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The present paper aims at introducing an homogenization scheme for the determination of strain gradi-
ent elastic coefficients. This scheme is based on a quadratic extension of homogeneous boundary condi-
tion (HBC). It allows computing strain elastic effective tensors. This easy-to-handle computational
procedure will then be used to construct overall behaviors and to verify some theoretical predictions
on strain gradient elasticity.
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1. Introduction

Lightweight and innovative materials design is nowadays one of
the most important challenge for material engineering, the goal is
to reach high mechanical properties with low density materials. To
achieve such contradictory objectives, scientific community fo-
cused on mesoscale structured cellular materials. Such material
design requires to understand at the same time the relation be-
tween architecture and physical properties, and the explicit meth-
od to calculate those properties.

According to a geometrical definition of a RVE (Representative
Volume Elementary) a classical way to obtain the overall behavior
of the cellular material is to use homogenization theory. It is well
known that classical homogenization theory relies on a broad scale
separation between geometric pattern and mechanical fields. If the
scale separation is not broad enough, the classical theory fails to
predict the overall behavior. As shown by Boutin (1996) and Forest
(1998), keeping a continuum description requires to consider a
generalized continuum to model the substitution material.

Especially, when designing millimetric microstructural materi-
als to be implemented in centimetric structures (e.g. hollow
spheres stacking for acoustical absorber (Gasser, 2003)) strong
scale separation is not granted. Then, second-order elastic effects
have to be taken into account in the homogenization approach.

As the number of elastic constants in strain gradient theories
dramatically increases with the order of tensors, a systematic
way of identifying such coefficients is necessary. We proposed here
ll rights reserved.
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such a method by combining recent results in extended homogeni-
zation methods and symmetry properties of higher-order stiffness
tensors:

� Quadratic homogenization scheme through the use of quadratic
boundary conditions (Gologanu et al., 1997; Forest, 1999).
� Extended Voigt notations for different symmetry classes of sec-

ond gradient elasticity (Auffray et al., 2009).

Our main results are 3-folds:

1. First, it is shown that the circular cavity shape used in several
higher-order homogenization schemes (Gologanu et al., 1997;
Zybell et al., 2008) leads to a singular sixth-order elasticity
tensor.

2. Second, it is shown numerically that the application of the qua-
dratic homogenization scheme provides isotropic second-order
effective properties for octagonal and pentagonal cell shapes, thus
illustrating purely mathematical considerations of symmetry.

3. Finally, an example of chiral dependent behavior is given, illus-
trating an exotic property of strain gradient elasticity.

These results confirm that generalized homogenization schemes
are powerful tools to estimate higher-order elastic properties. Fur-
thermore some useful operators to translate higher-order moduli
from the equivalent first strain gradient into the second gradient
of displacement theories, according to Mindlin’s formulation, are
provided.

To reach those objectives, several facts on strain gradient
elasticity will be recalled in Section 2. Some basic definitions and
results about symmetry classes (Auffray et al., 2009) will be

http://dx.doi.org/10.1016/j.ijsolstr.2010.03.011
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1 The permutation order-dimension is just a coincidence, in 3-D the same
transformation would turn a three-dimensional sixth-order tensor into a 18-
dimensional second-order tensor.

2 The hat notation ^ indicates a second-order representation of a sixth-order tensor.
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summed up. In a second time, attention will be focused on the
homogenization scheme. Extension of the effective modulus ap-
proach was firstly proposed by Gologanu et al. (1997) then used
by Forest and Sab (1998). This approach will be detailed and spec-
ified to our problem. All the needed operators will be defined. The
last section will be devoted to numerical experiments on different
geometrical patterns. It will be shown that isotropic homogeniza-
tion proceed on a circular shape (as proposed in Gologanu et al.
(1997) and Zybell et al. (2008)) leads to a degenerated isotropic
tensor that should not be used in computational simulation.
Another construction based on Hermann theorem consequences
(Auffray, 2008) will be proposed.

2. Mindlin’s strain gradient elasticity

2.1. Constitutive law

In classical elasticity theory stress at a material point is linked
to strain through the classical elasticity tensor. This relation, usu-
ally known as Hooke law, is written in tensorial fashion:

rðijÞ ¼ CðijÞðlmÞeðlmÞ ð1Þ

with rðijÞ the symmetrical-stress tensor, eðlmÞ the strain tensor and
CðijÞðlmÞ the tensor describing material elastic properties. The nota-
tion () stands for the minor symmetries whereas . . . stands for
the major ones.

Second-grade elasticity is a kinematic enhancement of classical
elasticity taking into account the second gradient of displacement
in the mechanical formulation. Such a generalization could be con-
structed in, at least, three different, but equivalent, ways (Mindlin
and Eshel, 1968). In this paper interest will be focused on the two
first formulations.

In type I formulation, the freedom extra degrees will simply be
defined as the second gradient of displacement:

j
’

I ¼ u�r�r ð2Þ

whereas in type II formulation the strain gradient will be
considered:

j
’

II ¼ e
�
�r ð3Þ

These two definitions solely differ by the index symmetry of j
’

.
We have got jI

iðjkÞ and jII
ðijÞk with the following relations between

those two systems:

jII
ijk ¼

1
2

jI
ijk þ jI

jik

� �
ð4Þ

jI
ijk ¼ jII

ijk þ jII
kij � jII

jki ð5Þ

As these two systems are defined up to a permutation, other
properties will be introduced just for type II elasticity: strain gradi-
ent elasticity (SGE).

Taking into account strain gradient effect in the mechanical for-
mulation leads to define symmetrically the hyperstress tensor sðijÞk.
In each material point, the knowledge of the stress and the hyper-
stress tensors allows to compute the effective tensor gðijÞ. This ten-
sor is defined as:

gðijÞ ¼ rðijÞ � sðijÞk;k ð6Þ

It is the tensor to be considered to calculate the local equilib-
rium (Forest, 2004). Tensors rðijÞ and sðijÞk are related with eðlmÞ
and jðlmÞn through the following general constitutive law:

rðijÞ ¼ CðijÞðlmÞeðlmÞ þMðijÞðlmÞnjðlmÞn ð7Þ

sðijÞk ¼ MðijÞkðlmÞeðlmÞ þ AðijÞkðlmÞnjðlmÞn ð8Þ
where the tensor AðijÞkðlmÞn is the second-order elasticity tensor and
MðijÞðlmÞn the coupling tensor between first and second-order
elasticity.

In a 3-D space this coupling tensor will vanish for a centro-sym-
metric media (Triantafyllidis and Bardenhagen, 1996). In 2-D space
this tensor vanishes for any media that is even order rotational
invariant (Auffray et al., 2008). For both cases the constitutive rela-
tion could be rewritten as follow:

rðijÞ ¼ CðijÞðlmÞeðlmÞ ð9Þ
sðijÞk ¼ AðijÞkðlmÞnjðlmÞn ð10Þ

To switch constitutive law from one system to another, the fol-
lowing operators could easily be defined:

PI!II
ijklmn ¼

1
2

dildjm þ dimdjl

� �
dkn ð11Þ

PII!I
ijklmn ¼ dildjmdkn þ dimdjndkl � dindjldkm ð12Þ

where P
��

I!II stands for the operator from type I to type II, and con-

versely. The following relation holds true:

PI!II
ijkopqPII!I

opqlmn ¼ 1II
ijklmn ð13Þ

where 1
��

II should not be confused with the sixth-order identity ten-

sor; a symmetrical relation could also be defined for 1
��

I.

Switching between the two systems is related to the fact that
most of our theoretical results are demonstrated in type II sec-
ond-grade elasticity whereas the boundary conditions needed for
the homogenization scheme are more natural in type I formulation.
As transformations from one system to another are straightfor-
ward, it seems interesting to point out how to transfer results.
Let us now introduce some results about SGE anisotropic tensors.
2.2. Anisotropic tensors

Most of the results presented here could be found and detailed
in Auffray et al. (2009) and Auffray (2009). A true tensorial repre-
sentation for SGE tensor will first be introduced. Then for each
material symmetry group the corresponding physical group will
be given including minimal number of coefficient of the associated
tensor. For the hereafter studied anisotropic systems the corre-
sponding Voigt representations will be given.
2.2.1. Voigt tensorial representation
In order to handle the second-order elastic tensor, a mathemat-

ical transformation could be introduced to turn the two-dimen-
sional sixth-order tensor into a six-dimensional second-order
tensor.1 This transformation allows rewriting the second-order con-
stitutive relation as2:

ŝa ¼ bAðabÞĵb ð14Þ

A rigorous way of representing the sixth-order tensor A as a sec-
ond-order one according to its symmetries is:



Fig. 2. D3-invariant figure.
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This is a true tensorial way of writing the constitutive relation
sðijÞk ¼ AðijÞkðlmÞnjðlmÞn. Now let us consider the symmetry classes of
such a linear operator.

2.2.2. Anisotropic system
In a two-dimensional physical space, the group of symmetry of

AðijÞkðlmÞn must be conjugated to an element of the following set:

RA : fI;D2; Z4;D4; Z6;D6; SOð2Þ;Oð2Þg ð16Þ

where I is the identity group. Zn is the cyclic group of order n which
is the rotation group of a chiral figure with an n-fold invariance (cf.
Fig. 1 for an example of an Z3-invariant figure). Zn is generated by an
elementary rotation of 2p

n . Dn is the dihedral group of order 2n which
is the group of transformations that leave a regular n-gone invari-
ant. Dn is generated by an elementary rotation of 2p

n and a minor
operation (cf. Fig. 2 for the example of an D3-invariant figure).
SOð2Þ is the continuous group of rotations and O(2) is the 2-D
orthogonal group.

Results are summed up in the following table:
GM GA dim

I; Z2 I 21
D2 D2 12
Z4 Z4 8
D4 D4 6
Z3; Z6 Z6 6
D3;D6 D6 5
Z5; Zn; n P 7 SOð2Þ 5
D5;Dn; n P 7 Oð2Þ 4

Fig. 1. Z3-invari
with GM the material symmetry group; GA the tensor symmetry
group and dim the number of coefficients defining the tensor for
the considered symmetry.

Voigt representation will be detailed for the following
anisotropic classes: isotropic (O(2)); hexatropic ðD6Þ; orthotropic
(D4) and chiral-orthotropic ðZ4Þ.

Isotropic:0 1
Â
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BBBBBBBBB@

CCCCCCCCCA
ð17Þ

which could be block summed up into:
ÂOð2Þ ¼
Xi 0
0 Xi

� �
; Xi ¼

a1 a2
a1�a3ffiffi

2
p � a4

a3 a4
a1þa3

2 � a2

0B@
1CA ð18Þ

Hexatropic:

Â
�D6 ¼

a1 a2
a1�a3ffiffi

2
p �a4 0 0 0

a3 a4 0 0 0
a1þa3

2 �a2 0 0 0
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ffiffiffi
2
p
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ffiffiffi
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p
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ð19Þ
ant figures.
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So

Â
�D6

¼ Â
�Oð2Þ

þ ða5 � a1ÞÂ�cor
ð20Þ

with Â
�cor

an anisotropic correction which expression is:

Â
�cor
¼

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
1 �1 �

ffiffiffi
2
p

1
ffiffiffi
2
p

2

0BBBBBBBB@

1CCCCCCCCA
ð21Þ

Orthotropic and chiral-orthotropic:

Â
�Z4 ¼

Xa Co

CT
o Xa

� �
; Â

�D4 ¼
Xa 0
0 Xa

� �
ð22Þ

Ca ¼ Xa ¼
a1 a2 a5

a3 a4

a6

0B@
1CA; Co ¼

0 a7 a8

�a7 0 a8

�a8 �a8 0

0B@
1CA ð23Þ

Those are the anisotropic tensor expressions that will be
checked in this paper last section through the proposed homogeni-
zation scheme.

3. Homogenization scheme

This section is organized from general comments to the specific
way of computing the extra coefficients. First some remarks will be
made on the FEM code used. Then the general concept of polyno-
mial boundary condition (BC) will be discussed. It will be shown
that the use of such conditions are linked with means of mechan-
ical fields over a RVE (Representative Volume Element). The results
obtained without considering any constitutive law will be detailed
in the linear elastic case. This approach will lead to a concrete pro-
cedure for computing extra elastic coefficients.

3.1. Remarks on FEM-code modeling

The FEM code used for the computation is ZeBuLoN, a code de-
signed by Onera, NorthWest Numerics and Mines ParisTech for
thermomechanical computations. In the current version of this
software quadratic Dirichlet boundary conditions (QDBC) are read-
ily available for 2-D computation. As it will be shown, QDBC are a
straightforward way of computing second-order coefficients in
type I formulation. Up to the authors knowledge, such a condition
extension to 2-D periodic have not been implemented in the soft-
ware we use yet.3 This is the reason why, in the following proce-
dure and for our calculations, quadratic periodic boundary
conditions are not used. This makes our numerical results stiffer
that the real coefficients. But this does not change anything to
the qualitative results obtained here.

3.2. Non-homogeneous boundary conditions

Let us first consider the following fields: uðx1; x2Þ, the local dis-
placement field defined inside the RVE, and U, the macroscopic
field defined as u mean field. Macroscopic field gradients could
be defined as:

E
�
¼ Uf�gr; K

’
I ¼ U�r�r ð24Þ
3 This remark concerns just the implementation of the FEM code used for this study.
From a broader point of view, some attempts have already been made to take into
account fields fluctuation in the quadratic prescription (Kouznetsova, 2002; Yuan
et al., 2008).
where f�g accounts for the gradient symmetrical part. As tensor K
’

I

is the displacement second gradient, we are in type I formulation.
To obtain higher-order coefficients, Forest uses QDBC (Forest,

1999). Its a straightforward extension of homogeneous conditions
used in effective modulus approach (Bornert et al., 2001):

uðxÞ ¼ E
�
�xþ 1

2
K
’

I : ðx� xÞ; x 2 @X ð25Þ

Tensors E
�

and K
’

I are constant over the volume. As the spatial
coordinate tensor x� x is completely symmetric, type I formulation
is the most natural system to write generalized BC.

3.3. Mean relations

The coordinate system origin will be taken at the RVE gravity
center and h.i will indicate a mean operator over the RVE. We got
the following relations over the volume (Forest, 1998):

u�rh i ¼ 1
V

Z
X

u�rdX ¼ E
�

ð26Þ

u�r�rh i ¼ 1
V

Z
X

u�r�rdX ¼ K
’

I ð27Þ

So, setting QDBC leads to impose the mean value of a field over
the considered cell.

Knowing the relations previously introduced, some other useful
relations have to be defined. First of all:

E
�
¼ e

�

D E
ð28Þ

This is true since, according to tensor symmetry:

E
�
¼ u�rh i ð29Þ

¼ r� uh i ð30Þ

¼ 1
2
ð u�rh i þ r� uh iÞ ð31Þ

¼ 1
2
ðu�rþr� uÞ

	 

ð32Þ

¼ e
�

D E
ð33Þ

Considering the local strain gradient mean, we obtain:

e
�
�r

D E
¼ K
’

II ð34Þ

K
’

II is the strain gradient tensor of type II formulation. With little
manipulations, we get

e
�
�r

D E
¼ 1

2
ð u�r�rh i þ r� u�rh iÞ ð35Þ

¼ 1
2
ð u�r�rh i þ r� u�rh iÞ ð36Þ

¼ 1
2

K I
ijk þ K I

jik

� �
ð37Þ

¼ K II
ijk ð38Þ

¼ K
’

II ð39Þ

and the following relation between type I and II system is obtained:

e
�
�r

D E
¼ P
��

I!II
) K
’

I ð40Þ

Another important point is the Hill–Mandel lemma’s extension
(Gologanu et al., 1997). Let us consider a divergence-free field r

�
and a compatible deformation field e

�
. Those two fields are not sup-

posed to be linked through any constitutive law. So in type I formu-
lation we have got:
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r
�

: e
�

D E
¼ r

�

D E
: E
�
þ r

�
f�gx

D E
) K
’

I ð41Þ

When defining

S
�
¼ r

�

D E
; T

’
I ¼ r

�
f�gx

D E
ð42Þ

we obtain:

r
�

: e
�

D E
¼ S
�

: E
�
þT
’

I
) K
’

I ð43Þ

In a type II formulation:

r
�

: e
�

D E
¼ r

�

D E
: E
�
þ r

�
�x

D E
) K
’

II ð44Þ

When defining

T
’

II ¼ r
�
�x

D E
ð45Þ

we obtain:

r
�

: e
�

D E
¼ S
�

: E
�
þT
’

II
) K
’

II ð46Þ

The meaning of such relations is that imposing QDBC on RVE
generate volume fields which mean energies are similar to the
one of a strain gradient media.

To summarize, Hill–Mandel lemma expressions for a second
grade media are obtained: Type I:

r
�

: e
�

D E
¼ r

�

D E
: e
�

D E
þ r

�
f�gx

D E
) u�r�rh i ð47Þ

and type II:

r
�

: e
�

D E
¼ r

�

D E
: e
�

D E
þ r

�
�x

D E
) e

�
�r

D E
ð48Þ

All the results obtained here are independent of any constitu-
tive relation. Let us now particularize them in the microscopic lin-
ear elastic case.

3.4. Linear elasticity

3.4.1. Localization tensors
The following constitutive relation is assumed:

r
�
ðxÞ ¼ c

�
ðxÞ : e

�
ðxÞ; 8x 2 X ð49Þ

The problem linear dependence to its BC (E
�

and K
’

I) leads to the
existence of localization tensors: L

�
1ðxÞ and L

u

I;2ðxÞ. The fundamental

relation is:

e
�
ðxÞ ¼ L

�
1ðxÞ : E

�
þL
u

I;2ðxÞ ) K
’

I; 8x 2 X ð50Þ

Combination of hei ¼ E
�

with:

eh i ¼ L
�

1ðxÞ : E
�
þL
u

I;2ðxÞ ) K
’

I

* +
ð51Þ

¼ L
�

1ðxÞ
D E

: E
�
þ L

u

I;2ðxÞ
* +

) K
’

I ð52Þ

leads to express the following properties of the localization tensors:

L
�

1
D E

¼ 1
�
; L

u

I;2

* +
¼ L

u

II;2

* +
¼ 0 ð53Þ

The calculation of he�ri in type type II convention leads to:

e�rh i ¼ L
�

1ðxÞ � r
D E

: E
�
þ L

u

II;2ðxÞ � r
* +

) K
’

II ð54Þ
As he�ri ¼ K
’

II, it can be concluded:

L
�

1 �r
D E

¼ 0
u

; LII;2

u

�r
* +

¼ 1
��

II ð55Þ

In case of type I formulation:

e�rh i ¼ L
u

I;2ðxÞ � r
* +

) K
’

I ¼ K
’

II ð56Þ

leads to

L
u

I;2ðxÞ � r
* +

¼ L
u

II;2ðxÞ � r
* +

) P
��

I!II ð57Þ

and so, as hL
u

II;2ðxÞ � ri ¼ 1
��

II, it can be concluded that

L
u

I;2ðxÞ � r
* +

¼ 1
��

II
) P
��

I!II ¼ P
��

I!II ð58Þ

where P
��

I!II is the sixth-order tensor previously defined such that:

P
��

I!II
) K
’

I ¼ K
’

II ð59Þ

Thus the following relation between localization tensors is true
L
u

I;2ðxÞ ¼ L
u

II;2ðxÞ ) P
��

I!II ð60Þ

where P
��

I!II is obviously constant over the elementary cell. This rela-

tion allows us to switch from one system to another.
We can now obtain a first expression for the first and second-

order effective modulus.

3.4.2. Effective modulus
The first expression will be derived in a straightforward man-

ner, in a second time an energetic approach will be considered.
The straightforward derivation consists in writing down stress
and hyperstress expressions using the relation (50). Starting with
type I formulation, the mean stress tensor can be written:

S
�

I ¼ r
�

D E
¼ c

�
: L
�

1
D E

: E
�
þ c

�
: L
u

I;2

* +
) K
’

I ð61Þ

and so:

T I
ijk ¼

1
2

rijxk þ rikxj
� �

ð62Þ

¼ ciðjlmL1
lmnoxkÞ

D E
Eno þ ciðjlmLI;2

lmnopxkÞ

D E
K I

nop ð63Þ

with the notation:

ci jlmð L1
lmnoxkÞ ¼

1
2

cijlmL1
lmnoxk þ ciklmL1

lmnoxj

� �
ð64Þ

In a type II formulation:

S
�

II ¼ c
�

: L
�

1
D E

: E
�
þ c

�
: L
u

II;2

* +
) K
’

II ð65Þ

T
’

II ¼ r
�
�x

D E
¼ cijlmL1

lmnoxk

D E
Eno þ cijlmLII;2

lmnopxk

D E
K II

nop ð66Þ
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Those results could be summed up in a matricial way:

SI
ðijÞ

SI
iðjkÞ

 !
¼

cijlmL1
lmno

D E
cijlmLI;2

lmnop

D E
ci jlmð L1

lmnoxkÞ

D E
ci jlmð LI;2

lmnopxkÞ

D E
0B@

1CA EðnoÞ

KI
nðopÞ

 !
ð67Þ

SII
ðijÞ

SII
ðijÞk

 !
¼

cijlmL1
lmno

D E
cijlmLII;2

lmnop

D E
cijlmL1

lmnoxk

D E
cijlmLII;2

lmnopxk

D E
0B@

1CA EðnoÞ

KII
ðnoÞp

 !
ð68Þ

Effective modulus could be also derived from an energetic ap-
proach. Modulus would be the same but, in some cases, related
expressions could be easier-to-handle.

3.4.3. Energetic approach
Effective tensors expression could be derived from elastic

energy:

weh i ¼ 1
2

e
�

: r
�

D E
ð69Þ

From expression (50) one obtains:

e
�

: r
�

D E
¼ L

�
1ðxÞ : E

�
þL
u

I;2ðxÞ ) K
’

I

0@ 1A : c
�

: L
�

1ðxÞ : E
�
þL
u

I;2ðxÞ ) K
’

I

0@ 1A* +
ð70Þ

this can be rewritten as:

e
�

: r
�

D E
¼ E
�

: L
�

T1 : c
�

: L
�

1
D E

: E
�
þ2 E

�

: L
�

T1 : c
�

: L
u

I;2

* +
) K
’

I þ . . . K
’

I
) L

u

TI;2 : c
�

: L
u

I;2

* +
) K
’

I ð71Þ

According to Hill–Mandel lemma, the mean of microscopic en-
ergy over the elementary cell could be identified with a strain gra-
dient macroscopic elastic energy. This energy is written:

We ¼
1
2

E
�

: C
�

: E
�
þE
�

: M
u

I
) K
’

I þ 1
2

K
’

I
) A
��

I
) K
’

I ð72Þ

so, by identification:

C
�
¼ L

�
T1 : c

�
: L
�

1
D E

; M
u

I ¼ L
�

T1 : c
�

: L
u

I;2

* +
;

A
��

I ¼ L
u

TI;2 : c
�

: L
u

I;2

* +
ð73Þ

And, in the matricial way:

S
�

I

T
’

I

0@ 1A ¼
L
�

T1 : c
�

: L
�

1
D E

L
�

T1 : c
�

: L
u

I;2

* +

L
u

TI;2 : c
�

: L
u

T1

* +
L
u

TI;2 : c
�

: L
u

I;2

* +
0BBBBBB@

1CCCCCCA
E
�

KI

’

0@ 1A ð74Þ

Then the effective constitutive law will be written:

S
�

I

T
’

I

0@ 1A ¼
C
�

M
u

I

M
u

TI A
��

I

0BBB@
1CCCA

E
�

KI

’

0@ 1A ð75Þ

Type II expressions are derived symmetrically. In Forest (1999),
the straightforward and the energetic approaches are shown to be
strictly equivalent.

Expressions obtained through energetic consideration are inter-
esting because they allow to easily express transformation formu-
las between type I and type II formulations. Let us consider A
��

I: its
two formulations are

AI
ijklmn ¼ ci jlmð LI;2

lmnopxkÞ

D E
¼ LTI;2

ijkopcopqrL
I;2
qrlmn

D E
ð76Þ

and so

A
�
�

II ¼ P
�
�

TII!I
) A
�
�

I
) P
�
�

II!I ð77Þ

In indicial form:

AII
ijklmn ¼ diodjpdkqþ dipdjqdko� diqdjodkp

� �
AI

opqrst drldsmdtnþ drmdsndtl� drndsldtmð Þ
ð78Þ

Through relation (78) the conversion to type II formulation
would easily be made.

3.5. Overall behavior computation

QDBC could be written:

ui ¼ Eioxo þ
1
2

K I
ipqxpxq; 8x 2 @X

and localization relation is (50)

e
�
ðxÞ ¼ L

�
1ðxÞ : E

�
þL
u

I;2ðxÞ ) K
’

I; 8x 2 X

The goal is to construct localization tensors without any explicit
determination. Their construction will be made through elemen-
tary numerical computations.

We consider the following solicitation families

EðabÞ
ij ¼ daidbj; KðabcÞ

ijk ¼ 1
2

dai dbjdck þ dbkdcj
� �

ð79Þ

Cell mechanical response under those solicitations applied in a
non-combined way leads to the following strain fields:

eijðxÞðabÞ
ij ¼ LðxÞ1ijlmdaldbm ¼ LðxÞ1ijab ð80Þ

eijðxÞðabcÞ
ij ¼ LðxÞI;2ijlmndal dbmdcn þ dbndcmð Þ ¼ LðxÞI;2ijabc ð81Þ

Associated stress fields are then obtained through constitutive
law:

rijðxÞðabÞ
ij ¼ cðxÞijkleklðxÞðabÞ

kl ¼ cðxÞijklLðxÞ
1
klab ð82Þ

rijðxÞðabcÞ
ij ¼ cðxÞijkleijðxÞðabcÞ

ij ¼ cðxÞijklLðxÞ
I;2
klabc ð83Þ

From effective modulus straightforward expressions we got:

Cijkl ¼ cijopL1
opkl

D E
; MI

ijlmn ¼ cijopLI;2
oplmn

D E
; AI

ijklmn ¼ ciðjopLI;2
oplmnxkÞ

D E
Those expressions could be re-expressed in terms of stress, and

eventually:

Cijkl ¼ rðklÞ
ij

D E
; MI

ijlmn ¼ rðlmnÞ
ij

D E
;

AI
ijklmn ¼

1
2

rðlmnÞ
ij xk þ rðlmnÞ

ik xj

� �	 

Other expressions could be built-up according to energetic ap-

proach, but, from a computational point of view, they are less
practical.

Now we can applied the defined homogenization procedure on
several elementary cells.

4. Numerical computations

This section aims at illustrating how to apply the proposed
computational procedure and to check some properties of this



Fig. 3. Elementary cell.
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model. Those properties have been obtained by theoretical
methods and had not been observed yet on concrete situations.
The effective tensor considered here will be AðijÞkðlmÞn. The first
part of this section will be devoted to a complete example of
the homogenization procedure on a supposed isotropic cell. It
will be shown that this case, commonly used in literature, leads
to a degenerated kind of strain gradient isotropic media (Golo-
ganu et al., 1997; Zybell et al., 2008). In a second subsection,
various kind of anisotropic behaviors will be constructed. Some
previously theoretically announced properties will then be
checked.

4.1. Computation of an isotropic overall behavior

A circular cell will be considered in order to compute an isotro-
pic strain gradient elastic overall behavior. The constitutive behav-
ior will be isotropic linear elastic, with a Young modulus of
200 GPa and a Poisson ratio of 0.3. The external radius is of
1 mm with a thickness of 0.3 mm (see Fig. 3), the relative density
is q ¼ 0:51. It is worth noting that this isotropic operator construc-
tion is physically meaningless because such a cell could not gener-
ate a dense plane tilling. On the other hand, the construction of an
isotropic behavior is very simple in this case. Furthermore this
mathematical trick was used before in the literature (Gologanu
et al., 1997; Zybell et al., 2008). Finally, it will be shown that this
construction should be avoided, because leading to a degenerated
kind of isotropic medium.

The obtained displacement fields could be observed Fig. 4. As
the considered media is porous, the spatial mean operator should
be slightly modified (Bornert et al., 2001; Zybell et al., 2008). The
proper operator is:

r
�

D EI

¼ 1
VT

Z
M

r
�

dXM ¼ q r
�

D E
M

ð84Þ

Degrees of freedom associated to the QDBC are, according to
index symmetries:

K I
111 K I

112 K I
122 K I

211 K I
212 K I

222

n o
ð85Þ

After 6 FEM computations, a matrix representation4 of A
��

I is
obtained5:
4 Notation �: indicates a matricial, but not tensorial, representation of a tensor.
5 Indicated values are expressed in MPa mm2, they were calculated taking into

account the cell relative density and rounded up.
�AI ¼

9223 0 �9223 0 �2162 0
0 9223 0 2162 0 �2162

�9223 0 9223 0 2162 0
0 2162 0 9223 0 �9223

�2162 0 2162 0 9223 0
0 �2162 0 �9223 0 9223

0BBBBBBBB@

1CCCCCCCCA
ð86Þ

In type II formulation, elementary degrees of freedom will
differ:

K II
111 K II

112 K II
121 K II

122 K II
221 K I

222

n o
ð87Þ

Both of these two systems are 6-D. Let us consider the following
8-D space:
K111 K112 K121 K122 K211 K212 K221 K222f g ð88Þ
K
’

I and K
’

II could be rewritten in this system. The system switch

operator is: P
��

II!I:

PII!I
ijklmn ¼ dildjmdkn þ dimdjndkl � dindjldkm ð89Þ
could be rewritten in this 8-D space:

�PII!I
ab ¼ �1ab þ �Mab � �Nab ð90Þ

with �1ab the 8-D identity operator. �Mab and �Nab are defined:

�M ¼

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
;

�N ¼

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð91Þ

�AII
ab is then straightforward to compute:

�AII
ab ¼ �PII!I

al
�AII

lm
�PII!I

mb ð92Þ

In 8-D we obtain:

�AII ¼

9223 0 0 �9223 0 �9223 4899 0
0 37466 �4899 0 �4899 0 0 4899
0 �4899 9223 0 9223 0 0 �9223

�9223 0 0 9223 0 9223 �4899 0
0 �4899 9223 0 9223 0 0 �9223

�9223 0 0 9223 0 9223 �4899 0
4899 0 0 �4899 0 �4899 37466 0

0 4899 �9223 0 �9223 0 0 9223

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
ð93Þ



Fig. 4. Displacement fields for a circular elementary cell.
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and finally in type II 6-D space:

�AII ¼

9223 0 0 �9223 4899 0
0 37466 �4899 0 0 4899
0 �4899 9223 0 0 �9223

�9223 0 0 9223 �4899 0
4899 0 0 �4899 37466 0

0 4899 �9223 0 0 9223

0BBBBBBBB@

1CCCCCCCCA
ð94Þ

The obtained matrix is not yet a tensorial representation of A
��

I .

4.1.1. Tensorial reconstruction
Using the base introduced in Auffray et al. (2009) and presented

in the first section of this paper, the following second-order tenso-
rial representation of A

��

I is obtained:

Â
�

II ¼

9223 4899 �13043 0 0 0
4899 37466 �6928 0 0 0
�13043 �6928 18446 0 0 0

0 0 0 9223 4899 �13043
0 0 0 4899 37466 �6928
0 0 0 �13043 �6918 18446

0BBBBBBBB@

1CCCCCCCCA
ð95Þ

In 2-D, isotropic strain gradient elasticity tensors are defined by
4 coefficients and could be blocked decomposed as:

Â
�Oð2Þ

¼
Xi 0
0 Xi

� �
; Xi ¼

a1 a2
a1�a3ffiffi

2
p � a4

a2 a3 a4
a1�a3ffiffi

2
p � a4 a4

a1þa3
2 � a2

0B@
1CA ð96Þ

Considering:

a1 ¼ 9223 MPa mm2; a2 ¼ 4899 MPa mm2; a3

¼ 37;466 MPa mm2; a4 ¼ �6928 MPa mm2

one easily could check that the isotropic relations are verified:

�13043 ¼ a1 � a3ffiffiffi
2
p � a4; 18446 ¼ a1 þ a3

2
� a2

So the constructed overall behavior is truly isotropic, but the
obtained operator is degenerated.

4.1.2. Degenerated isotropic system
The Voigt tensorial representation of A

��

I is symmetric, so its
eigenvalues can be determined6:

k1 ¼ 42365; 4 MPa mm2; k2 ¼ 22769; 4 MPa mm2;

k3 ¼ 0 MPa mm2

This 0 eigenvalue is characteristic of the circular cell. Let us con-
sider the matricial representation of A

��

I in a type II convention:

�A
�

II ¼

9223 0 0 �9223 4899 0
0 37466 �4899 0 0 4899
0 �4899 9223 0 0 �9223

�9223 0 0 9223 �4899 0
4899 0 0 �4899 37466 0

0 4899 �9223 0 0 9223

0BBBBBBBB@

1CCCCCCCCA
ð97Þ
6 Their multiplicity are obviously 2.
Columns represent the hyperstress component induced by an
elementary QDBC. In type II formulation those elementary defor-
mations are:

K II
111 K II

112 K II
121 K II

122 K II
221 K I

222

n o
The following linear dependences could be seen : K II

111 ¼ �K II
122

and K II
222 ¼ �K II

211. These linear dependences between columns is
kept while turning the former matrix into a second-order tensor.
So its determinant equals 0 and two eigenvalues are null.

This could formally be shown. Let us consider:

K
’

I ¼ 1
V

Z
@X
r
�
ðuÞ � nd@X ð98Þ

To avoid cumbersome notations modeling convention will be
omitted here. Tensor K

’
ð111Þ, in which the only non-null term is

K111, is obtained with the boundary condition

uð111Þ ¼ u1ðx1; x2Þ ¼
1
2

x2
1; u2ðx1; x2Þ ¼ 0

� �
ð99Þ

and so as for Kð122Þ:

u122 ¼ u1ðx1; x2Þ ¼
1
2

x2
2; u2ðx1; x2Þ ¼ 0

� �
ð100Þ

According to the cell circular shape, we consider the change of
variable:

x1 ¼ Re cosðhÞ; x2 ¼ Re sinðhÞ ð101Þ

directly leading to:

u111 ¼ R2
e

2
� u122 ð102Þ

So

1
V

Z
@X
r
�
ðuð111ÞÞ � nd@X ¼ �

Z
@X
r
�
ðuð122ÞÞ � nd@X ð103Þ

and for a circular shape K
’
ð111Þ ¼ �K

’
ð122Þ and so as for K

’
ð222Þ and K

’
ð211Þ.

And so we get a null eigenvalue with multiplicity 2.
Isotropic second-order behavior obtained through computa-

tion over a circular cell leads to a degenerated operator. The
bad numerically behavior of the obtained model pointed out by
the latter authors might be related to the ill conditionness of this
operator. Let us turn now our interest on anisotropic geometrical
cell.
4.2. Some anisotropic systems

In this subsection, different points will be considered. In a first
time, some anisotropic operators will be constructed in order to
check some of the properties found in Auffray et al. (2009). In a sec-
ond time, isotropic operators will be built with anisotropical cells.
This aims at verifying Hermann theorem and the class-jump phe-
nomenon. Those observations will lead to the construction of a
well conditioned isotropic operator.
4.2.1. Hexagonal cell (D6-invariance)
Assumptions made here remain the same as the ones used for

the circular case. The previously introduced method leads to the
following tensorial expression:



Fig. 5. Z4-invariant cells.
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Â
�

II ¼

12101 5490 �14375 0 0 0
5490 41287 �6263 0 0 0
�14375 �6263 21204 0 0 0

0 0 0 10909 6683 �12689
0 0 0 6683 �12689 �6263
0 0 0 �12689 �6263 18819

0BBBBBBBB@

1CCCCCCCCA
ð104Þ

As introduced at the first section, a D6-invariant second-order
operator could be decomposed as

Â
�D6

¼ Â
�Oð2Þ

þ ða5 � a1ÞÂ�cor
ð105Þ

with Â
�Oð2Þ

an isotropic tensor and Â
�cor

an anisotropic correction:

Â
�cor
¼

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0
1 �1 �

ffiffiffi
2
p

1
ffiffiffi
2
p

2

0BBBBBBBB@

1CCCCCCCCA
ð106Þ

Defining

a1¼12;101MPamm2; a2¼5490MPamm2; a3¼40;095MPamm2

a4¼�5621MPamm2; a5¼10;909MPamm2

it is straightforward to check that the constructed operator satisfy
the hexatropic conditions. It is well known that a classical overall
elastic media defined over a 6-fold invariant material would be
2-D isotropic (Bornert et al., 2001). The last result is a concrete illus-
tration that for an overall SGE media this result is no longer true. Let
us turn our attention to another SGE specific behavior: chiral
sensitivity.

4.2.2. Ortho-chiral cell (Z4-invariance)
As shown in Auffray et al. (2009) and demonstrated in Auffray

(2009), SGE elasticity is chiral sensitive. An illustration of such a
fact will be made considering the two elementary cells represented
Fig. 5(a) and (b). Those square elementary cells are Z4-invariant but
turn in opposite direction. Classical overall elastic media would be
the same for both cells. Let us first consider the levorotation cell
(Fig. 5(a)). Some displacement fields induced by boundary condi-
tions are plotted7 in Fig. 6. One could readily see that the combina-
tion of cell geometry and boundary conditions induced a direct
7 For reading convenience plots were done in non-deformed configuration.
rotational displacement field. Using the tensorial block decomposi-
tion introduced Section 2, the second-order constitutive elastic
tensor will be noted

Â
�Z4

¼
X C
CT X

� �
ð107Þ

with

X ¼
20630 6073 �13628
6073 56189 �3831
�13628 �3831 20748

0B@
1CA;

C ¼
0 3334 1351

�3334 0 5848
�1351 �5848 0

0B@
1CA ð108Þ

Square cell symmetries are found completed by a coupling
mechanism between x and y directions. As theoretically deter-
mined this coupling mechanism is represented by an antisymmet-
rical tensor. Computed in this way the Z4-invariant operator seems
to depend on 9 coefficients. Nevertheless, as shown in Auffray et al.
(2009), one can find a rotation lowering the number of coefficients
to 8. If we write down:

X ¼
a1 a2 a3

a2 a4 a5

a3 a5 a6

0B@
1CA; C ¼

0 a7 a8

�a7 0 a9

�a8 �a9 0

0B@
1CA ð109Þ

The rotation angle solves the following equation:

tanð4hÞ ¼ 2
ffiffiffi
2
p
ða8 � a9Þ

a1 þ a4 � 2ða2 þ a6Þ
ð110Þ

leading in our case to h ¼ �0;129615 rad. Thus, after transformation:

Â
�Z4

¼
X Co

CT
o X

� �
ð111Þ

with

X ¼
19321 5651 �12404
5651 58341 �2607
�12404 �2607 20347

0B@
1CA;

Co ¼
0 1434 2256

�1434 0 2256
�2256 �2256 0

0B@
1CA ð112Þ

In agreement with the announced results.
Now considering a dextrorotation cell (Fig. 5(b)), the second-or-

der constitutive elastic tensor will just differ according to:



Fig. 6. Displacement field along x induced by K111 and K122.
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Co dex ¼
0 �1434 �2256

1434 0 �2256
2256 2256 0

0B@
1CA ¼ �Co lev ð113Þ

The rotation displacement field turns in this case indirectly (see
Fig. 7).

4.3. Hermann theorem and class-jump phenomenon

This last subsection aims at verifying some consequences of
Hermann theorem in 2-D. The demonstration of this theorem can
be found in Auffray (2008) and a study of its reciprocity was stud-
ied in Auffray et al. (2008).

This theorem states that an nth-order tensorial property will be
2-D hemitropic if the material is p-fold invariant, p greater than n.
Furthermore if the material is achiral, the tensorial property is
isotropic. In our case, the second-grade elasticity is modeled by a
sixth-order tensor, so the theorem can be checked for an heptagon.
But, for some reasons that will be detailed hereafter, a octagonal
cell will first be considered.

4.3.1. Octagonal cell (D8 invariance)
Let us consider an octagonal cell (see Fig. 8): As expected the

constructed tensor
Fig. 7. Displacement field a
Â
�

II ¼

10345 5426 �13482 0 0 0
�5426 39464 �5377 0 0 0
�13482 �5377 19479 0 0 0

0 0 0 10345 5426 �13482
0 0 0 �5426 39464 �5377
0 0 0 �13482 �5377 19479

0BBBBBBBB@

1CCCCCCCCA
ð114Þ

verifies the previously introduced isotropic relation. As in the circu-
lar case, the plane cannot be densely tilled with an octagonal ele-
mentary cell. So as previously explained this construction has no
physical meaning. But if the strict periodicity condition of the tilling
is dropped down, some figures are, in a certain sens, D8-invariant,
such as the Ammann–Beenker tilling (see Fig. 9). Such kind of tilling
belongs to the class of quasiperiodic structures.

Another point is to consider this tensor’s eigenvalues:

k1 ¼ 44;626 MPa mm2; k2 ¼ 23;985 MPa mm2;

k3 ¼ 675 MPa mm2

So this time the isotropic tensor is not degenerated. Its numer-
ical properties should be far better than the ones computed on a
circular cell.
long x induced by K111.



Fig. 9. Ammann–Beenker tilling.

Fig. 8. Octagonal cell.
Fig. 10. Pentagonal cell.

Fig. 11. Penrose tilling.
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In 3-D, Hermann theorem gives necessary and sufficient condi-
tion for transverse isotropy, but in a 2-D space this condition is no
longer necessary. In 2-D, an odd material rotational invariance
leads to a twice order physical invariance. As a consequence
class-jump phenomenons could occur. So, according to this result,
strain gradient elastic tensors defined on a 5-fold invariant mate-
rial should be isotropic.
4.3.2. Pentagonal cell (D5 invariance)
Let us consider a pentagonal cell (Fig. 10). As expected, the con-

structed tensor

Â
�

II ¼

13102 6887 �13559 0 0 0
6887 42168 �6994 0 0 0
�13559 �6994 20748 0 0 0

0 0 0 13101 6887 �13559
0 0 0 6887 42168 �6994
0 0 0 �13559 �6994 20748

0BBBBBBBB@

1CCCCCCCCA
ð115Þ

verifies the previously introduced isotropic relation.8 Furthermore,
this tensor eigenvalues are:
8 In such a case the strain gradient elastic tensor is isotropic, but the whole
behavior is not isotropic. As an odd order invariance is considered, the fifth-order
tensor coupling strain and strain gradient effects has to be taken into account.
k1 ¼ 47;835 MPa mm2; k2 ¼ 25;389 MPa mm2;

k3 ¼ 2792 MPa mm2

The obtained second-order isotropic tensor is not degenerated. As
before the plane could not be densely tilled with a pentagonal ele-
mentary cell. Again, if the strict periodicity condition is dropped
down, some tilling are D5-invariant: the Penrose tilling for example
(Fig. 11).

This last example shows that the predicted class-jump phenom-
enons could be observed. An interesting consequence is that the
use of Hermann theorem allows to define non-singular isotropic
second-order operators. This point is interesting for numerical
applications. As it does not exist any periodic tillings for which
strain gradient elasticity is isotropic, this procedure might seems
to be artificial. So, to be correct, such a construction should be
understood in some quasiperiodic ways. This way to construct an
isotropic behavior is thus more physical and better conditioned
than the ones found in the literature.
5. Conclusion

In this paper a straightforward and easy-to-use method was
proposed to obtain strain gradient overall behavior of bidimen-
sional materials. The combination of extended Voigt notations for
strain gradient elasticity with quadratic homogenization scheme
sheds some new lights on the overall operators.
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Our main results are 3-folds:

1. First, it is shown that the circular cavity shape used in several
higher-order homogenization schemes (Gologanu et al., 1997;
Zybell et al., 2008), leads to a singular sixth-order elasticity
tensor.

2. Second, it is shown numerically that the application of the qua-
dratic homogenization scheme provides isotropic second-order
effective properties for octagonal and pentagonal cell shapes, thus
illustrating purely mathematical considerations of symmetry.

3. Finally, an example of chiral dependent behavior is given illus-
trating an exotic property of strain gradient elasticity.

These results confirm that generalized homogenization schemes
are powerful tools to estimate higher-order elastic properties. Fur-
thermore some useful operators to translate higher-order moduli
from the equivalent first strain gradient into the second gradient
of displacement theories, according to Mindlin’s formulation, are
provided. Following the scheme presented here, extension of the
method to 3-D situation is straightforward.
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