, c1; c2; c5; c9; k; l, should satisfy in
order Eq. (47) to be a solution for all field equations.

The constitutive law for the stresses are then

r f
11 ¼ c1e0 f

11 þ c2e0 f
22 � c5p0

2 �
c5

c9
½�kðe0 b

11 þ e0 b
22 Þnb

2

� 2le0 b
21 nb

1 � 2le0 b
22 nb

2 � l�nb
1 � c9p0

2 þ c5e0 f
11

þ c5e0 f
22 �; ð52Þ

r f
22 ¼ c2e0 f

11 þ c1e0 f
22 þ c5p0

2 þ
c5

c9
½�kðe0 b

11 þ e0 b
22 Þnb

2

� 2le0 b
21 nb

1 � 2le0 b
22 nb

2 � l�nb
1 � c9p0

2 þ c5e0 f
11

þ c5e0 f
22 �; ð53Þ

r f
12 ¼

c1 � c2

2
e0 f

12 � 2c5p0
1 þ

c1 � c2

4
�� 2

c5

c9
½�kðe0 b

11 þ e0 b
22 Þnb

1

� 2le0 b
11 nb

1 � 2le0 b
12 nb

2 � c9p0
1 þ 2c5e0 f

12 � l�nb
2 þ c5��: ð54Þ
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The particular case when there are no internal strains render for
the shift vector components

p1 ¼
1
c9
½�l�nb

2 þ c5��; ð55Þ

p2 ¼
1
c9
½�l�nb

1�: ð56Þ

For the stress components we then have

r f
11 ¼ �

c5

c9
½�l�nb

1�; ð57Þ

r f
22 ¼ þ

c5

c9
½�l�nb

1�; ð58Þ

r f
12 ¼

c1 � c2

4
�� 2

c5

c9
½�l�nb

2 þ c5��: ð59Þ

If we introduce the mean stress components as in the previous sub-
section we finally take

rf mean
11 ¼ � c5

c9
�l

2
�

h i
; ð60Þ

rf mean
22 ¼ þ c5

c9
�l

2
�

h i
; ð61Þ

rf mean
12 ¼ c1 � c2

4
�� 2

c5

c9
�l

2
�þ c5�

h i
: ð62Þ

Fig. 3 give the mean stress versus strain curves evaluated from
Eqs. (60)–(62). Strain here is measured through �, for which we

assume � ¼ 0� 1:6%. Fig. 3(a) plot rf mean
11 versus �, Fig. 3(b) plot
: Closed form solutions for the perfect bonding and the delamination case.
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Fig. 3. rf mean
11 versus �, (b) rf mean

22 versus �, (c) rf mean
12 versus � for the simple shear problem from Eqs. (60)–(62).
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rf mean
22 versus �, while Fig. 3(c) plot rf mean

12 versus �. From Eqs. (60)
and (61) we see that the effect of the substrate is significant for

rf mean
11 ; rf mean

22 since the Lame constant l of the substrate is pre-
sent in both of them. Fig. 3(a) and (b) have two scales: on the left
scale the units are MPa, while on the right scale they are kPa. The
MPA measurements pertain to the PMMA and the PET substrate,
while the kPa scale pertain to the PDMS measurement. Thus, for

the simple shear strain problem rf mean
11 ; rf mean

22 are affected signif-
icantly from the presence of the substrate. The softer the substrate

is, the smaller the components rf mean
11 ; rf mean

22 are.

On the other hand the effect of the substrate on the rf mean
12 com-

ponent is insignificant. This is seen in Fig. 3(c), where all curves are
almost equivalent. This is reasonable if one inspect Eq. (62). In this
equation, the first and the third term come solely from the film so
they are the dominant terms and the effect of the substrate is very

small. We also observe that rf mean
12 is larger in magnitude (more

than three orders of magnitude) from rf mean
11 ; rf mean

22 and this dif-
ference become more intense with softer substrate. This is reason-
able since the only non-trivial component corresponding to Eq.

(47) is the e f
12 component.

When there is a field of internal strain for the film, e0 f
12 ,

as well as for the bulk, e0 b
12 , for the shift vector components we

obtain

p1 ¼
1
c9
½�2le0 b

12 nb
2 þ 2c5e0 f

12 � l�nb
2 þ c5��; ð63Þ

p2 ¼
1
c9
½�2le0 b

12 nb
1 � l�nb

1�: ð64Þ

For the stress vector components we then have

r f
11 ¼ �

c5

c9
½�2le0 b

12 nb
1 � l�nb

1�: ð65Þ
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r f
22 ¼ þ

c5

c9
½�2le0 b

12 nb
1 � l�nb

1�: ð66Þ
r f
12 ¼

c1 � c2

2
e0 f

12 þ
c1 � c2

4
�� 2

c5

c9
½�2le0 b

12 nb
2 þ 2c5e0 f

12

� l�nb
2 þ c5��: ð67Þ

Then the mean stress components are

rf mean
11 ¼ � c5

c9
�le0 b

12 �
l
2
�

h i
: ð68Þ
rf mean
22 ¼ þ c5

c9
�le0 b

12 �
l
2
�

h i
: ð69Þ
rf mean
12 ¼ c1 � c2

2
e0 f

12 þ
c1 � c2

4
�� 2

� c5

c9
�le0 b

12 þ 2c5e0 f
12 �

l
2
�þ c5�

h i
: ð70Þ

Fig. 4(a) give rf mean
11 versus � for e0 f

12 ¼ 0:2%; e0 b
12 ¼ 0:1%.

Fig. 4(b) give rf mean
22 versus � while Fig. 4(c) give rf mean

12 versus �

for e0 f
12 ¼ 0:2%; e0 b

12 ¼ 0:1%. These figures take into account the

effect the residual strains has on the rf mean
ij versus � curves.

Strain is again measured through � and we evaluate the curves
for � ¼ 0� 1:6%. As expected, the presence of the field of internal
strains does not alter the form the diagrams have. It shifts them
up in the y-axis to describe the residual strain field. So all com-
ments concerning Fig. 4 are valid here as well with the only differ-
ence that the curve does not meet the origin of the axis. Since this
effect is very small, within each Fig. 4(a)–(c) we make a smaller
plot where we magnify the neighborhood of ð0; 0Þ. This smaller fig-
ure highlight the effect of the residual strains in the neighborhood
of the origin of the axis.
: Closed form solutions for the perfect bonding and the delamination case.
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Fig. 4. rf mean
11 versus �, (b) rf mean

22 versus �, (c) rf mean
12 versus � for the simple shear problem with internal strains, e0 f

12 ¼ 0:2%; e0 b
12 ¼ 0:1%, from Eqs. (68)–(70).
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4. Out-of-surface motions-perfect bonding

We here follow our previous approach (Sfyris et al., 2014a,b)
and model tension/compression that ultimately leads to buckling
by assuming for the displacement the form

uðH1;H2Þ ¼ �H1;H2; cos
npH1

2L1

 !
f ðH2Þ

 !
: ð71Þ

These would be the components of the displacement field for both
the film and the substrate since we still assume perfect bonding. We
should, however, note that while for the substrate out-of-surface
motions are introduced through the term nb

3, for the film they are

described by the terms of the curvature tensor, b f .

For our framework, b f is the second fundamental
form of the surface, so we evaluate for its components (Sfyris
et al., 2014a,b)

b f
11 ¼ ��

n2p2

4L2
1

cos
npH1

2L1

 !
f ðH2Þ; ð72Þ

b f
12 ¼ b21 ¼ ��

np
2L1

cos
npH1

2L1

 !
f 0ðH2Þ; ð73Þ

b f
22 ¼ � cos

npH1

2L1

 !
f ðH2Þ: ð74Þ

The outward unit normal, nb, is then defined by

nb ¼ u;1 � u;2

ju;1 � u;2j
: ð75Þ

So, for the surface described by Eq. (71) the outward unit normal
has componential form
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nb ¼ � np
2L1

sin
npH1

2L1

 !
f ðH2Þ;�� cos

npH1

2L1

 !
f 0ðH2Þ; �

 !
; ð76Þ

when for its Euclidean length we assume it is unity:

knbk¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� np

2L1
sin

npH1

2L1

 !
f ðH2Þ

" #2

þ ��cos
npH1

2L1

 !
f 0ðH2Þ

" #2

þ�2

vuut
¼1:

ð77Þ

We evaluate the necessary derivatives as

u1;1 ¼ �; u1;2 ¼ 0 ¼ u2;1; u2;2 ¼ 0; ð78Þ

u3;1 ¼ �
np
2L1

sin
npH1

2L1

 !
f ðH2Þ; ð79Þ

u3;2 ¼ cos
npH1

2L1

 !
f 0ðH2Þ: ð80Þ

So, the first equation for the shift vector, Eq. (19), render

p1 ¼
1
c9
½�kðe0 b

11 þ e0 b
22 þ e0 b

33 Þnb
1 � 2le0 b

11 nb
1 � 2le0 b

12 nb
2

� 2le0 b
13 nb

3 � k�nb
1 � c9p0

1 þ 2c5e0 f
12 þ 2c8b0 f

12 � lub
3;1nb

3

þ 2c8b f
12�: ð81Þ

The second equation for the shift vector, Eq. (20), give

p1 ¼
1
c9
½�kðe0 b

11 þ e0 b
22 þ e0 b

33 Þnb
2 � 2le0 b

21 nb
1 � 2le0 b

22 nb
2

� 2le0 b
23 nb

3 � k�nb
2 � c9p0

2 þ c5e0 f
11 þ c5e0 f

22 � c8b0 f
11

� c8b0 f
22 � lub

3;2nb
3 þ c5�þ c8b f

11 � c8b f
22�: ð82Þ
: Closed form solutions for the perfect bonding and the delamination case.
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Substituting these expressions to the first of the momentum
equation, Eq. (17), we obtain after some caclulations

AðH1;H2Þf 00ðH2Þ þ BðH1;H2Þf 0ðH2Þ þ CðH1;H2Þf ðH2Þ
þ DðH1;H2Þ ¼ 0: ð83Þ

For terms A, B, C, D we have

AðH1;H2Þ ¼ �4�
c5

c9
le0 b

12 �
c3 � c4

2
�þ 5

c5c8

c9
�� �c4

� �
np
2L1

� sin
npH1

2L1

 !
; ð84Þ

BðH1;H2Þ ¼ �2le0 b
12 þ

c5

c9
½�kðe0 b

11;1 þ e0 b
22;1 þ e0 b

33;1Þ � 2le0 b
22;1�

� �

� cos
npH1

2L1

 !
� c5

c9
½�kðe0 b

11 þ e0 b
22 þ e0 b

33 Þ � 2le0 b
22

�

�k�þ 3l��� np
2L1

sin
npH1

2L1

 !

þ 2
c5

c9
½�kðe0 b

11 þ e0 b
22 þ e0 b

33 Þ � 2le0 b
11 � k��

� �
np
2L1

� sin
npH1

2L1

 !
; ð85Þ

CðH1;H2Þ ¼ � 2
c5

c9
½�kðe0 b

11;2 þ e0 b
22;2 þ e0 b

33;2Þ � 2le0 b
11;2�

� �
np
2L1

� sin
npH1

2L1

 !
�l�� c5c8�

c9

n2p2

4L2
1

þ c3�
n2p2

4L2
1

" #
np
2L1

� sin
npH1

2L1

 !
� kðe0 b

11 þ e0 b
22 þ e0 b

33 Þ
�

þ2le0 b
11 þ k�þ 2l

� np
2L1

cos
npH1

2L1

 !
;

� �2le0 b
22;1 � 2l c5

c8
e0 b

21
np
2L1

� �
np
2L1

cos
npH1

2L1

 !
; ð86Þ

DðH1;H2Þ ¼ 2le0 b
13 �þ c1e0 f

11;1 � c2e0 f
22;1 þ c3b0 f

11;1 þ c4b0 f
22;1

� c5p0
2;1 þ

c1 � c2

2
e0 f

12;1 þ
c3 � c4

2
b0 f

12;1 � 2c5p0
1;2

� c5

c9
½�2l�e0 b

23;1 � c9p0
2;1 þ c5e0 f

11;1 þ c5e0 f
22;1

� c8b0 f
11;1 � c8b0 f

22;1� � 2
c5

c9
½�2l�e0 b

13;2 � c9p0
1;2

þ 2c5e0 f
12;2 þ 2c8b0 f

12;2�: ð87Þ

To proceed we follow an analysis used elsewhere (Sfyris et al.,
2008) and we consider the particular case where there exist a func-
tion W ¼ WðH1;H2Þ such that

AðH1;H2Þ ¼ aWðH1;H2Þ; ð88Þ
BðH1;H2Þ ¼ bWðH1;H2Þ; ð89Þ
CðH1;H2Þ ¼ cWðH1;H2Þ; ð90Þ
DðH1;H2Þ ¼ dWðH1;H2Þ: ð91Þ

In this case Eq. (83) for the function f read

af 00ðH2Þ þ bf 0ðH2Þ þ cf ðH2Þ þ d ¼ 0; ð92Þ

while the existence of the function W equals to

AðH1;H2Þ
a

¼ BðH1;H2Þ
b

¼ CðH1;H2Þ
c

¼ DðH1;H2Þ
d

: ð93Þ
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We split Eq. (92) into its inhomogeneous and homogeneous
part. The homogeneous part can be solved by the technique of
the characteristic polynomial to give the solutions

c11ek1H2 þ c22ek2H2
; ð94Þ

c11; c22, being constants. The characteristic polynomial has two dis-
tinct roots

k1;2 ¼
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

q
2a

: ð95Þ

In this case, the function f ðH2Þ that solves Eq. (92) is given as

f ðH2Þ ¼ c11ek1H2 þ c22ek2H2 � d
c
; ð96Þ

since d
c is a particular solution of Eq. (92). Constants a; b; c; d

should satisfy Eq. (93). All in all, Eq. (71) qualifies as a solution
when f is given by Eq. (96) and the loading constant �, graphene’s
material moduli ci; i ¼ 1; . . . ;9, substrate’s moduli k;l and internal
strains satisfy Eq. (93). Additionally, the second component of the
momentum equation should be satisfied as well as the moment of
momentum equations. We refrain from writing them, due to its
being lengthy, but we stress that one can compute them
straightforwardly.

When there is a double eigenvalue k1;2 ¼ �b
2a the function f

should be substituted by the expression

f ðH2Þ ¼ c11ekH2 þ c22H
2ekH2 � d

c
: ð97Þ

To particularize our approach we assume that
b ¼ 2; a ¼ c ¼ d ¼ 1, so we have one double root k1;2 ¼ �1. The
function f in this case read

f ðH2Þ ¼ e�H2 þH2e�H2 � 1; ð98Þ

so for the displacement field we have

uðH1;H2Þ ¼ �H1;H2; cos
npH1

2L1

 !
ðe�H2 þH2e�H2 � 1Þ

 !
: ð99Þ

The components for the shift vector are then

p1 ¼
1
c9
½kþ l�� np

2L1
sin

npH1

2L1

 !
ðe�H2 þH2e�H2 � 1Þ

þ 2
c8

c9
�

np
2L1

sin
npH1

2L1

 !
H2e�H2

; ð100Þ

p2 ¼
1
c9
½c5�þ ðl� k�Þ� cos

npH1

2L1

 !
H2e�H2 � � c8�

n2p2

4L2
1

� cos
npH1

2L1

 !
ðe�H2 þH2e�H2 � 1Þ

� c8� cos
npH1

2L1

 !
ð�e�H2 þH2e�H2 Þ�: ð101Þ

For the stress components we evaluate

r f
11 ¼ c1��

c2
5

c9
�� c3 þ

c5c8

c9

	 

n2p2

4L2
1

cos
npH1

2L1

 !

� ðe�H2 þH2e�H2 � 1Þ þ c4�
np
2L1

sin
npH1

2L1

 !
H2e�H2

� c5

c9
½�k�þ l�� cos

npH1

2L1

 !
H2e�H2

; ð102Þ
: Closed form solutions for the perfect bonding and the delamination case.
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r f
22 ¼ c2�þ

c2
5

c9
�� c4�þ

c5c8

c9
�

� �
n2p2

4L2
1

cos
npH1

2L1

 !

� ðe�H2 þH2e�H2 � 1Þ þ c3�
np
2L1

sin
npH1

2L1

 !
H2e�H2

þ c5

c9
½�k�2 þ l�� cos

npH1

2L1

 !
H2e�H2

; ð103Þ

r f
12 ¼ ½

c3 � c4

2
� 4

c5c8

c9
�� np

2L1
sin

npH1

2L1

 !
H2e�H2

� 2
c5

c9
ðkþ lÞ� sin

npH1

2L1

 !
ðe�H2 þH2e�H2 � 1Þ: ð104Þ

For the couple stress components we find

m11 ¼ c3��
c8c5

c9
�� c6 þ

c2
8

c9

	 

�

n2p2

4L2
1

cos
npH1

2L1

 !

� ðe�H2 þH2e�H2 � 1Þ þ c7 �
c2

8

c9

	 

� cos

npH1

2L1

 !

� ð�e�H2 þH2e�H2 Þ � c8

c9
ð�k�2 þ l�Þ cos

npH1

2L1

 !
H2e�H2

;

ð105Þ

m22 ¼ c4�þ
c8c5

c9
�� ðc7 þ c8Þ�

n2p2

4L2
1

cos
npH1

2L1

 !

� ðe�H2 þH2e�H2 � 1Þ þ c6 �
c2

8

c9

	 

cos

npH1

2L1

 !

� ð�e�H2 þH2e�H2 Þ þ c8

c9
ð�k�2 þ l�Þ cos

npH1

2L1

 !
H2e�H2

;

ð106Þ

m12 ¼
c6 � c7

2
� 4

c2
8

c9

	 

�

np
2L1

sin
npH1

2L1

 !
H2e�H2

��2
c8

c9
ðkþ lÞ� np

2L1
sin

npH1

2L1

 !
ðe�H2 þH2e�H2 � 1Þ:

ð107Þ
5. Delamination

Distinguishing between u f and ub in some parts of their com-
mon boundary, enables the treatment of delamination. Motivated
by the work of Bedrossian and Kohn (2015) we assume for the
out-of-surface component of the displacement of the film

u f
3 ¼

L1�/
4p sin 4pH1

L1�/

� �
gðH2Þ; L1 6 H1

6 L1 � /; L2 6 H2
6 L2 � /

0; L1 � / 6 H1
6 L1; L2 6 H2

6 L2 � /

8<
:

1
A;

ð108Þ

Li being the length of graphene in the Hi-direction. Following

Bedrossian and Kohn (2015), divide Li; i ¼ 1;2 into l�1 regions of

length l. On regions of area /2l2 take the lower branch of Eq.

(108), namely u f
3 ¼ 0. On regions of area ðL1 � /ÞlðL2 � /Þl we place

a blister described by the above branch of Eq. (105). The area frac-

tion / ¼ ½ðL1�/Þl;l��½ðL2�/Þl;l�
L1L2

is assumed to be a parameter (Bedrossian

and Kohn, 2015). The bonded regions are that of area /2l2while
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the blistered regions are of area ðL1 � /ÞlðL2 � /Þl (see Fig. 5 for a
cross-section).

So, tension/compression that ultimately leads to delamination
is described by the following expression for the graphene’s
displacement

uf ¼ �H1;H2;

L1�/
4p sin 4pH1

L1�/

� �
gðH2Þ; L1 6H1

6 L1�/;L2 6H2
6 L2�/

0; L1�/6H1
6 L1;L2 6H2

6 L2�/

0
@

1
A

0
@

1
A:

ð109Þ

Concurrently, we assume for the bulk material (the substrate) that
displacement read

ub ¼ ð�H1;H2;0Þ: ð110Þ

Thus, the substrate suffer no displacement out-of-surface. It per-
fectly bonds on areas L1 � / 6 H1

6 L1; L2 6 H2
6 L2 � /, but it

delaminates on areas L1 6 H1
6 L1 � /; L2 6 H2

6 L2 � /. We refer
to the above branch of Eq. (109) as the delaminated part.

The outward unit normal for the film on the delaminated part
read

n f ¼ �cos
4pH1

L1 � /

 !
gðH2Þ;�� L1 � /

4p
sin

4pH1

L1 � /

 !
g0ðH2Þ; �

 !
:

ð111Þ

By assuming that it has unit length, the curvature quantities related
with the film render

b f
11 ¼ u f

;11 � n f ¼ �� 4p
L1 � /

sin
4pH1

L1 � /

 !
gðH2Þ; ð112Þ

b f
12 ¼ u f

;12 � n f ¼ b f
21 ¼ � cos

4pH1

L1 � /

 !
g0ðH2Þ; ð113Þ

b f
22 ¼ u f

;22 � n f ¼ �� L1 � /
4p

sin
4pH1

L1 � /

 !
g00ðH2Þ: ð114Þ

For the delaminated part, the first component of the shift vector
read

p1 ¼
1
c9
½�kðe0 b

11 þ e0 b
22 þ e0 b

33 Þnb
1 � 2le0 b

11 nb
1 � 2le0 b

12 nb
2

� 2le0 b
13 nb

3 � k�nb
1 � 2l�nb

1 � c9p0
1 þ 2c5e0 f

12 þ 2c8b0 f
12

� 2c8b f
12�: ð115Þ

For the second component of the shift vector we find

p2 ¼
1
c9
½�kðe0 b

11 þ e0 b
22 þ e0 b

33 Þnb
2 � 2le0 b

21 nb
1 � 2le0 b

22 nb
2

� 2le0 b
23 nb

3 � k�nb
2 � c9p0

2 þ c5e0 f
11 þ c5e0 f

22 þ c8b0 f
11

� c8b0 f
22 þ c5�þ c8b11 � c8b22�: ð116Þ

Then, the first of the momentum equation acquires the form

AðH1;H2Þg00ðH2Þ þ BðH1;H2ÞgðH2Þ þ CðH1;H2Þ ¼ 0; ð117Þ

where

AðH1;H2Þ ¼ 2 c4 �
c � 5c8

c9

	 

� sin

4pH1

L1 � /

 !
; ð118Þ

BðH1;H2Þ ¼ � c3 �
c5c8

c9

	 

�

16p2

ðL1 � /Þ2
sin

4pH1

L1 � /

 !
; ð119Þ
: Closed form solutions for the perfect bonding and the delamination case.
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Fig. 5. A cross-section of the blister described by Eq. (108) in the i-direction.
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CðH1;H2Þ ¼ kðe0 b
11 þ e0 b

22 þ e0 b
33 Þnb

1 þ 2le0 b
11 nb

1 þ 2le0 b
12 nb

2

þ 2le0 b
13 nb

3 þ k�nb
1 þ 2l�nb

1 þ c1e0 f
11;1 þ c2e0 f

22;1 þ c3b0 f
11;1

þ c4b0 f
22;1 � c5p0

2;1 þ
c1 � c2

2
e0 f

12;2 þ
c3 � c4

2
b0 f

12;2 � 2c5p0
1;2

� c5

c9
½�kðe0 b

11 þ e0 b
22 � e0 b

33 Þnb
2 � 2le0 b

21 nb
1 � 2le0 b

22 nb
2�;1

þ c5

c9
½� þ 2le0 b

23 nb
3 � k�nb

2 � c9p0
2 þ c5e0 f

11 �;1

þ c5

c9
½c5e0 f

22 þ c8b0 f
11 � c8b0 f

22 �;1

� 2
c5

c9
½�kðe0 b

11 þ e0 b
22 � e0 b

33 Þnb
1 � 2le0 b

11 nb
1 � 2le0 b

12 nb
2�;2

þ 2
c5

c9
½� þ 2le0 b

13 nb
3 � k�nb

1 � 2l�nb
1

�c9p0
1 þ c5e0 f

12 þ 2c8b0 f
12 �;2: ð120Þ

Now consider the particular case where there exist a function
W ¼ WðH1;H2Þ such that (Sfyris et al., 2008)

AðH1;H2Þ ¼ aWðH1;H2Þ; ð121Þ
BðH1;H2Þ ¼ bWðH1;H2Þ; ð122Þ
CðH1;H2Þ ¼ cWðH1;H2Þ; ð123Þ

namely when

AðH1;H2Þ
a

¼ BðH1;H2Þ
b

¼ CðH1;H2Þ
c

: ð124Þ

In this case the equation for the function f reads

ag00ðH2Þ þ bgðH2Þ þ c ¼ 0: ð125Þ

We split Eq. (125) into a homogeneous and an inhomogenous part.
We treat the homogenous part

ag00ðH2Þ þ bgðH2Þ ¼ 0 ð126Þ

using the technique of the characteristic polynomial. The character-
istic polynomial has two roots: k1 ¼ 0; k2 ¼ � b

a, so we obtain the set
of solutions

c11ek1H2 þ c22ek2H2
; ð127Þ

c11; c22 being constants of integration. To these solutions we add
the term � c

b which is a particular solution for Eq. (125). So, collec-
tively for the function g satisfying Eq. (125) we find

gðH2Þ ¼ c11ek1H2 þ c22ek2H2 � c
b
: ð128Þ

The second branch of the delamination function render for the
displacement of the film

u f ¼ ð�H1;H2;0Þ: ð129Þ

The displacement of the substrate is still described by Eq. (110).
This is the part where the bonding is perfect. For this expression
Please cite this article in press as: Sfyris, D., et al. Graphene resting on substrate
Int. J. Solids Struct. (2015), http://dx.doi.org/10.1016/j.ijsolstr.2015.06.024
the function gðH2Þ is identically zero. For the shift vector in this case
we have

p1 ¼
1
c9
½�kðe0 bulk

11 þ e0 bulk
22 þ e0 bulk

33 Þn1 � 2le0 bulk
11 n1

� 2le0 bulk
12 � 2le13n3 � k�n1 � 2l�n1 � c9p0

1

þ 2c5e0 film
12 �; ð130Þ

p2 ¼
1
c9
½�kðe0 bulk

11 þ e0 bulk
22 þ e0 bulk

33 Þn2 � 2le0 bulk
21 n1

� 2le0 bulk
22 � 2le23n3 � k�n2 � c9p0

2 þ c5e0 film
11

þ c5e0 film
22 þ c5��: ð131Þ

Substituting this to the momentum equation render conditions that
should be satisfied in order the delamination function Eq. (109) to
be a solution.

To sum up, we treat the delamination by differentiating
between u f and ub. While ub is given by Eq. (110), film’s displace-
ment has two branches. The first branch of Eq. (109) describe areas
where delamination take place; essentially, there u f – ub. On the
second branch of Eq. (109) there is perfect bonding, thus u f ¼ ub.
Eqs. (109) and (110) qualify as solutions for the problem at hand,
provided in delamination areas, L1 � / 6 H1

6 L1; L2 � / 6

H2
6 L2, the shift components are given by Eqs. (115) and (116),

the function g is given by Eq. (128) and also Eqs. (124) are satisfied.
In areas of perfect bonding the shift components are given by Eqs.
(130) and (131) and the function g is zero. To all these conditions
one should add the second equation of momentum and the
moment of momentum equation which can be obtained
straightforwardly.

6. Conclusions

We drawn motivation from Androulidakis et al. (2014) where
we study the axial compression of a graphene monolayer on a
polymeric substrate, using Raman spectroscopy. In our work here,
we study theoretically, and model mathematically using contin-
uum mechanics, that experimental setup expanding on previous
works that included the graphene only. More specifically, we split
our analysis in two major areas: firstly, the case when the gra-
phene and the substrate are perfectly bonded, and secondly the
case when partial delamination appears between them.

The perfect bonding can be further categorized to in-surface
motions only and out-of-surface motions. If out-of-surface motion
of graphene is prohibited, we study biaxial tension/compression
and simple shear. When out-of-surface motion of graphene is
allowed, we face a much more difficult problem and find specific
solution under certain conditions. Partial delamination of the gra-
phene from the polymeric substrate is an undesirable phenomenon
that appears frequently in the manufacturing, treatment and test-
ing of graphene monolayers. In our analysis, we study a specific
: Closed form solutions for the perfect bonding and the delamination case.
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form of delamination in the form of a blister. We report conditions
for such a blister to be a solution of the problem.
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