
International Journal of Solids and Structures 44 (2007) 2244–2268

www.elsevier.com/locate/ijsolstr
Consistently linearized constitutive equations
of micromechanical models for fibre composites

with evolving damage

A. Matzenmiller *, B. Köster
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Abstract

The numerical analysis of engineering structures is usually based upon the assumptions of a homogeneous as well as a
continuous medium. These simplifications are maintained also for structures made of fibre reinforced composite materials
which possess by definition a heterogeneous finescale architecture. Furthermore in the course of the loading of such struc-
tures void nucleations might arise out of the debonding of the embedded fibres or the growth of microcracks inside the
matrix phase. Hence, the assumption of a continuous and homogeneous medium is not valid from a microscopical point
of view. Nevertheless, it is numerically advantageous to keep up these simplifying assumptions on the macrolevel. There-
fore, the knowledge of the so called macroscopic or effective material behaviour is needed. The overall properties can be
described in terms of volume averaged quantities that smear the heterogeneities of the microscopic structure and the influ-
ence of its defects. Since the evolution of damage within composite materials means a rather complex process, a purely
phenomenological approach is hardly feasible. Hence, the average properties are to be obtained from a micromechanical
analysis of the discontinuous and damaged finescale structure. The efficiently reformulated version of the micromechan-
ically based Generalized Method of Cells (GMC) provides the macroscopic tangential constitutive tensor in closed-form.
The numerical efficiency of the approach allows for the use of the GMC as the constitutive model for nonlinear finite ele-
ment analyses. Two-scale simulations of macroscale composite structures considering process depending damage evolution
on the microscale of heterogeneous media becomes feasible.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The central objective of this paper is to present a numerically efficient algorithm for obtaining sufficiently
reliable predictions of the overall constitutive behaviour of unidirectionally fibre reinforced composite
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materials. The highly nonlinear, irreversible and anisotropic course of damage processes, as it is typically
found for composites, is difficult to be described on a purely phenomenological basis. Therefore, use is made
of a computational, micromechanically based approach, originally proposed by Aboudi (1991), which is
known as the Generalized Method of Cells (GMC). The numerical effort of the GMC was reasonably reduced
by Pindera and Bednarcyk (1999) using the degrees of freedom of the discretised microscopic stress field as the
basic unknowns instead of those of the microscopic strain field. More accurate resolutions of the microfields of
stresses and strains are obtainable by the recently published High-Fidelity-GMC (HFGMC), resting on the
principle of asymptotic homogenization, see e.g. Aboudi et al. (2002), Aboudi and Pindera (2004), Bednarcyk
et al. (2004) or Bansal and Pindera (2005). While the original GMC only applies piecewise linear functions to
approximate the microscopic displacement field, the high fidelity approach applies higher order polynomials.
The enhanced accuracy of HFGMC is paid with an appreciable increase of computational effort. Since the
nonlinear homogenization procedure has to be carried out for each grid point of numerical integration and
at each time step during the finite element analysis of composite structures considering process depending
damage evolution, the authors stick to the efficient formulation of the GMC for the time being. An approach
similar to the one presented here is pursued by Lissenden (1999), who uses the GMC to predict the nonlinear
stress responses of metal matrix composites with interfacial decohesion. The model of Lissenden is portrayed
in a more rigorous way introducing an evolving internal variable as a functional of the loading history at the
interface. In addition the current paper approximates the softening of the epoxy resin by discrete cracks along
predeterminate element boundaries of the cells model.

The central aspect of the paper is to present the tangential, homogeneous constitutive tensor of the com-
posite material in conjunction with softening interface models. The tangential stiffness matrix is deduced ana-
lytically from the nonlinear equations of the GMC-model. This special derivation of the homogenized
tangential stiffness matrix has not been presented before. The process depending macroscopic stiffness matrix
is required, if the GMC approach is used as the constitutive model for the finite element analyses of composite
structures.

Within the framework of the reformulated GMC unidirectionally reinforced composites, possessing a peri-
odical microstructure, are considered. Due to this restriction the microstructure can be generated by stringing
together a sequence of unit cells, consisting of a single fibre, embedded into the surrounding matrix material,
see Fig. 1. The generic unit cell is regarded as a representative volume element (RVE) of the heterogeneous
medium. The RVE is subdivided into rectangular subdomains which are referred to as the subcells of the unit
cell. The microscopic displacement field within the RVE is then approximated by linear functions within each
subcell individually. The stress tensors of the subcells are gained from the local displacement fields and the
constitutive tensors of the phases. The continuity of tractions is ensured along all subcell interfaces. Displace-
ment discontinuities are conceded to arise at the common boundaries of neighbouring fibre and matrix sub-
cells in order to model an imperfect bond of the phases. Furthermore, selected interfaces between adjacent
Fig. 1. Top: Macroscopic material point P. Assumed periodical microstructure procreated by a generic cell containing a single fibre.
Bottom: Possible discretisations of the generic unit cell by the GMC applying an increasing number of subcells.
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matrix cells will serve as localisations for the initiation and growth of crack surfaces within the matrix phase.
The continuity conditions imposed on the microfields of stresses and displacements in conjunction with the
constitutive equations of the interface models lead to a system of nonlinear algebraic equations.

Those governing equations of the micromechanical model as well as the components of the macroscopic
tangential constitutive tensor are derived initially in a general sense independently from the specific interface
model under consideration. The only limiting assumption to be fulfilled by the model applied is that the bond-
ing tractions can be expressed in terms of the displacement discontinuities at each interfacial point not exclud-
ing their dependency on some additional internal variables. Therewith, it is possible to implement a variety of
interface descriptions easily. Among others there may be mentioned the models of Needleman (1987, 1991),
Tvergard (1990), Lissenden (1996) or Chaboche et al. (1997) . All these models have in common a certain finite
bond strength and the total loss of the ability to transfer interfacial tractions after the displacement disconti-
nuity has surpassed a distinguished limit point. Matzenmiller and Gerlach (2004) and Matzenmiller and Ger-
lach (2002) combined the GMC with a viscoelastic interface model in order to take into account the rate
dependent flexible bond of glass fibres embedded into a viscoelastic epoxy resin. The irreversible debonding
process of the fibres from the matrix phase was modelled on the basis of the GMC by Bednarcyk and Arnold
(2000a,b), Aboudi and Herakovich (1996) or Lissenden (1996). Therein, the evolution of averaged macro-
scopic stresses was predicted for a unit cell subjected to different macroscopic strains. The paper at hand
not only exerts the GMC to calculate macroscopic stress responses to macroscopic strain processes, but fur-
thermore gives a rigorous derivation of the effective tangential stiffness tensor in closed-form. This feature pre-
destines the proposed implementation to be used as a constitutive material model within the framework of
finite element analyses of composite structures.

2. Micromechanics

The intention of a microscopic view on inhomogeneous media is the analytical determination of the effec-
tive, averaged material properties of an equivalent, homogeneous substitute material, based on the mechanical
properties of the components, their volume fractions and bonding behaviour. The micromechanical modelling
of composites is founded on the concept of a representative volume element (RVE). The RVE is defined as the
spatial subarea of the heterogeneous medium, which is structurally typical for the whole of the composite.
Therefore, it should be large compared to the characteristic lengthscale of the microstructure and small com-
pared to the size of the macrostructure.

The transition from the micro to the macrolevel is done by averaging the microfields of stresses and strains
over the volume of the RVE. Hence, the field variables of a macroscopic material point P are given by the
corresponding volume averaged quantities of the microstructural RVE:
hri ¼ 1

V RVE

Z
V RVE

rdV and h�i ¼ 1

V RVE

Z
V RVE

�dV ð1Þ
The mathematical relation between these average quantities is set up by the fourth order effective tensor C�:
hri ¼ C� : h�i ð2Þ

The introduction of Hill’s phase averaged concentration tensors AðiÞ – see Hill (1963) – constitutes an impor-
tant basis of micromechanics of elastic materials. By the help of these fourth order tensors the average strain
tensors h�(i)i of the individual phases (i) are given as a function of the composite strains h�i:
h�ðiÞi ¼ AðiÞ : h�i ð3Þ

By means of the constitutive tensors CðiÞ, which are assumed to be constant within each phase, the averaged
phase stresses hr(i)i can be computed. By introducing the dimensionless volume fractions c(i) = V(i)/VRVE of
the N different phases, the composite stress tensor hri can be calculated from the weighted sum of the averaged
phase stresses hr(i)i:
hri ¼
XN

i¼1

cðiÞCðiÞ : AðiÞ : h�i ! C� :¼
XN

i¼1

cðiÞCðiÞ : AðiÞ ð4Þ
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In the case of a nonlinear bonding behaviour or the nascency and evolution of cracks, the average phase strain
h�(i)i is a nonlinear process dependent tensor functional of the macroscopic strain tensor h�i:
Fig. 2.
Imperf
h�ðiÞi :¼ GðiÞ½h�i� ð5Þ
The calculation of the rate of Eq. (5) leads to the definition of a tangential concentration tensor ~AðiÞ
d

dt
GðiÞ ¼ h _�ðiÞi ¼ oGðiÞ

oh�i
oh�i
ot

:¼ ~AðiÞ : h _�i ð6Þ
Since the individual phases (i) are still considered to be linear elastic in this paper, the rate of the average stress
tensor can be calculated from
h _ri ¼
XN

i¼1

cðiÞCðiÞ : ~AðiÞ : h _�i ! ~C� :¼
XN

i¼1

cðiÞCðiÞ : ~AðiÞ ð7Þ
The tangential effective tensor ~C� sets up the relation between the rates of the macroscopic strain and stress
tensors:
h _ri ¼ ~C� : h _�i ð8Þ
Hence, the central objective of the micromechanical modelling of damage is to determine the tangential con-
centration tensors ~AðiÞ in order to evaluate Eq. (7).

2.1. The generalized method of cells

One of the fundamental assumptions of the GMC states that the microstructure is built up by double peri-
odically arranged fibres of infinite length embedded into a surrounding homogeneous matrix phase. Hence,
the generic unit cell of the heterogeneous composite consists of a portion of the matrix material, containing
a single fibre, see Fig. 1. As a consequence of this basic assumption the unit cell can be regarded as a repre-
sentative volume element of the composite material.

The location of the macroscopic material point P is given with regard to a cartesian coordinate system x

which is orientated such that the direction of the x1-axis coincides with the direction of the perfectly aligned
fibres, see Fig. 2. A transversal plane perpendicular to the fibres is spanned by the x2- and x3-axes. Subse-
quently, the microstructure is modelled by subdividing the transversal cross section of the unit cell into
Nb · Nc rectangular subcells of which each one is addressed by (bc). The total spatial extension of the unit
cell in x2-direction is denoted by h and in x3-direction by l. The height of the subcell (bc) is given by hb

and its width by lc. Due to the fact that the fibres are assumed to be perfectly aligned and of infinite length,
there is no change of the fine scale architecture in fibre direction. Within the theory of the GMC it holds for
Left: Coarse model of the original method of cells (MOC), consisting of four subcells and two fibre/matrix-interfaces. Right:
ect bond of subcells (11) and (21): traction vector (2)t(11) and displacement jump vector (2)u(11).
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such a material that the model predictions are not affected by the number of subcells in fibre direction. Hence,
the choice of one subcell in fibre direction is sufficient and the length of the cells may be set to unity.

In order to identify the subcell interfaces as well as the related quantities uniquely, we stipulate the follow-
ing notations. Due to the described discretisation of the unit cell all planar surfaces of the cubic subcells are
oriented perpendicular to the macroscopic coordinate system, that is the six outward normal vectors of each
subcell domain are directed parallel to the positive or negative xi-axes, respectively. Now an arbitrary surface I

of subcell (bc) with an outward normal parallel to the positive xi-axis is referred to as (i)I(bc). All appearing
interface parameters and variables will be indicated in the same manner, i.e. they will be indexed with two
superscripts (i)( )(bc). Whereas the quantities of the subcell (bc) itself will be denoted by a single superscript
( )(bc).

The microscopic displacement field u is approximated piecewisely by linear functions uðbcÞ
i of the local coor-

dinates �xðbcÞ within each subcell:
uðbcÞ
i ¼ wðbcÞ

i þ �xðbÞ2 /ðbcÞ
i þ �xðcÞ3 wðbcÞ

i ; i ¼ 1; 2; 3 ð9Þ
wherein the quantities wðbcÞ
i describe the translations of the local coordinate systems �xðbcÞ attached to the centre

of each subcell. The microvariables /ðbcÞ
i and wðbcÞ

i determine the linear expansions of the displacement field
throughout the subcell. By making use of the abbreviations
o1 :¼ o

ox1

¼ o

o�x1

; o2 :¼ o

o�x2

and o3 :¼ o

o�x3

ð10Þ
the displacement functions (9) are derivated with respect to the local coordinate systems to obtain the coor-
dinates of the infinitesimal subcell strain tensor:
�
ðbcÞ
ij ¼ 1

2
ðoiu

ðbcÞ
j þ oju

ðbcÞ
i Þ ð11Þ
The displacement field is assumed to be piecewise linear. Hence, the resulting strains are constant throughout
the subcell and must be equal to the volume averaged subcell strains in each cell with the volume V(bc):
h�ðbcÞ
ij i ¼

1

V ðbcÞ

Z
V bc
�
ðbcÞ
ij dV ¼ �ðbcÞ

ij ð12Þ
The components of the subcell strain tensors, just obtained, are written in vector form in order to make use of
Voigt’s notation:
h�ðbcÞi ¼ fh�ðbcÞ
11 ih�

ðbcÞ
22 ih�

ðbcÞ
33 ih�

ðbcÞ
23 ih�

ðbcÞ
31 ih�

ðbcÞ
12 ig

T ð13Þ
The material properties of the phases enter the model by assigning the matrix representations of the constitu-
tive tensors to the corresponding subcells, i.e. we set C(bc) = Cfibre for the fibre cells and C(bc) = Cmatrix for all
matrix cells.

With the stiffness matrices of the phases being given, the average subcell stress tensor is expressed in vector
notation:
hrðbcÞi ¼ fhrðbcÞ
11 ihr

ðbcÞ
22 ihr

ðbcÞ
33 ihr

ðbcÞ
23 ihr

ðbcÞ
31 ihr

ðbcÞ
21 ig

T ð14Þ
and is computed immediately from the assumption of linear elasticity:
hrðbcÞi ¼ CðbcÞh�ðbcÞi ð15Þ
The stress and displacement fields have to fulfil simplified equilibrium and continuity conditions at all subcell
boundaries. The continuity of the displacement field is formulated in terms of the surface averaged local dis-
placement functions given by Eq. (9) of two adjacent subcells. This leads to
ð2Þsujt
ðbcÞ ¼

Z lc=2

�lc=2

Z þ1=2

�1=2

uðb̂cÞ
j j�xðb̂Þ

2
¼�hb̂=2

dx1 d�xðb̂cÞ
3 ¼ �

Z lc=2

�lc=2

Z þ1=2

�1=2

uðbcÞ
j j�xðbÞ

2
¼hb=2

dx1 d�xðbcÞ
3 ð16Þ
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with b̂ ¼ bþ 1 and j = 1,2,3 for interfaces (2)I (bc) and to
ð3Þsujt
ðbcÞ ¼

Z hb=2

�hb=2

Z þ1=2

�1=2

uðbĉÞ
j j�xðĉÞ

3
¼�lĉ=2

dx1 d�xðbĉÞ
2 ¼ �

Z hb=2

�hb=2

Z þ1=2

�1=2

uðbcÞ
j j�xðcÞ

3
¼lc=2

dx1 d�xðbcÞ
2 ð17Þ
with ĉ ¼ cþ 1 and j = 1,2,3 for interfaces (3)I(bc). The discontinuities (i)sujb(bc) have to vanish for all fibre/fibre
subcell interfaces and those matrix/matrix interfaces that do not serve as crack surfaces. The three disconti-
nuities (i)sujb(bc) of the interface (i)I(bc) are compiled by the jump vector
ðiÞuðbcÞ ¼ ðiÞsujt
ðbcÞðiÞe

ðbcÞ
j ð18Þ
In the subsequent steps all appearing interfacial quantities need to be described in a local basis system. There-
fore, we introduce one orthonormal (n, t,b)-coordinate system for each of the imperfectly bonded subcell inter-
faces as it is indicated for (2)I(11) on the right hand side of Fig. 2. The outward normal direction is defined by
the unit vector en. The plane of the interface itself is given by the two tangential unit vectors et and eb. By
means of Fig. 2 it is given as
ð2ÞeðbcÞ
n ke2;

ð2ÞeðbcÞ
t ke3;

ð2Þe
ðbcÞ
b ke1 ð19Þ
and analogously it holds that
ð3ÞeðbcÞ
n ke3;

ð3ÞeðbcÞ
t ke1;

ð3Þe
ðbcÞ
b ke2 ð20Þ
Hence, the displacement jump vectors (18) depend on the basis of the local systems as follows:
ð2ÞuðbcÞ ¼

ð2Þsunt
ðbcÞ

ð2Þsutt
ðbcÞ

ð2Þsubt
ðbcÞ

8><
>:

9>=
>; :¼

ð2Þsu2t
ðbcÞ

ð2Þsu3t
ðbcÞ

ð2Þsu1t
ðbcÞ

8><
>:

9>=
>; ð21Þ
and
ð3ÞuðbcÞ ¼

ð3Þsunt
ðbcÞ

ð3Þsutt
ðbcÞ

ð3Þsubt
ðbcÞ

8><
>:

9>=
>; :¼

ð3Þsu3t
ðbcÞ

ð3Þsu1t
ðbcÞ

ð3Þsu2t
ðbcÞ

8><
>:

9>=
>; ð22Þ
By postulating the continuity of displacements on the basis of Eqs. (16), (17), (21) and (22), the following Eqs.
(23)–(28) are induced. The ranges of the subcell indices are b ¼ 1; 2; . . . ;N b ¼ 1;N b and c ¼ 1; 2; . . . ;
N c ¼ 1;Nc. For a detailed derivation see Aboudi (1993).
h�ðbcÞ
11 i ¼ h�11i; b ¼ 1;Nb; c ¼ 1;N c ð23Þ
XNb

b¼1

hbh�ðbcÞ
22 i þ ð2Þsu2t

ðbcÞ ¼ hh�22i; c ¼ 1;N c ð24Þ

XN c

c¼1

lch�ðbcÞ
33 i þ ð3Þsu3t

ðbcÞ ¼ lh�33i; b ¼ 1;Nb ð25Þ

XNb

b¼1

hbh�ðbcÞ
12 i þ ð2Þsu1t

ðbcÞ ¼ hh�12i; c ¼ 1;N c ð26Þ

XNb

b¼1

lch�ðbcÞ
13 i þ ð3Þsu1t

ðbcÞ ¼ lh�13i; b ¼ 1;Nb ð27Þ

XNb

b¼1

XN c

c¼1

hblch�ðbcÞ
23 i þ lc

ð2Þsu3t
ðbcÞ þ hb

ð3Þsu2t
ðbcÞ ¼ hlh�23i ð28Þ
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The equilibrium condition at the cell interfaces requires the continuity of tractions, which is ensured by enforc-
ing the average subcell stresses of neighbouring cells to meet the following equalities:
hrðbcÞ
2j i ¼ hr

ðb̂cÞ
2j i; c ¼ 1;N c; b̂ ¼

bþ 1; b < N b

1; b ¼ N b

�

hrðbcÞ
3j i ¼ hr

ðbĉÞ
3j i; b ¼ 1;N b; ĉ ¼

cþ 1; c < N c

1; c ¼ N c

� ð29Þ
The stress continuity equations (29) enforce piecewisely uniform microstress fields throughout the cells model
of the RVE. Since those subcell clusters, supporting the (spatial) constant stresses, are determined a priori by
Eq. (29), the following mesostress quantities Tij are defined by Pindera and Bednarcyk (1999):
T ðcÞ21 :¼ hrð1cÞ
21 i ¼ hr

ð2cÞ
21 i ¼ � � � ¼ hr

ðNbcÞ
21 i; c ¼ 1;N c

T ðcÞ22 :¼ hrð1cÞ
22 i ¼ hr

ð2cÞ
22 i ¼ � � � ¼ hr

ðNbcÞ
22 i; c ¼ 1;N c

T ðcÞ23 :¼ hrð1cÞ
23 i ¼ hr

ð2cÞ
23 i ¼ � � � ¼ hr

ðNbcÞ
23 i; c ¼ 1;N c

T ðbÞ33 :¼ hrðb1Þ
33 i ¼ hr

ðb2Þ
33 i ¼ � � � ¼ hr

ðbN cÞ
33 i; b ¼ 1;Nb

T ðbÞ31 :¼ hrðb1Þ
31 i ¼ hr

ðb2Þ
31 i ¼ � � � ¼ hr

ðbN cÞ
31 i; b ¼ 1;Nb

T ðbÞ32 :¼ hrðb1Þ
32 i ¼ hr

ðb2Þ
32 i ¼ � � � ¼ hr

ðbN cÞ
32 i; b ¼ 1;Nb

ð30Þ
The variables Tij stand for the average stresses in the subcell rows b and columns c, respectively. Due to the
symmetry of the stress tensor a further identification of stresses follows from Eqs. (30)3 and (30)6, namely
T 23 :¼ T ðcÞ23 ¼ T ðbÞ32 ð31Þ

for all arbitrary pairings of b and c. Finally, the stresses T ðbcÞ

11 :¼ hrðbcÞ
11 i are introduced in order to unify the

further on notations. Hence, the total number of stress variables Tij amounts to NbNc + 2(Nb + Nc) + 1, which
equals to the total count of displacement relations (23)–(28). By assuming a linear elastic constitutive behav-
iour for each component of the composite, i.e.
h�ðbcÞ
ij i ¼ SðbcÞ

ijkl hr
ðbcÞ
kl i ð32Þ
the subcell strains h�ðbcÞ
ij i in Eqs. (23)–(28) can be replaced by the subcell stresses hrðbcÞ

ij i and compliances SðbcÞ
ijkl as

it will be deduced next. The constitutive Eq. (32) reads in vector–matrix-notation as
h�ðbcÞi ¼ SðbcÞhrðbcÞi ()

h�ðbcÞ
11 i
h�ðbcÞ

22 i
h�ðbcÞ

33 i
h�ðbcÞ

23 i
h�ðbcÞ

31 i
h�ðbcÞ

21 i

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
¼

S
ðbcÞ
11 S

ðbcÞ
12 S

ðbcÞ
13 0 0 0

S
ðbcÞ
21 S

ðbcÞ
22 S

ðbcÞ
23 0 0 0

S
ðbcÞ
31 S

ðbcÞ
32 S

ðbcÞ
33 0 0 0

0 0 0 S
ðbcÞ
44 0 0

0 0 0 0 S
ðbcÞ
55 0

0 0 0 0 0 S
ðbcÞ
66

2
66666666664

3
77777777775

hrðbcÞ
11 i
hrðbcÞ

22 i
hrðbcÞ

33 i
hrðbcÞ

23 i
hrðbcÞ

31 i
hrðbcÞ

21 i

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð33Þ
The entries of the subcell stress vector hrðbcÞi in Eq. (33) can be identified with the stresses Tij just defined in
Eqs. (30) and (31):
hrðbcÞiT ¼ hrðbcÞ
11 i hr

ðbcÞ
22 i hr

ðbcÞ
33 i hr

ðbcÞ
23 i hr

ðbcÞ
31 i hr

ðbcÞ
21 i

n o
¼ T ðbcÞ

11 T ðcÞ22 T ðbÞ33 T 23 T ðbÞ31 T ðcÞ21

n o
ð34Þ
Since the method of cells discretises the fibre direction of the RVE with a single subdivision of unit length,
all subcell strains h�ðbcÞ

11 i are equal to the macroscopic strain h�11i as it is stated by Eq. (23). Therefore, by
combining the first of Eqs. (33) with Eq. (34), it follows immediately:
h�11i ¼ h�ðbcÞ
11 i ¼ S

ðbcÞ
11 T ðbcÞ

11 þ S
ðbcÞ
12 T ðcÞ22 þ S

ðbcÞ
13 T ðbÞ33 ð35Þ
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The subcell stresses T ðbcÞ
11 are readily obtained from Eq. (35):
T ðbcÞ
11 ¼

1

S
ðbcÞ
11

h�11i �
S
ðbcÞ
12

S
ðbcÞ
11

T ðcÞ22 �
S
ðbcÞ
13

S
ðbcÞ
11

T ðbÞ33 ; b ¼ 1;N b; c ¼ 1;N c ð36Þ
The strain h�11i in Eq. (36) is part of the given displacement boundary conditions imposed on the RVE. Hence,
by utilising the NbNc displacement conditions (23) to receive the relations (36), the stresses T ðbcÞ

11 have become
dependent variables and the number of unknown stresses Tij is accordingly reduced to NT = 2(Nb + Nc) + 1. If
the constitutive Eq. (33) are considered together with the stresses T ðbcÞ

11 in Eq. (36), the normal strains in the
transversal planes are calculated to
h�ðbcÞ
22 i ¼

S
ðbcÞ
21

S
ðbcÞ
11

h�11i þ S
ðbcÞ
22 �

S
ðbcÞ
21 S

ðbcÞ
12

S
ðbcÞ
11

 !
T ðcÞ22 þ S

ðbcÞ
23 �

S
ðbcÞ
21 S

ðbcÞ
13

S
ðbcÞ
11

 !
T ðbÞ33 ð37Þ
and
h�ðbcÞ
33 i ¼

S
ðbcÞ
31

S
ðbcÞ
11

h�11i þ S
ðbcÞ
32 �

S
ðbcÞ
31 S

ðbcÞ
12

S
ðbcÞ
11

 !
T ðcÞ22 þ S

ðbcÞ
33 �

S
ðbcÞ
31 S

ðbcÞ
13

S
ðbcÞ
11

 !
T ðbÞ33 ð38Þ
Finally, the shear strains of the subcells result from (33) and (34):
h�ðbcÞ
23 i ¼ S

ðbcÞ
44 T 23; h�ðbcÞ

31 i ¼ S
ðbcÞ
55 T ðbÞ31 ; h�ðbcÞ

21 i ¼ S
ðbcÞ
66 T ðcÞ21 ð39Þ
Now, the microstrains h�ðbcÞ
ij i in the continuity conditions (24)–(28) can be substituted by the stresses Tij and

the compliances SðbcÞ
ij on the basis of Eqs. (37)–(39). By means of the definitions
S
ðbcÞ
23 :¼ hb S

ðbcÞ
23 �

S
ðbcÞ
12 S

ðbcÞ
13

S
ðbcÞ
11

 !
; S

ðcÞ
22 :¼

XNb

b¼1

hb S
ðbcÞ
22 �

S
ðbcÞ
12 S

ðbcÞ
12

S
ðbcÞ
11

 !

S
ðbcÞ
32 :¼ lc S

ðbcÞ
23 �

S
ðbcÞ
12 S

ðbcÞ
13

S
ðbcÞ
11

 !
; S

ðbÞ
33 :¼

XN c

c¼1

lc S
ðbcÞ
33 �

S
ðbcÞ
13 S

ðbcÞ
13

S
ðbcÞ
11

 !

S
ðcÞ
12 :¼

XNb

b¼1

hb
S
ðbcÞ
12

S
ðbcÞ
11

; S
ðbÞ
13 :¼

XN c

c¼1

lc
S
ðbcÞ
13

S
ðbcÞ
11

ð40Þ
and
S44 :¼
XNb

b¼1

XN c

c¼1

hblcS
ðbcÞ
44 ; S

ðbÞ
55 :¼

XN c

c¼1

lcS
ðbcÞ
55 ; S

ðcÞ
66 :¼

XNb

b¼1

hbS
ðbcÞ
66 ð41Þ
the reformulated displacement relations (24)–(28) read as follows:
hh�22i � S
ðcÞ
12 h�11i ¼ S

ðcÞ
22 T ðcÞ22 þ

XNb

b¼1

S
ðbcÞ
23 T ðbÞ33 þ

XNb

b¼1

ð2Þsu2t
ðbcÞ
; c ¼ 1;N c ð42Þ

lh�33i � S
ðbÞ
13 h�11i ¼ S

ðbÞ
33 T ðbÞ33 þ

XN c

c¼1

S
ðbcÞ
32 T ðcÞ22 þ

XN c

c¼1

ð3Þsu3t
ðbcÞ
; b ¼ 1;N b ð43Þ

hh�12i ¼ S
ðcÞ
66 T ðcÞ21 þ

XNb

b¼1

ð2Þsu1t
ðbcÞ
; c ¼ 1;N c ð44Þ

lh�13i ¼ S
ðbÞ
55 T ðbÞ31 þ

XN c

c¼1

ð3Þsu1t
ðbcÞ
; b ¼ 1;Nb ð45Þ

hlh�23i ¼ S44T 23 þ
XNb

b¼1

XN c

c¼1

ðlc
ð2Þsu3t

ðbcÞ þ hb
ð3Þsu2t

ðbcÞÞ ð46Þ
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The NT = 2(Nb + Nc) + 1 revised Eqs. (42)–(46) are summarised by the matrix expression:
STþDuû ¼ Kh�i ð47Þ
Herein, the vector T contains the NT unknown stresses Tij ordered as
TT :¼
T ðcÞ22 . . . jT ðbÞ33 . . . jT ðcÞ21 . . . jT ðbÞ31 . . . jT 23

7! 7! 7! 7!
c ¼ 1;N c b ¼ 1;N b c ¼ 1;N c b ¼ 1;N b

8><
>:

9>=
>; ð48Þ
The compliance factors defined by the sets of Eqs. (40) and (41) build up the non-symmetric NT · NT matrix S.
The NT · 6 matrix K is given by the total height h and width l of the unit cell as well as the terms S

ðcÞ
12 and S

ðbÞ
13

given in Eq. (40). The displacement jump vectors (i)u(bc) 5 0 for the imperfectly bonded or cracked interfaces
considered below are extracted with the incidence matrix from the set of all possible jump discontinuities at
all subcell interfaces in order to constitute the hyper vector û:
û ¼

ð2Þuð11Þ

..

.

ð2ÞuðNbN cÞ

ð3Þuð11Þ

..

.

ð3ÞuðNbN cÞ

2
66666666664

3
77777777775

ð49Þ
The incidence matrix is given as an example in Appendix A explicitly for the coarse model in Fig. 2 with
four subcells and the two flexible interfaces (2)I(11) and (3)I(11) between the fibre and matrix cells. Generally, a
total number of NI imperfectly bonded or cracked interfaces is assumed to exist within the RVE, causing the
dimension of the resulting hyper vector û to be 3NI. The term Du in Eq. (47) represents a matrix that allocates
the displacement jumps û to the appropriate continuity (42)–(46).

In the case of debonding or matrix cracking another 3NI equations are set up to express the interfacial trac-
tions t as nonlinear functions f of the displacement jump vectors
ðiÞtðbcÞ ¼ fððiÞuðbcÞ; ðiÞqðbcÞÞ ð50Þ
and some dependently evolving internal variables q, which will be defined in Section 3 explicitly and computed
from process depending functionals FtP0ðtÞ:
ðiÞqðbcÞðtÞ :¼FððiÞuðbcÞðsÞÞs¼t
s¼0 ð51Þ
Since the continuity of tractions is claimed across the subcell boundaries, the interfacial traction vectors (i)t(bc)

of Eq. (50) must be equal to the stress vectors hrðbcÞiðiÞeðbcÞ
n on the subcell surfaces. They read in matrix notation

for the special case of Eqs. (19), (20) and (34) as
ð2ÞtðbcÞ ¼

ð2ÞtðbcÞ
n

ð2ÞtðbcÞ
t

ð2ÞtðbcÞ
b

8><
>:

9>=
>; ¼

hrðbcÞ
22 i
hrðbcÞ

23 i
hrðbcÞ

21 i

8>><
>>:

9>>=
>>; ¼

T ðcÞ22

T 23

T ðcÞ21

8><
>:

9>=
>; ð52Þ
and
ð3ÞtðbcÞ ¼

ð2ÞtðbcÞ
n

ð2ÞtðbcÞ
t

ð2ÞtðbcÞ
b

8><
>:

9>=
>; ¼

hrðbcÞ
33 i
hrðbcÞ

31 i
hrðbcÞ

32 i

8>><
>>:

9>>=
>>; ¼

T ðbÞ33

T 23

T ðbÞ31

8><
>:

9>=
>; ð53Þ
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There is one equation (50) for each flexible or cracked interface (i)I(bc) of the model. In order to render them by
a single matrix equation, the following quantities are defined:
t̂ :¼

ð2Þtð11Þ

..

.

ð2ÞtðNbN cÞ

ð3Þtð11Þ

..

.

ð3ÞtðNbN cÞ

2
66666666664

3
77777777775
; f̂ :¼

ð2Þfð11Þ

..

.

ð2ÞfðNbN cÞ

ð3Þfð11Þ

..

.

ð3ÞfðNbN cÞ

2
66666666664

3
77777777775
; q̂ :¼ q

ð2Þqð11Þ

..

.

ð2ÞqðNbN cÞ

ð3Þqð11Þ

..

.

ð3ÞqðNbN cÞ

2
66666666664

3
77777777775

ð54Þ
where is the incidence matrix, already used in Eq. (49) to define û. q is an incidence matrix, given in
Appendix A, to form the NI-dimensional vector q̂ in which all damage variables (i)q(bc) are stored. Obviously,
the hyper vectors f̂ and t̂ possess the same dimension 3NI as the previously defined vector û. The hyper vector t̂

comprises all stress vectors on flexible or cracked interfaces. Due to Eqs. (52) and (53) the vector t̂ can also be
written as
t̂ ¼ DT T ð55Þ
by making use of the incidence matrix DT that maps the stress vector T onto the vector t̂. The size of the non-
symmetric, non-quadratic matrix DT depends on both the number of the 3NI displacement jumps and the
number of the NT stresses T. By using the definitions (54) and (55), the relations (50) can be expressed as a
set of nonlinear equations which – together with Eq. (47) – completely describe the micromechanical model
mathematically for the unknowns T and û:
STþDuû ¼ Kh�i
DT T� f̂ðû; q̂Þ ¼ 0

ð56Þ
The column vector q̂ of the internal variables is determined from the process history of the displacement jumps
û – see Eqs. (51). The macroscopic strain h�i is usually given as a function of time t and serves in the right hand
side as the external process variable for the micromechanical analysis.

2.2. Average stresses and tangential stiffness matrix

After having found the solution fT; ûg of the system (56) at a certain point of time, say t = kt: the macro-
scopic stress vector (kr) results from the volume averaged sum of the subcell stresses:
hrijkt
¼ 1

hl

XNb

b¼1

XN c

c¼1

hblchkrðbcÞi ð57Þ
Omitting the superscript k for convenience and considering Eqs. (34) and (36), the stress equation (57) merge
into
hr11i ¼
XNb

b¼1

XN c

c¼1

hblc

hl
1

S
ðbcÞ
11

h�11i �
S
ðbcÞ
12

S
ðbcÞ
11

T ðcÞ22 �
S
ðbcÞ
13

S
ðbcÞ
11

T ðbÞ33

" #
ð58Þ
and
hr22i ¼
XN c

c¼1

lc

l
T ðcÞ22 ; hr33i ¼

XNb

b¼1

hb

h
T ðbÞ33 ;

hr21i ¼
XN c

c¼1

lc

l
T ðcÞ21 ; hr31i ¼

XNb

b¼1

hb

h
T ðbÞ31 ; hr23i ¼ T 23

ð59Þ
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In order to use the GMC as a constitutive model for the finite element analyses of engineering structures, the
homogenized tangential stiffness of the composite material is required in addition to the macrostress re-
sponses. The derivation of the stiffness matrix in conjunction with softening interface models has not yet been
given. It is deduced here for the efficiently reformulated version of the GMC. The actual rate of the macro-
stress hri at time kt reads
dhri
dt

����
kt

¼ ohri
oh�i

����
kt

oh�i
ot

����
kt

ð60Þ
Hence, the effective tangential stiffness matrix can be defined as
k ~C� :¼ ohri
oh�i

����
kt

ð61Þ
The matrix ~C� maps the rate of the macrostrains h _�i to the one of the macrostresses h _ri.

kh _ri ¼ k ~C�kh _�i ð62Þ
The tangential constitutive matrix ~C� can be computed analytically as will be discussed next. Since the mac-
rostress hri is received as the weighted sum of the stresses T in Eqs. (58) and (59), the change of T with respect
to the macrostrain h�i shall be computed. Therefore, the system of equation (56) needs to be differentiated with
respect to the macrostrains h�i, i.e.
S
oT

oh�i þDu
oû

oh�i ¼ K
oh�i
oh�i

DT
oT

oh�i �
of̂

oû

oû

oh�i ¼ 0

ð63Þ
Solving the upper part of Eq. (63) for oT
oh�i, the first equation results to
oT

oh�i ¼ S�1 K�Du
oû

oh�i

� �
ð64Þ
By making use of the banded matrix F̂, defined by the gradients of the constitutive functions (i)f(bc) for the
interface tractions assembled in Eq. (54)2:
F̂ :¼ of̂

ous
¼

½ð2Þfð11Þrsut�

. .
.

½ð2ÞfðNbN cÞrsut��
½ð3Þfð11Þrsut��

. .
.

½ð3ÞfðNbN cÞrsut��

2
666666666664

3
777777777775

T ð65Þ
and introducing Eq. (64) into the lower part of (63), one obtains
½DT S�1Du þ F̂� oû

oh�i ¼ DT S�1K ð66Þ
The particular entries of the matrix F̂ will be given in Sections 3.1 and 3.2, where the constitutive models for
the interface assumptions are introduced. The expression (66) represents a linear system of equations with six
different right hand sides for the so far unknown matrix oû=oh�i. Substituting the solution of (66) into the
upper part of Eq. (63) one finds:
oT

oh�i ¼ S�1½I�Du½DT S�1Du þ F̂��1
DT S�1�K ð67Þ
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The resulting NT · 6 matrix (67) contains the partial derivatives oTij/oh�kli in the following order:
oT

oh�i ¼

oT ð1Þ
22

oh�11i
oT ð1Þ

22

oh�22i
oT ð1Þ

22

oh�33i
oT ð1Þ

22

oh�23i
oT ð1Þ

22

oh�13i
oT ð1Þ

22

oh�12i

..

. . .
.

oT
ðNcÞ
22

oh�11i
oT
ðNcÞ
22

oh�22i
oT
ðNcÞ
22

oh�33i
oT
ðNcÞ
22

oh�23i
oT
ðNcÞ
22

oh�13i
oT
ðNcÞ
22

oh�12i

oT ð1Þ
33

oh�11i
oT ð1Þ

33

oh�22i
oT ð1Þ

33

oh�33i
oT ð1Þ

33

oh�23i
oT ð1Þ

33

oh�13i
oT ð1Þ

33

oh�12i

..

. . .
.

oT
ðNbÞ
33

oh�11i
oT
ðNbÞ
33

oh�22i
oT
ðNbÞ
33

oh�33i
oT
ðNbÞ
33

oh�23i
oT
ðNbÞ
33

oh�13i
oT
ðNbÞ
33

oh�12i

oT ð1Þ
12

oh�11i
oT ð1Þ

12

oh�22i
oT ð1Þ

12

oh�33i
oT ð1Þ

12

oh�23i
oT ð1Þ

12

oh�13i
oT ð1Þ

12

oh�12i

..

. . .
.

oT
ðNcÞ
12

oh�11i
oT
ðNcÞ
12

oh�22i
oT
ðNcÞ
12

oh�33i
oT
ðNcÞ
12

oh�23i
oT
ðNcÞ
12

oh�13i
oT
ðNcÞ
12

oh�12i

oT ð1Þ
13

oh�11i
oT ð1Þ

13

oh�22i
oT ð1Þ

13

oh�33i
oT ð1Þ

13

oh�23i
oT ð1Þ

13

oh�13i
oT ð1Þ

13

oh�12i

..

. . .
.

oT
ðNbÞ
13

oh�11i
oT
ðNbÞ
13

oh�22i
oT
ðNbÞ
13

oh�33i
oT
ðNbÞ
13

oh�23i
oT
ðNbÞ
13

oh�13i
oT
ðNbÞ
13

oh�12i
oT 23

oh�11i
oT 23

oh�22i
oT 23

oh�33i
oT 23

oh�23i
oT 23

oh�13i
oT 23

oh�12i

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

ð68Þ
It is pointed out that the terms oT ðbcÞ
11 =oh�kli are not given by the result (67), but can be readily computed from

Eq. (36):
oT ðbcÞ
11

oh�kli
¼ 1

S
ðbcÞ
11

oh�11i
oh�kli

� S
ðbcÞ
12

S
ðbcÞ
11

oT ðcÞ22

oh�kli
� S

ðbcÞ
13

S
ðbcÞ
11

oT ðbÞ33

oh�kli
ð69Þ
Hence, the elements of the stiffness matrix ~C� follow from the stress equations (58) and (59) together with Eqs.
(68) and (69):
hr11i ¼
XN c

c¼1

XNb

b¼1

hblc

hl
T ðbcÞ

11 ! ~C�11kl ¼
ohr11i
oh�kli

¼
XN c

c¼1

XNb

b¼1

hblc

hl
oT ðbcÞ

11

oh�kli

hr22i ¼
XN c

c¼1

lc

l
T ðcÞ22 ! ~C�22kl ¼

ohr22i
oh�kli

¼
XN c

c¼1

lc

l
oT ðcÞ22

oh�kli

hr33i ¼
XNb

b¼1

hb

h
T ðbÞ33 ! ~C�33kl ¼

ohr33i
oh�kli

¼
XNb

b¼1

hb

h
oT ðbÞ33

oh�kli

hr23i ¼ T 23 ! ~C�23kl ¼
ohr23i
oh�kli

¼
XN c

c¼1

XNb

b¼1

hblc

hl
oT 23

oh�kli

hr31i ¼
XNb

b¼1

hb

h
T ðbÞ31 ! ~C�31kl ¼

ohr31i
oh�kli

¼
XNb

b¼1

hb

h
oT ðbÞ31

oh�kli

hr21i ¼
XN c

c¼1

lc

l
T ðcÞ21 ! ~C�21kl ¼

ohr21i
oh�kli

¼
XN c

c¼1

lc

l
oT ðcÞ21

oh�kli

ð70Þ
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The tangential stiffness terms in Eqs. (70) are assembled to the matrix ~C� in the following form:
Fig. 3.
interfa
½~Cij� ¼

~C�1111
~C�1122

~C�1133
~C�1123

~C�1131
~C�1121

~C�2211
~C�2222

~C�2233
~C�2223

~C�2231
~C�2221

~C�3311
~C�3322

~C�3333
~C�3323

~C�3331
~C�3321

~C�2311
~C�2322

~C�2333
~C�2323

~C�2331
~C�2321

~C�3111
~C�3122

~C�3133
~C�3123

~C�3131
~C�3121

~C�2111
~C�2122

~C�2133
~C�2123

~C�2131
~C�2121

2
66666666664

3
77777777775

ð71Þ
Eq. (71) represents the matrix notation of the constitutive tensor ~C� which is defined on the right of Eq. (7) and
hence depends implicitly on the tangential strain concentration tensors ~AðiÞ of the phases i. It is emphasised
that the matrix ~C� is fully occupied by non-zero elements for general strain processes h�i. This is due to
the coupling of the normal and shear stiffnesses of the interface models described in the following Section
3. The immanent lack of normal-shear-coupling, which is characteristic for the GMC-model, is herewith
not cancelled: pure shear strain processes still only raise shear stress responses and pure normal strain pro-
cesses result to normal stresses only. But for combined loading histories, the evolution of the normal macro-
stress responses is affected by the macroshear strains and vice versa as long as the damage evolves in the
flexible interfaces (i.e. _q > 0). This two way interference is caused by the coupling of the normal and shear
interface stiffnesses, depending explicitly on the damage variable q, which is itself a functional of the history
of both the normal and the tangential displacement discontinuities.

3. Interface models

As mentioned in the introduction a variety of interface models is available. In this section the models of
Chaboche et al. (1997) and Lissenden (1996) will be discussed in detail. The latter model is simular to the
one of Chaboche but comes without any initial compliance of the interface before softening of the bond takes
place, see Fig. 3. Hence, it is not only recommended to model perfect fibre–matrix-bonding but also to account
for the development of matrix cracks at the intrinsic inner surfaces along the subcell boundaries of the GMC-
Model as well. Lissenden (1999) already implemented the interface model given below into the original GMC
for metal matrix composites. In this paper a more rigorous portray of Lissendens model is given. An evolving
internal variable is introduced as a functional of the loading history. This is an important feature if cyclic load-
ing processes are to be considered. The linearization of the two interface models are given for loading and
unloading paths, since they are needed for the iterative solution of the nonlinear GMC-model as wells as
for the computation of the tangential stiffness matrix.
Normalised tractions under pure mode I conditions versus normalised interface separation: (a) model of Chaboche with initial
ce compliance, (b) model of Lissenden without initial interface compliance before debonding.
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3.1. Interface model with initial compliance

The displacement jumps are pruned of their dimension by dividing them by some characteristic length
parameters dn, dt and db, respectively. Based on the normalised displacement jumps, a history function over
past times s 2 [�1, t] is introduced in terms of the weighted norm defined as follows:
Fig. 4.
functio
kuðsÞk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxf0; sunðsÞtg

dn

� �2

þ sutðsÞt
dt

� �2

þ subðsÞt
db

� �2
s

ð72Þ
The term max {0,sun(s)b} states that only the positive normal component sunb for tension contributes to the
norm, that is
maxf0; suntg ¼
sunt; sunt > 0

0; sunt 6 0

�
ð73Þ
By this restriction a compressive normal traction does not expedite any damage propagation. Because of the
history dependence the damage variable q 2 [0, 1] is defined by means of the history functional of the past
deformation process in order to describe irreversible damage due to debonding or cracking:
qðtÞ ¼FðuðsÞÞs¼t
sP�1 :¼ min max

s6t
kuðsÞk; 1

� 	
ð74Þ
By its definition the internal variable q measures and stores the maximum displacement discontinuity that has
ever occurred during past times s 6 t, see Fig. 4. The value q = 0 stands for the undamaged initial configura-
tion. If q approaches 1, total fracture of the bond between the phases occurs. Thus, q is monotonously increas-
ing and bounded above.

The maximum of the achieveable normal traction tn under pure mode I conditions is denoted by rmax: see
Fig. 3a. Similarly, under pure mode II or III conditions the maximum of the tangential tractions tt or tb is
denoted by smax. The ratio of the shear-to-normal strength is expressed by a = smax/rmax. The actual traction
vector t is given by the function f(u,q):
t ¼ fðu; qÞ ¼
fnðu; qÞ
ftðu; qÞ
fbðu; qÞ

8><
>:

9>=
>; ¼ F ðqÞ

sunt

dn

a sutt

dt

a subt

db

8>><
>>:

9>>=
>>; ð75Þ
The term F(q), which depends explicitly on the damage variable q, is defined as
F ðqÞ ¼ 27

4
rmaxð1� qÞ2 ð76Þ
The factor 27/4 in Eq. (76) ensures that in the case of pure mode I conditions the normalised cubic traction-
separation-function fn(u,q)/rmax – see Fig. 3a – possesses the maximum value 1 as well as a horizontal tangent
for the normalised displacement un/dn = 1. The term F(q) can be interpreted as the secant stiffness of the
(a) Evolution of the damage variable q over past times s 6 t depending on the history function ku(s)k. (b) Interface stiffness
n F(q).
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interface model. In the case of a monotonous initial loading of the interface, the stiffness F(q) depends implic-
itly on the current interface discontinuity vector u, because q(t) equals ku(t)k according to Eq. (74), see Fig. 4a.
During unloading the scalar q is fixed and the stiffness F(q) is kept constant. In the case of compression on the
interface the phases may not undergo an unrealistic interpenetration. Therefore, Chaboche et al. (1997) sug-
gests to set the stiffness modulus K of the interface material to a reasonable high numerical value. The con-
stitutive expression for the normal traction tn of Eq. (75) is replaced by
fnðu; qÞ ¼
K sunt

dn
8q if tn < 0

F ðqÞ sunt

dn
8q if tn P 0

(
ð77Þ
Since the gradient of the traction function f is needed for the iterative solution of Eqs. (56) as well as for the
matrix F̂ according to Eq. (65), it will be derived here for it was not given by Chaboche et al. (1997) explicitly.
Defining the nabla operator as
rsut :¼ o

osunt

o

osutt

o

osubt

� 	
ð78Þ
and applying it to the constitutive function f in Eq. (75) for the traction vector t, the matrix notation of the
gradient f � $sub for combined tension and shear is given as
frsut ¼

oF ðqÞ
osunt

sunt

dn
þ F ðqÞ

dn

oF ðqÞ
osutt

sunt

dn

oF ðqÞ
osubt

sunt

dn

a
oF ðqÞ
osunt

sutt

dt
a

oF ðqÞ
osutt

sutt

dt
þ F ðqÞ

dt

� �
a
oF ðqÞ
osubt

sutt

dt

a
oF ðqÞ
osunt

subt

db
a
oF ðqÞ
osutt

subt

db
a

oF ðqÞ
osubt

subt

db
þ F ðqÞ

db

� �

2
66666664

3
77777775

ð79Þ
and in case of interface compression and shear:
frsut ¼
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The interface function F(q) depends implicitly on the displacement jumps and is derivated with respect to the
components of the displacement discontinuity vector at current time t by means of the chain rule:
oF
osunt

����
t

¼ oF
oq

oq
okuk

okuk
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����
t

oF
osutt

����
t
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ð81Þ
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����
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oq
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����
t

The first two partial derivatives, appearing on the right sides of Eqs. (81), read as follows:
oF
oq

����
t

¼ � 27

2
rmaxð1� qÞ ð82Þ

oq
okuk

����
t

¼ oqðtÞ
okuðtÞk ¼

1 if qðtÞ ¼ kukðtÞ ðfirst loadingÞ
0 else ðunloading or reloadingÞ

�
ð83Þ
Due to Eq. (74) the stiffness function F(q) degrades with the actual displacement jumps only in the case of first
loading – see Fig. 4(a) and Eq. (83)1 – otherwise it remains constant as given by Eqs. (83)2 and (82). During



A. Matzenmiller, B. Köster / International Journal of Solids and Structures 44 (2007) 2244–2268 2259
unloading or reloading processes the matrices (79) or (80) only possess constant none zero entries F(q)/dn and
F(q)/dt on their main diagonals. Hence, the unloading and reloading paths follow a secant to the stress–
displacement-curve as depicted by Fig. 3(a). The partial derivatives of the norm of the discontinuity vector
kuk in terms of the components are given by
okuk
osunt

����
t

¼ maxf0; suntg

d2
n
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where h i is the MACAULY bracket in Eq. (84).

3.2. Interface model with initial infinite stiffness

The interface model given by Lissenden (1996) introduces the ductility parameters u0 for the normal direc-
tion and fu0 for the two tangential directions to define the time varying scalar function ku(s)k with �1 6 s 6 t

of the normalised components of the displacement discontinuity vector:
kukðsÞk :¼
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� �2
s

ð87Þ
The parameter f is called the tangential-to-normal ductility ratio. The normal strength is denoted by t0 and the
tangential strength is given as gt0 with the shear-to-normal strength ratio g. The quadratic interaction criterion
of the normalised interface tractions
tv :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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gt0

� �2
s

ð88Þ
is defined to predict the initiation of debonding or crack evolution. As long as tv < 1 the displacement field is
continuous across the interfaces. Once tv has been equal to one, the interfacial traction vector reaches its max-
imal strength and degrades afterwards during first loading with the monotonously increasing displacement dis-
continuities as follows:
t ¼ fðu; qÞ ¼
fnðu; qÞ
ftðu; qÞ
fbðu; qÞ

8><
>:

9>=
>; ¼

t0

u0

F ðqÞ
sunt
g
f sutt
g
f subt

8><
>:

9>=
>; ð89Þ
Herein, the term F(q) may be interpreted as a dimensionless stiffness of the interface. It is assumed to be
F ðqÞ ¼ 1� 3q2 þ 2q3

q
ð90Þ
and to depend on the damage variable q 2 [0,1], which is defined as in Eq. (74) on the basis of Eq. (87) for
ku(s)k as
qðtÞ ¼FðuÞs¼t
sP�1 :¼ min max

s6t
kuðsÞk; 1

� 	
ð91Þ
In the case of a compressive loading, the interpenetration of the phases is prevented by completing the con-
stitutive assumption for the normal component of the traction vector in Eq. (89) by the expression tn ¼ K sunt

u0
,
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where the stiffness modulus K of the interface is set to a reasonable but sufficiently high value. By applying the
nabla operator of Eq. (78) to the traction function f of Eq. (89) the matrix notation of the gradient f � $sub
becomes in the case of combined tension and shear:
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and for combined compression and shear:
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ð93Þ
The partial derivatives, emerging from Eqs. (92) and (93)
oF ðqÞ
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; i ¼ n; t; b ð94Þ
are computed from the following expressions:
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4. Numerical results

The current paper only presents parametric studies in order to solely investigate the influence of the inter-
face parameters on the overall stress responses qualitatively. Since it is well known that some resin materials
show nonlinearly elastic behaviour in shear – see e.g. Hahn and Tsai (1973) – it is intended to enhance the
GMC-model by first implementing a nonlinear-elastic constitutive model for the matrix cells before the inter-
face parameters are identified. The important latter task is postponed to a forthcoming paper that will ded-
icate to the validation of the enhanced GMC-Model using the experimental data of the so called World

Wide Failure Exercise – see Soden and Hinton (1998)
In the following a unidirectionally reinforced resin with glass fibres is investigated as a composite material.

Both material phases, utilised for the subsequent numerical analyses, are assumed to behave linearly elastic
and isotropic. The epoxy matrix material is characterised by its shear modulus Gm = 1.3 GPa and bulk mod-
ulus Km = 3.8 GPa. The reinforcing glass fibres possess a diameter of df = 6 lm. Its shear modulus is assumed
to Gf = 34.0 GPa and its bulk modulus to Kf = 46.6 GPa. The volume fraction cf = 0.45 of the fibres remains
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unchanged. The ratios a and g of shear-to-normal strength as well as the tangential-to-normal ratios dn/dt and
f of the ductility of the interfaces are chosen to be equal to one for both interface models. The absolute values
of the interface strengths rmax and tn and the ductility parameters u0 and dn are altered. It is well known from
experimental testings of fibre reinforced epoxy materials that the onset of fibre/matrix debonding is usually
accompanied by the brittle damage of the matrix phase. Despite of this the first numerical examples only con-
sider the debonding of the fibres from the matrix as the solely present damage process. For the lack of given
interface parameters in the literature, the influence of the bond model parameters on the average responses is
studied qualitatively. Hence, it is desirable to avoid at first the interference of debonding with matrix damage
effects. The additional appearance of discrete cracks within the matrix phase will be considered in Section 4.2.

4.1. Fibre debonding

Fibre debonding from the matrix is studied first, where the matrix material is assumed to behave linearly
elastically. It is well known that matrix cracking occurs in the wake of fibre debonding in glass fibre reinforced
epoxy resins. However, only fibre debonding is considered in this section in order to verify the failure algo-
rithm and to gain confidence in the GMC-model with damage. Figs. 5 and 6 illustrate the evolution of the
Fig. 5. Comparison of the stress responses hr22i to the monotonically increased strain h�22i based on the Chaboche interface model.
(a) Variation of length parameter dn keeping the bond strength rmax constant. (b) Variation of the bond strength rmax for a constant length
parameter dn.

Fig. 6. Comparison of the stress responses hr22i to the monotonically increased strain h�22i based on the Lissenden interface model.
(a) Variation of length parameters u0 keeping the bond strength t0 constant. (b) Variation of the bond strengths t0 for a constant length
parameter u0.
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macrostress hr22i computed from the four cells model with two fibre–matrix interfaces subjected to a mono-
tonically increasing macrostrain h�22i. All other strain components are equal to zero. The results of Fig. 5(a)
and (b) are obtained from the Chaboche model, whereas Fig. 6(a) and (b) shows the corresponding results of
the Lissenden model. The steep slope of the stress hr22i-strain-curve is followed by a slow increase of the stress
after debonding of the fibre has occurred. The stress–strain-curves in Figs. 5(a) and 6(a) become smoother
with an increasing ductility dn or u0 of the interface. The overall behaviour is less brittle. The level of the aver-
age stress hr22i that is achieved prior to the total debonding rises and the local stress maximum shifts to a
higher macroscopic strain. The increase of the bond strength mainly intensifies the hump of the stress–
strain-curve, see Figs. 5(b) and 6(b). The macroscopic stress responses hr21i of the unit cell, undergoing a sim-
ple shear deformation process h�21i > 0, are given by Fig. 7 for the interface model of Chaboche. The stress
responses hr21i in Fig. 8 are received by applying the Lissenden model. The stress–strain-curves, illustrated
in Figs. 7 and 8, are qualitatively similar to those belonging to the normal strain process h�22i. The perceptible
difference is that all curves are joining a common straight line after having surpassed the local stress maximum.
This phenomenon is due to the fact that only the interface perpendicular to the x2-axis is affected by shear
Fig. 7. Comparison of the stress responses hr21i to the monotonically increased strain h�21i based on the Chaboche interface model.
(a) Variation of the length parameter dt keeping the bond strength smax constant. (b) Variation of the bond strength smax for a constant
length parameter dt.

Fig. 8. Comparison of the stress responses hr21i to the monotonically increased strain h�21i based on the Lissenden interface model.
(a) Variation of the length parameter fu0 keeping the bond strength gt0 constant. (b) Variation of the bond strength gt0 for a constant
length parameter fu0.



Fig. 9. Tangential stiffness component ~C�2222 vs. h�22i: (a) Chaboche and (b) Lissenden.
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deformations h�21i in contrast to the normal strain process h�22i > 0, where (r33) is non-zero and causes the
damage of the interface perpendicular to the x3-axis as well. Thus, the second and smaller softening response
in the stress–strain-curve, given by Fig. 5(a) for dn = 0.001 lm, is caused by the brittle fracture of the second
interface. As a consequence of the initial interface compliance, appearing in the model of Chaboche, the initial
tangential stiffness components ~C�ijkl of Eq. (8) depend on the particular choice of the interface parameters, see
Fig. 9. This effect does not occur by using the Lissenden model. Thus, the initial macroscopic stiffnesses are
considerably higher and constantly equal to those of a composite with perfectly bonded phases until the deb-
onding process is initiated.

4.2. Matrix cracking and fibre debonding

The GMC offers two alternatives in order to model realistically the damage of the composite, i.e. the soft-
ening and the total fracture of the matrix material besides the fibre debonding, due to the growth of micro-
cracks from the interface into the matrix. The first one would be to degrade the elastic moduli for each
matrix subcell individually as a function of the subcell strains. The second approach, which is applied here,
uses the intrinsic inner surfaces of the GMC-discretisation as localisation nuclei for the formation of
macro-cracks. Thus, the behaviour of the assumed cracks will be controlled by an appropriate interface for-
mulation, as it is given by the model of Lissenden. Obviously, the usage of the model of Chaboche with its
initial compliance is not recommendable in this context. In the following simulations the influence of the
strength and ductility parameters on the model responses is studied. The behaviour of the matrix–matrix inter-
faces (MM-interfaces) are described by the Lissenden model exclusively, whereas the debonding of the fibre/
matrix interfaces (FM-interfaces) is modelled by the approaches of Lissenden or Chaboche. The calculations
are carried out for the model with four cells and two FM- and MM-interfaces. Fig. 10(a) shows the stress
response hr22i versus the prescribed strain h�22i of the Lissenden model used for both the FM- and the
MM-interfaces. Up to the point where the interface traction tn of the MM-interface perpendicular to the
x2-direction reaches its maximum value t0jMM, all stress–strain-curves coincide exactly with the one of the lin-
ear elastic matrix material. Beyond that point, the stress responses diverge from each other. The degree of soft-
ening depends on the ductility parameter. The smaller u0jMM is chosen, the more brittle turns out to be the
failure of the matrix phase. The stress responses, given in Fig. 10(b), are obtained by keeping the ductility
parameter constant u0jMM = 0.015 lm but increasing the strength parameter t0jMM only. As expected, the
macroscopic strength of the composite material also increases. If the ductility u0jMM is kept constant, the total
fracture of the composite takes place at the same strain level which is not altered by varying the strength
parameter t0jMM.

Fig. 11(a) and (b) illustrate the course of macroscopic responses hr22i versus the macroscopic strain h�22i if
the Chaboche model for the FM- and the Lissenden model for the MM-interfaces is applied. Again the duc-
tility and strength parameters of the MM-interfaces are varied. Their effects on the overall response are the
same as in the case described above.



Fig. 11. Stress–strain-curves with matrix cracking. FM-interface parameters dnjFM = 0.01 lm, rmaxjFM = 2 MPa. (a) Variation of MM-
interface parameter u0jMM. (b) Variation of MM-interface parameter t0jMM.

Fig. 10. Stress–strain-curves with matrix cracking. FM-Interfaces: t0jFM = 2 MPa, u0jFM = 0.015 lm. (a) Variation of MM-interface
parameter u0jMM. (b) Variation of MM-interface parameter t0jMM.
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Fig. 12(a) and (b) demonstrate the influence of the damage variables on the stress response hr22i during a
cyclic transverse loading process h�22i – see Fig. 13. In the range of positive stress the unloading paths of the
hysteresis-curves follow the secant through the origin and the point belonging to the attained maximum of the
macroscopic strain. Further accumulation of damage only occurs if the former maximum positive strain is sur-
passed under reloading conditions. In the case of Fig. 12(a) the fibre/matrix bond is assumed to possess an
initial compliance. Hence, the compressive material behaviour is different from the tension behaviour with
respect to the initial tangential stiffness. This is not the case with the example of Fig. 12(b) where the interface
is perfectly bonded unless the normal stress at the fibre/matrix interface reaches the threshold t0jMM. In both
cases the overall compressive stiffness is independent of the damage variables as all the gaps have closed under
compression.

Fig. 14(a) and (b) illustrate the stress responses hr12i to the cyclic shear deformation process with an
increasing amplitude of ±h�12i – see Fig. 15. The initial compliance of the fibre/matrix bond is unequal to zero
in case (a) and equal to zero in case (b). In contrast to the transversal strain process the accumulation of dam-
age is not constrained to a positive sign of the shear strain. The evolution of the stress under unloading
or reversed loading conditions proceeds along the direction of the secant defined by the origin of the
stress–strain-space and the stress attained at maxjh�21(s)ij in past times s 6 t. The evolution of damage only
progresses if jh�2(t)ij exceeds maxjh�21(s)ij06s6t.



Fig. 12. Hysteresis loops hr22i vs. h�22i. Debonding and matrix cracking: (a) FM-interface with initial compliance and (b) FM-interface
without initial compliance.

Fig. 13. Transversal strain process h�22(t)i applied to the four subcell model with two debonding fibre/matrix interfaces and two discrete
matrix cracks.

Fig. 14. Hysteresis loops hr21i vs. h�21i. Debonding and matrix cracking: (a) FM-interface with initial compliance and (b) FM-interface
without initial compliance.
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Fig. 15. Axial strain process h�21(t)i applied to the four subcell model with two debonding fibre/matrix interfaces and two discrete matrix
cracks.
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5. Concluding remarks

The reformulated version of the Generalized Method of Cells was used to predict the macroscopic behaviour
of unidirectionally reinforced composites. Attention was focused on how an occurring irreversible, nonlinear
damage of the fibre–matrix-bond as well as the initiation and growth of matrix cracks influences the effective
tangential constitutive tensor and macroscopic stress responses. Therefore, a discontinuous microscopic dis-
placement field was considered. The constitutive equations that correlated the interface tractions with the dis-
placement jumps were based on formulations taken from the literature. The tangential effective stiffness
matrix, mapping the rates of the macrostrains to the rates of the macrostresses, was derived. Finally, the
GMC was applied to calculate the average stress response and tangential stiffness to strain driven loadings
of the representative volume element.

The validation of the cells model described above, that is the comparison of the proposed material
responses with those obtained from experimental investigations, is the essential task of future work. As a pre-
liminary to this the identification of the various interface parameters has to be done. Operational experience of
the author referring to parameter identification, especially in the context with the method of cells, is discussed
in Matzenmiller and Gerlach (in press). Experimental data are available from the so called World Wide Failure

Exercise, see Soden and Hinton (1998) and Hinton et al. (1998). Since epoxy resins are known to behave non-
linearly elastic under shear loading, it is intended to implement a nonlinear elastic constitutive model for the
matrix phase prior to extensive interface parameter identification [see e.g. Hahn and Tsai (1973) or the Ram-
berg-Osgood nonlinear stress–strain equations used by Aboudi (1991, p. 168)].
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Appendix A

It is assigned one number j = 1, . . . , 2NbNc to each subcell interface (i)I(bc) of the GMC-model and a second
number i = 1, NI to the ones out of them, which are either imperfectly bonded or cracked. If the interface j is
cracking or debonding (i.e. i 5 0), the logical variable e(i,j) is set +1, otherwise e(i,j) is equal to �1.

For 2 · 2 subcells and 2 softening interfaces (2)I(11) and (2)I(11) – see Fig. 2 – the assignment is given by
Table 1. The incidence matrix is defined as
q ¼ ½ � ¼
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

� �
ð96Þ



Table 1
Coincidence of GMC-subcell boundaries numbered by j and debonding/cracking interfaces numbered by i

Interface (2)I(11) (2)I(21) (2)I(12) (2)I(22) (3)I(11) (3)I(21) (3)I(12) (3)I(22)

j 1 2 3 4 5 6 7 8
i 1 0 0 0 2 0 0 0
e(i,j) +1 �1 �1 �1 +1 �1 �1 �1
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by the help of the submatrices
¼
1 if eði; jÞ ¼ þ1

0 if eði; jÞ ¼ �1

�
ð97Þ
with the 3 · 3 unity and zero matrices 1 and 0. The incidence matrix q for the damage variable q is given as
q ¼ ½ � ¼
1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

� �
ð98Þ
with
¼
1 if eði;jÞ ¼ þ1

0 if eði;jÞ ¼ �1

�
ð99Þ
References

Aboudi, J., 1991. Mechanics of Composite Materials – A Unified Micromechanical Approach, first ed. Elsevier, Amsterdam.
Aboudi, J. 1993. Constitutive behavior of multiphase metal matrix composites with interfacial damage by the generalized cells model. In:

Voyiadjis, G.Z. (Ed.), Damage in Composite Materials, pp. 3–22.
Aboudi, J., Herakovich, C.T., 1996. An interfacial damage model for titanium matrix composites. In: Damage and Interfacial Debonding

in Composites. Elsevier Science, pp. 149–165.
Aboudi, J., Pindera, M.-J., 2004. High-fidelity micromechanical modeling of continuously reinforced elastic multiphase materials

undergoing finite deformations. Mathematics and Mechanics of Solids 9, 599–628.
Aboudi, J., Pindera, M.J., Arnold, S.M., 2002. High-fidelity generalization method of cells for inelastic periodic multiphase materials.

National Aeronautics and Space Administration NASA/TM-2002-211469.
Bansal, Y., Pindera, M.-J., 2005. A second look at the higher-order theory for periodic multiphase materials. Journal of Applied

Mechanics 72, 177–195.
Bednarcyk, B.A., Arnold, S.M., 2000a. A new local debonding model with application to the transverse tensile and creep behavior of

continuously reinforced titanium composites. National Aeronautics and Space Administration. Technical Memorandum NASA/TM-
2000-210029.

Bednarcyk, B.A., Arnold, S.M., 2000b. A new local failure model with application to the longitudinal tensile behavior of continuously
reinforced titanium composites. National Aeronautics and Space Administration. Technical Memorandum NASA/TM-2000-210027.

Bednarcyk, B.A., Arnold, S.M., Aboudi, J., Pindera, M.-J., 2004. Local field effects in titanium matrix composites subject to fibre–matrix
debonding. International Journal of Plasticity 20, 1707–1737.

Chaboche, J.L., Glrad, R., Schaff, A., 1997. Numerical analysis of composite systems by using interphase/interface models.
Computational Mechanics 20, 3–11.

Hahn, H.T., Tsai, S.W., 1973. Nonlinear elastic behavior of unidirectional composite laminae. Journal of Composite Materials 7, 102–118.
Hill, R., 1963. Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 11, 357–

372.
Hinton, P.D., Soden, M.L., Kaddour, A.S., 1998. Lamina properties, lay-up configurations and loading conditions for a range of fibre-

reinforced composite laminates. Composites Science and Technology 58, 1011–1022.
Lissenden, C.J., 1996. An approximate representation of fibre–matrix debonding in nonperiodic metal matrix composites. In: Voyiadjis,

G. (Eds.), Damage and Interfacial Debonding in Composites, pp. 189–212.
Lissenden, Cliff J., 1999. Fibre–matrix interfacial constitutive relations for metal matrix composites. Composites Part B: Engineering 30,

267–278.
Matzenmiller, A., Gerlach, S., 2002. Micromechanical modeling of viscoelastic fiber–matrix bond in composites. In: Mang, H.A.,

Rammerstorfer, F.G., Eberhardsteiner, J. (Eds.), Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V),
7–12 July 2002, Vienna, Austria. Vienna University of Technology, Austria.

Matzenmiller, A., Gerlach, S., 2004. Micromechanical modelling of viscoelastic composites with compliant fiber–matrix bonding.
Computational Materials Science 29 (3), 283–300.
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