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Inversion of point-like scatterers in an elastic half-space
by the application of the far-field properties of the

Green’s function to the near-field operator

Terumi Touhei ∗

Abstract
This article presents a method for reconstruction of the locations of point-like scatterers in an
elastic half-space. The key point of the formulation is to introduce the far-field properties of
the Green’s function into the near field equation by means of pseudo projections, which are
defined in this article. An indicator function that reconstructs the locations of the point-like
scatterers was defined based on the derived operator. Numerical calculations were carried out
to verify the accuracy of the pseudo-projection method. We also examined the effects of random
noise, the grid resolution at the free surface, and the analyzed frequency on the accuracy of the
reconstruction of scatterer locations.
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1 INTRODUCTION

Inverse scattering analysis has a long history due to its inherent appeal as well as appli-

cations such as geophysical exploration, site characterization, medical imaging, and non-

destructive testing. During the past two decades or more, many significant articles in this

field have been published. For example, Colton and Kress (1998) surveyed and reported a

vast number of articles on inverse scattering analysis. Pelekanos, Abubakar, and van den

Berg (2004) presented a contrast source inversion method in a two-dimensional (2D) elas-

tic wavefield. Abubakar et al. (2011) developed a method for coupling the full-waveform

inversion and the finite difference source-contrast method for a three-dimensional (3D)

acoustic wavefield. Romdhane, Brossier, Réjiba, et al. (2011) also applied a 2D full-

waveform inversion to a shallow structure with complex topography.

In contrast to the full-waveform inversion, linear sampling and factorization methods

can reconstruct the support of scattering objects when the type of boundary condition is

unknown. The linear sampling method was first presented by Colton and Kirsch (1996)

for the 2D Helmholtz equation. They proved the divergence properties of the solution of

the far-field equation, from which they reconstructed the support of a scattering object.

Kirsch (2011) also developed a method to examine the range of the far-field operator

for the 2D Helmholtz equation by the factorization of the operator, and presented an

indicator function to reconstruct the supports of scattering objects.

After Colton and Kirsch (1996), Fata and Guzina (2004) developed a linear sampling

method for an elastic half-space by means of the near-field equation. They also gave

the mathematical details of the divergence properties of the near-field equation for cavi-
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ties, rigid inclusions, or both. Baganas, Guzina, Charalambopoulos, and Manolis (2006)

extended the method of the near-field equation for an elastic half-space to the interior

transmission problem. Guzina and Madyarov (2007) carried out a reconstruction of scat-

terers in piecewise-homogeneous domains by linear sampling. Pourahmadian, Guzina,

and Haddar (2017) presented a generalized linear sampling method for the reconstruction

of heterogeneous fractures. The factorization method is also a useful tool for elastic wave

scattering problems. For example, Gintides, Sini, and Thành (2011) applied the method

to reconstruct point-like scatterers in 2D full-space by using one type of elastic scattering

waves (P or S waves).

The authors’ research group also applied a linear sampling approach to evaluate the

location and spatial spread of fluctuations (Touhei, Fukushiro, and Tanaka 2015). The

authors’ method showed that the concept of the solvability index worked well even for

scattered fluctuations in an elastic half-space. The locations and number of sources and

the resolution of the observation grid, however, significantly influenced the accuracy of

the reconstruction.

In this article, to resolve the stability of our linear sampling method, the far-field

properties of the Green’s function for an elastic half-space are incorporated into the near-

field equation. The far-field properties of the Green’s function are derived by applying

the steepest descent path method. The pseudo projections are derived from the far-field

properties of the Green’s function, which is applied to the near-field operator. Since

the pseudo projections are defined with respect to each probing point, the range of the

derived far-field operator also depends on the location of the probing point. In spite of
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the complicated procedure, it is expected to improve the accuracy of the reconstruction

due to the analysis of the range of the operator with respect to each probing point. In

this article, the discussion starts with the definition and formulation of the problem in

the next section.

2 Theoretical Formulation

2.1 Definition of the scattering problem and basic equations

Figure 1 shows the concept of the wave problem dealt with here. The wavefield is a

3D elastic half-space, in which the incident waves from point sources at the free surface

propagate toward the scattering objects embedded in the half-space, and the waves are

scattered back to the free surface where we can observe them. The challenge here is to

develop a method to identify the locations of the scattering objects by means of a far-field

operator derived from near-field observations.

The analysis is carried out in the frequency domain with a time factor of exp(−iωt),

where ω is the circular frequency and t is time. For simplicity, the scattering objects

are assumed to be sets of point-like scatterers. The Born approximation is employed to

express the scattered wavefield. As shown in Fig. 1, the free surface of the elastic half-

space is denoted by S and the interior region that includes the point-like scatterers is

denoted by E. The number of source and observation points in S is finite. Let the set of

source and observation points be denoted by

Sg = {~xp}Np=1 ⊂ S (1)

where N is the number of points in Sg. Note that the source points are also used as
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observation points in this article. The Green’s function for the elastic half-space is denoted

by Gij(~x, ~y), where the subscripts i and j describe the components of the Cartesian

coordinate system, ~x is the field point, and ~y is the source point. (In this article, the

Cartesian coordinate system is used unless otherwise stated.) The components of the

spatial point in terms of Cartesian coordinates are expressed as

~x = (x1, x2, x3) ∈ R2 × R+ = R3
+ (2)

where x3 denotes the vertical coordinate with the positive direction downwards and x3 = 0

denotes the free surface of the elastic half-space. The summation convention is assumed

for the index subscripts.

x
 

Incident 
wave

Scattered 
wave

x

x

１

2

3

O
•~xp ∈ Sg

••••
~ym ∈ E

•
~xq ∈ SgFree surface S

Figure 1: Concept of the scattering problem. An incident wave caused by a point source
propagates to point-like scatterers. We observe the scattered waves at the free surface.

Green’s function notations such as GE↙S
ij (~y, ~x) and GS↖E

ij (~x, ~y), where (~x ∈ S, ~y ∈ E),

are used for convenience in this article. These represent the waves that propagate from the

free surface to the scattering objects and from the scattering objects to the free surface,
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respectively. According to the reciprocity of the Green’s function, they have the following

relationship:

GS↖E
ij (~x, ~y) = GE↙S

ji (~y, ~x), ~x ∈ S, ~y ∈ E (3)

The Green’s function for an elastic half-space is defined by the following equation:

Lij(∂1, ∂2, ∂3)Gjk(~x, ~y) = −δikδ(~x− ~y), (~x, ~y ∈ R3
+) (4)

lim
x3→0

Pij(∂1, ∂2, ∂3)Gij(~x, ~y) = 0 (5)

where Lij is the Lamé operator defined by

Lij(∂1, ∂2, ∂3) = (λ+ µ)∂i∂j + δij(µ∂k∂k + ρω2) (6)

and Pij is an operator that transforms the displacement field to the traction for the x3

plane, whose components are

[
Pij(∂1, ∂2, ∂3)

]
=



µ∂3 0 µ∂1
0 µ∂3 µ∂2
λ∂1 λ∂2 (λ+ 2µ)∂3


 (7)

Note that λ and µ in Eqs. (6) and (7) are the Lamé constants and ρ in Eq. (6) is the

mass density. In addition, δij and δ(·) in Eq. (4) are the Kronecker delta and Dirac delta

function, respectively. The P and S wave velocities are denoted by cα and cβ, respectively,

which are obtained from

cα =
√

(λ+ 2µ)/ρ, cβ =
√
µ/ρ (8)

The wavenumbers for the P and S waves are expressed as

ξα = ω/cα, ξβ = ω/cβ (9)

In this discussion, there are some cases in which we use notations such as βV and βH for

expressing SV and SH waves, respectively. For example, we sometimes use ξβV and ξβH
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for the wavenumber of SV and SH waves, respectively. Regardless of the notation, we

understand that

ξβ = ξβV = ξβH (10)

2.2 Application of the steepest descent path method to the
wavenumber integral representation of the Green’s function

As is discussed in the Appendix, The Green’s function for an elastic half-space can be

expressed in terms of the wavenumber integral as follows:

GS↖E
ij (~x, ~y) =

1

2π

1∑

m=−1
Cik(ϕ)

∫ ∞

0

ξh
(m)
kl (ξ : r, ϕ)gln(ξ : y3)dξ f

(m)
nj

(~x ∈ S, ~y ∈ E) (11)

where ξ is the radial wavenumber used for the parameter of the integral; m is the circum-

ferential order; r and ϕ are the horizontal range and angle, respectively, determined by

the component of ~x and ~y as shown in Fig. 2; Cik transforms the cylindrical coordinate

system to the Cartesian system; hkl describes the horizontal wave propagation; gln is the

Green’s function in the wavenumber domain; and f
(m)
nj denotes the effects of the point

source in the wavenumber domain. The above variables used for the Green’s function are

further defined and clarified in the Appendix. Note that the summation convention is

also applied to the index subscripts on the right side of Eq. (11), in spite of the fact that

these subscripts may not be Cartesian coordinates.
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ϕ
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~y
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R = |~x− ~y|

Figure 2: Definition of the angles θ and ϕ. These angles are determined by the relationship
between ~x and ~y. Note that R is the distance between ~x and ~y, and it is used for the
asymptotic form of the Green’s function.

The far-field properties of the Green’s function can be derived from the application of

the steepest descent path method to Eq. (11). The procedure for the application of this

method is given in the Appendix, from which we obtain the following results:

GS↖E
ij (~x, ~y) =

eiξα|~x|

4π|~x| exp(−iξαx̂ · ~y)D
S↖E(∞,α)
ij (θ, ϕ)

+
eiξβ |~x|

4π|~x| exp(−iξβx̂ · ~y)D
S↖E(∞,βV )
ij (θ, ϕ)

+
eiξβ |~x|

4π|~x| exp(−iξβx̂ · ~y)D
S↖E(∞,βH)
ij (θ, ϕ)

+o(|~x|−1), when |~x| >> |~y| (12)

where x̂ = ~x/|~x|, θ is the angle defined by

θ = sin−1(y3/R) (13)
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where R = |~x− ~y|, which is shown in Fig. 2, and D
S↖E(∞,α)
ij (θ, ϕ), D

S↖E(∞,βV )
ij (θ, ϕ), and

D
S↖E(∞,βH)
ij (θ, ϕ) are the directivity tensors, respectively, for the P, SV, and SH waves

from an interior point source ~y to the field point ~x at the free surface. Note that (θ, ϕ)

describes the direction of wave propagation from the source point to the field point. We

ignore the contribution of the Rayleigh and head waves in Eq. (12). The source point is

deep enough from the free surface so that the Rayleigh effects are very small, as discussed

in the Appendix. In addition, we know that the attenuation of the head wave is higher

than o(|~x|−1) (for example, Aki and Richards, 2002).

Straightforward calculations using Eq. (A.21) yield

[
D
S↖E(∞,α)
ij (θ, ϕ)

]
= 2



g
(α)
22 (ξsα) cos2 ϕ g

(α)
22 (ξsα) cosϕ sinϕ ig

(α)
21 (ξsα) cosϕ

g
(α)
22 (ξsα) cosϕ sinϕ g

(α)
22 (ξsα) sin2 ϕ ig

(α)
21 (ξsα) sinϕ

−ig(α)12 (ξsα) cosϕ −ig(α)12 (ξsα) sinϕ g
(α)
11 (ξsα)




[
D
S↖E(∞,βV )
ij (θ, ϕ)

]
= 2



g
(β)
22 (ξsβ) cos2 ϕ g

(β)
22 (ξsβ) cosϕ sinϕ ig

(β)
21 (ξsβ) cosϕ

g
(β)
22 (ξsβ) cosϕ sinϕ g

(β)
22 (ξsβ) sin2 ϕ ig

(β)
21 (ξsβ) sinϕ

−ig(β)12 (ξsβ) cosϕ −ig(β)12 (ξsβ) sinϕ g
(β)
11 (ξsβ)




[
D
S↖E(∞,βH)
ij (θ, ϕ)

]
= 2




sin2 ϕ − cosϕ sinϕ 0
− cosϕ sinϕ cos2 ϕ 0
0 0 0


 g(β)33 (ξsβ) (14)

where ξsα and ξsβ are the saddle points for the P and S waves, respectively, which are

given by

ξsα = ξα sin θ (15)

ξsβ = ξβ sin θ (16)

and g
(α)
ij and g

(β)
ij are the components of the Green’s function in the wavenumber domain

for the P and S waves, respectively, given in Eq. (A.7) in the Appendix. Equations (14)

and (A.7) yield the decomposition of the directivity tensors for the P, SV, and SH waves

9



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

into the vector products, as in the following forms:

D
S↖E(∞,α)
ij (θ, ϕ) = A(α)(θ)W

(α)
i (θ, ϕ)V

(α)
j (θ, ϕ)

D
S↖E(∞,βV )
ij (θ, ϕ) = A(βV )(θ)W

(βV )
i (θ, ϕ)V

(βV )
j (θ, ϕ)

D
S↖E(∞,βH)
ij (θ, ϕ) = A(βH)(θ)V

(βH)
i (ϕ)V

(βH)
j (ϕ) (17)

where V
(α)
i , V

(βV )
i , and V

(βH)
i are the directions of vibrations for the P, SV, and SH waves

in full space, respectively, and W
(α)
i and W

(βV )
i are the directions of the vibration of the

P and SV waves at the free surface, respectively. The components of these vectors are

defined by

(
V

(α)
i (θ, ϕ)

)
=

(
cosϕ sin θ sinϕ sin θ cos θ

)

(
V

(βV )
i (θ, ϕ)

)
=

(
cosϕ cos θ sinϕ cos θ − sin θ

)

(
V

(βH)
i (ϕ)

)
=

(
sinϕ − cosϕ 0

)
(18)

(
W

(α)
i (θ, ϕ)

)
=

(
cosϕ sin θ sinϕ sin θ

(
ig

(α)
12 (θ)/g

(α)
22 (θ)

)
sin θ

)

(
W

(βV )
i (θ, ϕ)

)
=

(
cosϕ cos θ sinϕ cos θ

(
ig

(β)
12 (θ)/g

(β)
22 (θ)

)
cos θ

)
(19)

In addition, A(α)(θ), A(βV ), and A(βH) in Eq. (17) are given by

A(α)(θ) =
2g

(α)
22 (θ)

sin2 θ

A(βV )(θ) =
2g

(β)
22 (θ)

cos2 θ

A(βH)(θ) = 2g
(β)
33 (θ) (20)
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It is clear from Eq. (18) that

V
(α)
i (θ, ϕ)V

(βV )
i (θ, ϕ) = V

(α)
i (θ, ϕ)V

(βH)
i (ϕ)

= V
(βV )
i (θ, ϕ)V

(βH)
i (ϕ)

= 0 (21)

which is the orthogonality relationship of the direction of the vibrations of the P, SV, and

SH waves. On the other hand, we cannot establish the orthogonality relationship between

the vibration directions of the P and SV waves at the free surface due to the interaction

between the P and SV waves at the free surface. Namely,

W
(α)
i (θ, ϕ)W

(βV )
i (θ, ϕ) 6= 0 (22)

According to the reciprocity of the Green’s function, the far-field properties ofGE↙S
ij (~y, ~x), ~y ∈

E, x ∈ S can be derived from Eq. (12), which is as follows:

GE↙S
ij (~y, ~x) =

eiξα|~y|

4π|~y| exp(−iξαŷ · ~x)D
E↙S(∞,α)
ij (θ, ϕ)

+
eiξβ |~y|

4π|~y| exp(−iξβ ŷ · ~x)D
E↙S(∞,βV )
ij (θ, ϕ)

+
eiξβ |~y|

4π|~y| exp(−iξβ ŷ · ~x)D
E↙S(∞,βH)
ij (θ, ϕ)

+o(|~y|−1) (23)

where ŷ = y/|~y|. The decomposition of the directivity tensors into the vector products is

given as

D
E↙S(∞,α)
ij (θ, ϕ) = A(α)(θ)V

(α)
i (θ, ϕ)W

(α)
j (θ, ϕ)

D
E↙S(∞,βV )
ij (θ, ϕ) = A(βV )(θ) V

(βV )
i (θ, ϕ)W

(βV )
j (θ, ϕ)

D
E↙S(∞,βH)
ij (θ, ϕ) = A(βH)(θ)V

(βH)
i (ϕ)V

(βH)
j (ϕ) (24)
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Note that the angles θ and ϕ for Eq. (24) are determined by ~x ∈ S and ~y ∈ E, which are

explained in Fig. 2, so that these are identical for the use of Eq. (17).

2.3 Pseudo projection for the Green’s function to extract the
far-field pattern of one type of wave

At this point, we define the following vectors:

(
W

(α⊥)
i (θ, ϕ)

)
=

(
cosϕ sinϕ

(
ig

(α)
22 (θ)/g

(α)
12 (θ)

) )

(
W

(βV ⊥)
i (θ, ϕ)

)
=

(
cosϕ sinϕ

(
ig

(β)
22 (θ)/g

(β)
12 (θ)

) )
(25)

Then, we see that

W
(α⊥)
i (θ, ϕ)W

(α)
i (θ, ϕ) = W

(βV ⊥)
i (θ, ϕ)W

(βV )
i (θ, ϕ)

= V
(βH)
i (ϕ)W

(βV ⊥)
i (θ, ϕ)

= V
(βH)
i (ϕ)W

(α⊥)
i (θ, ϕ)

= 0 (26)

We also define the following matrices:

F (α)
ij (θ, ϕ) =

W
(α)
i (θ, ϕ)W

(βV ⊥)
j (θ, ϕ)

W
(α)
l (θ, ϕ)W

(βV ⊥)
l (θ, ϕ)

F (βV )
ij (θ, ϕ) =

W
(βV )
i (θ, ϕ)W

(α⊥)
j (θ, ϕ)

W
(βV )
l (θ, ϕ)W

(α⊥)
l (θ, ϕ)

F (βH)
ij (ϕ) =

V
(βH)
i (ϕ) V

(βH)
j (ϕ)

V
(βH)
l (ϕ) V

(βH)
l (ϕ)

(27)
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Then, we have the following relationship between the above matrices:

F (α)
ij (θ, ϕ)F (βV )

jk (θ, ϕ) = F (βV )
ij (θ, ϕ)F (α)

jk (θ, ϕ) = F (α)
ij (θ, ϕ)F (βH)

jk (ϕ)

= F (βH)
ij (ϕ)F (α)

jk (θ, ϕ) = F (βV )
ij (θ, ϕ)F (βH)

jk (ϕ)

= F (βH)
ij (ϕ)F (βV )

jk (θ, ϕ) = 0 (28)

F (α)
ij (θ, ϕ)F (α)

jk (θ, ϕ) = F (α)
ik (θ, ϕ)

F (βV )
ij (θ, ϕ)F (βV )

jk (θ, ϕ) = F (βV )
ik (θ, ϕ)

F (βH)
ij (ϕ)F (βH)

jk (ϕ) = F (βH)
ik (ϕ) (29)

Due to Eqs. (28) and (29), in spite of the fact that the matrices F (α)
ij , F (βV )

ij , and F (βH)
ij

are not Hermitian, let us call them the pseudo projections. We can see the effects of the

projections as follows:

(
4π|~x|

)
e−iξα|~x| F (α)

ij (θ, ϕ)GS↖E
jk (~x, ~y) = e−iξαx̂·~y DS↖E(∞,α)

ik (θ, ϕ)

(
4π|~x|

)
e−iξβ |~x| F (βV )

ij (θ, ϕ)GS↖E
jk (~x, ~y) = e−iξβ x̂·~y DS↖E(∞,βV )

ik (θ, ϕ)

(
4π|~x|

)
e−iξβ |~x| F (βH)

ij (ϕ)GS↖E
jk (~x, ~y) = e−iξβ x̂·~y DS↖E(∞,βH)

ik (θ, ϕ) (30)

(
4π|~y|

)
e−iξα|~y| GE↙S

ij (~y, ~x) F (α)
kj (θ, ϕ) = e−iξαŷ·~x DE↙S(∞,α)

ik (θ, ϕ)

(
4π|~y|

)
e−iξβ |~y| GE↙S

ij (~y, ~x) F (βV )
kj (θ, ϕ) = e−iξβ ŷ·~x DE↙S(∞,βV )

ik (θ, ϕ)

(
4π|~y|

)
e−iξβ |~y| GE↙S

ij (~y, ~x) F (βH)
kj (ϕ) = e−iξβ ŷ·~x DE↙S(∞,βH)

ik (θ, ϕ) (31)

Thus, the matrices F (α)
ij , F (βV )

ij , and F (βH)
ij extract the far-field patterns for one type of

wave (P, SV, or SH waves) from the Green’s function.
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2.4 Introduction of the far-field properties of the Green’s func-
tion to the near-field operator

Now, let us return to the scattering problem shown in Fig. 1. Let uij(~xp, ~xq) be the

scattered wave at the point ~xp ∈ Sg for the i-th direction due to a unit point load for the

j-th direction at the point ~xq ∈ Sg. When the Born approximation is employed, uij(~xp, ~xq)

is expressed as

uij(~xp, ~xq) =
∑

~ym∈E
GS↖E
ik (~xp, ~ym)QmG

E↙S
kj (~ym, ~xq), (~xp, ~xq ∈ Sg) (32)

where Qm is the strength of the point-like scatterers at ~ym ∈ E. The near-field operator

is constructed by the stack uik(~xp, ~xq). Namely, we can define the near-field operator as

the following finite dimensional linear transform:

(
Uijfk(~xq)

)
(~xp) =

N∑

q=1

uij(~xp, ~xq)fk(~xq), (~xp ∈ Sg) (33)

where Uij is the near-field operator. According to Eq. (32), Eq. (33) can be also expressed

as

(
Uijfj(~xq)

)
(~xp)

=
( N∑

q=1

∑

~ym∈E
GS↖E
ik (~xp, ~ym)QmG

E↙S
kj (~ym, ~xq)

)
fj(~xq) (34)

The problem at this point is to introduce the far-field properties of the Green’s function

to the near-field operator shown in Eq. (34). Let us define the following matrix by means

of the pseudo projections defined by Eq. (27):

P#
ij (~xp, ~zs) = 4π|~xp − ~zs|eiξ#|~xp−~zs|F#

ij

(
θ(ps), ϕ(ps)

)
, (~zs ∈ B) (35)
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where # takes α, βV or βH , ~zs is the probing grid location, and B is the set of the probing

grid locations. Note that the angles θ(ps) and ϕ(ps) are determined by the positions of ~xp

and ~zs, as shown in Fig. 3.

O

x3

x2

x1

z3

•

••
~ym

GS↖Eij (~xp, ~ym)

z2

z1
ϕps

θps

~zs

~xp

P#
ij (~xp, ~zs)

Figure 3: Path of waves for GS↖E
ij (~xp, ~ym) and P#

ij (~xp, ~zs), and definition of the angles
θ(ps) and ϕ(ps). Note that ~zs is the probing point.

The operator A∞#
ij (~zs) is the result of the introduction of the far-field properties of

the Green’s function into the near-field operator:

(
A∞#
ij (~zs)fj(~xq)

)
(~xp) =

N∑

q=1

P#
ik(~xp, ~zs)ukl(~xp, ~xq)

(
P#
jl (~xq, ~zs)

)T
fj(~xq) (36)

Incorporating Eqs. (33) and (34) into Eq. (36) yields

(
A∞#
ij (~zs)fj(~xq)

)
(~xp)

=
N∑

q=1

∑

~ym∈E
T#
iν (~xp, ~zs, ~ym)Qm

(
T#
jν(~xq, ~zs, ~ym)

)T
fj(~xq) (37)
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where

T#
iν (~xp, ~zs, ~ym) = P#

ik(~xp, ~zs)G
S↖E
kν (~xp, ~ym) (38)

In Eq. (37), we have used the reciprocity of the Green’s function:

(
GS↖E
lν (~xq, ~zs)

)T
= GE↙S

νl (~zs, ~xq) (39)

At this point, let us assume that

| ~xp − ~zs | >> | ~ym − ~zs |, (~xp ∈ Sg) (40)

Then, we have

eiξ#|~xp−~ym|

4π|~xp − ~ym|
=

eiξ#|~xp−~zs|

4π|~xp − ~zs|
exp
(
−iξ#d̂(ps) · (~zs − ~ym)

)
+ o
(
| ~xp − ~zs |−1

)
(41)

where

d̂(ps) =
~xp − ~zs
|~xp − ~zs|

(42)

and we see that

T#
iν (~xp, ~zs, ~ym)

= P#
ij (~xp, ~zs)G

S↖E
jk (~xp, ~ym)

= exp(−iξ#|~xp − ~zs|)F#
ij (θ(ps), ϕ(ps))

×
(

exp(iξα|~xp − ~zs|) exp
(
−iξαd̂(ps) · (~ym − ~zs)

)
D
S↖E(α)
jk (θ(ps), ϕ(ps))

+ exp
(
iξβ|~xp − ~zs|

)
exp
(
−iξβd̂(ps) · (~ym − ~zs)

)
D
S↖E(βV )
jk (θ(ps), ϕ(ps))

+ exp
(
iξβ|~xp − ~zs|

)
exp
(
−iξβd̂(ps) · (~ym − ~zs))DS↖E(βH)

jk (θ(ps), ϕ(ps))
)

(43)
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Therefore, if there exists ~ym∗ ∈ E such that

~ym∗ = ~zs (44)

then the following relationship can be derived:

T#
iν (~xp, ~zs, ~ym∗) = D

S↖E(∞,#)
ik (θ(ps), ϕ(ps)) (45)

As a result, we have

(
A∞#
ij (~zs)fj(~xq)

)
(~xp)

=
N∑

q=1

[
D
S↖E(∞,#)
iν (θ(ps), ϕ(ps))Qm∗

(
D
S↖E(∞,#)
jν (θ(qs), ϕ(qs))

)T

+
∑

m6=m∗

T#
iν (~xp, ~zs, ~ym)Qm

(
T#
jν(~xp, ~zs, ~ym)

)T ]
fj(~xq)

= D
S↖E(∞,#)
iν (θ(ps), ϕ(ps))bν +Xi(~xp) (46)

where

bν = Qm∗

N∑

q=1

(
D
S↖E(∞,#)
jν (θ(qs), ϕ(qs))

)T
fj(~xq)

Xi(~xp) =
N∑

q=1

∑

m 6=m∗

T#
iν (~xp, ~zs, ~ym)Qm

(
T#
jν(~xp, ~zs, ~ym)

)T
fj(~xq) (47)

At this point, in order to characterize the range of the operator A
(∞,#)
ij (~zs), let us define

the following vector for fixed index ν:

DS↖E(∞,#)
ν (θs, ϕs)

=
((
D
S↖E(∞#)
iν (θ(1s), ϕ(1s))

)
,
(
D
S↖E(#)
iν (θ(2s), ϕ(2s))

)
, . . . ,

(
D
S↖E(#)
iν (θ(Ns), ϕ(Ns))

))T

(48)
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Note that
(
D
S↖E(∞#)
iν (θ(ps), ϕ(ps))

)
is also the array of

(
D
S↖E(#)
iν (θ(ps), ϕ(ps))

)

=
(
D
S↖E(#)
1ν (θ(ps), ϕ(ps)), D

S↖E(#)
2ν (θ(ps), ϕ(ps)), D

S↖E(#)
3ν (θ(ps), ϕ(ps))

)T
(49)

for 1 ≤ p ≤ N . It is found from Eq. (46) and by means of the vector defined by Eq. (48)

that the range of the operator A
(∞,#)
ij (~zs) can be expressed as follows:

~zs ∈ {~ym}~ym∈E =⇒ D
S↖E(∞,#)
k (θs, ϕs) ∈ ran A

(∞,#)
ij (~zs) (50)

2.5 Indicator functions for reconstructing the locations of point-
like scatterers

We are now at the stage of presenting the indicator functions for reconstructing the

locations of the point-like scatterers. Let ker
(
A∞#
ij (~zs)

)H
be the kernel of the Hermitian

adjoint of the operator A∞#
ij (~zs). Then, we know the following relationship:

ker
(
A∞#
ij (~zs)

)H ⊥ ran A∞#
ij (~zs) (51)

Let {Ψ#
n (~zs)}n be the basis for ker

(
A∞#
ij (~zs)

)H
and we define the following spatial function

with respect to the probing point ~zs:

φ#(~zs) =
1

∑3
ν=1

∑
n

∣∣∣
(
Ψ#
n (~zs)

)H
DS↖E(∞,#)

ν (θs, ϕs)
∣∣∣
2 (52)

Namely, we have three spatial functions φα(·), φβV (·), and φβH (·) for the P, SV, and

SH waves, respectively. In the following numerical examples, we will also examine the

indicator function:

φ(~zs) = φ(α)(~zs)φ
(βV )(~zs)φ

(βH)(~zs) (53)
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Note that the derived operator A∞,#ij is defined with respect to each probing point. There-

fore, the basis {Ψ#
n (~zs)}n has to also be defined for each probing point. This aspect

increases the computational cost of our method. In spite of the situation, it is expected

that the investigation of the range of the operator with respect to each probing point will

enable us to carry out an accurate analysis. Discussions regarding the accuracy of the

method, as well as the computational costs, are given in the next section.

3 Numerical Examples

3.1 Analysis model

The model we analyzed to verify our proposed formulation is shown in Figs. 4(a) and

4(b), which show planar and bird’s eye views of the model, respectively. The grid interval

at the free surface for the sources and observations is 0.5 km and the number of grid

intersections, that is, source and observation points, is 121. The grid interval for the

point-like scatterers is 250 m and the number of scatterers is 900. The set of point-like

scatterers forms an object shape in an elastic half-space. The shape of the object in

this numerical example is based on the shape described in Abubakar et al. (2011). For

the material properties of the elastic half-space, the P and S wave velocities are 2 km/s

and 1 km/s, respectively, and the mass density is 2.0 g/cm3. We employed two probing

planes that cross the scattering object horizontally and vertically, as shown in Fig. 5, to

examine the properties of the indicator function defined in the theoretical formulations.

The positions of these probing planes are x3 = 4.0 km and x1 = 8.0 km, respectively. The

construction of the near-field operator for all of the numerical examples is based on the

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

wavenumber integral representation of the Green’s function shown in Eq. (11).

grids at the surface
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(b) Bird’s eye view

Figure 4: Analysis model showing the source-observation grid at the free surface and the
set of point-like scatterers in the elastic half-space.
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(a) Probing plane at x3=4 [km]
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(b) Probing plane at x1 = 8 [km]

Figure 5: Two probing planes that cross the scattering object horizontally and vertically.

3.2 Properties of the indicator functions with respect to wave
types and their multiplication

As described in the previous section, we have three kinds of indicator functions φ#(·)

(# = P, SV, SH) for each type of wave and their multiplication φ(·) as shown in Eq. (53).

Here, we investigate the properties of these indicator functions as the first numerical
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example in this article. Figures 6(a)-(d) and 7(a)-(d) show the spatial distributions of

the amplitudes of the indicator functions on the horizontal and vertical probing planes,

respectively. The point-like scatterers in the range 3.5 ≤ x3 ≤ 4.5 km are plotted in

Fig. 6, and scatterers in the range 7.5 ≤ x1 ≤ 8.5 km are plotted in Fig. 7 to check the

accuracy of the reconstruction results. The analyzed frequency is 1.0 Hz.

The plots in Fig. 6 show that the high-amplitude areas of the indicator functions agree

well with the locations of the point-like scatterers. The spatial spreads and the amplitudes

of the indicator functions differ slightly for the P, SV, and SH wave components. However,

after multiplication, the reconstructed locations of the point-like scatters on the horizontal

plane for these indicator functions have satisfactory accuracy.

In Fig. 7, the high-amplitude areas of the indicator functions in the vertical probing

plane almost agree with the locations of the point-like scatterers. A closer look at the

spatial distribution of the indicator functions, however, reveals differences in the spatial

spreads of the high-amplitude areas for each wave type. Namely, the spatial spreads of the

indicator functions for the P and SH waves cover a wider area compared to the locations

of the scatterers. In addition, the spatial spread of the indicator function for the SV

wave does not show clear contrast for the scatterers. The final results obtained from the

multiplication of the P, SV, and SH wave components, however, yield good sharp results

for the reconstruction of the scatterer locations.

The validity of our formulation is assured by the above results. At this point, we can

conclude that multiplication of the indicator function for each wave component improves

the accuracy of the reconstruction of the scatterer locations. For this reason, all following
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numerical results are derived using Eq. (53).
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(a) P-wave component φα
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(b) SV-wave component φβV
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(c) SH-wave component φβH
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(d) Multiplication, φ = φαφβV φβH

Figure 6: Spatial distribution of the indicator functions on the horizontal probing plane
at x3 = 4.0 km.
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(a) P-wave component φα
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(b) SV-wave component φβV
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(c) SH-wave component φβH
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(d) Multiplication, φ = φαφβV φβH

Figure 7: Spatial distribution of the indicator functions on the vertical probing plane at
x1 = 8.0 km.

3.3 Effect of random noise on the reconstruction of the locations
of point-like scatterers

Let us apply random noise to the near-field operator and investigate the sensitivity of our

method toward random noise. In the construction of the near-field operator as shown in

Eq. (32), we use GS↖E
ij (~xp, ~ym). Therefore, we apply random noise to this function, and

instead of Eq. (32), we use

uik(~xp, ~xq) =
∑

~ym∈E
G̃S↖E
ij (~xp, ~ym)QmG̃

E↙S
jk (~ym, ~xq) (54)
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where the Green’s function G̃S↖E
ij (~xp, ~ym) with random noise is expressed as follows:

G̃S↖E
ij (~xp, ~ym) = GS↖E

ij (~xp, ~ym) + ∆ij(~xp, ~ym) (55)

where ∆ij is the random noise. Due to reciprocity, we assume that

G̃E↙S
jk (~ym, ~xq) = G̃S↖E

kj (~xq, ~ym) (56)

and as a result, Eq. (54) becomes possible. We also define the level of noise rn as follows:

r2n =

3∑

i=1

3∑

j=1

∑

~xp∈Sg

∑

~ym∈E
|∆ij(~xp, ~ym)|2

3∑

i=1

3∑

j=1

∑

~xp∈Sg

∑

~ym∈E
|GS↖E

ij (~xp, ~ym)|2
(57)

Figures 8 and 9 show the effects of noise level rn on the accuracy of the reconstructed

locations of scatterers on the horizontal and vertical probing planes, respectively. The

analyzed frequency is 1.0 Hz. When the noise level is 10%, the effects of the noise are not

very significant for either the horizontal or vertical probing plane [Figs. 8(b) and 9(b),

respectively]. The high-amplitude areas of the indicator functions almost agree with the

locations of the scatterers. When the noise level is 15%, the accuracy of the reconstruction

results is satisfactory for the horizontal probing plane [Fig. 8(c)]. On the other hand,

the accuracy of the reconstruction results for the vertical probing plane decreases at this

noise level. The high-amplitude areas of the indicator functions are found to deviate from

the scatterer locations [Fig. 9(c)].

When the noise level is 20%, [Figs. 8(d) and 9(d)], the high-amplitude areas for the

indicator functions do not agree well with the locations of the scatterers, especially on the

vertical probing plane. Thus, if the noise level exceeds 20%, it is difficult to accurately

reconstruct the scatterer locations.
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(a) Noise level 0%
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(b) Noise level 10%
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(c) Noise level 15%
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(d) Noise level 20%

Figure 8: Effects of random noise on the accuracy of the reconstruction for the horizontal
probing plane
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(b) Noise level 10%
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(c) Noise level 15%
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(d) Noise level 20%

Figure 9: Effects of random noise on the accuracy of the reconstruction for the vertical
probing plane

3.4 Effect of grid resolution at the free surface

It is desirable to make the number of source and observation points at the free surface

as small as possible. In order to examine the effects of a coarser grid resolution at the

free surface on the accuracy of the results, we analyzed three cases.

Figure 10 shows the distribution and number of surface gridlines for cases 1, 2, and

3, where the number of source/observation points is 81, 64, and 49, respectively. Figures

11 and 12 show the results of the reconstruction of the scatterers on the horizontal and

vertical probing planes, respectively, for progressively coarser surface grids. As can be
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seen, the accuracy of the reconstruction of the results decreased as the number of surface

points decreased. In spite of this situation, the results are acceptable for cases 1 and

2. For case 3, where the number of grid source/observation points is 49, however, the

reconstruction results show excessive deviation from the scatterer locations. In other

words, the high-amplitude areas of the indicator functions for case 3 do not describe the

locations of the scattering objects.
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(a) Case 1, 9×9 grid
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(b) Case 2, 8×8 grid
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(c) Case 3, 7×7 grid

Figure 10: Analysis model for investigating the effect of the grid resolution at the free
surface.
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(a) Case 1
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(b) Case 2
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(c) Case 3

Figure 11: Effects of grid resolution at the free surface on the accuracy of the reconstruc-
tion for the horizontal probing plane
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(c) Case 3

Figure 12: Effect of grid resolution at the free surface on the accuracy of the reconstruction
for the vertical probing plane.

3.5 Effect of analyzed frequencies on the accuracy of the recon-
struction

As the last set of numerical calculations, we investigate the effect of the analyzed frequency

on the accuracy of the reconstruction of the scatterer locations. Figures 13 and 14 show

the results of the reconstruction on the horizontal and vertical probing planes, respectively,

for analyzed frequencies of 0.5, 1.5, and 2.0 Hz. The high-amplitude areas of the indicator

functions on the probing planes are found to accurately reconstruct the locations of the

scatterers for all three frequencies. A closer look at the reconstruction results, however,

shows that the accuracy in the vertical probing plane decreases slightly as the frequency

rises. These results, as well as those for the effects of random noise and surface grid

resolution, show recurring difficulties for reconstructing the scatterer locations in the

vertical probing plane.
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(a) 0.5 Hz
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(b) 1.5 Hz
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(c) 2.0 Hz

Figure 13: Effect of the analyzed frequency on the accuracy of the reconstruction for the
horizontal probing plane.
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Figure 14: Effect of the analyzed frequency on the accuracy of the reconstruction for the
vertical probing plane.

3.6 Computational costs

Finally, we have to address the computational costs for our proposed method. The near-

field operator for the presented numerical examples was derived from the direct wavenum-

ber integral representation of the Green’s function. The number of calculation points for

the Green’s function was based on the product of the number of surface source/observation

points and point-like scatterers. In addition, the basis of the kernel of the adjoint of the

operator had to be constructed with respect to each probing point. Message Passing
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Interface parallel processing was introduced into the numerical calculations by dividing

the number of calculation points for the Green’s function, as well as the number of prob-

ing points, among multiple CPU cores. An Intel Xeon E5-2690, 2.6-GHz CPU used for

the numerical calculation. The elapsed time needed for the computation for the analysis

model shown in Fig.4 for obtaining the near-field operator and spatial distribution map

of the indicator functions on one probing plane was 28 min when 24 cores were used. The

number of calculation points for the Green’s function and the number of probing points

were 121× 900 and 441, respectively.

4 Conclusions

This article dealt with reconstruction of the locations of point-like scatterers in an elastic

half-space. The introduction of the far-field properties of the Green’s function into the

near-field operator was the key issue in our formulation. The pseudo projections defined

from the asymptotic form of the Green’s function played an important role. Due to the use

of the pseudo projections, the near-field operator was transformed into a far-field operator

that reflected the properties of one type of wave (P, SV, or SH waves). The indicator

function was defined from the kernel of the adjoint of the derived far-field operator with

respect to each probing point. In the numerical model, the number of point-like scatterers

was much larger than the number of source and observation points at the surface, and

the set of the point-like scatterers formed a shape of a scattering objects. The effects of

random noise and surface grid resolution on the accuracy of the results were also examined.

We found that the numerical results supported the validity of our formulation. Future
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work will be to carry out the analysis without the Born approximation. Extending the

method to an interior transmission scattering problem is also important.

APPENDIX Steepest descent path method for the

Green’s function for an elastic half-space

A.1 Wavenumber integral representation of the Green’s

function

The wavenumber integral representation form of the Green’s function for an elastic half-

space is the starting point of the derivation of the far-field properties of the Green’s

function. The wavenumber integral representation form itself can be obtained from the

Fourier-Hankel transform (Aki and Richards 2002). Based on the procedure (for example,

Touhei 2002), the wavenumber integral representation form of the Green’s function is

expressed as

GS↖E
ij (~x, ~y) =

1

2π

1∑

m=−1
Cik(ϕ)

∫ ∞

0

ξh
(m)
kl (ξ : r, ϕ)gln(ξ : y3)dξ f

(m)
nj

( ~x ∈ S, ~y ∈ E ) (A.1)

where ξ is the radial wavenumber; r and ϕ are the horizontal range and angle, respectively,

between ~x and ~y defined by Fig. 2; m is used for the superscript as well as for summation

in the circumferential order number; and h
(m)
kl is the horizontal wavefunction whose arrays

are given as

[
h
(m)
kl (ξ : r, ϕ

]
=




1 0 0
0 ξ−1∂r im(ξr)−1

0 im(ξr)−1 −ξ−1∂r


 Jm(ξr) exp(imϕ) (A.2)

where Jm is the first kind of the Bessel function of the m-th order and Cik is the matrix

that transforms the cylindrical coordinate system into the Cartesian coordinate system,
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for which the components are

[
Cik(ϕ)

]
=




0 cosϕ − sinϕ
0 sinϕ cosϕ
1 0 0


 (A.3)

and f
(m)
nj is given as

[
f
(m)
nj

]
=








0 0 1
0 0 0
0 0 0


 (m = 0)

(1/2)




0 0 0
1 −i 0
−i −1 0


 (m = 1)

(1/2)




0 0 0
−1 −i 0
−i 1 0


 (m = −1)

(A.4)

In addition, gln(ξ, y3) is the Green’s function in the wavenumber domain, which is

decomposed into

[
gln(ξ, y3)

]
=

e−γy3

γ

[
g
(α)
ln (ξ)

]
+
e−νy3

ν

[
g
(βV )
ln (ξ)

]
+
e−νy3

ν

[
g
(βH)
ln (ξ)

]
(A.5)

where

γ =
√
ξ2 − ξ2α

ν =
√
ξ2 − ξ2β (A.6)

and [g
(α)
ln ], [g

(βV )
ln ], and [g

(βH)
ln ] are functions of the wavenumber in the form of matrices

expressing the contributions to the P, SV, and SH waves, respectively. The arrays for the

functions are as follows:

[
g
(α)
ln (ξ)

]
=

1

µF (ξ)



γ2(ξ2 + ν2) −ξγ(ξ2 + ν2) 0

ξγ2ν −2νγξ2 0
0 0 0




[
g
(βV )
ln (ξ)

]
=

1

µF (ξ)




−2ξ2γν 2ξγν 0
−ξν2(ξ2 + ν2) ν2(ξ2 + ν2) 0

0 0 0




[
g
(βH)
ln (ξ)

]
=

1

µ




0 0 0
0 0 0
0 0 1


 (A.7)
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where F (ξ) is the Rayleigh function defined by

F (ξ) = (2ξ2 − ξ2β)2 − 4ξ2γν (A.8)

A.2 Application of the steepest descent path method

Application of the steepest descent path method to the direct wavenumber integral rep-

resentation of the Green’s function is the key for the derivation of the far-field properties

of the Green’s function. First, we modify Eq. (A.1) as follows:

GS↖E
ij (~x, ~y) =

1

4π

1∑

m=−1
Cik(ϕ)

∫ ∞

−∞
ξh

(m(1))
kl (ξ : r, ϕ)gln(ξ : y3)dξ f

(m)
nj (A.9)

where

[
h
(m(1))
kl (ξ : r, ϕ)

]
=




1 0 0
0 ξ−1∂r im(ξr)−1

0 im(ξr)−1 −ξ−1∂r


H(1)

m (ξr) exp(imϕ) (A.10)

In the above expression, the following properties of the Bessel functions are used:

Jm(ξr) =
1

2

[
H(1)
m (ξr) +H(2)

m (ξr)
]

H(2)
m (−ξr) = −H(2)

m (ξr), (m = 0,±2)

H(1)
m (−ξr) = H(2)

m (ξr), (m = ±1) (A.11)

where H
(τ)
m (·) is the Hankel function of order m. Now, let

ηm = πm/2 (A.12)

then, the asymptotic behavior of the horizontal wavefunction becomes

h
(m(1))
kl (ξ, r, ϕ) =

√
2

πξr
eiξreimϕe−iπ/4 ĥ(m)

kl +O(r−3/2) (A.13)
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where

[
ĥ
(m)
kl

]
=



e−iηm 0 0

0 (1/2)[e−iηm−1 − e−iηm+1 ] (i/2)[e−iηm−1 + e−iηm+1 ]
0 (i/2)[e−iηm−1 + e−iηm+1 ] −(1/2)[e−iηm−1 − e−iηm+1 ]


 (A.14)

At this point, we can divide the Green’s function into three components based on the

contributions from the P, SV, and SH waves as follows:

GS↖E
ij (~x, ~y) = G

S↖E(α)
ij (~x, ~y) +G

E↖E(βV )
ij (~x, ~y) +G

E↖E(βH)
ij (~x, ~y) (A.15)

where

G
S↖E(α)
ij (~x, ~y) =

1

4π

√
2

πr

1∑

m=−1
Cik(ϕ)eimϕ

×
∫ ∞

−∞

√
ξ

γ
exp(iξr − γy3 − iπ/4)ĥ

(m)
kl g

(α)
ln (ξ) dξ f

(m)
nj

+O(r−3/2) (A.16)

G
S↖E(βV )
ij (~x, ~y) =

1

4π

√
2

πr

1∑

m=−1
Cik(ϕ)eimϕ

×
∫ ∞

−∞

√
ξ

ν
exp(iξr − νy3 − iπ/4) ĥ

(m)
kl g

(βV )
ln (ξ) dξ f

(m)
nj

+O(r−3/2) (A.17)

G
S↖E(βH)
ij (~x, ~y) =

1

4π

√
2

πr

1∑

m=−1
Cik(ϕ)eimϕ

×
∫ ∞

−∞

√
ξ

ν
exp(iξr − νy3 − iπ/4) ĥ

(m)
kl g

(βH)
ln (ξ) dξ f

(m)
nj

+O(r−3/2) (A.18)

The path of the wavenumber integral in the complex wavenumber plane for the application

of the steepest descent path method is shown in Fig. A.1, in which the saddle point

is denoted by the blue point on the real axis. In the following discussion, we employ
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the notation ξsα and ξsβ for the saddle points of the P and S waves, respectively. The

relationship between the saddle point and the P and S wavenumber is

ξsα = ξα sin θ

ξsβ = ξβ sin θ (A.19)

where θ is determined by the relative locations of ~x and ~y, which are explained by Fig.

2 in the main text of this article. The steepest descent paths are also described by the

blue lines in Fig. A.1. Note that there is a case where ξsβ > ξα. In this case, the

integral path B around the branch point ξα is required, as shown in case 2 in Fig. A.1.

In addition, we have to take into account the contribution from the Rayleigh pole. It is

known that the Green’s function is expressed by the contributions from the residue term

related to the Rayleigh pole, steepest descent path, and branch line integral. When the

region of E is deep enough from the free surface, the contribution from the Rayleigh wave

mode to the Green’s function GS↖E
ij can be ignored, since the Rayleigh wave mode decays

exponentially with depth. Furthermore, the contribution from the branch line integral

shows a geometrical decay of O(R
2
) when R = |~x− ~y|. As a result, the Green’s function

can be approximated by the contribution from the steepest descent path that shows the

geometrical decaying O(R−1) becoming

GS↖E
ij (~x, ~y) =

eiξαR

4πR
D
S↖E(∞,α)
ij (θ, ϕ) +

eiξβR

4πR
D
S↖E(∞,βV )
ij (θ, ϕ) +

eiξβR

4πR
D
S↖E(∞,βH)
ij (θ, ϕ)

+O(R−2) (A.20)
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where

D
S↖E(∞,α)
ij (θ, ϕ) = 2Cik(ϕ)

1∑

m=−1
eimϕ

[
ĥ
(m)
kl g

(α)
ln (ξ)

]
ξ=ξα sin θ

f
(m)
nl

D
S↖E(∞,βV )
ij (θ, ϕ) = 2Cik(ϕ)

1∑

m=−1
eimϕ

[
ĥ
(m)
kl g

(βV )
ln (ξ)

]
ξ=ξβ sin θ

f
(m)
nl

D
S↖E(∞,βH)
ij (θ, ϕ) = 2Cik(ϕ)

1∑

m=−1
eimϕ

[
ĥ
(m)
kl g

(βH)
ln (ξ)

]
ξ=ξβ sin θ

f
(m)
nl (A.21)

and θ is explained in Fig. 2 and defined by

θ = sin−1(y3/R) (A.22)

•
Re(ξ)

Im(ξ)

O
ξα ξβ

ξs#
• •• •

−ξβ −ξα

(a) Path of integral (case 1)

•
Re(ξ)

Im(ξ)

O
ξα ξβ

ξsβ
• •• •

−ξβ −ξα

(b) Path of integral (case 2)

Figure A.1: Steepest descent paths. The path for case 1 denotes the P and S waves when
ξsβ < ξα. The path for case 2 denotes the S wave when ξα < ξsβ. The branch line integral
for the S-P wave is required for case 2.

A remaining task in this Appendix is to examine the accuracy of the asymptotic

form of the Green’s function shown in Eq. (A.20). Figure A.2 is the model for the

verification, in which a buried point source is located at the x3 axis and the Green’s

function is compared at the free surface along the x1 axis. The direction of the excitation

force is vertical, so the responses are also calculated for the vertical direction. The P and

S wave velocities are 2 km/s and 1 km/s, respectively, and the mass density is 2 g/cm3.

In addition, the excitation frequency is 1 Hz and the force amplitude is 107 kN.
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Figure A.3 shows a comparison between the Green’s function calculated from the

direct wavenumber integral representation and its asymptotic form shown in Eq. (A.20).

It is found from Fig. A.3 that the both results show almost good agreement especially

in the farfield range. As the depth of the point source increases, the agreements are

also found to improve. These results reflect the properties of the asymptotic form of the

Green’s function. Note that the depth of the point-like scatterers in numerical examples

presented in the article are around from 3 km to 5 km. Therefore, the asymptotic form of

the Green’s function presented in the range of the numerical calculations well approximate

the Green’s function calculated by the direct wavenumber integral.

x1O

x2

x3

• Buried point source

cα =2 km/s cβ =1 km/s, ρ = 2 g/cm3

Figure A.2: Buried point source model for examining the accuracy of the asymptotic form
of the Green’s function.
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(b) Source depth = 3 km

Figure A.3: Comparison of the Green’s function calculated by the wavenumber integral
with its asymptotic form. The vertical displacements due to the vertical excitation are
compared for two depths.
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