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Inversion of point-like scatterers in an elastic half-space
by the application of the far-field properties of the
Green’s function to the near-field operator

Terumi Touhei *

Abstract

This article presents a method for reconstruction of the locations of point-like”scatterers in an
elastic half-space. The key point of the formulation is to introduce the far-field properties of
the Green’s function into the near field equation by means of pseudo projections, which are
defined in this article. An indicator function that reconstructs.the locations of the point-like
scatterers was defined based on the derived operator. Numerical calculations were carried out
to verify the accuracy of the pseudo-projection method. We alsorexamined the effects of random
noise, the grid resolution at the free surface, and the analyzed.frequency on the accuracy of the
reconstruction of scatterer locations.
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1 INTRODUCTION

Inverse scattering analysis has a long history due to its inherent appeal as well as appli-
cations such as geophysical exploration, site characterization, medical imaging, and non-
destructive testing. During the past two decades or more, many significant articles in this
field have been published. For example, Colton and Kress (1998) surveyed and reported a
vast number of articles on inverse scattering analysis. Pelekanos, Abubakar, and van den
Berg (2004) presented a contrast source inversion method in a twé-dimensional (2D) elas-
tic wavefield. Abubakar et al. (2011) developed a method foreoupling the full-waveform
inversion and the finite difference source-contrast methed for a three-dimensional (3D)
acoustic wavefield. Romdhane, Brossier, Réjiba, et al. (2011) also applied a 2D full-

waveform inversion to a shallow structure with cemplex topography.

In contrast to the full-waveform inversion, linear sampling and factorization methods
can reconstruct the support of seattering objects when the type of boundary condition is
unknown. The linear samplingnethod was first presented by Colton and Kirsch (1996)
for the 2D Helmholtz equation. They proved the divergence properties of the solution of
the far-field equation, from which they reconstructed the support of a scattering object.
Kirsch (2011) also, developed a method to examine the range of the far-field operator
for the 2D Helmholtz equation by the factorization of the operator, and presented an

indicatoryfunction to reconstruct the supports of scattering objects.

After Colton and Kirsch (1996), Fata and Guzina (2004) developed a linear sampling
method for an elastic half-space by means of the near-field equation. They also gave

the mathematical details of the divergence properties of the near-field equation for cavi-



ties, rigid inclusions, or both. Baganas, Guzina, Charalambopoulos, and Manolis (2006)
extended the method of the near-field equation for an elastic half-space to the interior
transmission problem. Guzina and Madyarov (2007) carried out a reconstruction of scat-
terers in piecewise-homogeneous domains by linear sampling. Pourahmadian, Guzina,
and Haddar (2017) presented a generalized linear sampling method for the reconstruction
of heterogeneous fractures. The factorization method is also a useful toolfer clastic wave
scattering problems. For example, Gintides, Sini, and Thanh (2011) applied the method
to reconstruct point-like scatterers in 2D full-space by using one type of elastic scattering

waves (P or S waves).

The authors’ research group also applied a linear sampling approach to evaluate the
location and spatial spread of fluctuations (Touhei, Fukushiro, and Tanaka 2015). The
authors’ method showed that the concept af'the solvability index worked well even for
scattered fluctuations in an elastic half-spage. The locations and number of sources and
the resolution of the observation grid, however, significantly influenced the accuracy of

the reconstruction.

In this article, .to'zesolve the stability of our linear sampling method, the far-field
properties of the Green’s function for an elastic half-space are incorporated into the near-
field equationu,The far-field properties of the Green’s function are derived by applying
the steepest~descent path method. The pseudo projections are derived from the far-field
propetties of the Green’s function, which is applied to the near-field operator. Since
the pseudo projections are defined with respect to each probing point, the range of the

derived far-field operator also depends on the location of the probing point. In spite of



the complicated procedure, it is expected to improve the accuracy of the reconstruction
due to the analysis of the range of the operator with respect to each probing point. In
this article, the discussion starts with the definition and formulation of the problem in

the next section.

2 Theoretical Formulation

2.1 Definition of the scattering problem and basic equations

Figure 1 shows the concept of the wave problem dealt with here-"The wavefield is a
3D elastic half-space, in which the incident waves from«point, sotirces at the free surface
propagate toward the scattering objects embedded.in the half-space, and the waves are
scattered back to the free surface where we can“observe them. The challenge here is to
develop a method to identify the locations of the scattering objects by means of a far-field

operator derived from near-field observations.

The analysis is carried out in.thepfrequency domain with a time factor of exp(—iwt),
where w is the circulardrequency and t is time. For simplicity, the scattering objects
are assumed to bessets©f point-like scatterers. The Born approximation is employed to
express the seattered wavefield. As shown in Fig. 1, the free surface of the elastic half-
space is/denoted*by S and the interior region that includes the point-like scatterers is
deneted by"E. The number of source and observation points in S' is finite. Let the set of

sourcerand observation points be denoted by
S,={z,},cS (1)
g pSp=1

where NN is the number of points in S,. Note that the source points are also used as
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observation points in this article. The Green’s function for the elastic half-space is denoted
by G;;(Z,¥), where the subscripts ¢ and j describe the components of the Cartesian
coordinate system, & is the field point, and 7 is the source point. (In this article, the

Cartesian coordinate system is used unless otherwise stated.) The components of the

spatial point in terms of Cartesian coordinates are expressed as &
t (2)

T=(z1,79,73) € R* x Ry =R}

where x3 denotes the vertical coordinate with the positive directio@érds and x3 =0

denotes the free surface of the elastic half-space. The su %onvention is assumed

for the index subscripts. :

Figure 1: Co We scattering problem. An incident wave caused by a point source
propagates to point-like scatterers. We observe the scattered waves at the free surface.

v

Green’s function notations such as GiEj/S(gj', Z) and ij\E (Z,7), where (¥ € S,y € E),
are used for convenience in this article. These represent the waves that propagate from the

free surface to the scattering objects and from the scattering objects to the free surface,
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respectively. According to the reciprocity of the Green’s function, they have the following

relationship:
GINE(T, ) = GE4S(5,7), TES, jEE 3)

The Green’s function for an elastic half-space is defined by the following equation:
Lz](ahana?))G]k(fu :’j) = _52k6(f_37>7 (fage Ri) (4)
lim P;;(01, 0o, 03)Gij(Z,4) = 0 (5)
x3—0
where L;; is the Lamé operator defined by
Lij (01,0, 05) = (X + p)3i0; + 0ij (1O ot pue®) (6)

and Pj; is an operator that transforms the displacementi.field to the traction for the w3

plane, whose components are

(O3, 0 poy
|P3(01, 05, 05)] <90, Tudy oy (7)

Note that A and p in Eqgs. (6).and (7) are the Lamé constants and p in Eq. (6) is the
mass density. In addition,d;; and §() in Eq. (4) are the Kronecker delta and Dirac delta
function, respectively/ The P and S wave velocities are denoted by ¢, and cg, respectively,

which are obtained from

ca =V (A+2p)/p, cg=~n/p (8)

Thetwavenumbers for the P and S waves are expressed as

504 = W/Ca, gﬁ = W/Cg (9>

In this discussion, there are some cases in which we use notations such as gy and Sy for
expressing SV and SH waves, respectively. For example, we sometimes use £z, and &g,

6



for the wavenumber of SV and SH waves, respectively. Regardless of the notation, we

understand that

§s = &6y = pn (10)

2.2 Application of the steepest descent path method to the
wavenumber integral representation of the Green’s function

As is discussed in the Appendix, The Green’s function for an elastie=half-space can be

expressed in terms of the wavenumber integral as follows:

GE ) = 5= Y Cule) / Eh (& < ) (€): ys)dg £

(@ € S,ye B) (11)

where € is the radial wavenumber used for the parameter of the integral; m is the circum-
ferential order; r and ¢ are the horizontal range and angle, respectively, determined by
the component of ¥ and ¢ as shownin Fig’ 2; Cj; transforms the cylindrical coordinate
system to the Cartesian systein;yhy; déscribes the horizontal wave propagation; g, is the
Green’s function in the/wayenumber domain; and fﬁ’f) denotes the effects of the point
source in the wavenumber domain. The above variables used for the Green’s function are
further defined andiclarified in the Appendix. Note that the summation convention is
also applied torthe index subscripts on the right side of Eq. (11), in spite of the fact that

these.subscripts may not be Cartesian coordinates.
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X2

<

Figure 2: Definition of the angles # and . These angl Mrmined by the relationship
between ¥ and 3. Note that R is the distance ¢ and 7/, and it is used for the

asymptotic form of the Green’s function. ‘

The far-field properties of the function can be derived from the application of

the steepest descent pa& d to Eq. (11). The procedure for the application of this

method is given in t ppendix, from which we obtain the following results:

g ikl
Q ) = 4—Hexp( o - y)DS\E(M)(H,SO)
’fﬁ|m|
e exp(—i€gi - §) D5 M) (9, )
517

Yv = exp(—i€yi - §) Dy~ (0, )
+o(|7]71), v Jl (12)

when |Z] >> |7
where & = Z/|Z|, 0 is the angle defined by

0 = sin"'(y3/R) (13)



where R = | — 7], which is shown in Fig. 2, and DS\E(oo 99, p), DINECP) (g ) and

v

DS"\E(OOﬁH)
ij

(0, ¢) are the directivity tensors, respectively, for the P, SV, and SH waves
from an interior point source 7 to the field point & at the free surface. Note that (6, )
describes the direction of wave propagation from the source point to the field point. We
ignore the contribution of the Rayleigh and head waves in Eq. (12). The source point is
deep enough from the free surface so that the Rayleigh effects are very small, asidiscussed

in the Appendix. In addition, we know that the attenuation of the headswave is higher

than o(|Z|™!) (for example, Aki and Richards, 2002).

Straightforward calculations using Eq. (A.21) yield

- ( o) CO8% @ ( o) COS SN ¢ 2921 (gsa) cos ¢
[DZ\E(OO’Q)(@@) = 2 922 (&, )cossosmso 922 (ea)sin®e igh? (Goa) sing

_ | —igl5) (Ea) cos —Zg( (Ca)sing  giY(&a)

_ [ 952 () cos” AN Yy (€us) cos psinp i (65) coscp
(D0, 0] = 2| 48 (6) Bpuin g i) (E)sin' e igg(6s)sineg

- L _2912 (53/3) o3P _2912 (fsﬁ) sin ¢ 911 (fsﬁ)

i [ sin® —cospsing 0
[Disj\E(oo’ﬁH)(G, o) = 2| A~ cospsing cos?y 0 g(ﬁ) (&) (14)

i 0 0 0

where &, and &3 are“the saddle points for the P and S waves, respectively, which are

given by
Esa = &usinb (15)
533 = fﬁ sin ¢ (16)
and gff) and gfjﬁ ) are the components of the Green’s function in the wavenumber domain

for the P and S waves, respectively, given in Eq. (A.7) in the Appendix. Equations (14)

and (A.7) yield the decomposition of the directivity tensors for the P, SV, and SH waves



into the vector products, as in the following forms:

DN (0, 0) = ADOW (0, 0) V[ (0, 0)

ij J
SNE(c0,8v ) — B (Bv) Bv)
D" 0,0) = A6 W 0.9V (6. 0)
S o,
DN (9, 0) = APD @)V () Vi () (17)
where Vi(a), V;w ) and Vi(ﬂ ") are the directions of vibrations for the P, SViand'SH waves
in full space, respectively, and Wi(a) and I/Vi(ﬁ v) are the directions of the ¥ibration of the

P and SV waves at the free surface, respectively. The components of these vectors are

defined by

(1/;(0‘)(9,@)) = (cosgpsin@ sinpsin 0 cos@)
(Vﬁ”(@,@)) = (cosgpcos@ sin ¢ cos ¢ —sin@)

(V;(ﬁH)(gp)) = (singo — oS O) (18)

(W20.9)) = { cossinb sinpsing (igs)(6)/95)(6)) sino )

(M/i(ﬁ‘/)(ea@)) = ( cos pcosf sinycosf (iggg)(Q)/gég)(G)) cos 6 ) (19)

In addition, A@(Q); A¥Y) and AP#) in Eq. (17) are given by

2933 (0)
sin’ @

A(g) =

(9) cos? 6

AP (g) = 2452() (20)
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It is clear from Eq. (18) that

V0,0V 0.0) = V0,0V (p)
= V0.0V ()

7

=0 (21)

which is the orthogonality relationship of the direction of the vibrations oftheWP, SV, and
SH waves. On the other hand, we cannot establish the orthogonality rélationship between
the vibration directions of the P and SV waves at the free surface due to the interaction

between the P and SV waves at the free surface. Namely,

W0, 0)W (0, 0) £0 (22)

(2

—

According to the reciprocity of the Green’s function, the far-field properties of ij/s(g, ),y €

E z € S can be derived from Eq. (12)¢which 18 as follows:

GES(5.9) = Agpl—itai DL 6,
+Zi:3|;|| exp(—i&sy - f>Dij/S(OOﬁV)(‘9a ©)
+%|y|' exp(—i€sg - 1) Dy "7 (6, )
+ol(|g ™) (23)

where g/= y/|y]" The decomposition of the directivity tensors into the vector products is

givenas

DI (0, 0) = ALV (0,0)W (0, p)

v

D9, 0) = AP VI (0, 0)W (6, ¢)

v

v

DESSEm (g o) = A ()Y (o) V) () (24)

11



Note that the angles 6 and ¢ for Eq. (24) are determined by ¥ € S and i € E, which are

explained in Fig. 2, so that these are identical for the use of Eq. (17).

2.3 Pseudo projection for the Green’s function to extract the
far-field pattern of one type of wave

At this point, we define the following vectors:

<W/i(ﬂvi) (6, ‘P)>

Then, we see that

W (0, )W (0, )

We also define the followingymatrices:
(a)

f.ij (9790)
(Bv)

‘/—-.ij v (‘97 90)

FI ()

<cosg0 sin ¢ (z’gé%“)w)/gg)(@)) )

<cosg0 sin ¢ (igég)(@/gig)(@) )

= WREG, o)W )0, )
SNV (WD (0, )

= VP (w6, )

=0
W0, ) WV (0, )
W0, 0) W0, )
W0,0) WD (0, )
W0, 0) WD (0, )
VI (o) VI ()
VI (0) V()

12
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Then, we have the following relationship between the above matrices:

FO.0F0,0) = FP0,0)F20,0) = F0.0)F4 ()
= FP@FD0.9) = F7V 0.0 7" ()

= F@)F0.0) =0 (28)

F0.0F0,0) = Fi(0,)
FN0.0FL0,0) = FL0,0)

FI@FR(0) = FLke) (29)

Due to Eqs. (28) and (29), in spite of the fact that the.matrices ]—"i(jo‘),

(Bv) (Bm)
Fi 0y and Ft
are not Hermitian, let us call them the pseudo'projections. We can see the effects of the

projections as follows:

S\ —if,|E a SNE (= = . —ifadg ySNE(oo,x
(4n|]) el F (0,8 (7, 5) = e 2T DI (g, )

N 4|7 g —ilpe-i MSNE (oo,
(4m| 7)) e 17 FEO B )G E (7, 4) = e 2T DI (g, )

(47|7)) 2SN EL (OGN (@ ) = e DI (g o) (30)

S\ D—ila |y B S = a _ i) T B S(00a
(47 [7) &5 GE<S (7, 2) B (0,) = e 07 DR (g o)
(47T|y—») e—i&g\ﬂl Gi/s(?j; :[_:') ‘7:;5?‘/)(97%0) — iy Di/S(oo,ﬂv)(eycp)

S\ —ifg|7] - —i€g Y- S (oo,
(4r|gl) e GES (5, 2) Fom () = e7€0% DR 5Cofm g ) (31)

Thus, the matrices F, @ r V), and }"Z(f ) extract the far-field patterns for one type of

ijg v

wave (P, SV, or SH waves) from the Green’s function.

13



2.4 Introduction of the far-field properties of the Green’s func-
tion to the near-field operator

Now, let us return to the scattering problem shown in Fig. 1. Let w;;(Z,,Z,) be the
scattered wave at the point Z, € S, for the ¢-th direction due to a unit point load for the
j-th direction at the point Z, € S,. When the Born approximation is employeds; ; (Zp,Z,)
is expressed as

“ij(fpqu) = Z Gi\E(fwg’m)Qmey/s(g‘m’fq)’ (fpqu = Sg) (32>

ImEE
where @, is the strength of the point-like scatterers at ;"¢ E. The near-field operator
is constructed by the stack w;,(Zp, ¥,). Namely, we can definé the near-field operator as
the following finite dimensional linear transform:
N
(V@) (@) = Do By ful@,). (@ € S,) (33)
q=1
where Uj; is the near-field operater. According to Eq. (32), Eq. (33) can be also expressed
as
(Ul ()
N
SKNE (= = E/S/~» = -
< /(D0 X G ) QuGE (G 7)) £5(0) (34)
=1 ym€E
The problem at this point is to introduce the far-field properties of the Green’s function

to themear-field operator shown in Eq. (34). Let us define the following matrix by means

of the pseudo projections defined by Eq. (27):

P (@, Z) = 4ml T, — 2|2 FE (0, 0s)), (7 € B) (35)

14
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where # takes a, By or By, Zs is the probing grid location, and B is the set of the probing
grid locations. Note that the angles 0, and ¢, are determined by the positions of 7,

and Zs, as shown in Fig. 3.

Hp)

Yy
Flgure 3: Path of waves for GS\E 7, G and P " (¥, Zs), and definition of the angles

bing point.

The operator/A; is the result of the introduction of the far-field properties of

the Green’s function into the near-field operator:

Qzﬁ#(%)fj(fq)) (#) = D PR 2wl ®, 7)) (PH(EL 2)) f3(T) (36)

q=1

Incorporating Eqgs. (33) and (34) into Eq. (36) yields

¢

(A??#ws)fj(fq))(fp)
Z > T @ 2 ) Qe (TH(Fg 200 G)) " £5(3) (37)

q=1 gn€E

15
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where

TH (T, 2oy ) = Pl (T, 2) Gion (2, ) (38)

In Eq. (37), we have used the reciprocity of the Green’s function:

(O ) = (57 2&’9
At this point, let us assume that ,\(

| Zp — Z5 | >> | Um — Zs |, (2p € 5y) ‘ ,E
Then, we have 0\3
kT —iin|  pibxlTp—]

i ud o =y, (—'_—;—1) A1
1%, ol = 7, — 5] P (0o V+o(lzm-=1") @

where Ef

N Ty — Zs
Yy 52 (42)
|xp Zs|
and we see that &(
o (E, Bim)

)T Ops)» P (ps)

. N = . 5 - = SN E(a
v X ( eXp(Zfalmp - ZS|) eXp(_Zfad(pS) ) (ym - ZS)) Djl;\ ( )(H(ps)a SO(ps))

+exp (&7, — 24]) exp(—i€sdips) - (G — 2)) D" (0s), 00)

+exp(i€s| Ty — Zi]) exp(—i€adps) + (G — 25)) Do FE (9 w(ps)))
(43)

16
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Therefore, if there exists 1,,» € E such that
G = Zs (44)
then the following relationship can be derived:

— - = S EOO,#
ﬂf(mp,z&ym*) = Dik\( )(9(p8)790(p8))

As a result, we have @’g
(A5*(E) (7)) (7)) CJ

N
SNE OO,# S o0,
= Z[‘Diu\ ( )(9(178)790(178)) Q> (Dj R qS)vSO(qS)))

q=1

5)

T

0 Ty 2o i) O (TEEZ )" | 15(3)

m#£m*
SN E (o0,
= DN 00 0)by £ XilE) (46)
where
b, = @ (e(qS)’SO(qS))) fi(Z)

=1 m#m*

At this poinC;%v)to characterize the range of the operator Ag;?ov#) (Z), let us define
the foll(mg

Dy )(087()08)

Xi(#) Qg \5 T 2o ) @ (T 260 m) F5(00) (47)

or for fixed index v:

T
(D600, 009)) . (D b0, 9109)) -+ (DB B o))

(48)

17



Note that (D5 (0,0, ¢e)) is also the array of

(Dz‘su\E(#) (9(;)5), 9‘7(175)))

SR E(# SR E(# SNE(# T
(DN By 2006))s D" F (B, 0108))s Dy (B 0109))) (49)

for 1 <p < N. It is found from Eq. (46) and by means of the vector defined by Eq, (48)

that the range of the operator AE;O’#)(ES) can be expressed as follows:
% € {fnbiner = DD 0, 0,) € ran AP (50)

2.5 Indicator functions for reconstructinghe locations of point-
like scatterers

We are now at the stage of presenting the indicater functions for reconstructing the
locations of the point-like scatterers. Let ken (Aff#(is))H be the kernel of the Hermitian

adjoint of the operator A;’;’#(ES). Then, we know the following relationship:
ket (ASF(2))" L ran AT#(2,) (51)

Let {¥#(Z,)},, be the basis for ker (AZO#(ZS))H and we define the following spatial function

with respect to the probing point Z:

1
2
(W#(2,))" DSNF# (g, 0,)

- (52)
Zi:l Zn

Namelymwe have three spatial functions ¢(-), ¢V (), and ¢’#(-) for the P, SV, and

SH waves, respectively. In the following numerical examples, we will also examine the

indicator function:

d(Z) = ¢\ (Z,) ") () () (53)

18



Note that the derived operator Afjo# is defined with respect to each probing point. There-
fore, the basis {¥#(Z,)}, has to also be defined for each probing point. This aspect
increases the computational cost of our method. In spite of the situation, it is expected
that the investigation of the range of the operator with respect to each probing point will
enable us to carry out an accurate analysis. Discussions regarding the accuracy of the

method, as well as the computational costs, are given in the next section:

3 Numerical Examples

3.1 Analysis model

The model we analyzed to verify our proposed formulation is shown in Figs. 4(a) and
4(b), which show planar and bird’s eye views of theanodel, respectively. The grid interval
at the free surface for the sources and_observations is 0.5 km and the number of grid
intersections, that is, source and observation points, is 121. The grid interval for the
point-like scatterers is 250 m and the number of scatterers is 900. The set of point-like
scatterers forms an objeét, shape’in an elastic half-space. The shape of the object in
this numerical exaniple is based on the shape described in Abubakar et al. (2011). For
the material propetties of the elastic half-space, the P and S wave velocities are 2 km/s
and 1 km/s, tespectively, and the mass density is 2.0 g/cm3. We employed two probing
planes that.eross the scattering object horizontally and vertically, as shown in Fig. 5, to
examine the properties of the indicator function defined in the theoretical formulations.
The positions of these probing planes are z3 = 4.0 km and x; = 8.0 km, respectively. The

construction of the near-field operator for all of the numerical examples is based on the
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wavenumber integral representation of the Green’s function shown in Eq. (11).

grids at the surface  +

10 ‘grid‘satthésurfa‘lce "
scatterers x
5 F + 4+t o+ —
+ o+
+ o+
'5‘07 + o+t A+ N
Y + o+ o+ o+ o+ o+
— 5 L + + + + o + + + —
é\] + o+ o+ o+ + o+ o+
10 L + o+ o+ o+ + + B
+ o+ o+ o+ + +
+ o+ o+ o+ + o+
-15 + + o+ o+ o+ + o+ —
_20 | | | | |

40 5 0 510 15 20
z1 [km

(a) Planar view (b) Bird’s eye view

Figure 4: Analysis model showing the source-observation grid atrthe free surface and the
set of point-like scatterers in the elastic half-space.

surface grids ~ + surface grids
scatterers

naplang........ .

0  + +rerrberb b
2
7.
&6
2 - 16
o [km] 'y [k
(a) Probing plane at r3=4 [km] (b) Probing plane at x; = 8 [km)]

Figure 5: Two probing planes that cross the scattering object horizontally and vertically.

3.2 Properties of the indicator functions with respect to wave
types and their multiplication

As described in the previous section, we have three kinds of indicator functions ¢#(-)
(# = P,SV,SH) for each type of wave and their multiplication ¢(-) as shown in Eq. (53).

Here, we investigate the properties of these indicator functions as the first numerical
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example in this article. Figures 6(a)-(d) and 7(a)-(d) show the spatial distributions of
the amplitudes of the indicator functions on the horizontal and vertical probing planes,
respectively. The point-like scatterers in the range 3.5 < z3 < 4.5 km are plotted in
Fig. 6, and scatterers in the range 7.5 < x; < 8.5 km are plotted in Fig. 7 to check the

accuracy of the reconstruction results. The analyzed frequency is 1.0 Hz.

The plots in Fig. 6 show that the high-amplitude areas of the indicator functions agree
well with the locations of the point-like scatterers. The spatial spreads and the amplitudes
of the indicator functions differ slightly for the P, SV, and SH wave eomponents. However,
after multiplication, the reconstructed locations of the point-likescatters on the horizontal

plane for these indicator functions have satisfactory accuracy.

In Fig. 7, the high-amplitude areas of the indieator functions in the vertical probing
plane almost agree with the locations of the peint-like scatterers. A closer look at the
spatial distribution of the indicator-functions, however, reveals differences in the spatial
spreads of the high-amplitude/areas for'each wave type. Namely, the spatial spreads of the
indicator functions for thewP and”SH waves cover a wider area compared to the locations
of the scatterers. JIn“addition, the spatial spread of the indicator function for the SV
wave does not“show, clear contrast for the scatterers. The final results obtained from the
multiplicationwef.the P, SV, and SH wave components, however, yield good sharp results

for the reconstruction of the scatterer locations.

The validity of our formulation is assured by the above results. At this point, we can
conclude that multiplication of the indicator function for each wave component improves

the accuracy of the reconstruction of the scatterer locations. For this reason, all following
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numerical results are derived using Eq. (53).
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Figure 6: Spatial distribution of the indicator functions on the horizontal probing plane
at r3 = 4.0 km.
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Figure 7: Spatial distribution of the indicator functions on the vertical probing plane at
r1 = 8.0 km.

3.3 Effect of random'noise on the reconstruction of the locations
of point-like(scatterers

Let us apply random neise to the near-field operator and investigate the sensitivity of our

method toward random noise. In the construction of the near-field operator as shown in

Eq. (32), we use G,Z\E(fp, Um). Therefore, we apply random noise to this function, and

instead of Eq. (32), we use

win(Tp, Tg) = Z ij\E(fpa gm)QmGﬁ/S(gmy Ty) (54)

Jm€EE
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where the Green’s function éfj\E(fp, Um) with random noise is expressed as follows:
G A ($pa Um) = Gij\ (CL’p, Um) + Aij (xp’ Yim) (55)

where A;; is the random noise. Due to reciprocity, we assume that

G (s Tg) = G2 (T, Gn) (56)
and as a result, Eq. (54) becomes possible. We also define the level of noise 7, as follows:

S Y S Ay

9 =1 j=1 ZpeSy ym€eE

re = (57)

PI)BD BB AT

=1 ,]Zl ESg yanE

Figures 8 and 9 show the effects of noise level r,, on.theiaccuracy of the reconstructed
locations of scatterers on the horizontal and vertical probing planes, respectively. The
analyzed frequency is 1.0 Hz. When the noise level is 10%, the effects of the noise are not
very significant for either the horizontal ‘er vertical probing plane [Figs. 8(b) and 9(b),
respectively]. The high-amplitude,areas of the indicator functions almost agree with the
locations of the scatterers. When the noise level is 15%), the accuracy of the reconstruction
results is satisfactory-for thejhorizontal probing plane [Fig. 8(c)]. On the other hand,
the accuracy of the reconstruction results for the vertical probing plane decreases at this
noise level. The high-amplitude areas of the indicator functions are found to deviate from

the scatterer locations [Fig. 9(c)].

When' the noise level is 20%, [Figs. 8(d) and 9(d)], the high-amplitude areas for the
indicator functions do not agree well with the locations of the scatterers, especially on the
vertical probing plane. Thus, if the noise level exceeds 20%, it is difficult to accurately
reconstruct the scatterer locations.
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Figure 8: Effects of random noise on the aecuracy of the reconstruction for the horizontal
probing plane
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Figure 9: Effects of random noise.omthe accuracy of the reconstruction for the vertical
probing plane

3.4 Effect of grid resolution at the free surface

It is desirable toymake the number of source and observation points at the free surface
as small as possible; In order to examine the effects of a coarser grid resolution at the

free surface on the accuracy of the results, we analyzed three cases.

Figure 10 shows the distribution and number of surface gridlines for cases 1, 2, and
3, where the number of source/observation points is 81, 64, and 49, respectively. Figures
11 and 12 show the results of the reconstruction of the scatterers on the horizontal and

vertical probing planes, respectively, for progressively coarser surface grids. As can be
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seen, the accuracy of the reconstruction of the results decreased as the number of surface
points decreased. In spite of this situation, the results are acceptable for cases 1 and
2. For case 3, where the number of grid source/observation points is 49, however, the
reconstruction results show excessive deviation from the scatterer locations. In other
words, the high-amplitude areas of the indicator functions for case 3 do not describe the

locations of the scattering objects.
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Figure 10: Analysis model for investigating the effect of the grid resolution at the free

surface.
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Figure 11: Effects of grid resolution at the free surface on the accuracy of the reconstruc-
tion for the horizontal probing plane
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Figure 12: Effect of grid resolution at the free surface on the accuracy et the reconstruction
for the vertical probing plane.

3.5 Effect of analyzed frequencies on the.accuracy of the recon-
struction

As the last set of numerical calculations, we investigate.the effect of the analyzed frequency
on the accuracy of the reconstruction of thewscatterer locations. Figures 13 and 14 show
the results of the reconstruction on the horizontal and vertical probing planes, respectively,
for analyzed frequencies of 0.5, 1”5y and 2.0 Hz. The high-amplitude areas of the indicator
functions on the probing planes are found to accurately reconstruct the locations of the
scatterers for all threefrequencies. A closer look at the reconstruction results, however,
shows that the accuracy in the vertical probing plane decreases slightly as the frequency
rises. These results, as well as those for the effects of random noise and surface grid
resolution, show recurring difficulties for reconstructing the scatterer locations in the

vertical probing plane.
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Figure 13: Effect of the analyzed frequency on the accuracy of the reconstruction for the
horizontal probing plane.
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Figure 14: Effect of the analyzed frequency on the accuracy of the reconstruction for the
vertical probing plane.

3.6 Computational costs

Finally, we have to address the computational costs for our proposed method. The near-
field operator for the presented numerical examples was derived from the direct wavenum-
ber infegral representation of the Green’s function. The number of calculation points for
the Green’s function was based on the product of the number of surface source/observation
points and point-like scatterers. In addition, the basis of the kernel of the adjoint of the
operator had to be constructed with respect to each probing point. Message Passing
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Interface parallel processing was introduced into the numerical calculations by dividing
the number of calculation points for the Green’s function, as well as the number of prob-
ing points, among multiple CPU cores. An Intel Xeon E5-2690, 2.6-GHz CPU used for
the numerical calculation. The elapsed time needed for the computation for the analysis
model shown in Fig.4 for obtaining the near-field operator and spatial distributionymap
of the indicator functions on one probing plane was 28 min when 24 cores“were used. The
number of calculation points for the Green’s function and the number ofsprobing points

were 121 x 900 and 441, respectively.

4 Conclusions

This article dealt with reconstruction of the locatiens of point-like scatterers in an elastic
half-space. The introduction of the far-field properties of the Green’s function into the
near-field operator was the key issue_ in ouryformulation. The pseudo projections defined
from the asymptotic form of the*Green’s function played an important role. Due to the use
of the pseudo projectionssthe near<field operator was transformed into a far-field operator
that reflected the properties ‘of one type of wave (P, SV, or SH waves). The indicator
function was defined from the kernel of the adjoint of the derived far-field operator with
respect toeach probing point. In the numerical model, the number of point-like scatterers
was much, larger than the number of source and observation points at the surface, and
the set of the point-like scatterers formed a shape of a scattering objects. The effects of
random noise and surface grid resolution on the accuracy of the results were also examined.

We found that the numerical results supported the validity of our formulation. Future
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work will be to carry out the analysis without the Born approximation. Extending the

method to an interior transmission scattering problem is also important.

APPENDIX Steepest descent path method for the
Green’s function for an elastic half-space

A.1 Wavenumber integral representation of the Green’s
function

The wavenumber integral representation form of the Green’s funetion for an elastic half-
space is the starting point of the derivation of the far-field preperties of the Green’s
function. The wavenumber integral representation form itself can be obtained from the
Fourier-Hankel transform (Aki and Richards 2002). Based on the procedure (for example,
Touhei 2002), the wavenumber integral representation form of the Green’s function is

expressed as

1 o)
GIEED) = 3 DG [ (e i )

2 P an
(€S, ye k) (A.1)
where £ is the radial wavenumber; r and ¢ are the horizontal range and angle, respectively,
between ¥ and i defimed by Fig. 2; m is used for the superscript as well as for summation
in the circumferential order number; and h,(;ln) is the horizontal wavefunction whose arrays

are given as

1 0 0

[h,&T)(S:r,w} =10 &9,  im(&r)t | Ju(ér)exp(imyp) (A.2)
0 im(&r)y~t  —¢71o,

where J,, is the first kind of the Bessel function of the m-th order and Cj;, is the matrix
that transforms the cylindrical coordinate system into the Cartesian coordinate system,
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for which the components are

0 cosp —singp
[C’ik(go)} =10 sing cosp (A.3)
1 0 0
and féT) is given as
0 01
00 0 (m = 0)
000
[0 0 0]
[ffj}”] L@l 1 —io| m=1 (A.4)
- —1 0
[0 0 0]
(1/2) | =1 —i 0 (m = —1)
\ i 1 0]

In addition, g¢;,(&,y3) is the Green’s

decomposed into

6_7y3

[Qm(f’f%)} = [gl(ff)
where
v =
v o=
and [gfe], [g,"’

()] +

function in the wavenuimber domain, which is

e_VyS

TSRO+ o] ()
e-a
§2— & (A.6)

], and [gl(gH )V are functions of the wavenumber in the form of matrices

expressing the contributions to the P, SV, and SH waves, respectively. The arrays for the

functions are.as follows:

R 1
g©] = D
G L -
) (oo
] = Lo o
: 1o o

[~

2+ =& +v?) 0
vy -7 0
0 0 0
—28%vy 28y 0
=&+ (¢ +0v?) 0
0 0 0
0
0 (A7)
1
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where F'(§) is the Rayleigh function defined by
F(&) = (268 —&)° — 48w (A.8)
A.2 Application of the steepest descent path method

Application of the steepest descent path method to the direct wavenumber integral rep-
resentation of the Green’s function is the key for the derivation of theAfar-fieldproperties

of the Green’s function. First, we modify Eq. (A.1) as follows:

1

NG = = 3 Caly) / enir (e 1) g€ s ys)de £ (A9)
1 —00

4 =
where
1 0 0
M) = [0 €0, G | B E)explimg)  (A10)
0 am(ér)zt \—€710,

In the above expression, the following properties of the Bessel functions are used:

@ )L S[HDEr) + B ()]

2
Hr(nQ)(_&a) = —Hrg)(@“), (m =0, :tQ)
Hy)(=¢r) = HP(Er), (m==1) (A11)

where H )() is.the Hankel function of order m. Now, let
T = TM/2 (A.12)
then, the asymptotic behavior of the horizontal wavefunction becomes
hgln(l))(f, r,p) = %eigreim%_”M B,(;ln) + O(?“_S/Q) (A.13)
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where

. e_inm 0 O
|:h](i"rln):| — O (1/2) [e*innb—l _ e*innz—%—l] (2/2) I:efi'f]m_l + e*in,n+1:| <A14)
0 (Z'/Q)[e—inmﬂ + e—inm+1] —(1/2)[6_”7”“1 _ e_inm“]

At this point, we can divide the Green’s function into three components based on the

contributions from the P, SV, and SH waves as follows:
GZ\E(%Q) = Gij\ ( )(3371/) + Gij\ (BV)(%Z/) + Gij\ (BH)(%Z/) (A.15)

where

1
SRE(0) = — 1 /2 im
GTO@ED = = DD Cale)e™
m=—1

x / geXp@&"— =i/ )b g1 (6) d€ £,

+0(r=3/?) (A.16)

1
1 2 4
SNEBV) (o~ L [2 = (0)eime
Gz] (.Z', y) 47T wr mgl Czk(SO)e
“WE . . m m
X / W exp(i&r — vys —im/4) hl(fz )95(5‘/)(5) d§ f( )
£O(r 32 (A.17)
S\E(BH) =iy / Zm<p
Gz] (l',y) r Z Czk

/ fexp (i€ — vys — im/4) B g (€) de £

+0(r=3/?) (A.18)

The path of the wavenumber integral in the complex wavenumber plane for the application
of the steepest descent path method is shown in Fig. A.1, in which the saddle point
is denoted by the blue point on the real axis. In the following discussion, we employ
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the notation &, and &, for the saddle points of the P and S waves, respectively. The

relationship between the saddle point and the P and S wavenumber is

(o = &usinf

555 = fﬁ sin 6 (A19>

where 6 is determined by the relative locations of ¥ and ¢, which are explained by Fig.
2 in the main text of this article. The steepest descent paths are alse deseribed by the
blue lines in Fig. A.1. Note that there is a case where &3 > &,. /In this case, the
integral path B around the branch point &, is required, assshown'in case 2 in Fig. A.l.
In addition, we have to take into account the contributionsfrom the Rayleigh pole. It is
known that the Green’s function is expressed by the contributions from the residue term
related to the Rayleigh pole, steepest descent, path, and branch line integral. When the
region of E is deep enough from the free surface, the contribution from the Rayleigh wave
mode to the Green’s function ij\E can be ignored, since the Rayleigh wave mode decays
exponentially with depth./Furthermore, the contribution from the branch line integral
shows a geometrical décay of (O(R”) when R = |Z — 7/]. As a result, the Green’s function

can be approximated-by the contribution from the steepest descent path that shows the

geometrical decaying O(R™!) becoming

SXE Wy e ol sx B(oo,a) %8 ox Boobv) 8T o B(oo,pr)
Gij (T, 5= ArR i (0,0) + ArR i (0, 0) + ArR (0, ¢)
+O(R™?) (A.20)
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where

1 r
DN (9, 0y = 20u(p) Y ™ h;i?”)gfﬁ)(é)]g_g ~9f’(£n)
m=—1 =& SIN
1
S 0, im m m
D0, 0) = 20u(e) 3 e e A
m——1 = sin
1
S 0, im m m
DINI0.0) = 2Cu(e) 3 e RO i (e
=&p sin

m=—1

and @ is explained in Fig. 2 and defined by

0 = sin"'(y3/R) (A.22)

Im(E), Im(¢),

N o (& Re(©) \Q,,\ g Re(©)
755 —€a o 65}‘ 75[5 —€a 0 Ufs}\

(a) Path of integral (case 1) (b) Path of integral (case 2)

Figure A.1: Steepest descent paths.“LChe path for case 1 denotes the P and S waves when
&sp < & The path for cases2 dénotes the S wave when £, < ;5. The branch line integral
for the S-P wave is requited for case 2.

A remaining task in’this Appendix is to examine the accuracy of the asymptotic
form of the Green’s function shown in Eq. (A.20). Figure A.2 is the model for the
verification, in which a buried point source is located at the z3 axis and the Green’s
function is compared at the free surface along the x; axis. The direction of the excitation
force is vertical, so the responses are also calculated for the vertical direction. The P and
S wave velocities are 2 km/s and 1 km/s, respectively, and the mass density is 2 g/cm?.
In addition, the excitation frequency is 1 Hz and the force amplitude is 107 kN.

36



Figure A.3 shows a comparison between the Green’s function calculated from the
direct wavenumber integral representation and its asymptotic form shown in Eq. (A.20).
It is found from Fig. A.3 that the both results show almost good agreement especially
in the farfield range. As the depth of the point source increases, the agreements are
also found to improve. These results reflect the properties of the asymptotic form of the
Green’s function. Note that the depth of the point-like scatterers in numericaliexamples
presented in the article are around from 3 km to 5 km. Therefore, theasymptotic form of
the Green’s function presented in the range of the numerical calculations well approximate

the Green’s function calculated by the direct wavenumber integral.

/ )

e i oint source

x3 ca =2 km/s cg =1 km/s, p =2 g/cm3

Figure A.2: Buried peint source model for examining the accuracy of the asymptotic form
of the Green’s function.
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