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Abstract

The fundamental properties of guided waves in a laminate with any homogeneous boundary conditions on its faces are
considered. As shown, the waves satisfy orthogonality relations whose physical meaning is related to the additivity of the
average power flow. The applications of this orthogonality for solving some particular boundary value problems are dis-
cussed. A method for exact calculation of the far field caused by an acoustic source of a finite size is suggested. The only
restriction is that the distance required must exceed the longitudinal radius of the source. The obtained results can be used
for evaluating the fields radiated by ultrasonic transducers of arbitrary aperture and by other realistic sources.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

With the increasing use of composite materials in modern devices the guided waves in plates, both homo-
geneous and layered attract more and more attention of the research community. In the literature one can find
monographs (Viktorov, 1967; Brekhovskikh, 1980; Auld, 1990; Nayfeh, 1995), reviews (e.g., paper by Chim-
enti, 1997 with four hundred references) and numerous original articles. As known, the guided waves in plates
are generally not orthogonal like trigonometrical Fourier series, but they possess the orthogonality relations
(OR) with respect to the power flow. These OR were deduced in the 70s by Auld and Kino (1971), Bobrov-
nitskii (1973), Fedoryuk (1974), Fraser (1976), Prakash (1978), Zilbergleit and Nuller (1977) and Slepyan
(1979) for an elastic strip with various homogeneous boundary conditions on its faces. The relations for
3D guided waves in an elastic layer were derived by Zakharov (1988). Other considerations of non Sturm-—
Liouville systems which possess OR can be found in Lawrie and Abrahams (1999). Such OR can be used
to construct the linear algebraic system of equations with respect to the unknown coefficients when using mode
decomposition similarly to the various plane problems, e.g., the contact interaction between strips and a half-
space (Pelts and Shikman, 1987), wave diffraction by a crack (Kasatkin, 1981; Shkerdin and Glorieux, 2004,
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2006; Flores-Lopez and Gregory, 2006) or wave reflection from the strip edge (Gregory and Gladwell, 1983;
Scandrett and Vasudevan, 1991). A particular case of OR for one clastic layer was introduced and applied to
expanding the Green tensor into series of Lamb’s waves by Achenbach (1998, 2000) and Achenbach and Xu
(1998, 1999).

In this paper, the 3D guided waves are considered in a laminate with homogeneous boundary condi-
tions on its faces (HBCF) including stress free faces, fixed faces or any other combinations of zero dis-
placements or zero stresses providing the total energy reflection by the faces. The viscoelasticity is
taken into account in the form of Kelvin—Voigt model (see, e.g., Christensen, 1971). Then the general
3D waves are introduced and their spectra and orthogonality are deduced and discussed. The main moti-
vation for this study is to generalise the results obtained earlier for one layer and pure elasticity, to elu-
cidate the physics and to work out a method for exact calculation of the field, radiated by a realistic
acoustic source into viscoelastic laminate. Since the numerical methods for 3D problems are time consum-
ing the analytical and semi-analytical methods are still of interest for NDT needs when modelling the far-
field and near-field.

The paper is organised as follows: in Section 2 the problem is formulated and in Section 3 the general rep-
resentation of waves is introduced. Section 4 is devoted to HBCF and respective frequency equations. The
orthogonality relations are derived in Section 5 and their physical meaning is discussed in Section 6. The for-
mulation of the radiation condition in case of pure elasticity is presented in Section 7. Some applications are
considered in the three last sections, namely, how to obtain the exact solutions to some particular boundary
value problems (Section 8) and how to calculate the field, radiated by an acoustic source of a finite size (Sec-
tion 9 and 10). A method based on the OR and the standing waves permits one to evaluate the total field at the
distance which is greater than the source radius regardless to the shape of source and distribution. The paper is
concluded by a few final remarks in Section 11.

2. Formulation

Consider a laminate composed of N plies where each jth layer occupies a region —oo < xj,x; < oo,
z; < x3 < zj4 (see Fig. la) and subjected to the time-harmonic load. To be brief the factor e’ is omitted
in what follows and the load is specified in Section 9. The layer displacements «/ satisfy the equations of
motion

0oy + py’ul, + 1 =0, (o,f=1,2,3), (1)

where p; are mass densities and f7 are body forces to be specified further. The stresses oéﬁ and strains siﬁ satisfy
Hook’s law and Kelvin—Voigt model of linear viscoelasticity

j /j j 1 . j 1
T = Cappotis T Cpmotior s < 1 2)

8;/; =3 {Opu, + aa”;f}a Sé/; = —1a)s;ﬁ. (3)

An isotropic material yields the complex-valued representation of Lame constants, wave speeds and
wavenumbers

by = =il = —iou], 4)

{C{’}z = (/lj + 2#/)/pj7 {CIS}Z = .“_//p_/v kﬁ) = a)/cﬁ,, kg = w/cé (5)
On the interfaces x3 = z;, j = 2,3,..., N the conditions of the full contact are assumed

o = ) =l (6)

In addition the field may satisfy the conditions on the faces z~ =z; and z" = zy , ; in the form of given
stresses 5 or displacements u; or by their combinations.

Our first task is to investigate the homogeneous solutions of the Eq. (1), i.e., the waves propagating in the
longitudinal direction at the absence of body forces with various homogeneous boundary conditions on the
faces. Second, their OR have to be derived.
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Fig. 1. (a) Sketch of laminate. (b) Regions with cylindrical geometry. (c) Acoustic source embedded into finite cylinder Q.

3. General representation of the guided waves with cylindrical geometry

Introduce the displacement field supporting periodicity with respect to the polar angle in the plane x;,x,
and proceed to the cylindrical coordinates r,0,z: x; = rcosf), x, = rsin 0, x3 = z. Using Lame potentials and
separation of variables at the absence of body forces, the waves propagating in r-direction in jth layer result
as follows

. ) n cosnf
W =|-wB +w —B, , 7
" [ »t sr }{—sinné)} ™
u = [ 25 —m/B/HSin”Q } (8)
L R "I cosnd [’

. ) cosnf
W = an{ , } ©)

—sinnf

In the formulae (7)—(9) the first or second term could be chosen in the French brackets, so they represent the
terms in the trigonometrical Fourier series wrt 0. The terms B,, = B,,(sr) are any of the appropriate Bessel func-
tion or Hankel function of the first or second kind and B/, = dB, /d{sr}. Functions /(z), v/(z) and w/(z) satisfy
the system of equations
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d? dv/
o] g =0, (10)

d’ 2] du/

d2
+{ 5}2 /= (12)
oc,-zz+ﬁ,, B=hlw, v=F+1 {a¢y =Y -5 {a) ={k) -5 (13)
In the particular case of pure elasticity coefficients depend on Poisson’s ratios v;

o =(2-2v))/(L=2v)), B;=2v;/(1 =2v), y;=1/(1—-2v). (14)

So, Egs. (7)—(13) permit one to describe the guided waves of the wavenumber s within constant factors. In-
deed, the three second order linear differential equations (10)—(12) yield a simple so

J [ cosqhz A sin gz
[u}_ﬁ Z AN
v I sin g}z — % cosgpz (1)
N 1% sing!
sin g%z COS g5z
w = B cosq/z + By’ sing/z, By’ = const. (16)
The stresses look as follows (not to sum over j)
. ) W sw/ cosnf
G{«;- = :uj{XJBn - [(n + I)Bn+1 + (l’l - I)anl} T [Bn+2 - BnZ]}{ . }7 (17)
r 2 — sinnf
. s sw/ sin nf
o = ud "B,y — Byis] — ——[Buis + B, , 18
= {5 B2 = Bl = B+ B {07 (19
, dw/ n cosnf
o, —fB/—i-——B,, , 19
r=nd -+ La (19)
, ) s sw/ cos nf
0‘{)() = K {p]Bn + 7 [Bn—z + Bn+2] + 7 [Bn+2 - Bn—2] }{ _sinno }a (20)
, n dw/ sin n6
o, =ulv B, ——F 21
0z :uj{T s7 dZ n}{COSn0}7 ( )
, . cosnl
ol. = wo’'B, . ) (22)
’ —sinnf
. dv/ . dw/ , . dv/ , , dv/
¥ =B d——i—ocjsu’, v —EM—SU/7 p = ﬁjd——l—yjsu’, o =o,— & +ﬁsuf (23)
z
o’ {ql‘}z i COS @hz i gl = sin ¢z
[ /} :A;]l ar + 45 s %
v —2¢) singlhz 24 cos qpz (24)
" 24 cos ¢z . —24} sin ¢z
+As (- Sy |
YsT 7 sin gz —S—— C0S gz
dw/ 4 S » ,
—— = ¢/{—By/singlz + By’ cos¢z}. (25)

dz
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The equations (6) of the interface contact acquire the form
W (z) =(z), V) =), wz) = w(z), (26)
._ . . . dw/71(z dw/(z;
wad ) = o' (z), wa () = 7)o dz( ) _ 1 di "), (27)

with j = 2,3,...,N and give the system of 6N — 6 linear algebraic equations with respect to 6 N unknown coef-
ficients in (15), (16).

4. Facial conditions and frequency equations

To close the system (26), (27) let us specify the facial conditions. According to the previous authors we call
“pure-face” conditions the following cases: the stress free faces

dz)=1()= dwdi(z[) =0, (28)

() = V(") = dwdif) =0, (29)
the fixed faces

u'(z?)=0'(z7) =w'(z") =0, (30)

W (zH) =V () =w (") =0, (31)

and the case when one face is stress free and another is fixed (Eqs. (28), (31) or (29), (30)). The “mixed-face”
boundary conditions occur when the stresses are zero in some directions and the displacements equal zero in
the complementary directions, e.g., no normal displacement nor tangent stresses

1 —
) =0, @)= g (32)
dw" (z+
M=o, P =) g (33)
dz
which correspond to a contact with a frictionless stamp. Another situation is
d'(z)=0, u'(z)=0v'(z")=0and/or " (z") =0, u"(z")=0"(z")=0. (34)

Let us call homogeneous boundary conditions on the faces (HBCF) all possible combinations of the “pure-
face” and “mixed-face” conditions. These HBCF give six linear algebraic equations, additional to 6N — 6
Egs. (26) and (27). So, the final system of equations has the size 6N x 6 N. Denote the global matrix of this
system by L. with the determinant d. = detL.. As seen from relations (15), (16) and (24)~(34) the important
point is that 4N equations with respect to 43’ are separable from 2N equations with respect to By’. Thus, the
matrix L, consists of two blocks: M,(4N X 4N) A, = detM, and N,(2N X 2N), 6. = detN,. which co1n01de with
those of the in-plane and out-of-plane problems, respectively. The explicit form, detailed analysis and calcu-
lation algorithms for M, and N, can by found in Knopoff (1964), Schwab and Knopoff (1971), Fahmi and
Adler (1973) and Lowe (1995). We just focus our attention on the corollary

d*:A*é*, Sd:{SIId*(SI):O}:SAUS(s, (35)
sESA={s:A(s)=0}: W =0, u v#0, (37)
s€ES;={s:0.(5)=0}: W =0v=0, w#0. (38)

corresponding to the “in-plane” (r,z)-polarisation and “out-of-plane” #-polarisation of the eigenwaves. Their
frequency equations are independent of number #. In general the roots s are complex valued, and the math-
ematical problem to find out the spectra S, and S, is equivalent to the study of the quadratic operator pencil.
Thus, each solution (37) or (38), satisfying Eqs. (10)—(12), conditions on the interfaces (26), (27) and any
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HBCF is determined within a constant factor. For example 4!, s € Su (or B!, s € Ss) can be chosen as such a
factor and other coeflicients are expressed through it using linear algebraic system with matrix M, (or N.).

Hence, the “in-plane” guided waves (s € Sx) and “out-of-plane” waves (s € S;) are given by formulas (7)—
(9) and (37), (38) (see also Zakharov, 1988; Achenbach and Xu, 1998). For r > 1 the curvature of the cylin-
drical wave front can be neglected and the asymptotics of (7)(9) lead to quasi plane waves of the magnitude
order % with the leading parts «/,v/ for the in-plane and w’/ for the out of plane polarisation.

Note that the dispersion relations A, = 0 and J, = 0 remain the same for s and —s and the normalisation
can be chosen in a such a way that

uy=—w, vj=v and w,=w fors, =-s,, j=1,2,....N. (39)

In the case of pure elasticity the complex roots appear in conjugated pairs since the left hand sides A, and 9.
of the frequency equations can be expanded in series with real coefficients. In addition we may set (over bar
means complex conjugation)

uy =, v)=-v, w =w fors =-5,and uj,v],w, €R fors, €R. (40)

To sum up let us represent the final form of the mode decomposition

(f”;(Z)B (s;7) + wi(z ) B (slr)) (M cosnf — M sin nf)

w
r +00

| = z; { ;S ) (”;(Z) - Bu(sir) — W;(Z)B;(Szr)) (M} sinn0 + M cosn0) |- (41)
J n= S1ESA.Ss )

B 41(2)B, () (M cos ) — M sin )

5. Orthogonality relations

Introduce the scalar products of any functions f/ and g/ related to the wavenumbers s; and s,,, and to jth
layer by standard formula
S 2+
(fi:&n) = fig,dz. (42)
Zj
For the sake of simplicity assume that the wavenumbers are single roots of the frequency equations (37) and
(38). For any s,s,, € Sa combine the products of z-components of the displacements (7)—(9) and stresses (17)—
(23) into the expressions below

Ul = ssa(t ) + (Y )~ (Gt ). (43)
i — i JN2(0) d ; d;
Vim = sisw(up ) + {kp} (v}, 0),) — avl’&vin ) (44)
Wi = (21, 0)) = (T, 0))- (45)
For s, € Sp and s,, € S5 introduce the additional combinations
PN P 1 d . d ;.
1 = [ = 57 = 0,08 | ) = B (ol )+ (vl ) (46)
o . d . 22
Gl = i)~ (dhaph ) + T2 o)) @)
I
and for s,,5,, € Ss—the combination
= (W), 1),)- (48)

Statement 1. For any sy,s,, € Sx such that s7 # 52, the following equations hold

U, = Zij-;'m =0, V = Zajujr/{m =0, (49)
J J
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lm Z Mj lm - (50)
Indeed, the integration by parts of the equations (10)—(12) yields

/ * {{swr, (Bq. (10))],_,, = sie](Ba. (1), Yz} = s,U,, — sV, + [swi 7] = sivfal ] [1 = 0.

J

(s1)
and by virtue of the conditions (26), (27) and any HBCF (28)—(35) we obtain
ZH;[SIU{G@ — suth T = s Z{U;(Zj+1)ujo-£a(zj+l) — (200, (2))}
; i
—Sm Z{ (zp )i (z71) — 10, (271 (21)} = O, (52)
> w(sull, — asiV4,) = suUs, = siV5, = 0. (53)
J
Changing indices / & m with U}, V; = U:,, V>, in (53) we also arrive at the equations s,U;,, — s,,V;,, = 0 and

then at the Eq. (49). Similarly we obtain
Zj+1
i / (B0 82 = Uy =513+ St = Uy = i =0 (54)

Zj+1

Son | Bz = Vi = sl 3ol = Vi = sal i, =0 (55)
J

and two symmetrical equation (49) are equivalent to one non-symmetrical equation (50). Note that the Eq.
(50) can be rewritten using functions p/ and & as follows

dv/ 30
d/—— 2yl — — 27 o= 7 56
= (g m=p (56)
dv] o ~ o - )
Ylm Z:u/{ o\py, m _ﬂj<aaujm> _(T{nalﬁ)} :O, OCjE)Tj, jE?;7 (57)

Zu/{lc/dl,u{n (‘Z{j u’) (m,v’)}:O. (58)

Statement 2. The Eq. (12) for the in-plane waves yields the following OR

dwj dw, 2 42
Z,u T = Z{,u_(, ’”) P, T’,m} =0 for s;,5, € Ss,57 # 5, (59)
J - J dZ dZ
The result follows from the integration of Eq. (12)
I dw 17 faw) dw P, .

with taking into account equations (26), (27) and HBCF.
Statement 3. For s; € S, and s, € S the following orthogonality relations hold

J J

The proof can be obtained as above
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Zjt+1 ) . o d ]|
> {u,- {wh (Eq. 1D, — st](Eq. 12>Hm}dz} — i, 4 Yot~ || = 3, =
J Z J Z
(62)
Zigl . o d ]
Z luj/ {w:n(Eq 10)|S:S/ - %(Eq 12)|s:sm}dz = _S1G7m + Z'uj |:T;W£n - u?d_zwin:| _SIGTm = O
j zj J Zj
(63)

6. Physical meaning of the orthogonality relations

Now consider the obtained OR from the viewpoint of energy. To this end multiply the Eq. (1) with f/ =0
and s =, by a speed of particle &/, = —iww/, for the wavenumber s = s,,,

(Eq 1)|S:S[1/'t£m = a/f{oitﬁlil{cm} - O-Z/ﬁl{beﬁm + w;cﬁm} - pji"[gclitém = O’ (64)

where qf;ﬁ :%{aﬁué — aau;;} is a rotation tensor. Using the symmetry of stiffness and viscosity tensors
C;/W, c%yd and antisymmetry of the rotation tensor we obtain

o ;ﬂz{%ﬁm + (Uzcﬂm} = Oyl = cg/?y&é;/?mgy/rél + cgjiyéégcﬁmééél’ (65)
Cg/}«,-dé;ﬂm‘?{w = C;{Byd‘(’\iﬁmé;véh (66)
aﬂ{o‘ilﬁll:tém} = Géﬂlé;ﬁm + P%zi‘{zm = aﬁ{"iﬁm%z}- (67)

ansider a cylinder Q;= {r < R,z; <z < zjﬂ}‘ with the upper surface Q’+ ={r <R,z=1z;}, lower surface
QY = {r <R,z=z} and the lateral surface @} = {r =R,z; <z < z;;1}. Then

// Q_{aﬁ{o‘é/;l%m - O‘i/smi‘il}}dg = //Q/ {O-gz/flujxm - O‘i/smi’iz}nﬁdA

Ao f Jr o

where ny are coordinates of the outer unit normal to Q. The conditions on the interfaces and HBCF yield

2 {//Qf+ - //:y } iy, = Tyt 4 =0, or (69)

<O-rl~r7u:n> + <6;{07ug> + <O-r/~z7u;n> - <0Jr’;7u£> - <0Jr':97ué> - <6:nzvu£> = Oa (70)

(f.g") = Z//%f/gédfl =RY /Ozn(ﬁ,g{;,)df)- (71)

The left hand side of Eq. (70) for s,s,, € S is reduced to the form

<6rl'r7u:n> + <Ji0’u’(;l> + <6;I~z’u’zn> - <G::,,ll£> - <6%,ué> - <G:’;,lli> é _ 1; nz=l (72)
= nRE,{ W, B, (suR)B, (siR) — W}, B.(suR)B,(s:R) } 2, n=0.
For s, € Sp and s, € Ss it is rewritten as follows
<O-rl~r7“:n> + <6£97ug> + <O-yl~z7u;n> - <0Jr’;vui> - <6%7ué> - <6:nzvu£> = nénG?miBn(st)Bn(SlR)a (73)
Sm

and for the horizontally polarised waves s,,s,, € Ss it acquires the form

<0J um> + <°’,1~a»“31> + <O'£Z,ll;”> - <O':'i,ll£> - <O'Z;,l]é> - <U;Z,ll£> = nRénT;ﬁm(Elm - Em/)7 (74)

)y

where Ejy = 15/{By_1(suR)By_2(s:R) — Byi1(smR)Byi2(siR)}.
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Thus, the obtained OR (50), (59) and (61) are in fact the reciprocity relations which hold for a linearly vis-
coelastic laminate due to the energy symmetry.

Note that the Eq. (67) for s5;=s,, can be easily rewritten in terms of the density of kinetic energy K , elastic
energy E/, Rayleigh function R} and Pointing’s vector P}:

d {Kf + Ej} 4+ 2R] + divP] = 0, (75)
R T

pjitlit,, E|= Ecgﬁy(s%ﬁﬁ;m’ (76)

= 1 g i [p PP J i i 77

R, = 2 a/imgz/;/'g,a/v P =[P, P, Py], P, = ~ il (77)

7. Radiation conditions in case of pure elasticity

Substituting Re{uile*i"f’ } instead of i), into Eq. (75) we arrive at the energy relation with positively deter-
mined quadratic forms K, E} and R;. Introduce also the average power flow P, across the lateral surface Qg

2n/w ) ) )
pr=2 / / Pdadi, P, =Pl cos0+ P sin 0, (78)
It is easily to show that
P, = w[Re{q], e }Re{iu,e '} + Re{a)ye " }Refiupe ™'} + Re{a e }Re{iule " }], (79)
w 2n/w
% P]dti __Re{ rrl r/+OJ lu9+o-rz/ }’ (80)

where ﬁrl denotes the complex conjugation of uﬁl. For the real positive s; the integration of the Eq. (80) over Q},
and summation over j yields (see formulae (72) and (74))

Pl = Ty RRe{Z wl (), ] (T{aU{)]iwgil(is)Bn(is)}v 51 € Sa, (81)

{Z 1 ( W), W))iws;[B,—1 (s;R)B,_2(s:R) — Bn+2(SIR)Bn+1(SIR)]}7 51 € 85. (82)

For the propagating wave with the real wavenumber the cylindrical function B, should be replaced by the
Hankel function H{!? of the first or second kind.

Statement 4. For the propagating wave with 5,> 0, 5, € S, in elastic laminate the average power flow
acquires the form

P! = +¢&,e, W7, (83)
where ¢, = w/s, is the phase speed and the sign + or — corresponds to the Hankel function of the first or second
kind, respectively.

The result follows from the formula (81) with taking into account the property (45) and the identities for the
cylindrical functions (see Abramovitz and Stegun, 1972)

Re{ifl, (s;R)H,(s;R)} = i% H,=H!"Y =J,+iN,, (84)
S
2
J”Jr](S]R)Nn(S[R) —Jn(S[R)Nn+](S1R) = — (85)
TERS]

Statement 5. The average power flow of the propagating wave with ;> 0, s, € S; in elastic laminate acquires
the form

P = +&,0T;, (86)
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The proof follows from the formulae (40), (82) and (85).

The formulae (83) and (86) can be used for selecting waves satisfying the radiation condition. In the case of
viscoelastic materials and complex-valued roots s; the selection is based on the decay of function H'"?(s;R)
provided by Ims; in the asymptotic formula [see Abramovitz and Stegun (1972)]

2n+1

2 .
D (sir) = | —{1+ Osir) e b, sy 1. (87)
Sir

y
n

For the pure elasticity and the real wavenumber the analogue of the Leontovich-Lighthill theorem can be
proven.

Theorem. For s;> 0 and s; € Sp or s; € S5

, _do

P:l ~ :l:Cé{K] +E1}*, R — +OO, Cg = a S:SI. (88)

The sign =+ is chosen accordingly to the choice of Hankel’s function as previously. 4
Consider again the Eq. (75) with R} = 0. For the real functions the kinetic energy K/ yields
co 1 , . ... .. e

K| = 5 p Re{i }Re{id} = ¢ {ilil + 2, + i1}, (89)
and its time averaging involves terms like (80)

) / ? it =L Refidi) (90)

o Jy I T g PR

The terms i#/i¢/, and i,/ vanish due to zero average value of e™>*". The similar rule holds for the contributions
into the energy E/. Introduce the frequency variation dw: wy = w + idw and the respective wavenumber var-
iation involving the group velocity cé: So =8+ 1ds, do = céés. Then, using representation (89) we obtain

2n

o / K] + El}dt = 2000w, 60){K) + E}, (1)
0

w [° w e —1

R —i(wo—®0) 44 — _wvrr -

o/, 0 dt = 200w®(w, dw), (ID(a),(‘icu),“Tc S0 5(:01. (92)

For the Pointing vector we have

divP, = D,P/, +r'9yP), +0.P/,, D, =0, +r ", (93)
zj ) 2n )
J| ey aripan= [ e er [ (94
A 2 0 "

and P),|" = P}y, — Plyly—o = 0 due to the periodicity wrt 6. Additionally, the interface conditions (6) and
HBCEF yield

2n 2n
SR [P0 =R [ SR <Pl b0 =0 )
7 0 7 0 7 J J

So, only D,P/, remains in the sum of integrals over €.
For s.,50 € Sa after application of the recurrent formulae for Hankel’s functions and asymptotics (87) the
last factor in formula (81) acquires the form

D,{B'B,} = 50B.B, + s|B.|* + r'B.B, = s0|B.|> — 5|B.|" + n*r%5"|B, [, (96)

S0|H;‘2 =50 e:Fzrés + O(I"iz), §0|H,,|2 = §0 e:}:2r5s + 0(1”72), (97)

TSor TSoV
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and

]2
D,{B,B,} = £2ids| ——|e™" + O(?) = D,{P;;} = F205P;;e™" +- O(R?). (98)
Sol

Finally the Egs. (91) and (98) result in the following
{K] + E] + lePrl} = 2(3(,{){[{1 + E[} F 25SP " + 0(55‘) + O(Ril) =0. (99)

Tending R — +oo and dividing by 26 s — +0 we derive the formulation (88).
For the wave of another kind s; € S5 the proof is similar and uses formulae (82) and (87).

8. Exact solutions for some particular boundary value problems

Let us reformulate OR in terms of the total displacements and stresses. For s,5,, € S5 the field structure (7),
(9), (18), (19) with properties (59) results in the relation

(0, 07) = (o}, 05) =0, 5] #5,. (100)
Introduce additional combinations of the displacements and stresses

lﬁ =H 6 “é/ /{ T ‘Téoz} = _H/X{Bn(sﬂ”){ C—Ozi’ri[)ne }’ (101)

0= 2t = 30} + o + o) = o { o . (102)
Then for sp,5,, € Sa, s7 # s> the relations (57) and (58) can be rewritten in the form

W' u) + (o, z>70 (103)

(¢ w) + (o2, ul) =0, (104)

<O’1, Fu’ + %Ggug"> <:F6 +11169602, Z> =0, (105)

<¢’, Fu" +%agu;;l> + <:Fa —|—}1160002, > =0. (106)

The general case of the arbitrary s; and s, s7 # s2 satisfies the relations (70).

Relations (100), (103)—(106) can be used to find the exact or approximate solution to the boundary value
problem for a laminate occupying a region with cylindrical geometry (see Fig. 1b). First of all it concerns the
axisymmetrical problem for an infinite laminate with a cylindrical opening Q = U/Q; of radius R. Assume
HBCF are satisfied on Q and Q; and the lateral surface Q; = U, Y, is loaded. Consider the axisymmetrical
torsion with the boundary condltlons oy =© oru) =W on Q) and seek the exact solution using the mode
decomposition (41) for n =0

w=>» Mu), M =Ms €S, (107)
/

Thus, coefficients M follow from the formulae (100) and (74) in a closed form

M' == (&, w))/s;T;;Ba(siR) or M' = = (W, uw))/ T}, By(siR). (108)

J J
For an infinite laminate with a cylindrical opening we set Ims; > 0, B, = H 5,1) and select positive real roots s,
in case of pure elasticity. But if the respective cé < 0 choose B, = H§,2>. The laminate occupying a finite
cylindrical region Q is considered similarly and for this case the formulae (108) remain in force with B, = J,,.
Assume now that the laminate occupies a finite cylindrical region Q, of radius R, with a coaxial cylindrical
opening Q; of radius R; < R,. Denote the boundary conditions on the lateral surfaces Qg, and Qg by
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@), ®] or W), W/, respectively. The mode decomposition (107) remains in force with the Bessel and Neumann
functions

B,(sir) = M'J,(s;r) + M\N,(si7), (109)
whose coefficients M j and M, in the field representation (7)—(9) and (19)—(23) are given by expressions

(Nz(S[Rz)@{ — Nz(S1R1)®]2-, M/D

M. =~ , 110
7 ki S]T?I{Jg(isl)Ng(Sle) —Jz(Sle)Nz(SlRl)} ( )

M- (—Jz(S/Rz)@{ +J2(s1R1)®é,w§) ’ (111)
N 7 S]T?I{Jz(S]Rl)Nz(Sle) —J2(S1R2)N2(S1R1)}

or

M- (No(siRa) WY = Ni(siR) W5, 1wi) (112)
! 7 Ti{Jo(siR)Ny(siR2) — Jo(s:1R2)No(s:R1)

MJIV __ (—JE)(SIRz) le —‘-JS(S]R])sz,,HIVV;) (113)

T {Jo(siR1)NG(s:R2) — J((s:1R2)NG(siR1 )}

The relations (103) and (104) can be used for solving some axisymmetrical problems with the “in-plane”
polarisation using mode decomposition (41) for n =0

l
[u} ZMZL;} M'= My, s, € Sa. (114)

As above let us begin with the cylindrical opening Q in the infinite laminate with a few variants of boundary
conditions on Qg: o/, = T,/ = U or{{o’, + o} =P,/ = V/ or L {a/, + 0}, + ¢/} = D’/,V/. Using relations
(103) for the first couple of boundary conditions we obtain

F(T, 0], 7, U) (T, 07) — (23, V)

M = AR I F(T, 0], 7, U) = Z B (115)
Other couples of boundary conditions result in the following

M' = F(2%P’ ,ujﬁ,aV ), ), V/) /Bo(siR), (116)

M' = F(3a,D — 2p1;0.V/,u}, 7}, V/) [ Bo(siR). (117)

The function B, for infinite laminate with an opening or for laminate occupying a finite cylinder Q or cylinder
Q, with opening €, is chosen as above. For the case (109) and the boundary conditions le,zv U o on g, the
respective coefficients acquire the form

M :F(T{,lﬁ,}d,U{)N;)(Sle) (TJZ,U;,,{;,U )N (SIRI) (118)
! Jo(siRU)Ny(siR2) — Ty (s:R2)Ny (siR, ) ’

M = _F(le-vv{’XJl-’UDJé)(SIRZ) JrF(TJZaU[vX]lvU )J (SlRl) (119)
J J:)(S[Rl)N:)(S[RQ) —J6(S1R2) (S[R )

For other boundary conditions P{, (or D},) and U/, we have to replace Jj, Ny by Jo, Ny in formulae (118),
(119) and to use the function F from the relations (116) or (117).

The application of the obtained OR to other boundary conditions leads to an infinite system of algebraic
equations (see Zakharov, 1988) with respect to coefficients M’. The same holds for the non-axisymmetrical
problem with n > 1.
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9. “Far field” calculation for an acoustic source localised in a finite region

Assume that the motion of an infinite laminate is caused by an acoustic source in the form of body forces
7, distributed in a finite volume embedded into cylinder Q, or in the form of surface load distributed over a
finite region on Q; or Q (see Fig. 1c). Another part of the faces satisfies HBCF. Represent the laminate
response as a function of coordinates r,0,z and decompose it into Fourier series wrt the angle . Upon the
general theory of differential equations in partial derivatives the field inside the region Q (r < R) contains
two components: a particular solution according to the acoustic source and a general homogeneous solution.
At r > R the particular solution vanishes since there is no longer body force nor facial load and the field can be
represented by mode decomposition

u, u
=Y "M, |ul|, s €84S, (120)
u, ! u/

with B, :Hi') and s, satisfying radiation condition. In the series (120) the components w/,u/ ~ cosn0,
) ~ sinn0, M! = M"'< or w/,ul ~ —sinn0, uj ~ cosnd and M! = M'*, i.e., they run all the components in for-
mulae (41). On the lateral surfaces ), (r = R) the inner and outer solutions satisfy the continuity of «/ and
o,

For each propagating wave of the wavenumber s,, introduce a standing wave with B, (s,,,7) = J,,(s,,,r) and
with the same components u,,, v, and w,, Then, integrating the Eq. (1) similarly to considerations (64)—
(69) we obtain

Z// Oty — Olgtt, npdd = T, (121)

vz { ], ], o omimas- 3 [ [ itar (122

Here I',,,, does not contain any unknowns. For example, if the source is given by the stresses ¢, on Q; and o,
on Q}; the expression (122) yields

= // {O-zzuzm + O';M)],\:n +a Huﬁm}dA // {ozzuzm + Gzrui)n to Guﬁm}dA (123)

Using the identities (85) and relations (72)—(74) for propagating waves with functions A fl” we arrive at the fol-
lowing closed form of coefficients

{le = _lsm mn/{2€n mm} Sm S SA7

124
M = —iT,,/{25,T},  sw € Ss. (124)

For the function H? the formulae (124) are used with the opposite sign.

Hence, we suggest a general method to evaluate the “far” field—but in fact the total field at the distance
r> R, where 2R is the longitudinal size of an acoustic source. The method requires the calculation of spectra
Sx and S5, modes (7)—(9) and exact coefficients (124) in the double series (41).

In case of pure elasticity the far field in its classical meaning of waves propagating to infinity is expressed by
ordinary series wrt the counter n because at each frequency there is a finite number of real wavenumbers.

10. Exact solutions for some types of loadings

Consider a few examples of calculating I',,,,. Assume that the load is distributed over a circular region Qj;
and the surface stresses o7 (r, 0), ) (r,0) and o, (r, 0) are expanded into the trigonometrical Fourier series wrt
0. In accordance with the representations (17)—(23) let us for a moment denote coefficients of cosnf (or —sinnf)
for ¢} and ¢ by t/ (r) and 1" (), respectively. For o, the coefficient of sin n0 (or cosn0) is denoted by 7, (r).
The substltutlon into (123) yields
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L, = =& () ()T +wh (@) Ty + oY (29T, (125)
T, =1 /0 (1 (F) 7t () s () £ (65 () — 1 (At (s) b (126)
T;r :/0 ‘c;(r)J,,(smr)rdr. (127)

Solution (125)—(127) is of practical interest for evaluating the field, radiated by a circular transducer. In par-
ticular, for a constant normal load 7,/2 we obtain

V() s €S

L= _ERJ1 (smR)Tl X { n() A }, (128)
Sm Oasm S Sé
and for a constant tangent load 1}, in the direction x; the coefficients are
N (+

T U (1), 5, € Sa
i = —RJi(suR)Tiy x4 " . 129
" s 1snR)y {—wﬁ(z*),sm 655} (129)

Other T',,,, = 0. The rough estimate of the convergence rate of series (120) can be seen from the results (125)-
(129). For example, the Lamb waves in an elastic layer have the wavenumbers s; € Sy with the asymptotic
behaviour Re(s)) = O(In/), Im(s;)) =O(/) and the out-of-plane waves s;€ Ss: Re(s) =0, Im(s) =O(/) as
I — + oo (see Auld, 1990). Hence, the terms of series (120) cannot exceed the order

M'u! ~ O(147))elr=RO0) (130)

for a certain k(z) and the convergence holds at least at r > R.
It is also easily to obtain the laminate response to a concentrated load. For the concentrated body forces
fi= Toéfé(xl,xz,x3 —20) (z;< 20 < Zjr1s 5’; is a Kronecker delta) at any HBCF we obtain

an = 72///9[{];{”&”1}(1[/ - 7T0%m|r:0,z:zov (131)
J

with a similar result for the concentrated surface load o7, = t§ 07d(x1, x,):
Lo = =Tt |—goesr (132)

Note that formulae (131) and (132) are non singular since the dummy displacements uj;m(r, 0,zy) contain Bes-
sel’s function B,(s,,r) = J,(s,,#) whose value at the origin is regular. However, the solution (120) might have
singularity at the origin due to the Hankel functions involved. By the same reason for the transversal load
(axisymmetrical problem, ff = 3) the terms with n > 1 vanish and only I, # 0. For the longitudinal load
(f=1,2) only I',; # 0. Formulae (132) can be also obtained from (128) and (129) replacing t} (o,n = z,0
or a,n = 1,1) by 2t /nR* and proceeding to a limit

T T s, R? 2t¢
;le(SmR)’C;O ~ 3 n—ROZ =15 as R — +0. (133)

Thus, the mode decomposition (120) with coefficients (124), (131) and (132) represents the exact Green func-
tions of different kinds and generalises the previous results for the case of any viscoelastic laminate and any
HBCEF. In contrast to other studies of Bai et al. (2004) or Lih and Mal (1996) our approach does not involve
the semi-analytical finite element method or complex integration with Fourier inversion using FFT.

11. Discussion and conclusive remarks

The obtained results can be clearly subdivided into two groups. First group includes orthogonality relations
for the cylindrical guided waves satisfying homogeneous boundary conditions on the laminate faces. They cor-
relate with the results of previous authors for an elastic layer and plane waves, which can be obtained as a limit
case for large radius. The explicit expressions for reciprocity relations are obtained as well. They are valid for
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both elastic and linearly viscoelastic media due to the symmetry of their energy functionals. The second group
describes solving methods using OR. Some particular boundary value problems for a finite cylinder, cylinder
with an opening or infinite laminate with a cylindrical opening can be solved in this manner. For other bound-
ary value problems OR can be used to construct a linear algebraic system of equations with respect to the
mode coefficients. However, one important problem to evaluate the far field of an acoustic source—surface
loads or body forces localised in a finite region—can be solved in a closed form. The obtained Green’s func-
tions are applicable for representing fields using convolution integrals and the solution for a circular region is
of practical interest for modelling circular transducers. In particular, this approach permits one to calculate
the time-harmonic field radiated into laminate by an ultrasonic transducer of arbitrary aperture and then
to evaluate the pulse train using harmonic synthesis.

Another formal question is the completeness of the guided waves. Normally, the total set of eigenfunctions
of the polynomial operator pencil is multiply complete accordingly to its degree (see, e.g., Keldysh, 1971).
Omitting a part of this set, this multiplicity can be reduced to an ordinary completeness, namely, in our case
when choosing basic functions B, = H f}) the subset with Ims; <0 is excluded. The proof of the completeness
obtained for the plane waves in an elastic homogeneous isotropic strip or in a cylinder in a functional Sobo-
lev’s space on a cross-section can be found in Kostyuchenko and Orazov (1975, 1977, 1986), Orazov (1976),
Kirrmann (1995), Folk and Herszynski (1986) and Herszynski and Folk (1989). The same property is expected
for 2D and 3D guided waves in laminates.
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