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Abstract

The fundamental properties of guided waves in a laminate with any homogeneous boundary conditions on its faces are
considered. As shown, the waves satisfy orthogonality relations whose physical meaning is related to the additivity of the
average power flow. The applications of this orthogonality for solving some particular boundary value problems are dis-
cussed. A method for exact calculation of the far field caused by an acoustic source of a finite size is suggested. The only
restriction is that the distance required must exceed the longitudinal radius of the source. The obtained results can be used
for evaluating the fields radiated by ultrasonic transducers of arbitrary aperture and by other realistic sources.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing use of composite materials in modern devices the guided waves in plates, both homo-
geneous and layered attract more and more attention of the research community. In the literature one can find
monographs (Viktorov, 1967; Brekhovskikh, 1980; Auld, 1990; Nayfeh, 1995), reviews (e.g., paper by Chim-
enti, 1997 with four hundred references) and numerous original articles. As known, the guided waves in plates
are generally not orthogonal like trigonometrical Fourier series, but they possess the orthogonality relations
(OR) with respect to the power flow. These OR were deduced in the 70s by Auld and Kino (1971), Bobrov-
nitskii (1973), Fedoryuk (1974), Fraser (1976), Prakash (1978), Zilbergleit and Nuller (1977) and Slepyan
(1979) for an elastic strip with various homogeneous boundary conditions on its faces. The relations for
3D guided waves in an elastic layer were derived by Zakharov (1988). Other considerations of non Sturm–
Liouville systems which possess OR can be found in Lawrie and Abrahams (1999). Such OR can be used
to construct the linear algebraic system of equations with respect to the unknown coefficients when using mode
decomposition similarly to the various plane problems, e.g., the contact interaction between strips and a half-
space (Pelts and Shikman, 1987), wave diffraction by a crack (Kasatkin, 1981; Shkerdin and Glorieux, 2004,
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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2006; Flores-Lopez and Gregory, 2006) or wave reflection from the strip edge (Gregory and Gladwell, 1983;
Scandrett and Vasudevan, 1991). A particular case of OR for one elastic layer was introduced and applied to
expanding the Green tensor into series of Lamb’s waves by Achenbach (1998, 2000) and Achenbach and Xu
(1998, 1999).

In this paper, the 3D guided waves are considered in a laminate with homogeneous boundary condi-
tions on its faces (HBCF) including stress free faces, fixed faces or any other combinations of zero dis-
placements or zero stresses providing the total energy reflection by the faces. The viscoelasticity is
taken into account in the form of Kelvin–Voigt model (see, e.g., Christensen, 1971). Then the general
3D waves are introduced and their spectra and orthogonality are deduced and discussed. The main moti-
vation for this study is to generalise the results obtained earlier for one layer and pure elasticity, to elu-
cidate the physics and to work out a method for exact calculation of the field, radiated by a realistic
acoustic source into viscoelastic laminate. Since the numerical methods for 3D problems are time consum-
ing the analytical and semi-analytical methods are still of interest for NDT needs when modelling the far-
field and near-field.

The paper is organised as follows: in Section 2 the problem is formulated and in Section 3 the general rep-
resentation of waves is introduced. Section 4 is devoted to HBCF and respective frequency equations. The
orthogonality relations are derived in Section 5 and their physical meaning is discussed in Section 6. The for-
mulation of the radiation condition in case of pure elasticity is presented in Section 7. Some applications are
considered in the three last sections, namely, how to obtain the exact solutions to some particular boundary
value problems (Section 8) and how to calculate the field, radiated by an acoustic source of a finite size (Sec-
tion 9 and 10). A method based on the OR and the standing waves permits one to evaluate the total field at the
distance which is greater than the source radius regardless to the shape of source and distribution. The paper is
concluded by a few final remarks in Section 11.

2. Formulation

Consider a laminate composed of N plies where each jth layer occupies a region �1 < x1,x2 <1,
zj 6 x3 6 zj+1 (see Fig. 1a) and subjected to the time-harmonic load. To be brief the factor e�ixt is omitted
in what follows and the load is specified in Section 9. The layer displacements uj

a satisfy the equations of
motion
obr
j
ab þ qjx

2uj
a þ f j

a ¼ 0; ða; b ¼ 1; 2; 3Þ; ð1Þ
where qj are mass densities and f j
a are body forces to be specified further. The stresses rj

ab and strains ej
ab satisfy

Hook’s law and Kelvin–Voigt model of linear viscoelasticity
rj
ab ¼ c0jabcde

j
cd þ c00jbbcd _ej

cd; c00jbbcd � 1; ð2Þ

ej
ab ¼

1

2
fobuj

a þ oauj
bg; _ej

ab ¼ �ixej
ab: ð3Þ
An isotropic material yields the complex-valued representation of Lame constants, wave speeds and
wavenumbers
kj ¼ k0j � ixk00j ; lj ¼ l0j � ixl00j ; ð4Þ

fcj
Pg

2 ¼ ðkj þ 2ljÞ=qj; fcj
Sg

2 ¼ lj=qj; kj
P ¼ x=cj

P ; kj
S ¼ x=cj

S : ð5Þ
On the interfaces x3 = zj, j = 2,3, . . . ,N the conditions of the full contact are assumed
rj�1
a3 ¼ rj

a3; uj�1
a ¼ uj

a: ð6Þ

In addition the field may satisfy the conditions on the faces z� = z1 and z+ = zN + 1 in the form of given

stresses r�a3 or displacements u�a or by their combinations.
Our first task is to investigate the homogeneous solutions of the Eq. (1), i.e., the waves propagating in the

longitudinal direction at the absence of body forces with various homogeneous boundary conditions on the
faces. Second, their OR have to be derived.



Fig. 1. (a) Sketch of laminate. (b) Regions with cylindrical geometry. (c) Acoustic source embedded into finite cylinder X.
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3. General representation of the guided waves with cylindrical geometry

Introduce the displacement field supporting periodicity with respect to the polar angle in the plane x1,x2

and proceed to the cylindrical coordinates r,h,z: x1 = rcosh, x2 = rsin h, x3 = z. Using Lame potentials and
separation of variables at the absence of body forces, the waves propagating in r-direction in jth layer result
as follows
uj
r ¼ �ujB0n þ wj n

sr
Bn

h i cos nh

� sin nh

� �
; ð7Þ

uj
h ¼ uj n

sr
Bn � wjB0n

h i sin nh

cos nh

� �
; ð8Þ

uj
z ¼ vjBn

cos nh

� sin nh

� �
: ð9Þ
In the formulae (7)–(9) the first or second term could be chosen in the French brackets, so they represent the
terms in the trigonometrical Fourier series wrt h. The terms Bn � Bn(sr) are any of the appropriate Bessel func-
tion or Hankel function of the first or second kind and B0n � dBn=dfsrg. Functions uj(z), vj(z) and wj(z) satisfy
the system of equations
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d2

dz2
þ ajfqj

Pg
2

� �
uj � cjs

dvj

dz
¼ 0; ð10Þ

aj
d2

dz2
þ fqj

Sg
2

� �
vj þ cjs

duj

dz
¼ 0; ð11Þ

d2wj

dz2
þ fqj

Sg
2wj ¼ 0; ð12Þ

aj � 2þ bj; bj � kj=lj; cj � bj þ 1; fqj
Sg

2 � fkj
Sg

2 � s2; fqj
Pg

2 � fkj
Pg

2 � s2: ð13Þ
In the particular case of pure elasticity coefficients depend on Poisson’s ratios mj
aj ¼ ð2� 2mjÞ=ð1� 2mjÞ; bj ¼ 2mj=ð1� 2mjÞ; cj ¼ 1=ð1� 2mjÞ: ð14Þ
So, Eqs. (7)–(13) permit one to describe the guided waves of the wavenumber s within constant factors. In-
deed, the three second order linear differential equations (10)–(12) yield a simple so
uj

vj

� �
¼ Aþj

P

cos qj
P z

qj
P
s sin qj

P z

" #
þ A�j

P

sin qj
P z

� qj
P
s cos qj

P z

" #

þ Aþj
S
� qj

S
s cos qj

Sz

sin qj
Sz

" #
þ A�j

S

qj
S
s sin qj

Sz

cos qj
Sz

" #
; A�j

P ;S ¼ const;

ð15Þ

wj ¼ Bþj
S cos qj

szþ B�j
S sin qj

sz; B�j
S ¼ const: ð16Þ
The stresses look as follows (not to sum over j)
rj
rr ¼ lj vjBn �

uj

r
ðnþ 1ÞBnþ1 þ ðn� 1ÞBn�1½ � � swj

2
Bnþ2 � Bn�2½ �

� �
cos nh

� sin nh

� �
; ð17Þ

rj
rh ¼ lj

suj

2
Bn�2 � Bnþ2½ � � swj

2
½Bnþ2 þ Bn�2�

� �
sin nh

cos nh

� �
; ð18Þ

rj
rz ¼ lj �sjB0n þ

dwj

dz
n
sr

Bn

� �
cos nh

� sin nh

� �
; ð19Þ

rj
hh ¼ lj pjBn þ

suj

2
½Bn�2 þ Bnþ2� þ

swj

2
½Bnþ2 � Bn�2�

� �
cos nh

� sin nh

� �
; ð20Þ

rj
hz ¼ lj sj n

sr
Bn �

dwj

dz
B0n

� �
sin nh

cos nh

� �
; ð21Þ

rj
zz ¼ ljr

jBn
cos nh

� sin nh

� �
; ð22Þ

vj � bj
dvj

dz
þ ajsuj; sj � duj

dz
� svj; pj � bj

dvj

dz
þ cjsuj; rj � aj

dvj

dz
þ bjsuj; ð23Þ

rj

sj

� �
¼ Aþj

P

fqj
Sg

2�s2

s cos qj
P z

�2qj
P sin qj

P z

" #
þ A�j

P

fqj
Sg

2�s2

s sin qj
P z

2qj
P cos qj

P z

" #

þ Aþj
S

2qj
S cos qj

Sz
fqj

Sg
2�s2

s sin qj
Sz

" #
þ A�j

S

�2qj
S sin qj

Sz
fqj

Sg
2�s2

s cos qj
Sz

" #
;

ð24Þ

dwj

dz
¼ qj

s �Bþj
S sin qj

szþ B�j
S cos qj

sz
� �

: ð25Þ
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The equations (6) of the interface contact acquire the form
uj�1ðzjÞ ¼ ujðzjÞ; vj�1ðzjÞ ¼ vjðzjÞ; wj�1ðzjÞ ¼ wjðzjÞ; ð26Þ

lj�1r
j�1ðzjÞ ¼ ljr

jðzjÞ; lj�1s
j�1ðzjÞ ¼ ljs

jðzjÞ; lj�1

dwj�1ðzjÞ
dz

¼ lj
dwjðzjÞ

dz
; ð27Þ
with j = 2,3, . . . ,N and give the system of 6N � 6 linear algebraic equations with respect to 6N unknown coef-
ficients in (15), (16).

4. Facial conditions and frequency equations

To close the system (26), (27) let us specify the facial conditions. According to the previous authors we call
‘‘pure-face’’ conditions the following cases: the stress free faces
r1ðz�Þ ¼ s1ðz�Þ ¼ dw1ðz�Þ
dz

¼ 0; ð28Þ

rN ðzþÞ ¼ sN ðzþÞ ¼ dwNðzþÞ
dz

¼ 0; ð29Þ
the fixed faces
u1ðz�Þ ¼ v1ðz�Þ ¼ w1ðz�Þ ¼ 0; ð30Þ
uN ðzþÞ ¼ vN ðzþÞ ¼ wN ðzþÞ ¼ 0; ð31Þ
and the case when one face is stress free and another is fixed (Eqs. (28), (31) or (29), (30)). The ‘‘mixed-face’’
boundary conditions occur when the stresses are zero in some directions and the displacements equal zero in
the complementary directions, e.g., no normal displacement nor tangent stresses
v1ðz�Þ ¼ 0; s1ðz�Þ ¼ dw1ðz�Þ
dz

¼ 0; ð32Þ

vN ðzþÞ ¼ 0; sN ðzþÞ ¼ dwN ðzþÞ
dz

¼ 0; ð33Þ
which correspond to a contact with a frictionless stamp. Another situation is
r1ðz�Þ ¼ 0; u1ðz�Þ ¼ v1ðz�Þ ¼ 0 and=or rN ðzþÞ ¼ 0; uN ðzþÞ ¼ vN ðzþÞ ¼ 0: ð34Þ
Let us call homogeneous boundary conditions on the faces (HBCF) all possible combinations of the ‘‘pure-
face’’ and ‘‘mixed-face’’ conditions. These HBCF give six linear algebraic equations, additional to 6N � 6
Eqs. (26) and (27). So, the final system of equations has the size 6N · 6N. Denote the global matrix of this
system by L* with the determinant d* = detL*. As seen from relations (15), (16) and (24)–(34) the important
point is that 4N equations with respect to A�j

P ;S are separable from 2N equations with respect to B�j
S . Thus, the

matrix L* consists of two blocks: M*(4N · 4N), D* = detM* and N*(2N · 2N), d* = detN* which coincide with
those of the in-plane and out-of-plane problems, respectively. The explicit form, detailed analysis and calcu-
lation algorithms for M* and N* can by found in Knopoff (1964), Schwab and Knopoff (1971), Fahmi and
Adler (1973) and Lowe (1995). We just focus our attention on the corollary
d� ¼ D�d�; Sd ¼ fsl : d�ðslÞ ¼ 0g ¼ SD [ Sd; ð35Þ
s 2 SD � fs : D�ðsÞ ¼ 0g : wj ¼ 0; uj; vj 6¼ 0; ð37Þ
s 2 Sd � fs : d�ðsÞ ¼ 0g : uj ¼ vj ¼ 0; wj 6¼ 0: ð38Þ
corresponding to the ‘‘in-plane’’ (r,z)-polarisation and ‘‘out-of-plane’’ h-polarisation of the eigenwaves. Their
frequency equations are independent of number n. In general the roots s are complex valued, and the math-
ematical problem to find out the spectra SD and Sd is equivalent to the study of the quadratic operator pencil.
Thus, each solution (37) or (38), satisfying Eqs. (10)–(12), conditions on the interfaces (26), (27) and any



D.D. Zakharov / International Journal of Solids and Structures 45 (2008) 1788–1803 1793
HBCF is determined within a constant factor. For example Aþ1
P , s 2 SD (or Bþ1

S , s 2 Sd) can be chosen as such a
factor and other coefficients are expressed through it using linear algebraic system with matrix M* (or N*).

Hence, the ‘‘in-plane’’ guided waves (s 2 SD) and ‘‘out-of-plane’’ waves (s 2 Sd) are given by formulas (7)–
(9) and (37), (38) (see also Zakharov, 1988; Achenbach and Xu, 1998). For r	 1 the curvature of the cylin-
drical wave front can be neglected and the asymptotics of (7)–(9) lead to quasi plane waves of the magnitude
order r�

1
2 with the leading parts uj,vj for the in-plane and wj for the out of plane polarisation.

Note that the dispersion relations D* = 0 and d* = 0 remain the same for s and �s and the normalisation
can be chosen in a such a way that
uj
l ¼ �uj

m; vj
l ¼ vj

m and wj
l ¼ wj

m for sl ¼ �sm; j ¼ 1; 2; . . . ;N : ð39Þ
In the case of pure elasticity the complex roots appear in conjugated pairs since the left hand sides D* and d*

of the frequency equations can be expanded in series with real coefficients. In addition we may set (over bar
means complex conjugation)
uj
l ¼ �uj

m; vj
l ¼ ��vj

m; wj
l ¼ �wj

m for sl ¼ ��sm and uj
l; v

j
l;w

j
l 2 R for sl 2 R: ð40Þ
To sum up let us represent the final form of the mode decomposition
uj
r

uj
h

uj
z

2
64

3
75 ¼Xþ1

n¼0

X
fsl2SD ;Sdg

�uj
lðzÞB0nðslrÞ þ wj

lðzÞ n
slr BnðslrÞ

� 	
Ml;c

n cos nh�Ml;s
n sin nh


 �
uj

lðzÞ n
slr BnðslrÞ � wj

lðzÞB0nðslrÞ
� 	

Ml;c
n sin nhþMl;s

n cos nh

 �

vj
lðzÞBnðslrÞ Ml;c

n cos nh�Ml;s
n sin nh


 �

2
6664

3
7775: ð41Þ
5. Orthogonality relations

Introduce the scalar products of any functions f j
l and gj

m related to the wavenumbers sl and sm, and to jth
layer by standard formula
ðf j
l ; g

j
mÞ �

Z zjþ1

zj

f j
l gj

mdz: ð42Þ
For the sake of simplicity assume that the wavenumbers are single roots of the frequency equations (37) and
(38). For any sl,sm 2 SD combine the products of z-components of the displacements (7)–(9) and stresses (17)–
(23) into the expressions below
Uj
lm � slsmðvj

l; v
j
mÞ þ fk

j
Sg

2ðuj
l; u

j
mÞ �

d

dz
uj

l;
d

dz
uj

m

� 

; ð43Þ

V j
lm � slsmðuj

l; u
j
mÞ þ fk

j
Pg

2ðvj
l; v

j
mÞ �

d

dz
vj

l;
d

dz
vj

m

� 

; ð44Þ

W j
lm � ðv

j
l; v

j
mÞ � ðsj

m; v
j
lÞ: ð45Þ
For sl 2 SD and sm 2 Sd introduce the additional combinations
Hj
lm � ajs2

m � s2
l � cjfkj

Sg
2

h i
ðvj

l;w
j
mÞ � bjsl uj

l;
d

dz
wj

m

� 

þ sl

d

dz
uj

l;w
j
m

� 

; ð46Þ

Gj
lm � ðp

j
l;w

j
mÞ � vj

l;
d

dz
wj

m

� 

þ s2

l � s2
m

sl
ðuj

l;w
j
mÞ; ð47Þ
and for sl,sm 2 Sd—the combination
T j
lm � ðw

j
l; v

j
mÞ: ð48Þ
Statement 1. For any sl,sm 2 SD such that s2
l 6¼ s2

m the following equations hold
U �lm �
X

j

ljU
j
lm ¼ 0; V �lm �

X
j

ajljV
j
lm ¼ 0; ð49Þ
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W �
lm �

X
j

ljW
j
lm ¼ 0: ð50Þ
Indeed, the integration by parts of the equations (10)–(12) yields
Z zjþ1

zj

fsmuj
mðEq: ð10ÞÞjs¼sl

� slv
j
lðEq: ð11ÞÞjs¼sm

gdz
n o

¼ smU j
lm � ajslV

j
lm þ smuj

msj
l � slv

j
lr

j
m

� �
jzjþ1

zj
¼ 0:

ð51Þ

and by virtue of the conditions (26), (27) and any HBCF (28)–(35) we obtain
X

j

lj½slv
j
lr

j
m � smuj

msj
l�j

zjþ1

zj
¼ sl

X
j

fvj
lðzjþ1Þljr

j
mðzjþ1Þ � vj

lðzjÞljr
j
mðzjÞg

� sm

X
j

fuj
mðzjþ1Þljs

j
lðzjþ1Þ � uj

mðzjÞljs
j
lðzjÞg ¼ 0; ð52Þ

X
j

lj smUj
lm � ajslV

j
lm


 �
¼ smU �lm � slV �lm ¼ 0: ð53Þ
Changing indices l M m with U �lm; V
�
lm ¼ U �ml; V

�
ml in (53) we also arrive at the equations slU �lm � smV �lm ¼ 0 and

then at the Eq. (49). Similarly we obtain
X
j

lj

Z zjþ1

zj

uj
mðEq:ð10ÞÞjs¼sl

dz ¼ U �lm � slW �
lm þ

X
j

lju
j
msj

lj
zjþ1

zj
¼ U �lm � slW �

lm ¼ 0; ð54Þ

X
j

lj

Z zjþ1

zj

vj
lðEq:ð11ÞÞjs¼sm

dz ¼ V �lm � smW �
lm þ

X
j

ljv
j
lr

j
mj

zjþ1

zj
¼ V �lm � smW �

lm ¼ 0; ð55Þ
and two symmetrical equation (49) are equivalent to one non-symmetrical equation (50). Note that the Eq.
(50) can be rewritten using functions pj and dj as follows
dj � 1

3
rj þ 2pjf g ¼ 1

~jj
vj þ 2

dvj

dz

� �
; ~jj �

3aj

bj þ 2cj
; ð56Þ

Y �lm �
X

j

lj ~ajðpj
l; u

j
mÞ � ~bj

dvj
l

dz
; uj

m

� 

� ðsj

m; v
j
lÞ

� �
¼ 0; ~aj �

aj

cj
; ~bj �

bj

cj
; ð57Þ

Z�lm �
X

j

lj ~jjðdj
l; u

j
mÞ � 2

dvj
l

dz
; uj

m

� 

� ðsj

m; v
j
lÞ

� �
¼ 0: ð58Þ
Statement 2. The Eq. (12) for the in-plane waves yields the following OR
T �lm ¼
X

j

ljT
j
lm ¼ 0;

X
j

lj
dwj

l

dz
;
dwj

m

dz

� 

� qjx

2T j
lm

� �
¼ 0 for sl; sm 2 Sd; s2

l 6¼ s2
m: ð59Þ
The result follows from the integration of Eq. (12)
Z zjþ1

zj

wj
lðEq: 12Þjs¼sm

dz ¼ wj
l

dwj
m

dz

� ������
zjþ1

zj

� dwj
l

dz
;
dwj

m

dz

� 

þ

qjx
2

lj
� s2

m

" #
T j

lm ¼ 0; ð60Þ
with taking into account equations (26), (27) and HBCF.
Statement 3. For sl 2 SD and sm 2 Sd the following orthogonality relations hold
H �lm �
X

j

ljH
j
lm ¼ 0; G�lm �

X
j

ljG
j
lm ¼ 0: ð61Þ
The proof can be obtained as above
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X
j

lj

Z zjþ1

zj

fwj
mðEq: 11Þjs¼sl

� ajv
j
lðEq: 12Þjs¼sm

gdz

( )
¼ H �lm þ

X
j

lj rj
lw

j
m � ajv

j
l

d

dz
wj

m

� �����
zjþ1

zj

¼ H �lm ¼ 0;

ð62Þ
X

j

lj

Z zjþ1

zj

fwj
mðEq: 10Þjs¼sl

�uj
lðEq: 12Þjs¼sm

gdz

( )
¼�slG

�
lmþ

X
j

lj sj
lw

j
m�uj

l

d

dz
wj

m

� �����
zjþ1

zj

¼�slG
�
lm¼ 0:

ð63Þ
6. Physical meaning of the orthogonality relations

Now consider the obtained OR from the viewpoint of energy. To this end multiply the Eq. (1) with f j
a ¼ 0

and s = sl by a speed of particle _uj
am ¼ �ixuj

am for the wavenumber s = sm
ðEq: 1Þjs¼sl
_uj
am ¼ obfrj

abl _uj
amg � rj

ablf_e
j
abm þ _xj

abmg � qj€u
j
al _uj

am ¼ 0; ð64Þ
where xj
ab ¼ 1

2
fobuj

a � oauj
bg is a rotation tensor. Using the symmetry of stiffness and viscosity tensors

c0jabcd; c
00j
abcd and antisymmetry of the rotation tensor we obtain
rj
abl _ej

abm þ _xj
abm

n o
¼ rj

abl _e
j
abm ¼ c0jabcd _ej

abmej
cdl þ c00jabcd _ej

abm _ej
cdl; ð65Þ

c0jabcd _ej
abmej

cdl ¼ c0jabcde
j
abm _ej

cdl; ð66Þ

ob rj
abl _uj

am

n o
¼ rj

abl _e
j
abm þ q€uj

al _uj
am ¼ obfrj

abm _uj
alg: ð67Þ
Consider a cylinder Xj = {r 6 R,zj 6 z 6 zj+1} with the upper surface Xj
þ ¼ fr 6 R; z ¼ zjþ1g, lower surface

Xj
� ¼ fr 6 R; z ¼ zjg and the lateral surface Xj

R ¼ fr ¼ R; zj 6 z 6 zjþ1g. Then
Z Z Z
Xj

fobfrj
abl _uj

am � rj
abm _uj

alggdX ¼
ZZ

Xj
R

frj
abl _uj

am � rj
abm _uj

algnbdA

þ
ZZ

Xj
þ

�
ZZ

Xj
�

( )
rj

azl _uj
am � rj

azm _uj
al

� �
dA ¼ 0; ð68Þ
where nb are coordinates of the outer unit normal to Xj
R. The conditions on the interfaces and HBCF yield
X

j

ZZ
Xj
þ

�
ZZ

Xj
�

( )
rj

azl _uj
am � rj

azm _uj
al

� �
dA ¼ 0; or ð69Þ

hrl
rr; u

m
r i þ hrl

rh; u
m
h i þ hrl

rz; u
m
z i � hrm

rr; u
l
ri � hrm

rh; u
l
hi � hrm

rz; u
l
zi ¼ 0; ð70Þ

hfl; gmi �
X

j

ZZ
Xj

R

f j
l gj

mdA ¼ R
X

j

Z 2p

0

ðf j
l ; g

j
mÞdh: ð71Þ
The left hand side of Eq. (70) for sl,sm 2 SD is reduced to the form
hrl
rr; u

m
r i þ hrl

rh; u
m
h i þ hrl

rz; u
m
z i � hrm

rr; u
l
ri � hrm

rh; u
l
hi � hrm

rz; u
l
zi

¼ pRnn W �
mlBnðsmRÞB0nðslRÞ � W �

lmB0nðsmRÞBnðslRÞ
� � ; nn �

1; n P 1

2; n ¼ 0:

�
ð72Þ
For sl 2 SD and sm 2 Sd it is rewritten as follows
hrl
rr; u

m
r i þ hrl

rh; u
m
h i þ hrl

rz; u
m
z i � hrm

rr; u
l
ri � hrm

rh; u
l
hi � hrm

rz; u
l
zi ¼ pnnG�lm

n
sm

BnðsmRÞBnðslRÞ; ð73Þ
and for the horizontally polarised waves sl,sm 2 Sd it acquires the form
hrl
rr; u

m
r i þ hrl

rh; u
m
h i þ hrl

rz; u
m
z i � hrm

rr; u
l
ri � hrm

rh; u
l
hi � hrm

rz; u
l
zi ¼ pRnnT �lmðElm � EmlÞ; ð74Þ
where Elm ¼ 1
2
slfBn�1ðsmRÞBn�2ðslRÞ � Bnþ1ðsmRÞBnþ2ðslRÞg.
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Thus, the obtained OR (50), (59) and (61) are in fact the reciprocity relations which hold for a linearly vis-
coelastic laminate due to the energy symmetry.

Note that the Eq. (67) for sl = sm can be easily rewritten in terms of the density of kinetic energy Kj
l, elastic

energy Ej
l, Rayleigh function Rj

l and Pointing’s vector P
j
l:
otfKj
l þ Ej

lg þ 2Rj
l þ divPj

l ¼ 0; ð75Þ

Kj
l �

1

2
qj _uj

al _uj
al; Ej

l �
1

2
c0jabcde

j
able

j
cdl; ð76Þ

Rj
l �

1

2
c00jabcd _ej

abl _e
j
cdl; Pj

l ¼ Pj
1l Pj

2l Pj
3l

� �
; Pj

al ¼ �rj
abl _uj

bl: ð77Þ
7. Radiation conditions in case of pure elasticity

Substituting Refuj
ale
�ixtg instead of uj

al into Eq. (75) we arrive at the energy relation with positively deter-
mined quadratic forms Kj

l, Ej
l and Rj

l. Introduce also the average power flow P�rl across the lateral surface XR
P�rl �
x
2p

Z 2p=x

0

X
j

ZZ
Xj

R

Pj
rldAdt; Pj

rl � Pj
1l cos hþ Pj

2l sin h: ð78Þ
It is easily to show that
Pj
rl ¼ x Refrj

rrle
�ixtgRefiuj

rle
�ixtg þRefrj

rhle
�ixtgRefiuj

hle
�ixtg þRefrj

rzle
�ixtgRefiuj

zle
�ixtg

� �
; ð79Þ

x
2p

Z 2p=x

0

Pj
rldt ¼ � 1

2
Re rj

rrl
_�uj

rl þ rj
rhl

_�uj
h þ rj

rzl
_�uj

zl

� �
; ð80Þ
where �uj
rl denotes the complex conjugation of uj

rl. For the real positive sl the integration of the Eq. (80) over Xj
R

and summation over j yields (see formulae (72) and (74))
P�r ¼
pnnR

2
Re

X
j

lj½ðvj
l; �u

j
lÞ � ð�s

j
l; v

j
lÞ�ixB0nðslRÞBnðslRÞ

( )
; sl 2 SD; ð81Þ

P�r ¼
nnp
2

Re
X

j

ljðwj
l; �wj

lÞix�sl½Bn�1ðslRÞBn�2ðslRÞ � Bnþ2ðslRÞBnþ1ðslRÞ�
( )

; sl 2 Sd: ð82Þ
For the propagating wave with the real wavenumber the cylindrical function Bn should be replaced by the
Hankel function H ð1;2Þn of the first or second kind.

Statement 4. For the propagating wave with sl > 0, sl 2 SD in elastic laminate the average power flow
acquires the form
P�r ¼ �nnclW �
ll; ð83Þ
where cl = x/sl is the phase speed and the sign + or � corresponds to the Hankel function of the first or second
kind, respectively.

The result follows from the formula (81) with taking into account the property (45) and the identities for the
cylindrical functions (see Abramovitz and Stegun, 1972)
RefiH 0nðslRÞHnðslRÞg ¼ �
2

pRsl
; H n ¼ H ð1;2Þn � J n � iNn; ð84Þ

J nþ1ðslRÞN nðslRÞ � J nðslRÞN nþ1ðslRÞ ¼
2

pRsl
: ð85Þ
Statement 5. The average power flow of the propagating wave with sl > 0, sl 2 Sd in elastic laminate acquires
the form
P�r ¼ �nnxT �ll: ð86Þ
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The proof follows from the formulae (40), (82) and (85).
The formulae (83) and (86) can be used for selecting waves satisfying the radiation condition. In the case of

viscoelastic materials and complex-valued roots sl the selection is based on the decay of function H ð1;2Þn ðslRÞ
provided by Imsl in the asymptotic formula [see Abramovitz and Stegun (1972)]
H ð1;2Þn ðslrÞ ¼

ffiffiffiffiffiffiffiffi
2

pslr

s
f1þOðslrÞ�1ge�i slr�2nþ1

4 p½ �; jslrj 	 1: ð87Þ
For the pure elasticity and the real wavenumber the analogue of the Leontovich–Lighthill theorem can be
proven.

Theorem. For sl > 0 and sl 2 SD or sl 2 Sd
P�rl 
 �cl
gfKl þ Elg�; R! þ1; cl

g �
dx
ds

����
s¼sl

: ð88Þ
The sign ± is chosen accordingly to the choice of Hankel’s function as previously.

Consider again the Eq. (75) with Rj
l ¼ 0. For the real functions the kinetic energy Kj

l yields
Kj
l ¼

1

2
qjRef _uj

agRef _uj
ag ¼

1

8
_uj
a _uj

a þ 2 _uj
a
_�uj
a þ _�uj

a
_�uj
a

� �
; ð89Þ
and its time averaging involves terms like (80)
x
2p

Z 2p
x

0

Kj
ldt ¼ 1

4
qjRef _uj

a
_�uj
ag: ð90Þ
The terms _uj
a _uj

a and _�uj
a
_�uj
a vanish due to zero average value of e�i2xt. The similar rule holds for the contributions

into the energy Ej
l. Introduce the frequency variation dx: x0 = x + idx and the respective wavenumber var-

iation involving the group velocity cl
g: s0 = sl + ids, dx ¼ cl

gds. Then, using representation (89) we obtain
x
2p

Z 2p
x

0

otfKj
l þ Ej

lgdt ¼ 2dxUðx; dxÞfKj
l þ Ej

lg; ð91Þ

x
2p

Z 2p
x

0

ote
�iðx0��x0Þdt ¼ 2dxUðx; dxÞ; Uðx; dxÞ � x

4p
e

4pdx
x � 1

dx
!

dx!0
1: ð92Þ
For the Pointing vector we have
divPj
l ¼ DrP

j
rl þ r�1ohPj

hl þ ozP
j
zl; Dr � or þ r�1; ð93ÞZZ

Xj
R

fr�1ohP j
hl þ ozP

j
zlgdA ¼

Z zj

zj�1

P j
hlj

2p
0 dzþ R

Z 2p

0

Pj
zlj

zj
zj�1

dh; ð94Þ
and P j
hlj

2p
0 ¼ P j

hljh¼2p � P j
hljh¼0 ¼ 0 due to the periodicity wrt h. Additionally, the interface conditions (6) and

HBCF yield
X
j

R
Z 2p

0

Pj
zlj

zj
zj�1

dh ¼ R
Z 2p

0

X
j

fPj
zljz¼zj

� Pj
zljz¼zj�1

gdh ¼ 0: ð95Þ
So, only DrP
j
rl remains in the sum of integrals over Xj

R.
For sl,s0 2 SD after application of the recurrent formulae for Hankel’s functions and asymptotics (87) the

last factor in formula (81) acquires the form
DrfB0nBng ¼ �s0B0nBn þ s0jB0nj
2 þ r�1B0nBn ¼ s0jB0nj

2 � �s0jBnj2 þ n2r�2�s�1jBnj2; ð96Þ

s0jH 0nj
2 ¼ s0

2

ps0r

����
����e�2rds þOðr�2Þ; �s0jH nj2 ¼ �s0

2

ps0r

����
����e�2rds þOðr�2Þ; ð97Þ
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and
DrfB0nBng ¼ �2ids
2

ps0r

����
����e�2rds þOðr�2Þ ) DrfP�rlg ¼ �2dsP�rle

�2Rds þOðR�2Þ: ð98Þ
Finally the Eqs. (91) and (98) result in the following
fKl þ El þ divPrlg� ¼ 2dxfKl þ Elg� � 2dsP�rl þOðdsÞ2 þOðR�1Þ ¼ 0: ð99Þ
Tending R! +1 and dividing by 2d s! +0 we derive the formulation (88).
For the wave of another kind sl 2 Sd the proof is similar and uses formulae (82) and (87).

8. Exact solutions for some particular boundary value problems

Let us reformulate OR in terms of the total displacements and stresses. For sl,sm 2 Sd the field structure (7),
(9), (18), (19) with properties (59) results in the relation
hrl
rr; u

m
r i ¼ hrl

rh; u
m
h i ¼ 0; s2

l 6¼ s2
m: ð100Þ
Introduce additional combinations of the displacements and stresses
wj
l � lj

~bjozu
j
zl � ~ajfrj

rrl þ rj
hhlg ¼ �ljv

j
lBnðslrÞ

cos nh

� sin nh

� �
; ð101Þ

/j
l � 2ljozu

j
zl � ~ajfrj

rrl þ rj
hhl þ rj

zzlg ¼ �ljv
j
lBnðslrÞ

cos nh

� sin nh

� �
: ð102Þ
Then for sl,sm 2 SD, s2
l 6¼ s2

m the relations (57) and (58) can be rewritten in the form
wl; um
r

� �
þ rm

rz; u
l
z

� �
¼ 0; ð103Þ

/l; um
r

� �
þ rm

rz; u
l
z

� �
¼ 0; ð104Þ

rl;�um
r þ

1

n
ohum

h

� �
þ �rm

rz þ
1

n
ohr

m
hz; u

l
z

� �
¼ 0; ð105Þ

/l;�um
r þ

1

n
ohum

h

� �
þ �rm

rz þ
1

n
ohr

m
hz; u

l
z

� �
¼ 0: ð106Þ
The general case of the arbitrary sl and sm, s2
l 6¼ s2

m satisfies the relations (70).
Relations (100), (103)–(106) can be used to find the exact or approximate solution to the boundary value

problem for a laminate occupying a region with cylindrical geometry (see Fig. 1b). First of all it concerns the
axisymmetrical problem for an infinite laminate with a cylindrical opening X = ¨jXj of radius R. Assume
HBCF are satisfied on XþN and X�1 and the lateral surface XR ¼

S
jX

j
R is loaded. Consider the axisymmetrical

torsion with the boundary conditions rj
rh ¼ Hj or uj

h ¼ W j on Xj
R and seek the exact solution using the mode

decomposition (41) for n = 0
uh ¼
X

l

Mlul
h; Ml � Ml;s

0 ; sl 2 Sd: ð107Þ
Thus, coefficients Ml follow from the formulae (100) and (74) in a closed form
Ml ¼ �
X

j

ðHj;wj
lÞ=slT �llB2ðslRÞ or Ml ¼ �

X
j

ðW j; ljw
j
lÞ=T �llB

0
0ðslRÞ: ð108Þ
For an infinite laminate with a cylindrical opening we set Imsl P 0, Bn ¼ H ð1Þn and select positive real roots sl

in case of pure elasticity. But if the respective cl
g < 0 choose Bn ¼ H ð2Þn . The laminate occupying a finite

cylindrical region X is considered similarly and for this case the formulae (108) remain in force with Bn = Jn.
Assume now that the laminate occupies a finite cylindrical region X2 of radius R2 with a coaxial cylindrical
opening X1 of radius R1 < R2. Denote the boundary conditions on the lateral surfaces XR2

and XR1
by
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Hj
2;H

j
1 or W j

2;W
j
1, respectively. The mode decomposition (107) remains in force with the Bessel and Neumann

functions
BnðslrÞ ¼ Ml
J J nðslrÞ þMl

N NnðslrÞ; ð109Þ
whose coefficients Ml
J and Ml

N in the field representation (7)–(9) and (19)–(23) are given by expressions
Ml
J ¼ �

X
j

N 2ðslR2ÞHj
1 � N 2ðslR1ÞHj

2;w
j
l


 �
slT �ll J 2ðslR1ÞN 2ðslR2Þ � J 2ðslR2ÞN 2ðslR1Þf g ; ð110Þ

Ml
N ¼ �

X
j

�J 2ðslR2ÞHj
1 þ J 2ðslR1ÞHj

2;w
j
l


 �
slT �llfJ 2ðslR1ÞN 2ðslR2Þ � J 2ðslR2ÞN 2ðslR1Þg

; ð111Þ
or
Ml
J ¼ �

X
j

N 00ðslR2ÞW j
1 � N 00ðslR1ÞW j

2; ljw
j
l


 �
T �llfJ 00ðslR1ÞN 00ðslR2Þ � J 00ðslR2ÞN 00ðslR1Þg

; ð112Þ

Ml
N ¼ �

X
j

�J 00ðslR2ÞW j
1 þ J 00ðslR1ÞW j

2;ljw
j
l


 �
T �llfJ 00ðslR1ÞN 00ðslR2Þ � J 00ðslR2ÞN 00ðslR1Þg

: ð113Þ
The relations (103) and (104) can be used for solving some axisymmetrical problems with the ‘‘in-plane’’
polarisation using mode decomposition (41) for n = 0
ur

uz

� �
¼
X

l

Ml ul
r

ul
z

� �
; Ml � Ml;c

0 ; sl 2 SD: ð114Þ
As above let us begin with the cylindrical opening X in the infinite laminate with a few variants of boundary
conditions on XR: rj

rz ¼ Tj, uj
r ¼ Uj or 1

2
frj

rr þ rj
hhg � Pj, uj

z � Vj or 1
3
frj

rr þ rj
hh þ rj

zzg � Dj,Vj. Using relations
(103) for the first couple of boundary conditions we obtain
Ml ¼ F ðTj; vj
l; v

j
l;U

jÞ
B00ðslRÞ

; F ðTj; vj
l; v

j
l;U

jÞ �
X

j

ð Tj; vj
lÞ � ljðvj

l;U
jÞ

W �
ll

: ð115Þ
Other couples of boundary conditions result in the following
Ml ¼ F ð2~ajP
j � lj

~bjozV
j; uj

l; s
j
l;V

jÞ=B0ðslRÞ; ð116Þ

Ml ¼ F ð3~ajD
j � 2ljozV

j; uj
l; s

j
l;V

jÞ=B0ðslRÞ: ð117Þ
The function Bn for infinite laminate with an opening or for laminate occupying a finite cylinder X or cylinder
X2 with opening X1 is chosen as above. For the case (109) and the boundary conditions Tj

1;2, Uj
1;2 on XR1;2

the
respective coefficients acquire the form
Ml
J ¼

F ðTj
1; v

j
l; v

j
l;U

j
1ÞN 00ðslR2Þ � F ðTj

2; v
j
l; v

j
l;U

j
2ÞN 00ðslR1Þ

J 00ðslR1ÞN 00ðslR2Þ � J 00ðslR2ÞN 00ðslR1Þ
; ð118Þ

Ml
J ¼
�F ðTj

1; v
j
l; v

j
l;U

j
1ÞJ 00ðslR2Þ þ F ðTj

2; v
j
l; v

j
l;U

j
2ÞJ 00ðslR1Þ

J 00ðslR1ÞN 00ðslR2Þ � J 00ðslR2ÞN 00ðslR1Þ
: ð119Þ
For other boundary conditions Pj
1;2 (or Dj

1;2Þ and Uj
1;2 we have to replace J 00, N 00 by J0, N0 in formulae (118),

(119) and to use the function F from the relations (116) or (117).
The application of the obtained OR to other boundary conditions leads to an infinite system of algebraic

equations (see Zakharov, 1988) with respect to coefficients Ml. The same holds for the non-axisymmetrical
problem with n P 1.
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9. ‘‘Far field’’ calculation for an acoustic source localised in a finite region

Assume that the motion of an infinite laminate is caused by an acoustic source in the form of body forces
f j
a , distributed in a finite volume embedded into cylinder X, or in the form of surface load distributed over a

finite region on X�1 or XþN (see Fig. 1c). Another part of the faces satisfies HBCF. Represent the laminate
response as a function of coordinates r,h,z and decompose it into Fourier series wrt the angle h. Upon the
general theory of differential equations in partial derivatives the field inside the region X (r < R) contains
two components: a particular solution according to the acoustic source and a general homogeneous solution.
At r > R the particular solution vanishes since there is no longer body force nor facial load and the field can be
represented by mode decomposition
ur

uh

uz

2
64

3
75 ¼X

l

Ml
n

ul
r

ul
h

ul
z

2
64

3
75; sl 2 SD; Sd; ð120Þ
with Bn ¼ H ð1Þn and sl satisfying radiation condition. In the series (120) the components uj
r; u

j
z 
 cos nh,

uj
h 
 sin nh, Ml

n � Ml;c
n or uj

r; u
j
z 
 � sin nh, uj

h 
 cos nh and Ml
n � Ml;s

n , i.e., they run all the components in for-
mulae (41). On the lateral surfaces Xj

R ðr ¼ RÞ the inner and outer solutions satisfy the continuity of uj
a and

rj
ra.

For each propagating wave of the wavenumber sm introduce a standing wave with Bn(smr) � Jn(smr) and
with the same components um, vm and wm. Then, integrating the Eq. (1) similarly to considerations (64)–
(69) we obtain
X

j

ZZ
Xj

R

rj
abuj

am � rj
abmuj

a

n o
nbdA ¼ Cmn; ð121Þ

Cmn �
ZZ

X�1

þ
ZZ

XþN

( )
frabmua � rabuamgnbdA�

X
j

Z Z Z
Xj
ff j

a uj
amgdV : ð122Þ
Here Cmn does not contain any unknowns. For example, if the source is given by the stresses r�az on X�1 and rþaz

on XþN the expression (122) yields
Cmn ¼ �
ZZ

XþN

frþzzu
N
zm þ rþzru

N
rm þ rþzhuN

hmgdA�
ZZ

X�1

fr�zzu
1
zm þ r�zru

1
rm þ r�zhu1

hmgdA: ð123Þ
Using the identities (85) and relations (72)–(74) for propagating waves with functions H ð1Þn we arrive at the fol-
lowing closed form of coefficients
Mm
n ¼ �ismCmn=f2nnW �

mmg; sm 2 SD;

Mm
n ¼ �iCmn=f2nnT �mmg; sm 2 Sd:

�
ð124Þ
For the function H ð2Þn the formulae (124) are used with the opposite sign.
Hence, we suggest a general method to evaluate the ‘‘far’’ field—but in fact the total field at the distance

r > R, where 2R is the longitudinal size of an acoustic source. The method requires the calculation of spectra
SD and Sd, modes (7)–(9) and exact coefficients (124) in the double series (41).

In case of pure elasticity the far field in its classical meaning of waves propagating to infinity is expressed by
ordinary series wrt the counter n because at each frequency there is a finite number of real wavenumbers.

10. Exact solutions for some types of loadings

Consider a few examples of calculating Cmn. Assume that the load is distributed over a circular region XþN
and the surface stresses rþzzðr; hÞ, rþrzðr; hÞ and rþhzðr; hÞ are expanded into the trigonometrical Fourier series wrt
h. In accordance with the representations (17)–(23) let us for a moment denote coefficients of cosnh (or �sinnh)
for rþzz and rþrz by sþznðrÞ and sþrnðrÞ, respectively. For rþhz the coefficient of sin nh (or cosnh) is denoted by sþhnðrÞ.
The substitution into (123) yields



D.D. Zakharov / International Journal of Solids and Structures 45 (2008) 1788–1803 1801
Cmn ¼ �pnnfuN
mðzþÞTþr þ wN

mðzþÞTþh þ vN
mðzþÞTþz g; ð125Þ

Tþr;h ¼
1

2

Z R

0

½sþrnðrÞ þ sþhnðrÞ�J nþ1ðsmrÞ � ½sþrnðrÞ � sþhnðrÞ�J n�1ðsmrÞ
� �

rdr; ð126Þ

Tþz ¼
Z R

0

sþznðrÞJ nðsmrÞrdr: ð127Þ
Solution (125)–(127) is of practical interest for evaluating the field, radiated by a circular transducer. In par-
ticular, for a constant normal load sþz0=2 we obtain
Cm0 ¼ �
p
sm

RJ 1ðsmRÞsþz0 �
vN

mðzþÞ; sm 2 SD

0; sm 2 Sd

� �
; ð128Þ
and for a constant tangent load sþ10 in the direction x1 the coefficients are
Cm1 ¼
p
sm

RJ 1ðsmRÞsþ10 �
uN

mðzþÞ; sm 2 SD

�wN
mðzþÞ; sm 2 Sd

� �
: ð129Þ
Other Cmn = 0. The rough estimate of the convergence rate of series (120) can be seen from the results (125)–
(129). For example, the Lamb waves in an elastic layer have the wavenumbers sl 2 SD with the asymptotic
behaviour Re(sl) = O(lnl), Im(sl) = O(l) and the out-of-plane waves sl 2 Sd: Re(sl) = 0, Im(sl) = O(l) as
l! +1 (see Auld, 1990). Hence, the terms of series (120) cannot exceed the order
Ml
nul

a 
 OðlkðzÞÞeðr�RÞOðlÞ; ð130Þ
for a certain k(z) and the convergence holds at least at r > R.
It is also easily to obtain the laminate response to a concentrated load. For the concentrated body forces

f j
a ¼ T 0d

b
adðx1; x2; x3 � z0Þ (zj 6 z0 6 zj+1; db

a is a Kronecker delta) at any HBCF we obtain
Cmn ¼ �
X

j

Z Z Z
Xj
ff j

a uj
amgdV ¼ �T 0uj

bmjr¼0;z¼z0
; ð131Þ
with a similar result for the concentrated surface load rþaz ¼ sþ0 db
adðx1; x2Þ:
Cmn ¼ �sþ0 uN
bmjr¼0;z¼zþ : ð132Þ
Note that formulae (131) and (132) are non singular since the dummy displacements uj
bmðr; h; z0Þ contain Bes-

sel’s function Bn(smr) � Jn(smr) whose value at the origin is regular. However, the solution (120) might have
singularity at the origin due to the Hankel functions involved. By the same reason for the transversal load
(axisymmetrical problem, b = 3) the terms with n P 1 vanish and only Cm0 5 0. For the longitudinal load
(b = 1,2) only Cm1 5 0. Formulae (132) can be also obtained from (128) and (129) replacing sþan (a,n = z,0
or a,n = 1,1) by 2sþ0 =pR2 and proceeding to a limit
p
sm

RJ 1ðsmRÞsþa0 !
p
sm

smR2

2

2sþ0
pR2
¼ sþ0 as R! þ0: ð133Þ
Thus, the mode decomposition (120) with coefficients (124), (131) and (132) represents the exact Green func-
tions of different kinds and generalises the previous results for the case of any viscoelastic laminate and any
HBCF. In contrast to other studies of Bai et al. (2004) or Lih and Mal (1996) our approach does not involve
the semi-analytical finite element method or complex integration with Fourier inversion using FFT.

11. Discussion and conclusive remarks

The obtained results can be clearly subdivided into two groups. First group includes orthogonality relations
for the cylindrical guided waves satisfying homogeneous boundary conditions on the laminate faces. They cor-
relate with the results of previous authors for an elastic layer and plane waves, which can be obtained as a limit
case for large radius. The explicit expressions for reciprocity relations are obtained as well. They are valid for
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both elastic and linearly viscoelastic media due to the symmetry of their energy functionals. The second group
describes solving methods using OR. Some particular boundary value problems for a finite cylinder, cylinder
with an opening or infinite laminate with a cylindrical opening can be solved in this manner. For other bound-
ary value problems OR can be used to construct a linear algebraic system of equations with respect to the
mode coefficients. However, one important problem to evaluate the far field of an acoustic source—surface
loads or body forces localised in a finite region—can be solved in a closed form. The obtained Green’s func-
tions are applicable for representing fields using convolution integrals and the solution for a circular region is
of practical interest for modelling circular transducers. In particular, this approach permits one to calculate
the time-harmonic field radiated into laminate by an ultrasonic transducer of arbitrary aperture and then
to evaluate the pulse train using harmonic synthesis.

Another formal question is the completeness of the guided waves. Normally, the total set of eigenfunctions
of the polynomial operator pencil is multiply complete accordingly to its degree (see, e.g., Keldysh, 1971).
Omitting a part of this set, this multiplicity can be reduced to an ordinary completeness, namely, in our case
when choosing basic functions Bn ¼ H ð1Þn the subset with Imsl < 0 is excluded. The proof of the completeness
obtained for the plane waves in an elastic homogeneous isotropic strip or in a cylinder in a functional Sobo-
lev’s space on a cross-section can be found in Kostyuchenko and Orazov (1975, 1977, 1986), Orazov (1976),
Kirrmann (1995), Folk and Herszynski (1986) and Herszynski and Folk (1989). The same property is expected
for 2D and 3D guided waves in laminates.
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