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a b s t r a c t

In this work the static stability of the uniform Timoshenko column in presence of multiple cracks, sub-
jected to tensile or compressive loads, is analyzed. The governing differential equations are formulated
by modeling the cracks as concentrated reductions of the flexural stiffness, accomplished by the use of
Dirac’s delta distributions. The adopted model has allowed the derivation of the exact buckling modes
and the corresponding buckling load equations of the Timoshenko multi-cracked column, as a function
of four integration constant only, which are derived simply by enforcing the end boundary conditions,
irrespective of the number of concentrated damage. Since shear deformability has been taken into
account, the buckling load equation allows capturing both compressive and tensile buckling. The latter
phenomenon has been recently investigated with reference to rubber bearing isolators, modeled as short
beams, but it has been shown to occur also in slender beams characterized by high distributed shear
deformation, like composite and layered beams. The influence of multiple concentrated cracks on the sta-
bility of shear deformable beams, particularly under the action of tensile loads, has never been assessed
in the literature and is here addressed on the basis of an extensive parametric analysis. All the reported
results have been compared with the Euler multi-cracked column in order to highlight its limits of
applicability.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The problem concerning the analysis of damaged beams has re-
ceived considerable attention in the specific literature and interest-
ing developments have been recently proposed with regard to the
adopted models, the analysis methods and the derivation of new
closed-form solutions for particular structural problems.

The interest of the scientific community towards the mentioned
problem is strongly motivated by the influence that damage might
play in several engineering problems. To narrow down the context,
the problem particularly devoted to the case of concentrated dam-
age occurring in structural beam elements contains already differ-
ent peculiarities worth of investigation. Further advanced issues
concerning more complex structures are to be addressed once
encouraging results are reached in the latter field.

The first studies, exploiting the theory of fracture mechanics, fo-
cussed the interest on how to model the influence of a single crack
on the beam flexibility and provided expressions of the stress
intensity factor for different crack geometries, different depths
and different structural members (Irwin, 1957a,b; Bueckner,
1958; Westmann and Yang, 1967; Tada et al., 1985; Dimarogonas,
1996). Successive studies aimed at providing other expressions for
a diffused stiffness reduction in the vicinity of the crack (Christides
and Barr, 1984; Sinha et al., 2002; Chondros et al., 1998; Liebowitz
et al., 1967; Liebowitz and Claus, 1968; Okamura et al., 1969). Con-
centrated cracks have been also modeled, according to a macro-
scopic approach, as an equivalent rotational spring that allows a
rotation discontinuity interpreted as the crack effect on the re-
sponse (Freund and Hermann, 1976; Gounaris and Dimarogonas,
1988; Rizos et al., 1990; Ostachowicz and Krawczuk, 1991; Paipetis
and Dimarogonas, 1986). The previously mentioned models, based
on a diffused flexural stiffness reduction, can be also approximated
by adopting the equivalent spring approach whether suitable
expressions for the equivalent rotational spring stiffness are intro-
duced. The same concentrated stiffness reduction model has been
adopted in the literature for the case of shear deformable beams as
in Fan and Zheng (2003), Li (2001), Vadillo et al. (2012), Zapata-
Medina et al. (2010), Zheng and Fan (2001b). In the latter case
the model applies to slender beams composed of materials with
a significant shear to Young modulus ratio, otherwise, if very short
beams are considered, it is expected to apply to small depth cracks.

The effect of a single concentrated crack on the response of
straight beams has been mostly evaluated under the hypothesis
that the crack do not undergo the closing phenomenon (non-prop-
agating crack), i.e. it remains open during the loading process,
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implying a linear behavior. However, abrupt (switching crack)
(Zastrau, 1985; Chu and Shen, 1992; Shen and Chu 1992; Quian
et al. 1990; Ibrahim et al. 1990; Caddemi et al., 2010) as well as
progressive closure of the crack (breathing crack) (Cheng et al.,
1999; Pugno et al., 2000; Patel and Darpe, 2008) has been ac-
counted for in the literature.

Particularly, when damage occurrence along the beam span is
not restricted to a single crack appearance, the equivalent spring
approach shows to be suitable for determining competitive proce-
dures and even closed form solutions.

In the latter case, concerning the presence of several cracks, the
traditional methods, relying on the introduction of additional vari-
ables at the cracked cross-sections and subsequent enforcement of
the continuity conditions, should be avoided since computationally
cumbersome in the case of numerous cracks and, more impor-
tantly, do not lead to closed form solutions.

In fact, for the case of an arbitrary number of cracks different
innovative approaches have been proposed. Far from being
exhaustive, they can be roughly classified based on the basic idea
to reduce the computational effort involved in the calculation: (i)
the smooth function method (Shifrin and Ruotolo, 1999; Ruotolo
and Surace, 2004); (ii) the modified Fourier series method (Zheng
and Fan, 2001a); (iii) the transfer matrix method (Khiem and Lien,
2001; Li, 2002; Sorrentino et al., 2007) (iv) the distributional ap-
proach (Yavari and Sarkani, 2001; Yavari et al., 2000, 2001a,
2001b; Falsone, 2002; Wang and Quiao, 2007; Buda and Caddemi,
2007; Caddemi and Caliò, 2008, 2009, 2012; Caddemi et al., 2013).

Among the engineering problems involving straight beams, par-
ticularly important is the loss of stability of the equilibrium config-
uration due to buckling caused by axial loads in columns under
different boundary conditions. It has been widely proved that the
presence of concentrated cracks can cause a considerable decre-
ment of the buckling loads as well as modification of the relevant
buckling modes. The stability of single and multiple cracked col-
umns has been studied both for the Euler–Bernoulli (Anifantis
and Dimarogonas, 1983; Wang, 2004; Wang et al., 2004; Li,
2001; Gurel 2007) and the Timoshenko (Takahashi, 1999; Li,
2002; Zheng and Fan, 2001b; Fan and Zheng, 2003) models, with
the particular purpose, in the latter case, of assessing the influence
of the shear deformability of the column. To the authors’ knowl-
edge, all the studies, focussed on the buckling of cracked columns,
consider the action of compressive loads, except that reported in
Zapata-Medina et al. (2010) where the buckling behavior of a sin-
gle cracked shear deformable column has been captured by means
of a classical approach in presence also of a tensile load.

With regard to the case of compressive loads one can argue that
concentrated cracks might be closed. Rigourously a breathing crack
model, whose amplitude is associated to the beam curvature,
should govern the transition between the closed and fully open
conditions. However, in almost all the approaches considered in
the literature the switching crack model is considered, according
to which the crack is fully open or closed. According to the latter
model, once instability occurs, the crack effect surely appears if it
affects both sides of the beam (bilateral crack). On the other hand,
unilateral cracks activate or not in accordance to the buckling
shape curvature. Details of the latter behavior concerning buckling
under compressive loads are proposed in (Challamel and Xiang,
2010).

On the other hand, the buckling phenomenon due to the action
of tensile loads has been first evidenced by Kelly (2003) as occur-
ring in rubber bearing isolators, which are characterized by high
shear deformations. The tensile buckling appears, as a consequence
of the significant influence of the shear deformation, in an anti-
symmetric shape as a result of the rotation restraints of both end
of the isolator. In particular the latter phenomenon might cause
unexpected local instabilities in isolated structures in some areas
of the foundation where tensile loads occur.

Successively the tensile buckling has been shown to occur also
in slender beams (Aristizabal-Ochoa, 2005, 2007) and, moreover,
that the tensile buckling loads are not necessarily the mirror
images of the compression counterparts. More recently, Zaccaria
et al. (2011) showed both theoretical and experimental evidence
of the tensile buckling in Euler beams in presence of shear internal
discontinuities. In any case, the influence of shear deformation
plays a fundamental role, since the tensile buckling load can de-
crease significantly and be comparable to the compressive
buckling.

Furthermore, one might bear in mind that shear deformability
has to be considered in those cases, such as fiber reinforced plastic
composite materials and layered or functionally graded columns,
showing low shear modulus.

The contribution of the present work is intended towards the
formulation of closed form solutions for buckling modes and buck-
ling load equations of shear deformable columns, affected by an
arbitrary number of cracks, able to capture also the buckling phe-
nomenon under the action of tensile loads.

The need for closed form solutions in engineering problems
consists in their use for preliminary design, for evaluating the role
played by various geometric and loading parameters and also pro-
viding benchmark solutions to test results provided by approxi-
mated numerical methods and discretised approaches. In
particular, in the context of the buckling problem, this is confirmed
in the literature by stability books (Wang et al., 2005; Elishakoff,
2005) and by the formulation of closed form solutions for inhomo-
geneous beams (Calio and Elishakoff, 2002, 2004a,b, 2005).

So far, the authors have studied extensively the Euler-Bernoulli
beam within different contexts in presence of an arbitrary number
of cracks, providing closed form solutions (Caddemi and Caliò,
2008, 2009, 2012) extended to the case of frame structures (Cad-
demi and Caliò, 2013a, b). The latter studies provided encouraging
results based on the adoption of generalized functions (distribu-
tions) to model both flexural and shear stiffness reductions due
to different causes (Biondi and Caddemi, 2005, 2007; Caddemi
et al., 2013).

Aim of this paper is applying the distributional model to shear
deformable columns with multiple cracks for the evaluation of
the exact solution and investigation of the influence of concen-
trated damage distributions on tensile and compressive buckling.
The adopted integration procedure leads to explicit closed-form
solutions for the buckling modes and the corresponding buckling
load equations of the Timoshenko column. The exact solution is a
function of four integration constants only, as for the undamaged
column, this analytical structure of the solution allows the deriva-
tion of the exact solution of any multi-cracked Timoshenko column
simply by enforcing the end boundary conditions. A further nov-
elty of the presented closed-form solutions is represented by the
formulation of the tensile buckling of beams in presence of multi-
ple cracks. In particular, positive roots of the buckling load equa-
tion provide compressive buckling loads, while negative roots
represent the mentioned tensile buckling loads. The results are val-
idated with those available in the literature for the case of a single
crack. Then, novel results on multi-cracked columns are presented
by means of an extensive parametric analysis on simply supported
and clamped–clamped columns to assess the effect of an increasing
number of cracks by accounting for the influence of the shear
deformation.

This study, rather than design or identification purposes, con-
tributes to the assessment of the residual carrying capacity of dam-
aged beams, by accounting for the buckling phenomenon, once the
damaged configuration of the beam if fully known.
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2. A flexural stiffness model of the Timoshenko beam with
multiple cracks

In this section a model of Timoshenko beam showing multiple
discontinuities in the rotation function is presented, and its capa-
bility of describing the influence of concentrated cracks is shown.

The well known static governing equations of Timoshenko
beams with variable flexural stiffness EðxÞIðxÞ and shear stiffness
GðxÞAðxÞ in presence of an axial load N can be written, with respect
to the spatial abscissa x spanning from 0 to the beam length L, as
follows:

d
dx

VðxÞ ¼ 0;
d
dx

MðxÞ ¼ VðxÞ þ N
d
dx

vðxÞ Equilibrium equations

ð1a;bÞ

vðxÞ ¼ MðxÞ
EðxÞIðxÞ ; cðxÞ ¼ TðxÞ

GðxÞAðxÞ Constitutive equations

ð1c;dÞ

vðxÞ ¼ d
dx

uðxÞ; cðxÞ ¼ d
dx

vðxÞ þuðxÞ Compatibility equations

ð1e; fÞ

where VðxÞ is the vertical force while TðxÞ and MðxÞ are the shear
force and the bending moment, respectively, vðxÞ, uðxÞ are the
deflection and the rotation functions, respectively, and cðxÞ;vðxÞ
are the shear deformation and the curvature functions, respectively.

According to a model able to account for the shear deformabi-
lity of the beam (Timoshenko and Gere, 1961) the relationship be-
tween the vertical force VðxÞ and the shear force TðxÞ can be
inferred by considering the shear force TðxÞ proportional to the
rotation uðxÞ as follows:

TðxÞ ¼ VðxÞ � NuðxÞ ) VðxÞ ¼ GðxÞAðxÞ d
dx

vðxÞ þuðxÞ
� �

þ NuðxÞ

ð2Þ

Eq. (1), in view of the model given by Eq. (2), can be combined
to provide the following differential governing equations

d
dx

EðxÞIðxÞ d
dx

uðxÞ
� �

¼GðxÞAðxÞ d
dx

vðxÞþuðxÞ
� �

þNuðxÞþN
d
dx

vðxÞ

ð3aÞ

d
dx

GðxÞAðxÞ d
dx

vðxÞ þuðxÞ
� �� �

þ N
d
dx

uðxÞ ¼ 0 ð3bÞ

Multiple singularities in the rotation functions, due to the pres-
ence of internal rotational springs at xci

;¼ 1; . . . ;nc, can be mod-
eled as reductions of the reference flexural stiffness by means of
the adoption of the well known Dirac’s delta dðxÞ distribution, as
follows (Biondi and Caddemi, 2005,2007):

EðxÞIðxÞ ¼ E0I0DðxÞ 1�
Xnc

i¼1

cidðx� xci
Þ

" #
ð4aÞ

GðxÞAðxÞ ¼ G0A0HðxÞ ð4bÞ

in which DðxÞ and HðxÞ are dimensionless functions responsible of
along-axis, both continuous and discontinuous, variations of the
flexural and shear stiffnesses with respect to the values E0I0 and
G0A0; furthermore, ci are parameters associated to the concentrated
rotational singularities.

The stiffness reduction introduced in the model adopted in
Eq. (4) can be considered equivalent to the effect produced by con-
centrated cracks if a suitable correspondence with the crack depth
is adopted (Caddemi and Caliò, 2008, 2009). For convenience, the
equivalence between the adopted model and the real crack depth
is reported in the Appendix. The distributional model here adopted
for concentrated cracks has been recently validated, both from a
theoretical and experimental point of view, as discussed in Cad-
demi and Morassi (2013).

In this work the influence of concentrated cracks on the shear
stiffness is neglected hence no deflection discontinuities are ac-
counted for. Furthermore, the suitability of the concentrated crack
model when the shear deformation effect plays a significant role in
the response behavior is addressed in the numerical application
section.

For simplicity, by considering the dimensionless coordinate
n ¼ x=L, and indicating with the apex the differentiation with re-
spect to n, the governing differential equations of the Timoshenko
beam given by Eq. (3), by accounting for the singularities intro-
duced in Eq. (4), take the following form:

DðnÞ 1�
Xnc

i¼1

cidðn� nci
Þ

" #
uIðnÞ

" #I

¼ br2HðnÞ uIðnÞ þuðnÞ
� �

þ r2 uIðnÞ þuðnÞ
� �

ð5Þ

br2 HðnÞ uIðnÞ þuðnÞ
� �� �I þ r2uIðnÞ ¼ 0 ð6Þ

In Eqs. (5) and (6), the normalized function uðnÞ ¼ vðnÞ
L and the

normalized axial load r2 ¼ NL2

E0 I0
have been introduced and the prop-

erty d½Lðn� niÞ� ¼ ð1=LÞdðn� niÞ of the Dirac’s delta distribution has
been exploited. Furthermore, in Eqs. (5) and (6), the dimensionless

singularity parameters ci ¼
ci
L , and the shear stiffness parameter

br2, with b ¼ G0
E0

and r2 ¼ L2 A0
I0

, have been introduced.

3. The governing equations for the stability of the Timoshenko
beam with multiple cracks

The governing equations of the Timoshenko beam have been
formulated in presence of multiple singularities under the form
presented in Eqs. (5) and (6). The above mentioned equations are
suitably modified in this section, by means of the adoption of the
integration rules of the distributions, in order to obtain explicit
closed form solutions.

Single integration of Eq. (6) leads to:

br2HðnÞ uIðnÞ þuðnÞ
� �

¼ �r2uðnÞ þ b1 ð7Þ

where b1 is an integration constant. Furthermore, substitution of Eq.
(7) into Eq. (5), and further integration, provides the following
equation:

uIðnÞ ¼ 1
DðnÞ r2uðnÞ þ b1nþ b2

� �
þuIðnÞ

Xnc

i¼1

cidðn� nci
Þ ð8Þ

with b2 an additional integration constant.
On the other hand, Eq. (7) can be rewritten as follows:

uIðnÞ ¼ 1
HðnÞ �

r2

br2 uðnÞ þ b1

br2

� �
�uðnÞ ð9Þ

Eq. (8) is a parametric expression of the rotation derivative
uIðnÞ since the summation uIðnÞ

Pnc
i¼1cidðn� nci

Þ appears at the
righ-hand side. In order to obtain explicitly the expressions of
uIðnÞ and uIðnÞ both members of Eq. (8) are multiplied by
dðn� nck

Þ providing the following expression:

uIðnÞdðn� nck
Þ ¼ 1

1� ckA
1

DðnÞ r2uðnÞ þ b1nþ b2
� �

dðn� nck
Þ ð10Þ

Derivation of Eq. (10) has required the definition of the product
of two Dirac’s delta distributions providing a single Dirac’s delta
times a constant A, as already exploited in Biondi and Caddemi
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(2005, 2007) where the value A ¼ 2:013 (among those proposed by
Bagarello (1995, 2002) has been adopted. Substitutions of Eq. (10)
into Eq. (8) leads to the following explicit expression of the rotation
derivative uIðnÞ as follows:

uIðnÞ ¼ 1
DðnÞ r2uðnÞ þ b1nþ b2

� �
1þ

Xnc

i¼1

kci
dðn� nci

Þ
" #

ð11Þ

where the dimensionless parameters kci
¼ ci

1�Aci
have been intro-

duced. The latter quantities kci
will be considered in this work

as damage parameters since they can be easily related to the
crack depth according to classical crack models as shown in
the Appendix.

It must be noted that a different value for the constant A might
be adopted, together with the appropriate value of the parameter
ci, leading to the actual damage parameter value kci

¼ ci
1�Aci

chosen

to provide the equivalence with the crack depth.
In particular, if the case of constant flexural and shear stiffness-

es is treated, DðnÞ ¼ HðnÞ ¼ 1, Eqs. (11) and (9) are written as
follows:

uIðnÞ ¼ r2uðnÞ þ b1nþ b2
� �

1þ
Xnc

i¼1

kci
dðn� nci

Þ
" #

ð12Þ

uIðnÞ ¼ b1

br2 � r̂2uðnÞ ð13Þ

where

r̂2 ¼ 1þ r2

br2 ð14Þ

Explicit expressions for the rotation uðnÞ and the normalized
deflection uðnÞ functions can be obtained by integration of Eqs.
(12) and (13) as outlined in the following section.

The governing equations of the Timoshenko beam in presence
of multiple cracks provided by Eqs. (12) and (13) can be, however,
reduced to a single equation by means of differentiation of Eq. (13),
substitution of Eq. (12), and after simple algebra, providing the fol-
lowing expression for uIIðnÞ:

uIIðnÞ þ r̂2r2uðnÞ

¼ �r̂2½b1nþ b2� � r̂2
Xnc

i¼1

r2uðnci
Þ þ b1nci

þ b2
� �

kci
dðn� nci

Þ ð15Þ

If the following positions are introduced:

B½uðnci
Þ� ¼ r̂2½r2uðnci

Þ þ b1nci
þ b2�kci

ð16aÞ

r2 ¼ r̂2r2 ð16bÞ

Eq. (15) can be rewritten as follows:

uIIðnÞ þ r2uðnÞ ¼ �r̂2½b1nþ b2� �
Xnc

i¼1

B½uðnci
Þ�dðn� nci

Þ ð17Þ

The governing differential equations of the Timoshenko beam in
presence of an arbitrary number of cracks and subjected to an axial
load, given by Eqs. (5) and (6), have been combined to provide the
sole Eq. (17), as function of the deflection uðnÞ, whose integration
procedure will be presented in the next section.

4. Integration procedure of the governing equation of the
Timoshenko beam with multiple cracks

The general solution of Eq. (17) is given by the solution of the
corresponding homogeneous equation, uhðnÞ and a particular
integral upðnÞ as follows:
uðnÞ ¼ uhðnÞ þ upðnÞ ¼ Ĉ3 sin rnþ Ĉ4 cosrnþ upðnÞ ð18Þ

where Ĉ3; Ĉ4 are integration constants. We seek a particular integral
upðnÞ under the following form:

upðnÞ ¼ d1ðnÞ sin rnþ d2ðnÞ cosrnþ C1nþ C2 ð19Þ

C1;C2 being integration constants, and d1ðnÞ; d2ðnÞ unknown
functions of the normalized variable n, to be determined such
that Eq. (17) is verified. The first derivative of upðnÞ given by
Eq. (19) is:

u0pðnÞ ¼ d1ðnÞr cosrn� d2ðnÞr sinrnþ d01ðnÞr sinrn

þ d02ðnÞr cosrnþ C1 ð20Þ

The search of the particular solution, besides enforcement of the
second order governing Eq. (17), will be performed under the fol-
lowing additional condition involving the first derivatives of the
functions d1ðnÞ; d2ðnÞ:

d01ðnÞr sin rnþ d02ðnÞr cos rn ¼ 0 ð21Þ

In view of Eq. (21), the following constrained form for the first
derivative u0pðnÞ of the particular integral can be written:

u0pðnÞ ¼ d1ðnÞr cosrn� d2ðnÞr sinrnþ C1;

s:t: d01ðnÞr sin rnþ d02ðnÞr cos rn ¼ 0 ð22Þ

in which the derivatives of the unknown functions d1ðnÞ and d2ðnÞ
are not involved. In view of Eq. (22) the second derivative u00pðnÞ of
the particular integral may be written as:

u00pðnÞ ¼ �d1ðnÞr2 sinrn� d2ðnÞr2 cos rnþ d01ðnÞr cosrn

� d02ðnÞr sinrn ð23Þ

Eq. (23), in view of Eq. (19), may be written as follows:

u00pðnÞ ¼ �r2½upðnÞ � C1n� C2� þ d01ðnÞr cosrn

� d02ðnÞr sinrn ð24Þ

By means of substitution of Eq. (24) into the equilibrium Eq. (17),
the following expression is obtained:

�r2upðnÞþr2C1nþr2C2þd01ðnÞrcosrn�d02ðnÞrsinrnþr2upðnÞ

¼�r̂2b1n� r̂2b2�
Xnc

i¼1

B½uðnci
Þ�dðn�nci

Þ ð25Þ

Since upðnÞmust satisfy Eq. (25) the following further conditions on
constants b1 and b2 must be imposed:

� r̂2b1 ¼ r2C1 ) b1 ¼ �r2C1;

� r̂2b2 ¼ r2C2;) b2 ¼ �r2C2
ð26Þ

Eqs. (21) and (25) represent a first order linear differential set of
equations with unknowns functions d1ðnÞ; d2ðnÞ, that can written as
follows:

d01ðnÞr sin rnþ d02ðnÞr cos rn ¼ 0

d01ðnÞr cos rn� d02ðnÞr sin rn ¼ �
Xnc

i¼1

B½uðnci
Þ�dðn� nci

Þ

8><
>: ð27Þ

where Eq. (26) has been accounted for. Eq. (27) can also be rewrit-
ten as follows:

d01ðnÞ ¼ � cosrn
r

Xnc

i¼1

B½uðnci
Þ�dðn� nci

Þ

d02ðnÞ ¼ sin rn
r

Xnc

i¼1

B2½uðnci
Þ�dðn� nci

Þ

8>>>><
>>>>:

ð28Þ
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Solution of the set of differential Eq. (28) leads to the following
expressions for d1ðnÞ; d2ðnÞ:

d1ðnÞ ¼ � 1
r

Xnc

i¼1

B½uðnci
Þ� cos rnci

Uðn� nci
Þ þ c1

d2ðnÞ ¼ 1
r

Xnc

i¼1

B½uðnci
Þ� sin rnci

Uðn� nci
Þ;þc2

8>>>>><
>>>>>:

ð29Þ

c1; c2 being integration constants and where Uðn� nci
Þ are

Heaviside’s (unit step) distributions (Uðn� nci
Þ ¼ 0 for n < nci

,
Uðn� nci

Þ ¼ 1 for n > nci
).

In view of expressions (29) the particular solution expressed by
Eq. (19) can be written as follows:

upðnÞ ¼ �
1
r
Xnc

i¼1

B½uðnci
Þ�½cos rnci

sinrn� sin rnci
cosrn�Uðn� nci

Þ

þ c1 sin rnþ c2 cos rnþ C1nþ C2 ð30Þ

Eq. (30) can also be written as follows:

upðnÞ ¼ �
1
r
Xnc

i¼1

B½uðnci
Þ� sin rðn� nci

ÞUðn� nci
Þ þ c1 sinrn

þ c2 cos rnþ C1nþ C2 ð31Þ

The general solution of the equilibrium Eq. (17) can be written,
in view of Eqs. (18) and (31) as follows:

uðnÞ ¼ � 1
r
Xnc

i¼1

B½uðnci
Þ� sinrðn� nci

ÞUðn� nci
Þ þ C1nþ C2

þ C3 sinrnþ C4 cosrn ð32Þ

where the positions C3 ¼ c1 þ Ĉ3; C4 ¼ c2 þ Ĉ4 have been
introduced.

Substitution of Eq. (16), providing the term B½uðnci
Þ�, into

Eq. (32) leads to the following expression for the deflection
function:

uðnÞ ¼ �
Xnc

i¼1

½ruðnci
Þ � rC1nci

� rC2�kci
sinrðn� nci

ÞUðn� nci
Þ

þ C1nþ C2;þC3sin rnþ C4cos rn ð33Þ

where Eqs. (14) and (26) have been taken into account.
According to Eq. (33) the deflection function uðnÞ, at the

generic abscissa n, depends on the response at the preceding
sections, where concentrated cracks occur, in terms of deflec-
tion uðnci

Þ, nci
< n. The latter circumstance requires the eval-

uation of uðnci
Þ, for nci

< n, by making use of the same Eq.
(33), which can be rewritten in explicit closed form expres-
sion as follows:

uðnÞ ¼ C1f1ðnÞ þ C2f2ðnÞ þ C3f3ðnÞ þ C4f4ðnÞ ð34Þ

The functions fjðnÞ; j ¼ 1; . . . ;4, introduced in Eq. (34), in view
of Eq. (33), assume the following expressions:

f1ðnÞ ¼ n

f2ðnÞ ¼ 1

f3ðnÞ ¼ sin rn�
Xnc

i¼1

rf3ðnci
Þkci

sinrðn� nci
ÞUðn� nci

Þ

f4ðnÞ ¼ cos rn�
Xnc

i¼1

rf4ðnci
Þkci

sinrðn� nci
ÞUðn� nci

Þ

ð35Þ

The first derivative of Eq. (34) gives:

uIðnÞ ¼ C1f I
1ðnÞ þ C2f I

2ðnÞ þ C3f I
3ðnÞ þ C4 f I

4ðnÞ ð36Þ
where

f I
1ðnÞ ¼ 1

f I
2ðnÞ ¼ 0

f I
3ðnÞ ¼ r cosrn�

Xnc

i¼1

r2f3ðnci
Þkci

cosrðn� nci
ÞUðn� nci

Þ

f I
4ðnÞ ¼ �r sin rn�

Xnc

i¼1

r2f4ðnci
Þkci

cos rðn� nci
ÞUðn� nci

Þ

ð37Þ

The second derivative of Eq. (34) gives:

uIIðnÞ ¼ C1f II
1 ðnÞ þ C2f II

2 ðnÞ þ C3f II
3 ðnÞ þ C4f II

4 ðnÞ ð38Þ

in which

f II
1 ðnÞ ¼ 0

f II
2 ðnÞ ¼ 0

f II
3 ðnÞ ¼ �r2 sinrnþ�

Xnc

i¼1

r2f3ðnci
Þkci
½�r sinrðn� nci

ÞUðn� nci
Þ

þ cos rðn� nci
Þdðn� nci

Þ�

f II
4 ðnÞ ¼ �r2 cosrnþ�

Xnc

i¼1

r2f4ðnci
Þkci
½�r sinrðn� nci

ÞUðn� nci
Þ

þ cos rðn� nci
Þdðn� nci

Þ� ð39Þ

The solution in terms of rotation function uðnÞ can be obtained
by substituting Eq. (36) into Eq. (13), and accounting for Eq. (26), as
follows:

uðnÞ ¼ � 1
r̂2 C1f I

1ðnÞ þ C2f I
2ðnÞ þ C3f I

3ðnÞ þ C4f I
4ðnÞ

� �
� 1

r̂2

r2

br2 C1

ð40Þ

or in the following compact form:

uðnÞ ¼ C1g1ðnÞ þ C2g2ðnÞ þ C3g3ðnÞ þ C4g4ðnÞ ð41Þ

where

g1ðnÞ ¼ �
1
r̂2 f I

1ðnÞ �
1
r̂2

r2

br2 ¼ �
1
r̂2 1þ r2

br2

� �
¼ �1

g2ðnÞ ¼ �
1
r̂2 f I

2ðnÞ ¼ 0

g3ðnÞ ¼ �
1
r̂2

f I
3ðnÞ

g4ðnÞ ¼ �
1
r̂2 f I

4ðnÞ

ð42Þ

Moreover, the first derivative of Eq. (41) leads to:

uIðnÞ ¼ C1gI
1ðnÞ þ C2gI

2ðnÞ þ C3gI
3ðnÞ þ C4gI

4ðnÞ ð43Þ

where

gI
1ðnÞ ¼ �

1
r̂2 f II

1 ðnÞ ¼ 0

gI
2ðnÞ ¼ �

1
r̂2 f II

2 ðnÞ ¼ 0

gI
3ðnÞ ¼ �

1
r̂2 f II

3 ðnÞ

gI
4ðnÞ ¼ �

1
r̂2 f II

4 ðnÞ

ð44Þ

Eqs. (34) and (41) represent the sought closed-form solution of
the governing Eq. (17) and will be exploited to evaluate the buck-
ling load of the Timoshenko beam in presence of multiple cracks.
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5. The buckling load equation of multi-cracked Timoshenko
columns

The buckling load equation can be derived for Timoshenko col-
umns with multiple cracks by simply imposing the standard
boundary conditions, including the general case of rotational and
translational spring supports. In this section, the closed form solu-
tion presented in Eqs. (34)–(44) are adopted to treat the case of
simply supported and clamped–clamped Timoshenko columns.
The buckling load equations are derived and numerically solved
in order to obtain the critical loads of the considered multi-cracked
columns and the corresponding modes. The presented buckling
load equations are able to capture the behavior in both cases of
compression and tension axial loads. The two cases are recovered
for positive and negative values of the solutions, respectively.

5.1. Simply supported column

The boundary conditions of the simply supported Timoshenko
column are:

uð0Þ ¼ 0; uIð0Þ ¼ 0; uð1Þ ¼ 0; uIð1Þ ¼ 0 ð45Þ

The four integration constants can be obtained, by imposing the
conditions in Eq. (45), as follows:

uð0Þ ¼ 0; uIð0Þ ¼ 0) C2 ¼ 0; C4 ¼ 0

uð1Þ ¼ 0) C1 þ C3 sin r�
Xnc

i¼1

rkci
f3ðnci

Þ sin rð1� nci
Þ

" #
¼ 0

uIð1Þ ¼ 0) 1
r̂2 C3 r2 sin r�

Xnc

i¼1

r3f3 nci

� 	
kci

sin r 1� nci

� 	( )
¼ 0

ð46Þ
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Fig. 1. Critical load parameters �r2
cr ,
þr2

cr vs crack position nc for different values of shea
single crack: (a) kc ¼ 0; (b) kc ¼ 0:2; (c) kc ¼ 1; (d) kc ¼ 100.
The last of Eq. (46) leads to the following buckling load equation for
the simply supported Timoshenko beam in presence of multiple
cracks:

sinr� r
Xnc

i¼1

f3ðnci
Þkci

sinrð1� nci
Þ ¼ 0 ð47Þ

Once the smallest solution rcr of Eq. (47) is obtained, the value of

the first critical load r2
cr ¼ Ncr L2

E0 I0
can be inferred by the definition

r2 ¼ 1þ r2

br2

h i
r2, given by Eq. (16b) in view of Eq. (14), as follows:

r4
cr

br2 þ r2
cr � r2

cr ¼ 0 ð48Þ

Solution of Eq. (48) leads to the following values for the com-
pression (positive value) þr2

cr and tension (negative value) �r2
cr

critical load parameters:

þr2
cr ¼

þNcr L
E0 I0

�r2
cr ¼

�Ncr L
E0 I0

)
¼ br2

2
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

br2 r2
cr

s" #
ð49Þ

Furthermore, once the tensile �Ncr and the compressive þNcr

critical loads have been evaluated, the relevant buckling modes
are determined by means of the evaluation of the integration
constants by solving Eq. (46) and substituting in Eq. (34).

5.2. Clamped–clamped column

The boundary conditions of the clamped–clamped column are:

uð0Þ ¼ 0; uð0Þ ¼ 0; uð1Þ ¼ 0; uð1Þ ¼ 0 ð50Þ

The four integration constants can be obtained, by imposing the
conditions in Eq. (45), as follows:
(b)

(d)
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r stiffness br2 ¼ 1; p2; 0:4p2; 0:2p2; 0:1p2 for a simply supported column with a



Fig. 2. Critical load parameters �r2
cr ,
þr2

cr vs crack position nc and intensity kc for a
simply supported column with a single crack for different values of shear stiffness
br2 ¼ 1; p2; 0:4p2; 0:2p2; 0:1p2.
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uð0Þ ¼ 0) C2 ¼ �C4

uð0Þ ¼ 0) C1 ¼ �C3
r
r̂2

uð1Þ ¼ 0) C3 �
r
r̂2 þ sin r�

Xnc

i¼1

rkci
f3ðnci

Þ sin rð1� nci
Þ

" #

þ C4 �ð1� cos rÞ �
Xnc

i¼1

rkci
f4ðnci

Þ sinrð1� nci
Þ

" #
¼ 0

uð1Þ ¼ 0) C3 ð1� cos rÞ þ
Xnc

i¼1

rf3ðnci
Þkci

cosrð1� nci
Þ

" #

þ C4 sinrþ
Xnc

i¼1

rf4ðnci
Þkci

cosrð1� nci
Þ

" #
¼ 0 ð51Þ

Accounting for Eq. (51) leads to the following buckling load
equation for the clamped–clamped Timoshenko beam in presence
of multiple cracks:

� r
r̂2 þ sinr�

Xnc

i¼1

rkci
f3ðnci

Þ sinrð1� nci
Þ

" #

� sin rþ
Xnc

i¼1

rf4ðnci
Þkci

cos rð1� nci
Þ

" #
þ

� ð1� cos rÞ þ
Xnc

i¼1

rf3ðnci
Þkci

cosrð1� nci
Þ

" #

� �ð1� cos rÞ �
Xnc

i¼1

rkci
f4ðnci

Þ sin rð1� nci
Þ

" #
¼ 0 ð52Þ

Differently from the buckling load Eq. (47), for the simply sup-
ported case, the parameter r̂2, appears in the buckling load Eq. (52)
for the clamped–clamped beam.

In view of Eqs. (14) and (16b) the following relationship be-
tween r̂2 and r2 holds:
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Fig. 3. Compressive/tensile buckling shapes for a simply supported column with
nc ¼ 0; 0:125; 0:375; 0:5 and for two values of the shear stiffness br2 ¼ p2ðsolid lineÞ; 0:
r̂4 � r̂2 � r2

br2 ¼ 0 ð53Þ

which can be solved as follows:

þr̂2
cr

�r̂2
cr

)
¼¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 r2

br2

q
2

ð54Þ

From Eq. (54) the expressions of þr̂2
cr and �r̂2

cr will be adopted
for the cases of compression and tension buckling, respectively,
to solve the buckling load Eq. (52) in order to provide the smallest
solution rcr .

Once again, the value of the first critical load r2
cr ¼ Ncr L2

E0 I0
can be

inferred by means of Eqs. (14) and (16b) as follows:

þr2
cr ¼

þNcr L
E0I0

�r2
cr ¼

�Ncr L
E0I0

)
¼ br2

2
�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

br2 r2
cr

s" #
ð55Þ
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Fig. 4. A simply supported column with two cracks at symmetric cross-sections.
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where þr2
cr ¼

þNcr L
E0I0

and �r2
cr ¼

�Ncr L
E0 I0

are the compression and tension

critical load parameters, respectively.
Finally, once the tensile �Ncr and the compressive þNcr critical

loads have been evaluated, the relevant buckling modes are deter-
mined by means of the evaluation of the integration constants by
solving Eqs. (51) and substituting in Eq. (34).
Fig. 6. Critical load parameters �r2
cr ,
þr2

cr vs crack position nc and intensity kc for
the simply supported column with two cracks in Fig. 4 for different values of shear
stiffness br2 ¼ 1; p2; 0:4p2; 0:2p2; 0:1p2.
6. Numerical applications

The presented closed form expressions of the buckling modes
and the buckling load equations allow an extensive parametric
analysis of columns with multiple cracks by accounting for the
influence of the shear deformability.

It has to be remarked that concentrated cracks imply a distrib-
uted reduction of the beam stiffness in the vicinity of the damaged
section (Christides and Barr, 1984; Sinha et al., 2002; Chondros
et al., 1998; Liebowitz et al., 1967; Liebowitz and Claus, 1968;
Okamura et al., 1969; Bilello, 2001), as a consequence, a lumped
flexibility approach, as that adopted in this work, is accurate for
slender beams or it has to be adopted in the case of small crack
depths if short beams are accounted for.

Significant effect of the shear deformability is encountered in
practice in the case of slender beams composed of materials with
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(c)

Fig. 5. Critical load parameters �r2
cr , þr2

cr vs crack position nc for different values of shea
two cracks in Fig. 4: (a) kc ¼ 0; (b) kc ¼ 0:2; (c) kc ¼ 1; (d) kc ¼ 100.
a significant shear to Young modulus ratio G0=E0, otherwise, for
short beams. In this section exact numerical results for the adopted
crack model, obtained by means of the presented closed-form solu-
tions, are presented in order to show that tensile buckling loads are
comparable with those related to the classical compressive buck-
ling phenomenon. Furthermore, it is shown how the influence of
multiple cracks, together with the shear deformability, plays a sig-
nificant role in this aspect. The presented formulation comprises,
as particular case, the results concerning columns with a single
crack already available in the literature, and the relevant results
are recovered.

An extensive parametric analysis has been conducted by plot-
ting graphs of the buckling load parameter r2 and the buckling
shapes for different number, position and intensity of the cracks
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r stiffness br2 ¼ 1; p2; 0:4p2; 0:2p2; 0:1p2 for the simply supported column with
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and analyzing the sensitivity with regard to the shear deformabi-
lity of the column.

The cases of simply supported and clamped–clamped boundary
conditions are reported. It is shown how the tensile buckling load
is very sensitive to the shear deformability in comparison to the
compressive case. Moreover, it is shown how, in the buckling phe-
nomenon due to compressive load, the clamped–clamped beam
undergoes abrupt changes of buckling modes from symmetric to
anti-symmetric shapes, ruled by the values of the shear deformabi-
lity with respect to the number, position and intensity of the
cracks. A similar behavior has been encountered also in the tensile
buckling, where an abrupt change of buckling modes from anti-
symmetric to symmetric shapes occurs.
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Fig. 7. Compressive/tensile buckling shapes for the simply supported column with tw
nc ¼ 0; 0:125;0:375; 0:5 and for two values of the shear stiffness br2 ¼ p2ðsolid lineÞ; 0:
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Fig. 8. Critical load parameters �r2
cr ,
þr2

cr vs the crack intensity parameter kc for a simp
different values of shear stiffness br2 ¼ 1; p2; 0:4p2; 0:2p2; 0:1p2: (a) nc ¼ 5; (b) nc ¼
6.1. Simply supported column

The case of simply supported column has been studied by solv-
ing Eq. (47) with respect to r and evaluating the tensile �r2

cr and
the compressive þr2

cr buckling load parameters by means of Eq.
(49). The relevant buckling shapes are given by Eqs. (34) and
(41), for the deflection and the rotation functions, respectively,
once the integration constants are evaluated by solving the set of
Eq. (46).

The buckling behavior of a simply supported column with a sin-
gle crack is analyzed in Fig. 1 where the critical load parameter vs
the crack position along the column axis is plotted for different val-
ues of the shear deformability and the crack intensity. The graphs
tensile buckling shapes
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1p2ðdashed lineÞ .
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in Fig. 1 reproduce the results known in the literature for this spe-
cific case and confirm that the proposed formulation is consistent
with that proposed in Zapata-Medina et al. (2010). Precisely, the
buckling load parameter r2 adopted in this work is related to
Pcr=P� adopted in the latter work as follows r2 ¼ p2Pcr=P�. As ex-
pected, the buckling load values decrease as the crack moves from
the left end towards the middle cross-section; the latter attenua-
tion becomes a rapid reduction for the case of high damage inten-
sity kc ¼ 100.

The relationship between the parameter kc with the corre-
sponding geometry and length of the crack is explained in the
Appendix. As an example, the extent of the crack associated with
the value of kc can be easily inferred by Fig. A2 for the case of a
rectangular cross section treated in the Appendix.

The latter results are summarized in the compact form shown
in Fig. 2 where the surfaces representing the tensile �r2

cr and the
compressive þr2

cr buckling load parameters vs the crack position
and the crack intensity parameter are reported for different values
of the shear stiffness. The surfaces reported in Fig. 2 show that the
shear deformability has a more pronounced influence on the ten-
sile rather than the compressive buckling load.

In order to show the conditions for physical occurrence of the
tensile buckling phenomenon, it has to be noted that it does not
appear for extremely high values of the shear stiffness, in fact, ele-
vated values of the tensile buckling load imply that traction failure
occurs before the beam buckles. On the other hand, as the shear
stiffness decreases the tensile buckling occurs at critical load val-
ues comparable to compressive critical load values.

The relevant buckling shapes for the single cracked simply sup-
ported column are plotted in Fig. 3 and coincide for the tensile and
the compressive buckling. In particular, the buckling shape for
crack positions nc ¼ 0;0:125;0:375;0:5 and for values of the crack
intensity parameters kc ¼ 0;0:2;1 are reported. Two values
br2 ¼ p2;0:1p2 have been considered and it can be concluded that
the shear stiffness does not have any impact on the buckling shape
for the case of single cracked simply supported column.

Moreover the extension presented in this work has been imple-
mented for the case of the simply supported column with two
cracks occurring at symmetric cross-sections, as depicted in
Fig. 4. Again the results are plotted in Fig. 5 where the critical load
parameters vs the crack position nc along the column axis is plotted
for different values of the shear stiffness and the crack intensity.
The results for the simply supported column with two cracks are
reported in compact form in Fig. 6 where the surfaces representing
the tensile �r2

cr and the compressive þr2
cr buckling load parameters

vs the crack position and the crack intensity parameter are re-
ported for different values of the shear stiffness. The buckling
shapes for the case of double cracked simply supported column
are reported in Fig. 7.

The novelty of the proposed procedure with respect to the oth-
ers, available in the literature, lies in the capability of capturing the
effect of the presence of multiple cracks by means of closed form
solutions able to obtain also results concerning the tensile buckling
phenomenon. No additional computational cost with respect to the
classical undamaged case is required. Hence, finally, since to date
extensive analyzes for cases with multiple cracks are not available
in the literature, in Figs. 8–10 the case of simply supported column
with an increasing number of cracks has been treated. In particular,
in Figs. 8 and 9 results in terms of buckling load and shapes,
respectively, for nc ¼ 5;10 cracks are reported. While in Fig. 10
the surfaces representing the tensile �r2

cr and the compressive
þr2

cr buckling load parameters vs the crack intensity parameter kc

and the number nc of the cracks, uniformly spaced along the span,
are reported.
6.2. Clamped–clamped column

In this work, among different boundary conditions acting on
shear deformable columns, the clamped–clamped case has been
treated since abrupt changes from anti-symmetric to symmetric
buckling modes (or vice versa), dependent on the number, position
and intensity of the cracks together with the column shear stiff-
ness, have been encountered and are highlighted in this section.

For the clamped–clamped column the tensile �r2
cr and the com-

pressive þr2
cr buckling load parameters are obtained by solving Eqs.

(52)–(55), while the relevant buckling shapes are given by Eqs. (34)
and (41), for the deflection and the rotation functions, respectively,
once the integration constants are evaluated by solving the set of
Eq. (51).

A clamped–clamped column with a single crack has been con-
sidered first in order to validate the results obtained with the pro-



Fig. 12. Critical load parameters �r2
cr ,
þr2

cr vs crack position nc and intensity kc for a
clamped–clamped column with a single crack for different values of shear stiffness:
br2 ¼ 1; 4p2; 1:6p2; 0:8p2; 0:4p2.
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Fig. 11. Critical load parameters �r2
cr , þr2

cr vs crack position nc for different values of shear stiffness br2 ¼ 1; 4p2; 1:6p2; 0:8p2; 0:4p2 for a clamped–clamped column with a
single crack: (a) kc ¼ 0; (b) kc ¼ 0:2; (c) kc ¼ 1; (d) kc ¼ 100.
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posed procedure against those available in the literature. In Fig. 11
the critical load parameter vs the crack position is plotted for dif-
ferent values of the shear stiffness and the crack intensity. As al-
ready verified for the simply supported column, the results of the
particular case of a single crack, also treated in Zapata-Medina
et al. (2010), are recovered in Fig. 11. For the classical Euler col-
umn, when the crack moves from the left end (i.e. 0 6 nc < 0:25)
the compressive buckling load increases up to its maximum value
at nc = 0.25 (the inflection point of the undamaged buckling mode),
then it decreases as the crack moves towards the middle cross-sec-
tion (i.e. 0:25 < nc 6 0:5). Furthermore, when the shear deforma-
tion is taken into account, two more comments can be added: (i)
accounting for the influence of the shear deformation leads to a
reduction of the compressive buckling load; (ii) The position
corresponding to the maximum buckling load undergoes a slight
drift toward the clamped end.

On the contrary, with regard to the tensile buckling, Fig. 11
shows that the crack position has a very mild influence on the
buckling load value even for high crack intensities.

To provide a wider perspective, the results in the case of a single
crack are also shown as in Fig. 12 where the surfaces representing
the tensile �r2

cr and the compressive þr2
cr buckling load parameters

vs the crack position and the crack intensity parameter are re-
ported for different values of the shear stiffness. The surfaces re-
ported in Fig. 12 show, as the case of simply supported column,
that the shear deformability has a moderate impact on the com-
pressive buckling load while it affects considerably the tensile
buckling load.

The relevant tensile and compressive buckling shapes for the
single cracked clamped–clamped column are plotted in Fig. 13
for crack positions nc ¼ 0;0:125;0:375;0:5 and for values of the
crack intensity parameters kc ¼ 0;0:2;1. The crack position is
clearly evidenced by the presence of a kink in the deflection buck-
ling shape. For the compressive buckling shape, the undamaged
column undergoes a symmetric deflection shape while some dam-
aged column cases, dependent on the crack position and intensity,
are characterized by a change of sign of the deflection shape along
the column span. However, the symmetry is preserved only when
the middle cross-section is damaged. Two values br2 ¼ 4p2;0:4p2

have been considered and it can be observed that, unlike the sim-
ply supported column, the shear stiffness implies a variation of the
buckling shape except when the middle cross-section is cracked.
On the other hand, for the undamaged column, the tensile buckling
due to the shear deformability leads to an anti-symmetric shape. In
the latter case, when a single crack is considered, a kink at the ab-
scissa of the cracked cross-section appears and the deflection buck-
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Fig. 13. Compressive (left column) and tensile (right column) buckling shapes for a clamped–clamped column with a single crack for crack intensity parameter kc ¼ 0;0:2;1,
for crack position nc ¼ 0; 0:125; 0:375; 0:5 and for two values of the shear stiffness br2 ¼ 4p2ðsolid lineÞ; 0:4p2ðdashed lineÞ.
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Fig. 14. A clamped–clamped column with two cracks at symmetric cross-sections.
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ling mode drifts from the anti-symmetric shape (nc ¼ 0;0:125;
0:375) and becomes fully symmetric when the crack coincides
with the middle cross-section (nc ¼ 0:5) for a damage parameter
kc ¼ 1 and a low shear stiffness br2 ¼ 0:4p2.

The solutions presented in this work, particularly devoted to
multi-cracked columns, have been exploited to analyze the
clamped–clamped column with two cracks occurring at symmetric
cross-sections in Fig. 14. The critical load parameter vs the distance
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Fig. 15. Critical load parameters �r2
cr , þr2

cr vs crack position nc for different values of shear stiffness br2 ¼ 1; 4p2; 1:6p2; 0:8p2; 0:4p2 for the clamped-clamped column
with two cracks in Fig. 14: (a) kc ¼ 0; (b) kc ¼ 0:2; (c) kc ¼ 1; (d) kc ¼ 100.

Fig. 16. Critical load parameters �r2
cr ,
þr2

cr vs crack position nc and intensity kc for
the clamped-clamped column with two cracks in Fig. 14 for different values of shear
stiffness br2 ¼ 1; 4p2; 1:6p2; 0:8p2; 0:4p2.
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nc of the cracks from the clamped ends is reported in Fig. 15 for dif-
ferent values of the shear stiffness and the crack intensity
(kc = 0,0.2,1,100)). While Fig. 16 shows the complete surfaces of
the tensile �r2

cr and the compressive þr2
cr buckling load parameters

vs the crack position and the crack intensity parameter (although
in the range 0 6 kc 6 2) for different values of the shear stiffness.

The results plotted in Figs. 15 and 16, showing the influence of
two cracks on the shear deformable clamped–clamped column, are
new and require, for a correct interpretation, a contextual analysis
of the relevant buckling modes reported for convenience in Fig. 17.

Precisely, Figs. 15–17 show that, when the two symmetric
cracks move closer to each other, the compressive buckling load
increases up to its maximum value (at nc = 0.25 for infinitely shear
rigid columns or at nc < 0.25 for shear deformable columns) accord-
ing to a symmetric buckling mode (compressive buckling shape in
Fig. 17 for nc ¼ 0 and nc ¼ 0:125). Then, the compressive buckling
load, on account of the values of the crack intensity and the column
shear stiffness with respect to the current crack position, under-
goes two alternative different behaviors as the cracks move further
towards the middle cross-section (i.e. 0:25 < nc 6 0:5):

(i) a monotonic reduction (Fig. 15b, for kc ¼ 0:2) with a sym-
metric mode again (compressive buckling shape in Fig. 17
for nc ¼ 0:375 and for kc = 0, 0.2);

(ii) a non-monotonic decrement (Fig. 15c, for kc ¼ 1) with a
temporaneous switch to an anti-symmetric mode (compres-
sive buckling shape in Fig. 17 for nc ¼ 0:375 and for kc ¼ 1)
and the attainment of a successive relative peak indicating
the recovery of the simmetric mode (Fig. 17 for compressive
buckling with nc ¼ 0:5).

The switch to an anti-symmetric mode is clearly indicated by
the imprint onto the compression buckling load surface clearly dis-
tinguishible for high shear stiffness in Fig. 16. The region outside
the imprint is representative of those values of the crack intensity
and position leading to symmetric modes.

Furthermore, it has to be noted that, when high values of the
crack intensity occur (Fig. 15d, for kc ¼ 100), the decrement due
to the occurrence of the anti-symmetric mode reduces the com-
pressive buckling load close to zero and it is followed by a rapid
increment as the symmetric shape is recovered.

On the other hand, with regard to the tensile buckling behavior,
Figs. 15 and 16 show that as the symmetric cracks move from the
clamped ends towards the middle cross-section the tensile
buckling load is first subjected to slight increments. Then, at least
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for higher crack intensitites kc ¼ 1;100 (Fig. 15c,d), as the the two
cracks tend to merge at nc ¼ 0:5, the tensile buckling load increases
suddenly. Moreover, the tensile buckling is characterized by an
undamaged anti-symmetric shape that is preserved by the occur-
rence of two symmetric cracks (Fig. 17 for nc ¼ 0;0:125;0:375)
but is reversed to a symmetric shape when the two cracks are very
close to each other (Fig. 17 for nc ¼ 0:5) and are characterized by a
damage parameter kc ¼ 1 and with low shear stiffness br2 ¼ 0:4p2

of the column.
In addition, both Figs. 15 and 16 show that the tensile buckling
load decreases as the column shear stiffness decreases.

The capability of the proposed closed form solutions of captur-
ing the effect of multiple cracks without any additional computa-
tional cost with respect to the classical undamaged case has been
exploited to analyze the case of clamped–clamped column with
an increasing number of cracks. In Figs. 18 and 19 results in terms
of buckling load and shapes, respectively, for nc ¼ 5;10 cracks,
uniformly spaced along the span, are reported. In particular, an
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Fig. 18. Critical load parameters �r2
cr , þr2

cr vs the crack intensity parameter kc for a clamped–clamped column with multiple nc cracks, uniformly spaced along the span, for
different values of shear stiffness br2 ¼ 1; 4p2; 1:6p2; 0:8p2; 0:4p2: (a) nc ¼ 5; (b) nc ¼ 10.
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Fig. 20. Critical load parameters �r2
cr , þr2

cr vs the intensity kc and the number nc of
cracks, uniformly spaced along the span, for the clamped–clamped column for

2 2 2 2 2
inspection of Fig. 18 shows that both, compressive and tensile,
buckling loads decrease as the crack intensity parameter in-
creases and as the shear stiffness decreases. However, the com-
pressive buckling is always reached with a symmetric shape,
while the tensile buckling with an anti-symmetric shape, as de-
picted in Fig. 19.

A more complete scenario is provided by Fig. 20 where the sur-
faces representing the tensile �r2

cr and the compressive þr2
cr buck-

ling load parameters vs the crack intensity parameter kc and the
number nc of the cracks are reported.

Finally, from Fig. 21 the following comment, concerning both
cases of simply supported and clamped–clamped multi-cracked
columns can be added. Precisely, Figs. 21a and b report the tensile
and compressive buckling loads vs the number of cracks, with
different values of shear stiffness: br ¼ 1; 4p ; 1:6p ; 0:8p ; 0:4p .



Fig. 21. Critical load parameters �r2
cr , þr2

cr vs the uniformly spaced number of cracks nc: (a) pinned-pinned column for br2 ¼ 1; p2; 0:4p2; 0:2p2; 0:1p2; (b) clamped–
clamped column for br2 ¼ 1; 4p2; 1:6p2; 0:8p2; 0:4p2.
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kc ¼ 1, for different shear stiffness values of the simply supported
and the clamped–clamped columns, respectively.

It can be stated that the occurrence of a progressive number of
cracks causes a reduction of the compressive buckling load. On the
other hand, the tensile buckling load is less sensitive to the occur-
rence of an increasing number of cracks.

The buckling analysis of beams with multiple cracks has been
possible by the presented approach. In particular, the presented
closed-form solutions are implemented and provide a direct com-
parison between compressive and tensile buckling for an increas-
ing number of cracks.

On the other hand, it has been recovered that tensile buckling
appears for low values of the shear stiffness parameters. The latter
values, particularly those leading to critical load values comparable
to the compressive buckling load, can be inferred by the presented
figures and adopted to treat the cases of real beams characterized
by shear deformable materials.
7. Conclusions

In this work a contribution towards the understanding of the
buckling phenomenon of shear deformable damaged columns, in
presence of compressive and tensile loads, has been provided.
The damage has been considered in the form of multiple cracks
modeled as a concentrated flexural stiffness reduction of the col-
umn that has been accounted for, in the governing equations, by
means of Dirac’s delta distributions. An integration procedure lead-
ing to closed form solutions of the buckling modes and the buck-
ling load equations has been presented. The proposed explicit
solutions concerning the buckling of shear deformable columns,
accounting for the presence of an arbitrary number of cracks, rep-
resents a novel achievement in the specific literature. Moreover,
study of the tensile buckling phenomenon of multi-cracked col-
umns has been possible in this work, for the first time, by means
of the proposed explicit solutions. Extensive parametric analyses
for multi-cracked simply supported and clamped–clamped col-
umns have been conducted and no additional difficulty with re-
spect to undamaged columns is introduced. The model adopted
in this work for the concentrated crack does not account for any
influence on the local shear deformability. This latter aspect, how-
ever particularly significant in the tensile buckling phenomenon, is
not trivial and is currently under investigation.

As future development of the specific case treated in the man-
uscript, the presented closed form solutions allow the formulation
of the explicit closed form stability stiffness matrix of damaged
beam elements to treat the case of damaged frames. In the latter
case a beam element that makes use of the two extreme nodes only
for each damaged element of the frame can be formulated.

Appendix. Relationship between damage parameters and crack
depth parameters

In this appendix the damage parameters kci
, adopted in this

study to represent concentrated damages and related to the singu-
larity parameters ci, appearing in Eq. (2), are shown to be related to
the depth of concentrated cracks by making use of the classical
crack models provided in the literature.

The rotation function uðnÞ, expressed by the closed form solu-
tion presented in Eq. (41) shows jump discontinuities Duðnci

Þ at
abscissae nci

; i ¼ 1; . . . nc, that can be expressed as follows:

Duðnci
Þ ¼ uðnþci

Þ �uðn�ci
Þ ¼ kci

L
E0I0

Mðnci
Þ; i ¼ 1; . . . ;nc ðA1Þ

Where nþci
and n�ci

are the abscissae at the right and at the left of
nci

, respectively, while Mðnci
Þ are the values of the continuous

bending moment function at the cracked cross sections, evaluated
as Mðnci

Þ ¼ �EIðnci
Þu00ðnci

Þ=L2 .
Eq. (A1) provides the relationship between the slope disconti-

nuities Duðnci
Þ and the bending moments Mðnci

Þ at nci
;

i ¼ 1; . . . nc and suggests the interpretation of the adopted flexural
stiffness model as internal hinges at nci

endowed with rotational
spring stiffnesses Ku

ci
given as:

Ku
ci
¼ EoIo

kci
L
; i ¼ 1; . . . nc ðA2Þ

Eq. (A2) represents the relationship between Ku
ci

and the dimen-
sionless damage parameters kci

related to the singularities intro-
duced in the adopted flexural stiffness model in Eq. (2). It has to
be noted that: for kci

¼ 0, correspondent to the presence of no
crack, Eq. (A2) provides Ku

ci
¼ 1; on the other hand, for kci

¼ 1,
correspondent to an entirely damaged cross-section, Eq. (A2) pro-
vides Ku

ci
¼ 0.

However, in order to represent the cracks by means of the
adopted model a relationship between the damage parameters
kci

and the crack depth has to be established.
In the literature various models of concentrated open cracks

leading to a continuous description of the beam flexibility in the
vicinity of the crack have been proposed (Christides and Barr,
1984; Sinha et al., 2002; Chondros et al., 1998; Liebowitz et al.,
1967; Liebowitz and Claus, 1968; Okamura et al., 1969; Bilello
2001). On the other hand, following a macroscopic approach, pro-
posed in the literature, the effect of a concentrated crack can be ob-
tained by means of an equivalent rotational spring with stiffness



Fig. A2. Damage intensity parameter vs the crack depth to the cross-section height
ratio according to the model in (Bilello, 2001) for a beam slenderness L=h ¼ 15.
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Keq placed at the damaged cross-section (Irwin, 1957a,b; Freund
and Hermann, 1976). The expressions of the spring stiffness Keq

equivalent to the crack are provided for a large number of cases,
for different geometry of the cross-section and different crack
shapes.

For example, when a lateral crack of uniform depth d is present
in a rectangular cross-section of width b and height h, the follow-
ing expression for the stiffness Keq can be adopted:

Keq ¼ E0I0

h
1

CðbÞ ðA3Þ

where b ¼ d=h is defined as the ratio between the crack depth d and
the cross-section height h, and C(b) is a dimensionless local compli-
ance that can take different forms according to the chosen damage
model (Gounaris and Dimarogonas, 1988; Rizos et al., 1990; Osta-
chowicz and Krawczuk, 1991; Paipetis and Dimarogonas, 1986;
Chondros et al., 1998; Bilello, 2001).

The stiffness reduction model proposed by Bilello (2001), for a
rectangular cross-section, based on extensive photo-elastic
analyses, relies on the presence of an ineffective area around the
crack that has approximately a triangular shape. The height of
the ineffective area is equal to the crack depth d, while the width
2Lc (effective portion of the beam affected by the damage) is given
by d=Lc ¼ 0:9. The latter expression concerning the effective length
Lc was obtained by numerical simulations and confirmed by exper-
imental tests.

The local compliance C(b) equivalent to the beam stiffness
reduction in the vicinity of the crack can be obtained by imposing
that the rotation discontinuity due to the concentrated flexibility
reproduces the relative rotation of the cross-sections affected by
the crack. For the model proposed by Bilello (2001) the following
expression is obtained:

CðbÞ ¼ bð2� bÞ
0:9ðb� 1Þ2

ðA4Þ

The relationship between the crack model, adopted in this
work, and the classical crack models can now be obtained by
equating Ku

ci
, given by Eq. (A2), to the rotational spring stiffnesses

Keq proposed by the lumped flexibility approach, given by Eq.
(A3) and written for the i-th crack, after simple algebra, as follows:

kci
¼ h

L
Cðbci

Þ ðA5Þ

Eq. (A5) provides the relationship between the damage param-
eters kci

and the dimensionless local compliance Cðbci
Þ, given by

the models provided in the literature. Furthermore, according to
Eq. (A5), the damage parameters kci

can be given the physical
meaning of ‘‘dimensionless local compliance’’, due to the cracks,
normalized with respect to the ratio L=h of the beam.
Fig. A1. Damage intensity parameter vs the crack depth to the cross-section height
ratio for different models proposed in the literature.
Finally, Eq. (A5) shows that the damage parameters kci
are di-

rectly related to the crack depth bci
. As a comparison, the quantity

L
h kci

given by Eq. (A5) is plotted in Fig. A1 for some of the expres-
sions of the local compliance Cðbci

Þ, up to the value bci
¼ 0:6. In

addition, in order to provide a specific example, in Fig. A2, the dam-
age parameter kci

against the crack depth bci
is reported for the

beam slenderness value L=h ¼ 15. Fig. A2 shows that a crack with
kci
¼ 1 corresponds to bci

¼ 0:737 that, although it can be consid-
ered a severe damage, is not as deep as the depth of the beam.
For values of bci

> 0:8 the curve in Fig. A2 becomes very steep
and the values of kci

increase rapidly. In particular, kci
¼ 100 (con-

sidered in Fig. 1,5,11 and 15) is representative of a crack almost as
deep as the depth of the beam (precisely correspondent to
bci
¼ 0:97).
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