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a b s t r a c t 

This paper elucidates the global and local interactive buckling behavior of a stiff film resting on a compli- 

ant substrate under uniaxial compression. The resulting governing non-linear equations (non-autonomous 

fourth-order ordinary differential nonlinear equations with integral conditions) are then solved by intro- 

ducing a continuation algorithm, which offers considerable advantages to detect multiple bifurcations and 

trace a complex post-buckling path. The critical conditions for local and global buckling and respective 

post-buckling equilibrium paths are carefully studied. Two different evolution mechanisms of buckling 

modes and processes from destabilization to restabilization (snap-back) are observed beyond the onset 

of the primary sinusoidal wrinkling mode in the post-buckling range. In addition, the shear modulus of 

an orthotropic substrate acts as a dominant role in the bifurcation portrait. Our results offer better un- 

derstanding of the global and local buckling behaviors of such a bilayer system, and can open up new 

opportunities for the design and applications of novel nanoelectronics. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Bilayer systems consisting of a stiff thin film on a compliant

substrate have provoked a surge of research interest in academic

domains over the last decade ( Bowden et al., 1998 ; Huang and

Suo, 2002 ; Schweikart and Fery, 2009 ). When such a system is sub-

jected to a large compression, it may lose its original flat surface

and leads to buckling, which may dramatically alter their inher-

ent structural equilibrium and thus results in a series of changes

in properties ( Efimenko et al., 2005; Koch et al., 2009; Wang

et al., 2013 a). As such, the film/substrate system in the post-

buckling state has potential uses as stretchable electronic devices,

tunable diffraction and phase gratings or patterned platforms for

cell adhesion ( Harrison et al., 2004; Stafford et al., 2004; Rogers

et al., 2010 ).. Many previous studies have shown that a number of

possible post-buckling morphologies may occur in the surface, in-

cluding global buckling, sinusoidal, checkerboard, herringbone, etc

( Chen and Hutchinson, 2004; Cai et al., 2011; Wang et al., 2013b;

Xu et al., 2015 ). How to comprehensively evaluate these possible

morphologies, as well as their relationship and formation mecha-

nism, remains a challenge ( Li et al., 2012 ). 
∗ Corresponding authors. 
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Thus far, several theoretical approaches, such as linear perturba-

ion analysis and non-linear buckling analysis, have been proposed

nd become effective means for exploring the instability behav-

or of the systems ( Wang et al., 2008; Im and Huang, 2008; Zhuo

nd Zhang, 2015 ). However, most of these studies have focused on

he critical load and morphologies at the initial stage of instabil-

ty threshold. There is a lack of investigation on the morphological

volution and mode transition in the post-buckling stage due to in-

redibly complication, such as geometrical and material nonlinear-

ties, loading path dependence, etc. Therefore, reliable numerical

olution techniques for tracing and branch switching post-buckling

esponse of film/substrate system are in demand. 

Recent effort s have been devoted to such post-buckling analy-

is by using finite element methods ( Sun et al., 2012; Cao et al.,

012 ), which is more flexible to describe complicated geometries

nd boundary conditions. However, the simulation may not capa-

le to trace a more complex case, especially whose post-buckling

ath is accompanied with snap-back or snap-through phenomenon

ue to the presence of secondary instabilities such as local buck-

ing. Information about bifurcations is not immediately available to

he user and stopping and restarting the simulation at a fixed point

s not straightforward ( Pirrera et al., 2010; Ke et al., 2016 ). 

For all of the aforementioned reasons, we adopted a contin-

ation algorithm to solve the resulting non-linear equations, in

onsideration of possible bifurcations along the equilibrium path

http://dx.doi.org/10.1016/j.ijsolstr.2016.10.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2016.10.006&domain=pdf
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Fig. 1. (a) Illustration of a film/substrate system under compression; (b) Sway and 

tilt components. 
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racing of the non-linear response of a system. It appears as a

ignificantly efficient path-following technique with two key fea-

ures, the detection of bifurcation points and the branch-switching

rom one equilibrium path to another bifurcation path, and has

een demonstrated to be an efficient technique to deal with var-

ous non-linear problems in solid mechanics ( Damil and Potier-

erry, 1990; Wadee and Hunt, 1998; Abichou et al., 2002; Wadee

t al., 2015 ). The following problem thereby can be computed by

oupling analytical models with the continuation algorithm. 

In this paper, a comprehensive study of the global and local

nstability behaviors in film/substrate systems is provided from a

ontinuum mechanics perspective. The study is structured as fol-

ows. In Section 2 , the buckling governing equations, taking ac-

ount of the global and local deformations are established. The aim

ere is to describe different morphologies of the film/substrate un-

er compression. In Section 3 , the resulting governing equations

re solved by introducing a continuation algorithm to trace the

hole equilibrium paths and obtain post-buckling characteristics

f the systems. Section 4 presents the results, including the crit-

cal condition for local and global buckling, the respective post-

uckling equilibrium paths and mode evolutions. Finally, the ef-

ects on bifurcation portrait of orthotropic substrate are discussed. 

. Model formulation 

In this work we investigate the instability behavior of an

sotropic stiff film with a thickness of h f on a soft orthotropic sub-

trate. The compliant substrate has different Young’s moduli in the

xial direction Ex and the transverse direction Ey and an associ-

ted shear modulus G with a finite thickness of h s and a length

f L x . Poisson’s ratios in the x- and y-directions are vx and vy , re-

pectively. The structural parameters are described by a Cartesian

oordinate system, where the longitudinal direction and the trans-

erse horizontal direction are determined as the x-axis and the y-

xis, respectively ( Fig. 1 (a)). The bilayer system deforms in the x-y

lane and distributes uniformly along z-axis (perpendicular to the

-y plane). A steady axial compressive force F is applied at each

ide of the substrate. 

Different instability phenomena may occur in this bilayer sys-

em, including global buckling, local wrinkling and their interactive

uckling. In order to describe these complicated instability phe-

omena, the formulation of the model is described through both

he global and the local modal displacements. Firstly, two dimen-

ionless factors are introduced to present the global sway and tilt,

.e., q s and q t , directly to describe the shear effect ( Fig. 1 (b)), which

as a great effect on the formation of local buckling. 
Here q s not necessarily equals q t , which is different from the

uler model where the two are assumed to be identical. Then, the

lobal sway W ( z ) and tilt θ ( z ) can be approximated as the follow-

ng expressions ( Bai and Wadee, 2015; Wang et al., 2016 ): 

 (x ) = q s L sin 

πx 

L 

θ (x ) = q t π cos 
πx 

L 
. (1) 

Thus the corresponding shear strain is given by: 

xy (x ) = ( q s − q t ) π cos 
πx 

L 
. (2)

Secondly, local wrinkling deformation is described by two func-

ions u f ( x ) and w f ( x ), for the local in-plane and transverse displace-

ents, respectively. It is noted that these functions have no phe-

omenological assumptions and are sought as solutions from min-

mization of total potential energy. Therefore, they can well de-

cribe the buckling evolution without wrinkling pattern or number

estriction. 

The total potential energy of the system, �, is mainly composed

f bending energy, U B , membrane energy, U M 

, elastic strain energy

f the substrate, U S , and work done by load, U L , and is expressed

s follows: 

= U B + U M 

+ U S − U L . (3) 

The bending energy of the thin film is due to the collective ef-

ect of global and local deformations, and can be expressed as: 

 B = 

1 

2 

EI 

∫ L x 

0 

( Ẅ 

2 + ẅ 

2 
f ) d x 

= 

1 

2 

EI 

∫ L x 

0 

(
2 q 2 s 

π4 

L 2 
sin 

2 πx 

L 
+ ẅ 

2 
f 

)
d x. (4) 

here EI = 

E f L z h 
3 
f 

12(1 −v 2 
f 
) 

is the flexural rigidity of the film; L z denotes

he breadth of the film; E f and v f are Young’s modulus and Pois-

on’s ratio, respectively. In addition, the notation “dot” above the

ariables denotes a spatial derivative d / dx . 

Along with bending energy, the film is also subjected to mem-

rane action. When nonlinear large deformation is taken into ac-

ount, the total membrane energy can be expressed as follows ac-

ording to the von Kármán hypothesis: 

 M 

= 

1 

2 

E f h f L z 

∫ L x 

0 

( ε x ) 
2 
d x 

= 

1 

2 

E f h f L z 

∫ L x 

0 

( 
1 

2 

h s 
˙ θ−�+ ̇ u + 

1 

2 

˙ w 

2 ) 2 d x. (5) 

here 1 
2 h s 

˙ θ is the axial strain term corresponding to the global

uckling, ˙ u + 

1 
2 

˙ w 

2 is the axial strain term corresponding to the lo-

al wrinkling deformation, � is the axial strain term correspond-

ng to purely uniform compressive strain, which contributes to the

re-buckling equilibrium path. 

As the system generally has an extremely large ratio of Young’s

odulus ( E f / E s ≈ 10 5 ), the terms for the axial strain energy in the

ubstrate are assumed to be small compared to the membrane en-

rgy in the film. Therefore, the substrate provides only a small

roportion of the axial resistance, but the main resistance to lo-

al transverse displacement and shear deformation ( Wadee and

unt, 1998; Audoly and Boudaoud, 2008 ). Further justification will
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] + Q 

s 
11 h s [ �2 − � ˙ u f 

 t 
h 

2 
s π

2 

6 L x 
sin 

πx 

L x 
( ̇ u f 

q t ) 2 π2 cos 2 
πx 

L x 

+ 

1 

3 

˙ w 

2 
f 
) − ( ̇ u f w f 
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be discussed in detail in Section 4.3 . The strain vector { γ} of the

substrate can be obtained by taking the global and local collective

effects into account, and is expressed as: 

{ γ} = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ u s 

∂x 
+ 

1 

2 

(
∂ w s 

∂x 

)2 

− y 
dθ

dx 
− �

v x � + 

∂ w s 

∂y 

( q s − q t ) π cos 
πx 

L 
+ 

∂ w s 

∂x 
+ 

∂ u s 

∂y 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

. (6)

A plane-stress assumption is used to model the strain energy

of the substrate ( σ z = τ xz = τ yz = 0). Therefore, the elastic strain en-

ergy of the substrate U S is obtained as: 

 s = 

∫ L x 

0 

∫ h s 

0 
{ γ} 

∗
[ Q 

s ] { γ} d xd y, (7)

where 

[ Q 

s ] = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

E x L z 

2(1 − v x v y ) 
E y v x L z 

2(1 − v x v y ) 
0 

E x v y L z 
2(1 − v x v y ) 

E y L z 

2(1 − v x v y ) 
0 

0 0 

G L z 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (8)

To ensure continuity of the displacements between the film and

substrate, and simplify the following buckling governing equations

(partial differential equations) to ordinary differential equations,

the local wrinkling mode is assumed to vary linearly with y , such

that the bottom of substrate has no local displacement. 

w s (x, y ) = 

(
h s − 2 y 

2 h s 

)
w f (x ) 

u s (x, y ) = 

(
h s − 2 y 

2 h s 

)
u f (x ) . (9)

The final component of total potential energy is the work done

by the external load, F , which is the sum of the energy contribu-

tions from the local wrinkling, pure compression and sway from

global buckling. Then the work done by load can be expressed as:

 L = 

∫ L x 

0 

F 

(
1 

2 

˙ W 

2 − 1 

2 

˙ u f + �
)

d x. (10)

Therefore, the total potential, �, can be expressed as: 

� = 

∫ L 

0 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 

2 

EI( ̈w 

2 
f 
+ q 2 s 

π4 

L 2 x 

sin 

2 πx 

L x 
) + D [ �2 + q 2 t 

h 

2 
s π

4 

4 L 2 x 

sin 

2 πx 

L x 
− ( u

+ q t 
h s π2 

L x 
sin 

πx 

L x 
) + 

˙ u 

2 
f 
+ 

1 

4 

˙ w 

4 
f 
+ q t �

h s π2 

L x 
sin 

πx 

L x 
+ 

˙ u f w

+ q 2 t 

h 

2 
s π

2 

12 L 2 x 

sin 

2 πx 

L x 
+ 

1 

3 

˙ u 

2 
f 
+ 

1 

20 

˙ w 

4 
f 
− 1 

3 

� ˙ w 

2 
f 
+ 

1 

4 

˙ u f ˙ w 

2 
f 
− q

+ 

1 

2 

˙ w 

2 
f 
)] + 

1 

2 

Q 

s 
22 

h s 
w 

2 
f 
+ Q 

s 
33 h s [ 

u 

2 
f 

h 

2 
s 

+ 

1 

3 

˙ w 

2 
f 
− u f ˙ w f 

h f 

+ ( q s −

+( q s − q t ) πcos 2 
πx 

L x 
( ˙ w f −

2 

h s 
u f )] + Q 

s 
12 [ v x �h s ( ̇ u f − �

+ 

1 

3 

w f ˙ w 

2 
f 
)] − F (q 2 s 

π2 

2 

cos 2 
πx 

L x 
− 1 

2 

˙ u f + �) 
According to the stability theory, the potential energy, �, must

e stationary at an equilibrium point, that is, δ�= 0 for arbitrary

w f = 0 and δu f = 0. When integration by parts is performed on Eq.

11) together with variation method, two buckling governing differ-

ntial equations are obtained. Specifically, δ�/ δw f =0 recovers the

quilibrium equation in the transverse direction: 

I 
.... 
w f + D [2�ẅ f + q t 

h s π2 

L x 
( sin 

πx 

L x 
ẅ f + 

π

L x 
cos 

πx 

L x 
˙ w f ) 

−(2 ̈u f ˙ w f + 2 ̇

 u f ẅ f + 3 

˙ w 

2 
f ẅ f )] + Q 

s 
33 h s [ 

˙ u f 

h s 
− 2 

3 

ẅ f 

+( q s − q t ) 
π2 

L x 
sin 

πx 

L x 
] + 

Q 

s 
22 

h s 
w f + Q 

s 
11 h s [ 

2 

3 

�ẅ f 

−( 
1 

2 

ü f ˙ w f + 

1 

2 

˙ u f ẅ f + 

3 

5 

˙ w 

2 
f ẅ f ) + q t 

h s π2 

6 L x 
( sin 

πx 

L x 
ẅ f 

+ 

π

L x 
cos 

πx 

L x 
˙ w f )] + Q 

s 
12 [ 

2 

3 

( w f ẅ f 

+ 

˙ w 

2 
f ) −

2 

3 

v x �h s ẅ f − ( ̇ u f + 

1 

3 

˙ w 

2 
f )] = 0 . (12)

Furthermore, δ�/ δu f =0 leads to the in-plane equilibrium equa-

ion: 

D + 

Q 

s 
11 h s 

3 

)
ü f −

Q 

s 
33 

h s 
u f + 

Q 

s 
33 

2 

˙ w f + 

(
D + 

Q 

s 
11 h s 

4 

)
˙ w f ẅ f 

+ π cos 
πx 

L x 

[
Q 

s 
33 ( q s − q t ) − q t 

h s π2 

2 L 2 x 

(
D + 

Q 

s 
11 h s 

6 

)
− 1 

2 

Q 

s 
12 ˙ w f 

]
=0 .

(13)

Compared to the classical equilibrium equations, both global

 q s , q t and �) and local deformations ( w f and u f ) are taken into

ccount in the two equilibrium equations, and the global and local

nteractions can be considered. 

Additionally, we minimize, �, with respect to the parameters

 s , q t and �, that is, ∂�
∂ q s 

= 0 , ∂�
∂ q t 

= 0 and 

∂�
∂�

= 0 , give rise to three

ntegral constraints: 

∂�

∂ q s 
= 2 Q 

s 
33 h s ( q s − q t ) πL x + q s 

π3 EI 

L x 
− F q s πL x 

+ 

∫ L x 

0 

2 Q 

s 
33 h s cos 

πx 

L x 

(
˙ w f −

2 

h s 
u f 

)
dx = 0 , (14)
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Fig. 2. Path-following strategy of the continue algorithm in the case where bifur- 

cation branches lie before the limit point. 
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ϕ  
∂�

∂ q t 
= 

(
D 

2 

+ 

Q 

s 
11 h s 

6 

)
q t −

2 Q 

s 
33 L 

2 
x 

h 

2 
s π2 

( q s − q t ) 

+ 

∫ L x 

0 

⎡ 

⎢ ⎢ ⎣ 

2 Q 

s 
33 L x 

h s π3 
cos 

πx 

L x 

(
2 

h s 
u f − ˙ w f 

)
−

D 
2 

+ 

Q s 11 h s 
6 

h s π2 
sin 

πx 

L x 

(
˙ u f + 

1 

2 

˙ w 

2 
f 

)
⎤ 

⎥ ⎥ ⎦ 

dx = 0 , (15) 

∂�

∂�
= F L x − 2(D + Q 

s 
11 h s − Q 

s 
12 h s v x )�

+ 

∫ L x 

0 

⎡ 

⎢ ⎣ 

2 D 

(
˙ u f + 

1 

2 

˙ w 

2 
f 

)
+ (Q 

s 
11 h s 

−Q 

s 
12 h s v x ) 

(
˙ u f + 

1 

3 

˙ w 

2 
f 

)
⎤ 

⎥ ⎦ 

dx = 0 . (16) 

Coefficients ( q s , q t and �) in Eqs. (12) and ( 13 ) do not remain

onstant, which is controlled by integral constraints ( Eqs. (14) –

 16 )). Therefore, Eqs. (12) and ( 13 ) belongs to a variable-coefficient

ifferential equations and the wrinkling evolution can be described

ithout any phenomenological or number assumptions. 

With the assumption of simple supports at both ends, the

oundary conditions can be expressed as: 

 f (0) = ẅ f (0) = 0 , (17)

 f (L ) = ẅ f (L ) = 0 . (18)

In addition, more complicated boundary conditions arise for

atching the applied stress at the ends: 

4 D + 

4 Q 

s 
11 h s 

3 

)
˙ u f (0) + (4 D + Q 

s 
11 h s ) 

1 

2 

˙ w 

2 
f (0) 

+ F − (4 D + 2 Q 

s 
11 h s − 2 Q 

s 
12 h s v x )�= 0 . (19) 

Here we try to solve the buckling governing equations based on

alf of the length due to deformation symmetry along the length

irection. The boundary conditions at z = L /2 are: 

˙ 
 f (L/ 2) = 

... 
w f (L/ 2) = u f (L/ 2) = 0 . (20)

. Numerical solution method 

The numerical continuation algorithm is used to solve the re-

ulting non-linear Eqs. (12) –( 16 ). This approach, known as path-

ollowing technique, starts from an initial solution. A free parame-

er is introduced to observe how solutions evolve. It mainly allows

or a systematic exploration of the equilibria, giving a detailed de-

cription of the different types of behaviors (bifurcation, fold, etc.)

hat the system may exhibit in dependence of the key parameters.

urther details can be found in the reference Doedel et al. (1991) . 

In this paper, the main advantage of the numerical continua-

ion method is its ability to detect bifurcation points and switch

ranch. Here, the governing equations belong to the family of

on-autonomous fourth-order ordinary differential boundary value

roblems with integral constraints. Although the numerical con-

inuation method is usually employed to compute solutions of

utonomous systems, non-autonomous equations ( Eqs. (12) –( 16 ))

an be solved by introducing another variable x , which transforms

 sixth-order non-autonomous system into a seventh-order au-

onomous system. 

Note that compared to other methods, this method does not

eed the introduction of any phenomenological assumptions or

mperfections. Key features, such as the wavelength of buckling

n the compressed side, develop gradually during evolution of the

ystem from the undeformed state rather than in a more abrupt

ay. 
.1. Path-following technique 

Let us rewrite Eqs. (12) and ( 13 ) as a generalized non-linear

roblem as: 

�(c, p) = f (c, p) = 0 . (21)

here c = { w f , u f } represents a vector of unknown variables, and

 = { F, q s , q t , �} represents a vector of control parameters. 

As mentioned above, an equilibrium path can be traced starting

rom the initial non-deformed state X 0 (( c 0 , p 0 )) through the con-

inuous change of a leading parameter ( p = F is chosen in the cur-

ent case). Keller’s Pseudo-Arclength algorithm is used here, such

hat computations can be performed past where a fold is encoun-

ered. This method computes the new continuation step X 1 (( c 1 ,

 1 )), as a solution to the following equations ( Fig. 2 ): 

f ( c 1 , p 1 ) = 0 

( c 1 − c 0 ) 
∗c ′ 0 + ( p 1 − p 0 ) p 

′ 
0 − �s = 0 

. (22) 

here ∗ denotes vector’s transpose, (c ′ 0 , p ′ 0 ) is the tangent vector

t ( c 0 , p 0 ) and �s is the size of the continuation step. Note that,

he stepsize �s should be sufficiently small (e.g. 10 −2 or 10 −3 )

o insure that the Jacobian matrix is full rank and the bifurcation

oints in the equilibrium path cannot be left out. 

.2. Detection of bifurcation points and branch switching 

Keller’s Pseudo-Arclength algorithm works well for tracing the

ath where only one isolated curve passing through every regu-

ar point (solid points in Fig. 2 ). But it fails at a bifurcation point,

t which two distinct branches intersect. The bifurcation point be-

ongs to a simple singular point, which results in the reduction of

ank of the Jacobian matrix J by at least one. 

X 2 is a simple singular point of f ( c , p ) = 0 (hollow points in

ig. 2 ) and X ( s ) is a solution branch of f ( X ) = 0, where s is some

arametrization. Then the following equations can be obtained: 

( f 2 X ) = Span { φ1 , φ2 } , N( f 2 ∗X ) = Span { ϕ } , (23)

here N denotes the nullspace and f 2 X represents a short

and for the derivatives of f with respect to c evaluated at

 c 2 , p 2 ). Meanwhile, two other equations can be obtained by

ifferentiating f ( X ( s )) = 0: 

f 0 X X 

′ 
0 = 0 , and f 0 XX X 

′ 
0 X 

′ 
0 + f 0 X X 

′′ 
0 = 0 . (24)

Thus X 

′ 
0 

= αφ1 + βφ2 can be obtained for α, β ∈ R 

1 , and fol-

owing equation can be generated: 

 

∗ f 2 XX (αφ1 + βφ2 ) 
2 + ϕ 

∗ f 2 X X 

′′ 
0 = 0 . (25)
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Fig. 3. Relationship between the ratio of local to global critical buckling load and 

the thickness ratio of substrate to film. 
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Since the second term in Eq. (25) is zero, the equation can be

rewritten as: 

k 11 α
2 + 2 k 12 αβ + k 22 β

2 = 0 , (26)

where the value of k are given as k 11 = ϕ 

∗ f 2 XX φ1 φ1 , k 12 =
ϕ 

∗ f 2 XX φ1 φ2 and k 22 = ϕ 

∗ f 2 XX φ2 φ2 . The above equation is the al-

gebraic branching equation (ABE), further details can be found in

the reference Keller (1977) . If the discriminant is positive, ( k 2 
12 

−
k 11 k 22 > 0 ), then the ABE has two distinct real nontrivial solution

pairs ( α1 , β1 ) and ( α2 , β2 ), which are unique up to scaling. In such

case, X 2 is detected as a bifurcation point, which gives rise to path

bifurcation. When the trajectories of the branching paths from a

bifurcation point are well defined, switching between these sepa-

rated branches is possible, such that parameter continuation can

be performed along the alternative paths. 

Then the first solution, X 3 , on the bifurcating branch can be

computed from: 

f ( X 3 ) = 0 , (27)

( X 3 − X 2 ) 
∗φ2 − �s = 0 , (28)

where ϕ 2 ⊥ ϕ 1 , and ϕ 1 is taken as the direction of the “given ”

branch at the branch point, i.e., φ1 = X 

′ 
2 and graphical interpreta-

tion is shown in Fig. 2 . 

As aforementioned, the bifurcation point leads to singularity

and results in the rank of the Jacobian matrix J reduction by at

least one. Therefore, the critical global buckling load, F g , at which

q s = q t = w f = u f = 0, occurs when the following matrix is singular: ∣∣∣∣∣∣∣
∂ 2 �

∂ q s ∂ q s 

∂ 2 �

∂ q s ∂ q t 

∂ 2 �

∂ q t ∂ q s 

∂ 2 �

∂ q t ∂ q t 

∣∣∣∣∣∣∣ = 0 . (29)

Hence the critical load for global buckling, F g , is obtained as: 

F g = 

EI π2 

L 2 x 

+ 

2 Q 

s 
33 h 

3 
s π

2 

L 2 x 

( 

D 
2 

+ 

Q s 11 h s 
6 

2 Q 

s 
33 

h s + 

h 2 s π2 

L 2 x 
( D 

2 
+ 

Q s 
11 

h s 
6 

) 

) 

. (30)

4. Results and discussions 

Numerical solutions for a typical film/substrate system com-

prising a Si film ( E f = 1.3 ×10 5 MPa, v f = 0.3) and a PDMS substrate

( E x = E y = 1.8MPa, v f = 0.48) with a length and width of 1.5 mm are

acquired by solving the nonlinear equations ( Eqs. (12) –( 16 )). The

shear modulus, G i , is 0.61 MPa for an isotropic substrate. The nu-

merical investigation of buckling mode is conducted for the cases,

where either global or local buckling is critical. The principal pa-

rameters used in the continuation process are interchangeable, but

generally F is varied for computing the equilibrium paths for the

distinct buckling modes. The continuation process initiated from

zero load along the pre-buckling equilibrium path until a bifurca-

tion point is found. Both of the local buckling load, F l , and global

buckling load, F g , are obtained numerically, while the global critical

buckling load can be validated based on Eq. (30) . 

Local wrinkling occurs when its critical load is smaller than its

counterpart for global buckling, i.e., F l < F g , while global buckling

occurs when the opposite holds. Fig. 3 shows the ratio of local to

global critical buckling load, F l / F g , versus the ratio of substrate to

film thickness, h s / h f . 

Two different instability modes and corresponding morpholo-

gies may occur with different thickness ratios. The global buckling

load increases more significantly with the substrate thickness in-

crement compared to the local buckling load. For a small substrate

thickness ( h s / h f < 250) such that F l / F g > 1, global buckling occurs,
hile local wrinkling occurs for a thick substrate ( h s / h f > 250). The

ritical thickness ratio is very close to the result in Wang et al.

2008) . In order to investigate the different post-buckling evolution

ehaviors of the two different modes, which often leads to compli-

ated responses with surface morphology transitions, two different

atios of thickness, h s / h f = 10 0, 30 0, are adopted, respectively. In ad-

ition, the principle parameter is normalized with respect to the

lobal buckling load ( η= F / F g ) in the following calculations. In this

ase, when global buckling is critical, the first bifurcation occurs

round the dimensionless load parameter η= 1, while the first bi-

urcation occurs around η < 1, when local buckling is critical. 

.1. Critical global buckling 

As aforementioned, the global buckling is critical, when the

hickness ratio reaches h s / h f = 100. The relationship between the

imensionless load parameter and total end-shortening ( η−ε) is

hown in Fig. 4 (a). 

As seen from Fig. 4 (a), point B ( ε= 0.001) is the first bifurca-

ion point, where post-buckling path bifurcates from the primary

quilibrium path. The critical absolute value is 0.053 N/mm, which

grees well with the result in Xu et al., (2014) (about 0.052 N/mm)

onsidering the same geometric and material properties. When ε 
s smaller than 0.001 (section AB), both global and local deforma-

ions are negligible ( q s = q t = w f = u f ≈ 0), which can be seen from

ig. 4 (b) (grey line). The post-buckling path is then computed from

he first bifurcation (point B) by aforementioned branch switch-

ng, and small step size �s is chosen (e.g. 10 −3 ) to insure that the

econd bifurcation point not to be ignored. Many subsequent bi-

urcation points are detected on the weakly stable post-buckling

ath and the focus is on the one with the lowest value of F . The

istinct post-buckling equilibrium path is traced until the second

ifurcation point is founded (point C). The load parameter, η, re-

ains almost unchanged with 0.001 < ε < 0.0036 (section BC),

nd the low-strain phase characterized by smooth global buckling

ode acts as a dominant role without any local wrinkling, namely

 f =u f =0. Since the global mode is only weakly stable, no signif-

cant post-buckling stiffness is exhibited initially. Therefore, Eqs.

15) and ( 16 ) can be simplified as the following equations, which

escribe the relationship of free parameters ( q s , q t and �): 

 s = 

(
h 

2 
s π

2 ( D / 2 + Q 

s 
11 h s / 6 ) 

2 Q 

s 
33 

L 2 x 

+ 1 

)
q t , (31)

= 

F g L x 

2(D + Q 

s 
11 

h s − Q 

s 
12 

h s v x ) 
. (32)

When ε is in the range of (0.0 036, 0.0 07) (section CD), the

igh-strain phase characterized by local wrinkling ripple deforma-
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Fig. 4. Equilibrium path and instability mode transition for global critical case ( h s / h f = 100): (a) Relationship between the dimensionless load parameter and total end- 

shortening; (b) Instability modes in different stages. 
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F  
ion occurs in the middle of system, although the low-strain phase

till exists. Therefore, the morphology at this stage exhibits a so-

alled mixed-curvature stage with a combination of smooth global

uckling and local wrinkling deformation ( Wang et al., 2016 ). 

With the compressive strain increasing, two limit points (D, E)

re encountered and a snap-back characters the interactive post-

uckling path, even only for a relative narrow range ( �ε= 2 ×10 4 ).

he snap-back indicates a process from destabilization to restabi-

ization, where the morphology of film jumps from a sinusoidal

rinkling mode (the blue line in Fig. 4 (b)) into a doubling-period

rinkling mode (the purple line in Fig. 4 (b)) in the middle of the

lm. Here, the destabilization is derived from the interaction of

lobal and local buckling modes and the restabilization arises from

he inherent stretching that occurs during film buckling owing to

arge deflections, which accounts for its significant post-buckling

tiffness ( Koiter and Pignataro, 1976; Wadee and Gardner, 2012 ).

rau et al. (2011) also have shown that the sinusoidal wrinkling

ode can evolve into the doubling-period wrinkling morphology

nder a large compressive strain. 

In section DF, the system needs an effective configurational

ransition to release the high in-plane strain energy. Since the in-

lane stiffness in the bilayer system is much higher than the out-

f-plane stiffness, the doubling-period wrinkling deformation rep-

esents an effective configurational transition to release the in-

lane strain energy, which leads to an energetically favorable state

t sufficiently global sway. As such, the in-plane strain energy re-

ease is the driving force for doubling-period wrinkles. 

When ε is larger than 0.007 (after point F), the morphology of

ystem is a combination of global buckling, sinusoidal local wrin-

ling and doubling-period wrinkling. With the increase of com-

ressive strain, the sinusoidal local wrinkling mode spreads to-

ards the ends of the film and evolves along the depth direction,

esulting in a constant wrinkling wavelength and increasing wrin-

ling amplitude. Besides, further loading increment would lead to

lobal restabilization of the system, which may occur as a result of

he boundaries confining the spread of the buckling morphology

ny further. 

Fig. 5 (a) depicts the bifurcation paths of different characteris-

ic positions in the film. The change in sign of the out-of-plane

isplacement from the primary path clearly demonstrates the evo-

ution of instability again. Note that all the bifurcation paths dis-

ribute on the positive of x -axis without intersecting with the

rimary path due to the effect of global buckling deformation.

rinkles first generate in the middle of the film with a sudden

ump of the bifurcation path (red and blue line in Fig. 5 (a)) after
 l  
assing through the second bifurcation point (point C). It can also

e demonstrated form Fig. 5 (b), which depicts the distribution of

xial strain ε x of the film along the longitudinal direction. Here,

he critical strain of sinusoidal wrinkles (dashed line in Fig. 5 (b))

ased on classical linearized stability analysis was presented in

hen and Hutchinson (2004) , with Föppl-von Kármán nonlinear

lastic plate assumption for the film. Subject to uniaxial in-plane

ompression, the critical strain for the onset of local wrinkling in-

tability is expressed as: 

 c = 

1 

4 

(
3 E s (1 − v f ) 
E f (1 − v s ) 

)2 / 3 

. (33) 

As seen from Fig. 5 (b), only the membrane strains in the mid-

le region (0.2 < x < 1.3) exceed the critical strain (dashed line)

n section CD, which indicates that local wrinkles form from the

iddle of the film rather than from the edges. Besides, there is

 slight fluctuation and snap-back in the bifurcation paths, on

hich the characteristic points are all located in the middle wrin-

ling region in section DE. After point E, a sudden jump (0.35 dis-

lacement) is observed from the bifurcation path of point ( x = 0.2),

nd the membrane strains on the edges are beyond the criti-

al value, which is demonstrated as the occurrence of new wrin-

les. Meanwhile, the distribution of membrane strain is similar to

he local wrinkling morphology due to a higher wrinkling degree

nd the last term 

1 
2 

˙ w 

2 gradually acts a dominant role in Eq. (5) .

ll these results also reveal that the fluctuated wrinkles in the

tressed regions promote the wrinkling spread from the middle to

dges. 

.2. Critical local wrinkling 

In this section, the film/substrate system with a thickness ratio,

 s / h f = 300, is analyzed following the aforementioned strategy. As

een from Fig. 6 (a), the dimensionless load parameter, η= 0.93 <

, corresponding to the first bifurcation point (point b), which in-

icates that the local wrinkling is critical. Compared to the global

ritical case, the local critical case has snap-back occurring imme-

iately after the first bifurcation point in the post-buckling path.

he emergence of this snap-back corresponds to the formation of

 new wrinkling, which is similar to the global buckling case. Thus,

t is not presented here in detail for brevity. 

Meanwhile, the evolution of wrinkling patterns is illustrated in

ig. 6 (a), (b). Different from the global case, first instability mode is

ocalized near the boundary with an unobvious global deformation.
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Fig. 5. Bifurcation paths and axial strain distribution for global critical case ( h s / h f = 100): (a) Bifurcation paths of different characteristic positions in the film; (b) Distribution 

of axial strain of the film along the longitudinal direction. 

Fig. 6. Equilibrium path and instability mode transition for local critical case ( h s / h f = 300): (a) Relationship between the dimensionless load parameter and total end- 

shortening; (b) Instability modes in different stage. 

Fig. 7. Bifurcation paths and axial strain distribution for global critical case ( h s / h f = 100): (a) Bifurcation paths of different characteristic positions in the film; (b) Distribution 

of axial strain of the film along the longitudinal direction. 
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Boundary effects are important at the first appearance of wrinkles,

and then local wrinkles spread from boundary edges to the mid-

dle. The sinusoidal pattern gradually tends to be uniform with ε >
9E −4. 

Figs. 7 (a), (b) depicts the bifurcation paths of different charac-

teristic positions and membrane strain of the film. As seen from

Fig. 7 (b), only the membrane strains near the boundary ( x > 0.36, x

< 1.14) exceed the critical strain (dashed line) at the first bifurca-

tion point, which demonstrates that local wrinkles form from the

edges of the film rather than from the middle. Boundary effects
ppear due to stress concentration in these areas. Then the local

rinkling mode grows, spreads towards the middle and tends to

e more apparent with respect to the increasing strain. Both the

ifurcation paths of points in the middle region (at x = 0.5 and

 = 0.75) show a snap-back and interaction with the primary path,

hich indicates the occurrence of a new wrinkle ( Fig. 7 (a)). Af-

er point d, the wrinkles reenter a relatively stable growing state,

hich is stopped by the limitations of system geometry and its

lastic loading. Note that some of the responses, i.e. doubling-

eriod wrinkling, cannot be obtained here since this study is
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Fig. 8. (a) Equilibrium paths for different moduli in the case of h s / h f = 100; (b) Relationship between �ε bc and variation of elastic and shear moduli. 
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imited to a 2D system with relatively small compression strains

n the substrate. 

.3. Orthotropic substrate 

In this section, we focus on discussing the effects of orthotropic

ubstrate on the global and local buckling behaviors of the system.

ig. 8 (a) shows the equilibrium paths for different moduli in the

ase of h s / h f = 100, while Poisson ratio is kept as a constant. 

The post-buckling path of orthotropic substrate follows almost

imilar trend of the isotropic one. Compared to the isotropic sub-

trate, the main difference, affected by anisotropy, lies in the loca-

ions of the first and second bifurcation. Here, we define the total

nd-shortening corresponding to the first bifurcation as ε b , and the

istance between the first and second bifurcation as �ε bc . Fig. 8 (b)

epicts the relationship between �ε bc and variation of elastic and

hear moduli. 

It can be seen from the figures that elastic moduli ( E x ,E y ) only

lightly affects the end-shortening corresponding to the first bifur-

ation, and has little, if any, impact on the distance between the

rst and second bifurcation �ε bc . However, ε b and �ε bc , especially

he latter one, show a strong dependence on the variation of shear

odulus. As seen from Fig. 8 (b), the distance between the first and

econd bifurcation increases from 2.6E-3 to 0.37 with the decrease

f shear modulus from 1 G i to 0.2 G i and reaches its minimum of

a. 2.5E-4 at 0.7 G i . 

The distance between the first and second bifurcation, �ε bc ,

an be approximately expressed as follows based on Eq. (31) . We

an deduce from Eq. (34) that the shear modulus can enhance the

hearing stiffness ( Q 

s 
33 

h s ) and the tilt q t , resulting in a nonlinear

ffect on the global buckling critical load. Nevertheless, the effect

f elastic moduli ( E x ,E y ) on �ε bc is negligible due to an extremely

arge ratio of stiffness ( D/Q 

s 
11 

h s ≈ 10 5 ), 

ε bc ∝ 

π2 

4 

(
h 

2 
s π

2 ( D / 2 + Q 

s 
11 h s / 6 ) 

2 Q 

s 
33 

L 2 x 

+ 1 

)2 

q t . (34) 

The above results also indicate that the shear modulus has a

reat effect on the post-buckling behavior by taking the global

uckling and interactive bifurcation loads closer or further and

hereby tuning the post-buckling morphology of the film/substrate

ystem. 

Fig. 9 (a) shows the relationship between the ratio of local to

lobal critical buckling load and variation of shear modulus in the

ase of h s / h f = 300. It can be seen that the shear modulus increases

rom 0.3 G to 1.5 G, when the dimensionless load parameter, η,

ecreases from 1.52 to 0.84. Meanwhile, when G is larger than
.88, the local wrinkling is critical and local wrinkling dominates

he post-buckling characteristics; while the global buckling is crit-

cal and global and local interactive mode is dominant when G is

maller than 0.88. This is because the system loses shear resistance

ith the decrease of shear modulus and the global mode tends to

ure sway with no tilt, which implies that there are little or no dif-

erential compression in the film and hence little or no tendency

or the response to localize on one face. 

In addition, a cross-correlation coefficient, δ, is defined as the

atio of shear strain to compress strain ( δ= γ 3 / ε f ) to reflect the

oupling degree. Fig. 10 (a), (b) describe the distributions of shear

train and cross-correlation coefficient for global and local cases. 

As seen from the figures, shear strain acts a dominant role, and

 strong coupling behavior of compression and shearing occurs

ear the boundary edges in both cases. Compared to the global

ritical case, the cross-correlation coefficient of the local critical

ase near the boundary almost remains constant due to the negli-

ible global effects. 

All these results confirm the fact that shears modulus has a de-

isive effect on the post-buckling behavior especially on the sys-

em with a large modulus ratio. Therefore, from the design point

f view, it provides another effective method to tune the different

icro morphologies of the film/substrate system by changing shear

odulus of substrate. 

. Conclusion 

In this paper, we ascribe the global and local buckling behav-

ors of film/substrate systems under compression to the fourth-

rder nonlinear ordinary differential equations with integral con-

itions. The equations are solved them by using a continuation al-

orithm. The presented results heavily rely on this robust path-

ollowing technique that is able to detect secondary bifurcations

nd to trace a non-linear post-buckling path. The critical condition

or local and global buckling with respect to different thickness

atios is investigated. Meanwhile, the occurrence and evolution of

lobal and local buckling modes have been observed. Second bifur-

ation and snap-back phenomenon character both the equilibrium

aths in the post-buckling range, which can be seen as markers

f the evolution of instability modes. As for a global critical case,

he buckling mode is a result of global and local instability interac-

ion, and local wrinkling first forms in the middle of systems and

preads to the boundary edges. Different from the global critical

ase, wrinkling first occurs near the boundary edges and spread to

he middle for a local critical case. In addition, shear modulus of

n orthotropic substrate acts as a dominant role in the bifurcation
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Fig. 9. (a) Relationship between the ratio of local to global critical buckling load and the variation of shear modulus; (b) Equilibrium paths for different shear modulus in 

the case of h s / h f = 300. 

Fig. 10. Distributions of shear strain and cross-correlation coefficient for global and local critical cases: (a) Global critical case ( ε = 0.006); (b) Local critical case ( ε = 9E −4). 
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portrait, which can maximize the interaction between local and

global buckling and decide the instability modes. Therefore, from

the design point of view, it provides another effective method to

tune the different micro morphologies of the film/substrate system

by changing shear modulus of substrate. 
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