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Abstract

The aim of this work is to present an analytical solution to reduce the stress concen-

tration factor (SCF) around a circular hole in an isotropic homogeneous plate subjected

to far-field uniaxial loading. In this paper the elastic response of an inhomogeneous an-

nular ring made of functionally graded material (FGM), inserted around a hole of a

homogeneous plate, is studied. By assuming that Young’s modulus varies in the radial

direction with power law and that Poisson’s ratio is constant, the governing differen-

tial equations for plane stress conditions are obtained. Using stress function a general

solution in explicit closed form is presented and the SCF investigated to highlight the

inhomogeneity effects. Furthermore, the explicit solution for an inner homogeneous

ring, with different properties with respect to those of the plate, is explicitly obtained

and numerical results are compared between homogeneous ring and FGM ring.

Keywords: linear elasticity theory; functionally graded materials; stress concentration

factor; circular hole.
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1 Introduction

Functionally graded materials (FGMs) are composites made of two or more constituent

phases with a continuously variable composition. These materials are usually associated

with particulate composite where the volume fraction of particles varies in one or several

directions; at the macroscopic scale the composite may be assumed inhomogeneous and

often locally isotropic. In view of the growing importance of these materials, an accurate

investigation into elastic deformation for inhomogeneous structures is devoted to improve

their performance in applications. Birman and Byrd (2007) have presented a review of the

principal developments in functionally graded materials and of the diverse areas of interest

of this topic for a successful implementation of these materials. The concept of FGM is used

by many authors to model the interphase zone around an inclusion in periodic composite to

develop homogeneization methods and determine effective elastic properties of the composite

(Lutz and Zimmermann, 1996; Artioli, Bisegna and Maceri, 2010; Dryden and Batra, 2013).

Many authors investigate the response of FGM composite systems with different geometries

such as hollow cylinders, coatings on substrate and sandwich panels to obtain benchmarks for

the accuracy of numerical solutions and to provide useful information in FGM design (Batra,

2010; Theotokoglou and Stampouloglou, 2008; Hosseini-Hashemi et al., 2013; Sburlati et al.,

2013).

This work deals with the problem of maximizing the strength of a homogeneous plate with

a circular hole subjected to uniaxial load by using an annular ring around the hole made of

FGM with properties varying in radial direction. We shall show that, with a suitable choice

of the ring graded material properties, the maximum value of the hoop stress, computed on

all the material regions, can be reduced with respect to the homogeneous plate value. This

can be useful to prevent mechanical failure in the entire plate.

A biomimetic approach regarding the fact that blood vessel holes in load-bearing bones

are not normally involved in structural failures suggested the idea of this paper. Actually,

some studies have found that the increase of strength is due to a radial distribution of the
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elastic modulus around the holes which reduce the stress concentration factor (SCF) when

compared to those in homogeneous plates (Buskirk at al., 2002; Nagpal, 2012). The method

to reduce SCF around circular or elliptic holes applying reinforced homogeneous layers em-

bedded in homogeneous plate has been widely used in applications; however in so doing,

the interfacial mismatch-induced stresses become relevant for the mechanical integrity of

the plate and an optimum design also requires reduction of interfacial stress by material

combination and geometric configuration (Chao et al., 2009; Sburlati, 2009a). In a similar

way, the interest of some authors is devoted to reducing the mismatch of thermo mechan-

ical properties at the interface by using FGM to increase the resistance of film/coating to

contact or impact problems (Suresh, 2001; Sburlati, 2002; Sburlati, 2004; Kashtalyan and

Menshykova, 2008; Sburlati, 2012a).

In recent years, researchers have studied the problem to reduce SCF around holes by

using entire FGM plates. Kubair and Bhanu-Chandar (2008)have numerically investigated

the effect of material inhomogeneity on the SCF due to a circular hole in functionally graded

panels by using different graded laws (potential and exponential); a parametric study was

performed using a finite element approach. The authors have shown that a desired reduction

in the SCF is obtained when the material properties progressively increase away from the

hole. On the other hand, the SCF is least affected by Poisson’s ratio. A different approach

was used by Yang et al. (2010) to study the two-dimensional stress distribution of a func-

tionally graded plate with circular hole under arbitrary constant loads. By using the method

of piece-wise homogeneous layers the solution was obtained by means of complex variable

functions. The stress reduction was investigated and it was also found that Poisson’s ratio

variation influences the reduction of the SCF less. In Mohammadi et al.(2011), a radial

expression of Young’s modulus depending on two adjustable parameters was used. This as-

sumption also permits us to model a plate where the FGM behaviour is essentially bounded

in a region around the hole. The SCF in a plate made of functionally graded material was

considered by assuming Young’s modulus and Poisson’s ratio exponentially variable in the

radial direction. In the cases of biaxial tension and pure shear load the SCF was obtained
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in terms of Kummer’s functions and the influence of the inhomogeneity effects were inves-

tigated. We remark that most of the above mentioned studies concern entire FGM plates;

however, in practice, it is often not feasible to manufacture an entire plate with graded ma-

terial and it is sufficient to use only a thin FGM coating around a hole to mitigate the SCF

(Sburlati, 2012b).

In this paper an analytical solution in closed form for a homogeneous plate subjected

to uniaxial load with a radially functional graded ring inserted around the inner hole is

obtained. To study the local effect of the hole we assume the infinite medium model for the

homogeneous isotropic plate. The graded material in the thickness of the ring is considered

with Young’s modulus that varies with a monotonic power law; Poisson’s ratio is assumed

constant and equal in the ring and in the isotropic medium. This last assumption is motivated

by numerical investigations concerning the entire FGM plate. Furthermore, we assume the

ring and the plate perfectly connected together. The Airy stress function is introduced by

plain stress conditions to obtain the explicit elastic solution in closed form (Nie and Batra,

2010; Sburlati, 2009b). Then we compare these solution with the case of a homogeneous ring.

The investigation of numerical results permits us to give information on the constitutive and

geometric parameters to optimize the strength of the plate by material tailoring. Maple

program was used for formal calculations and numerical results.

2 Problem Formulation

To analyse the local effects around the hole in a plate we assume the model of an infinite

elastic medium with a circular hole of radius a subjected to a inplane uniform far-field

uniaxial load P as shown in figure 1. The effects of two different rings around the hole

(a ≤ r ≤ b) are studied: a homogeneous (HM) isotropic ring and a functionally graded

(FG) ring. The plane stress assumptions are introduced and in the FGM we consider radial

variation of Young’s modulus and Poisson’s ratio constant.

By using a cylindrical coordinate system (0; r, θ, z) the equations of equilibrium in the
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absence of body forces are

∂σr

∂r
+

1
r

∂σrθ

∂θ
+

σr − σθ

r
= 0,

∂σrθ

∂r
+

1
r

∂σθ

∂θ
+

2
r
σrθ = 0, (2.1)

where σr, σrθ and σθ are the stress components. The displacement components ur and uθ

are related to the strains εr, εθ and εrθ by

εr =
∂ur

∂r
, εθ =

ur

r
+

1
r

∂uθ

∂θ
, εrθ =

1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r
, (2.2)

and the compatibility equation is

∂2εθ

∂r2
+

1
r2

∂εr

∂θ2
+

2
r

∂εθ

∂r
− 1

r

∂εr

∂r
=

1
r

∂2εrθ

∂r∂θ
+

1
r2

∂εrθ

∂θ
. (2.3)

The plane stress constitutive equations are

εr =
1

E(r)
(σr − νσθ) , εθ =

1
E(r)

(σθ − νσr) , εrθ =
2(1 + ν)

E(r)
σrθ. (2.4)

The specific boundary conditions of the problem shown in figure 1 are introduced by

considering the uniform stress solution for the homogeneous plate without hole (Sadd, 2009).

Actually, we know that the presence of the hole acts to disturb this uniform field but we

expect this disturbance to be local in nature. The disturbed field will decrease to zero as we

move far away from the hole. Based on this we trasform the uniform stress from Cartesian

coordinates to polar coordinates; in this way we choose the following far-field conditions

σr(∞, θ) =
P

2
(1 + cos 2θ), σrθ(∞, θ) = −P

2
sin 2θ, (2.5)

and the stress-free hole conditions in the form

σr(a, θ) = 0, σrθ(a, θ) = 0. (2.6)

Furthermore, at the interface (for r = b) we assume that the ring and the plate are

perfectly bonded together; so we require

[σr(b, θ)] = 0, [σrθ(b, θ)] = 0, (2.7)

[ur(b, θ)] = 0, [uθ(b, θ)] = 0. (2.8)
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3 Solution to the problem

To solve our problem we use the Airy stress function ϕ(r, θ); the stress components are

σr =
1
r

∂ϕ(r, θ)
∂r

+
1
r2

∂2ϕ(r, θ)
∂θ2

σθ =
∂2ϕ(r, θ)

∂r2
, σrθ =

1
r2

∂ϕ(r, θ)
∂θ

− 1
r

∂2ϕ(r, θ)
∂r∂θ

.

(3.1)

By taking into account the boundary conditions (2.5) we assume the Airy stress function

in the form

ϕ (r, θ) = ϕ0(r) + ϕ2 (r) cos(2θ). (3.2)

The compatibility equation (2.3) in the regions in which the material is homogeneous

∇∇ϕ(r, θ) = 0 (3.3)

Concerning the functional ring, we assume that the variation of Young’s modulus is

E(r) = Eb

(r

b

)m

, (3.4)

where m is a real positive number while Poisson’s ratio ν is assumed constant and equal to

the value of the homogeneous medium. In this region the compatibility conditions (2.3), by

substituting (3.2) in (2.4) and assuming (3.4), become

d4ϕ0 (r)
dr4

+
2 (1−m)

r

d3ϕ0 (r)
dr3

+

(
m2 + ν m−m− 1

)

r2

d2ϕ0 (r)
dr2

− (m + 1)(mν − 1)
r3

dϕ0 (r)
dr

= 0,

(3.5)

d4ϕ2 (r)
dr4

+
2 (1−m)

r

d3ϕ2 (r)
dr3

+

(
m2 + ν m−m− 9

)

r2

d2ϕ2 (r)
dr2

− (m + 1) (mν − 9)
r3

dϕ2 (r)
dr

+
4 m (mν + ν m− 3)

r4
ϕ2 (r) = 0.

(3.6)

4 Homogeneous inner ring

The solution for the case of a homogeneous ring around a hole of a homogeneous plate with

different elastic modulus is performed in this section. We assume that elastic moduli are Ea
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and Eb, respectively in the ring and plate. We introduce the apexes (i) and (o) to indicate

respectively the quantities related to the inner region (a ≤ r ≤ b) and the outer region

(r ≥ b).

The solution (3.2) of equations (3.5,6) for m = 0 assumes, in the outer region, the form

ϕ(o) (r, θ) =
(
z1 ln(r) + z2r

2 + z3r
2 ln(r)

)
P + (z24 +

z23

r2
+ z21r

2 + z22r
4)P cos 2 θ, (4.1)

where z1, z2, z3 and z24, z23, z21, z22 are suitable constants. For the inner region, taking into

account the interface conditions (2.7,2.8), the solution of equation (3.5,6) are

ϕ(i) (r, θ) =
(
α1 ln(r) + α2r

2 + α3r
2 ln(r)

)
P + (α24 +

α23

r2
+ α21r

2 + α22r
4)P cos 2 θ.

(4.2)

The explicit solution is now written, by using equations (3.1) and boundary conditions

(2.6,7) in terms of the constants α2, α22, α24. In the inner region we have

σ
(i)
r = −2

(
a2

r2
− 1

)
P α2 − 3

(
a6

r4
− a2

)
P α22 cos 2 θ +

(
3 a2

r4
− 4

r2
+

1
a2

)
P α24 cos 2 θ,

σ
(i)
θ = 2

(
a2

r2
+ 1

)
P α2 + 3

(
a6

r4
− a2 + 4 r2

)
P α22 cos 2 θ −

(
3 a2

r4
+

1
a2

)
P α24 cos 2 θ,

σ
(i)
rθ = 3

(
2 r2 − a6

r4
− a2

)
P α22 sin 2 θ +

(
3 a2

r4
− 2

r2
− 1

a2

)
P α24 sin 2 θ,

(4.3)

u
(i)
r = −2P

Eb

(
(ν − 1) r − (ν + 1) a2

r

)
α2 +

P

Ea

(
(ν + 1) r

a2
+

4
r
− (ν + 1) a2

r3

)
α24 cos 2 θ

− P

Ea

(
4 νr3 − 3 (ν + 1) a2r − (ν + 1) a6

r3

)
α22 cos 2 θ,

u
(i)
θ =

P

Ea

(
2 (ν + 3) r3 − 3 (ν + 1) a2r +

(ν + 1) a6

r3

)
α22 sin 2 θ

− P

Ea

(
(ν + 1) r

a2
− 2(ν − 1)

r
+

(ν + 1) a2

r3

)
α24 sin 2 θ.

(4.4)
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In the outer region we have

σ
(o)
r =

P

2

(
1− b2

r2

)
+

P

2

(
1− 4b2

r2
+

3b4

r4

)
cos 2 θ − 2 P

(
a2 − b2

)

r2
α2

+

(
12 b2

(
a2 − b2

)

r2
− 3

(
a6 + 3 a2b4 − 4 b6

)

r4

)
P α22 cos 2 θ

−
(

4(a2 − b2)
r2a2

− 3(a4 − b4)
r4a2

)
P α24 cos 2 θ,

σ
(o)
θ =

P

2

(
1 +

b2

r2

)
− P

2

(
1 +

3 b4

r4

)
cos 2 θ +

2 P
(
a2 − b2

)

r2
α2 − 3(a4 − b4)

r4a2
P α24 cos 2 θ,

+
3

(
a6 + 3 a2b4 − 4 b6

)

r4
P α22 cos 2 θ

σ
(o)
rθ = −

(
1
2

+
b2

r2
− 3b4

2r4

)
P sin 2 θ +

(
−2(a2 − b2)

a2r2
+

3(a4 − b4)
a2r4

)
Pα24 sin 2 θ

+
(

6 b2(a2 − b2)
r2

− 3 (a6 + 3 a2b4 − 4 b6)
r4

)
Pα22 sin 2 θ

(4.5)

u
(o)
r =

(
(1− ν) r2 + (1 + ν)

)
b2P

2Ebr
+

(
(1 + ν) r4 + 4 b2r2 − (1 + ν)b4

)

2Ebr3
P cos 2 θ

+
2 (1 + ν)

(
a2 − b2

)

Ebr
Pα2

+

(
a2 − b2

) (
(1 + ν)(a2 + b2)a2 − 12 b2r2 + 4b4(1 + ν)

)

Ebr3
Pα22 cos 2 θ

−
(
a2 − b2

) (
(1 + ν)

(
a2 + b2

)− 4 r2
)

Ebr3a2
Pα24 cos 2 θ

u
(o)
θ = −

((
b4 + r4 − 2 b2r2

)
ν + b4 + r4 + 2 b2r2

)

2Ebr3
P sin 2 θ

+

(
a2 − b2

) ((
4 b4 + a4 − 6 b2r2 + a2b2

)
ν + 4 b4 + a4 + 6 b2r2 + a2b2

)

Ebr3
Pα22 sin 2 θ

− (a− b) (a + b)
((

a2 − 2 r2 + b2
)
ν + a2 + 2 r2 + b2

)

Ebr3a2
Pα24 sin 2 θ.

(4.6)

The remaining constants α2, α22, α24 are obtained by imposing the interface conditions on

the displacement (2.8). So doing we get

α2 = − Eab2

2 (((b2 − a2) ν − b2 − a2)Eb − (b2 − a2) (ν + 1) Ea)
, (4.7)
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α22 =
2 Eaa2b2

(
a2 − b2

)
(ν + 1) (Ea − Eb)

Ω
,

α24 =
2 Eaa2b2

((
(ν − 3) b6 − (ν + 1) a6

)
Eb +

(
a6 − b6

)
(ν + 1) Ea

)

Ω
,

(4.8)

Ω = (ν + 1) (ν − 3)
(
a2 − b2

)4
Ea

2 − (
3 (a4 − b4)2 + 4 b2 a2(a4 + 3b4)

)
Eb

2

+
((

a2 − b2
)4

ν2 − 2
(
a2 − b2

) (
a6 − b6 + 5 a4b2 − b4a2

)
ν
)

Eb
2

+
(
2

(
a2 − b2

)4 (1− ν) ν + 2
(
a2 − b2

) (
a6 + 5 b2a4 − a2b4 − b6

)
ν
)

EaEb

+2
(
a2 − b2

) (
5 b6 + 5 a2b4 − b2a4 + 3 a6

)
EaEb.

(4.9)

In order to investigate the hoop stress near the hole we introduce the following quantites

K
(HM)
a =

σ
(i)
θ (a, π/2)

P
= 4

(
α2 − 3a2α22 +

α24

a2

)
. (4.10)

For an isotropic homogeneous plate we obtain the SCF by putting α2 = 1/4, α22 = 0 and

α24 = a2/2. Furthermore, we consider the normalized hoop stress at the interface in the form

K
(HM)
b =

σ
(i)
θ (b, π/2)

P
=

(
3− 2α2

(
1− a2

b2

)
− 3

α24

a2

(
1− a4

b4

)
+ 3α22

(
4b2 − 3a2 − a6

b4

))
.

(4.11)

Actually, the decrease of Young’s modulus in the inner ring with respect to the value of

the entire plate leads to an increase of the hoop stress at the interface(for r = b). For this

reason, if K
(HM)
a > K

(HM)
b , the SCF is at the rim of the hole, while on the other hand, if

K
(HM)
a < K

(HM)
b the SCF occurs at the interface between the rim of the hole and the plate.

Numerical investigations will be performed in section 6.

5 FGM inner ring solution

The solution for the stress function in an FGM inner ring is obtained by solving compatibility

equations (3.5,6). The solution (3.2) becomes

ϕ(FG) (r, θ) =
(
C1 rm/2+ρ/2+1 + C2 rm/2−ρ/2+1

)
P

+rm+1(D1A1(r) + D2A2(r) + D3B1(r) + D4B2(r)) P cos 2 θ,

(5.1)
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where

A1 (r) = r−m/2−α/2, A2 (r) = r−m/2+α/2,

B1 (r) = r−m/2−β/2, B2 (r) = r−m/2+β/2,

(5.2)

and C1, C2, D1, D2, D3, D4 are constants to be found. We have also set

α =
√

m2 + 2 m− 2 ν m + 20− 2
√

m2 + ν2m2 − 14 ν m2 − 32 ν m + 32 m + 64,

β =
√

m2 + 2 m− 2 ν m + 20 + 2
√

m2 + ν2m2 − 14 ν m2 − 32 ν m + 32 m + 64,

ρ =
√

m2 + 4− 4 ν m.

(5.3)

Depending on the specific values of m and ν, the coefficients α, β can assume real or

complex values. In this work we assume that m is in the range

0 ≤ m ≤ 8(2−√3)
ν − 7 + 4

√
3

(5.4)

This assumption, which is true for many cases of applicative interest, ensures that α and β

are real (see also section 6).
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The stress and displacement fields, in the inner FG region, are

σ
(FG)
r =

(m + ρ + 2) rm/2+ρ/2 C1 + (m− ρ + 2) rm/2−ρ/2C2

2 r
P

+
(m− α− 6)A1 (r)D1 + (m− β − 6)B1 (r)D3

2 r1−m
P cos 2 θ

+
(m + β − 6)B2 (r)D4 + (m + α− 6) A2 (r)D2

2 r1−m
P cos 2 θ

σ
(FG)
θ =

(m + ρ) (m + ρ + 2) rm/2+ρ/2C1 + (m− ρ) (m− ρ + 2) rm/2−ρ/2C2

4 r
P

+
(m− α) (m− α + 2) A1 (r)D1 + (m− β) (m− β + 2) B1 (r)D3

4 r1−m
P cos 2 θ

+
(m + β) (m + β + 2) B2 (r) D4 + (m + α) (m + α + 2) A2 (r)D2

4 r1−m
P cos 2 θ

σ
(FG)
rθ =

(m− α)A1 (r) D1 + (m− β) B1 (r) D3 + (m + β) B2 (r) D4 + (m + α) A2 (r)D2

r1−m
P sin 2 θ

u
(FG)
r =

(
m2 + (1 + ρ− 3ν)m− (ρ + 2)(ν − 1)

)
r−m/2+ρ/2 bm C1

2Eb
P

+

(
m2 + (1− ρ− 3ν)m + (ρ− 2)(ν − 1)

)
r−m/2−ρ/2 bm C2

2Eb
P

+
M13B1 (r) D3 + M14B2 (r) D4 + M11A1 (r) D1 + M12A2 (r)D2

Eb
bm P cos 2 θ

u
(FG)
θ = −M24A1 (r)D1 + M22A2 (r) D2 + M23B2 (r)D4 + M21B1 (r)D3

Eb
bm P sin 2 θ

(5.5)

where the quantities M11,M12M13,M14,M21,M22,M23,M24 are coefficients depending on

m and ν (see Appendix).

For the outer homogeneous region we assume the stress function in the form (4.1) and

we obtain

σ
(o)
r = P

(
1
2

+
z1

r2

)
+

(
1
2
− 4 z24

r2
− 6 z23

r4

)
P cos 2 θ,

σ
(o)
θ = P

(
1
2
− z1

r2

)
−

(
1
2
− 6 z23

r4

)
P cos 2 θ,

σ
(o)
rθ = −

(
1
2

+
2z24

r2
+

6z23

r4

)
P sin 2 θ,

u
(o)
r =

(1− ν)Pr

2Eb
− (1 + ν)Pz1

Ebr
+

1
Eb

(
(1 + ν) r

2
+

4 z24

r
+

2 (1 + ν) z23

r3

)
P cos 2 θ

u
(o)
θ = − (1 + ν)

Eb

(
r

2
+

z24

r
− 2z23

r3

)
P sin 2 θ

(5.6)
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By using boundary and interface conditions (2.6, 2.5, 2.7, 2.8) we are able to explicitly

write the constants D1, D2, D3, D4, C1, C2 for the inner region and z1, z23, z24 for the solu-

tion in the outer region (see Appendix). The behaviour of the stress components will be

investigated in the next section.

In a similar way as the previous section 4 for homogeneous ring, we introduce the following

quantites

K(FG)
a =

σ
(FG)
θ (a, π/2)

P
=

(m + ρ + 2) (m− ρ + 2) ρ am/2−ρ/2b−m/2+1

2 a (1 + ν) m
(
(m + ρ + 2) a−ρ b ρ/2 − (m− ρ + 2) b−ρ/2

)

+
(β − α) am/2

2 a

(
α a−α/2D1 − β aβ/2D4

)
. (5.7)

We remark that this expression assumes the conventional SCF value for a homogeneous plate

by assuming a = b or m = 0. Furthermore, we define the quantities

K
(FG)
b =

σ
(FG)
θ (b, π/2)

P
= 1− 6z23

b4
− z1

b2
. (5.8)

If K
(FG)
a > K

(FG)
b , the SC is at the rim of the hole, instead if K

(FG)
a < K

(FG)
b the SCF

occurs at the interface. Numerical investigations will be performed in section 6.

6 Numerical results

In this section numerical results are obtained to optimize the graded elastic properties of the

ring in order to reduce SCF in the entire homogeneous plate. We compare the two solutions

presented in sections 4 and 5 for a homogeneous ring (HM-ring) and a functionally graded

ring (FG-ring); furthermore, we compare the numerical results with those obtained for a

homogeneous plate with hole (HM-plate) by assuming E = Eb.

In the numerical example we take b/a = 3, m = 0.5 (Ea
∼= 0.57Eb), ν = 0.3. In figure

2 the behavior of the normalized radial stress σr/P in the thickness of the plate for θ =

π/2 is presented; the maximum value occurs in the ring and decreases with respect to

the homogeneous case. The normalized radial stress for r = 2a in terms of the angular

distribution is shown in figure 3 and presents a reduction of the maximum value in the ring
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in comparison with the homogeneous stiffener plate. In figure 4 the normalized hoop stress

σθ/P in the thickness of the plate at θ = π/2 is shown; we observe the reduction of the stress

value at the rim of the hole (SCF) due to the graded properties and the continuity of the

stress on the interface in comparison with the homogeneous ring. In figure 5 the normalized

hoop stress in the rim of the circular hole (r = a) in terms of the angular distribution shows

that the reduction of the stress is comparable with the reduction obtained by using HM ring

but the gap on the interface is fully avoided by using material inhomogeneity. In figure 6

the normalized tangential stress σrθ/P is shown for θ = π/4; the variation with the angular

distribution is shown in figure 7 for r = 2a.

Then, in figure 8, by considering b/a = 3, ν = 0.3, θ = π/2 and different values of m in

the range (0 ≤ m ≤ 9) we plot the hoop stress in the radial direction. We observe that the

maximum value of hoop stress is no longer necessarily in the inner part of the ring r = a as

in the homogeneous case. As m increases, one observes from figure 8 that K
(FG)
a decreases

while K
(FG)
b increases. For this reason the aim to minimize the hoop stress to prevent failure

cannot take into account only the value in r = a. A numerical analysis can be done to find

the value of m for which one obtains the choice m = m̃ where K
(FG)
a = K

(FG)
b (see equations

(5.7,8)). In our numerical case this condition gives m̃ ∼= 1.10 corresponding to Ea/Eb
∼= 0.30.

For values of m < m̃ we have K
(FG)
a < K

(FG)
b and so the hoop stress has its maximum value

for r = a. For values of m > m̃ we have K
(FG)
a > K

(FG)
b and the maximum hoop stress

occurs at the interface r = b.

In a similar way, for the homogeneous ring case, with two different Young’s moduli Ea

and Eb related by equation: Ea/Eb = (a/b)m, in figure 9 we plot the normalized hoop

stress in the radial direction for different values of m. At the interface we observe the gap

due to the mismatch of the material; as K
(HM)
a decreases, K

(HM)
b increases and the gap at

the interface increases. The corresponding value of m = m̂ where K
(HM)
a = K

(HM)
b (see

equation (4.10,11)) occurs for m̂ = 0.85 corresponding to a ratio Ea/Eb
∼= 0.39.
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7 Concluding remarks

In this paper analytical solutions in closed form useful to investigate the effects of material

inhomogeneity, to reduce SCF around a hole of a homogeneous plate, are obtained. Numer-

ical results and comparisons with solutions for a conventional homogeneous material inner

ring can be helpful to material scientists in order to design new materials according to the

required performances. The conclusions from the parametric study are the following:

1. A required reduction in the SCF of the entire homogeneous plate can be obtained

with FGM ring in which Young’s modulus progressively increases away from the center of

the hole in an optimized way.

2. The stress concentration variation depends only on the inhomogeneity parameter m

and the ratio b/a.

3. Numerical comparisons with the solution for a homogeneous ring permit us to show

that the SCF is less influenced by the variation of Poisson’s ratio.

Thus, the explicit solutions obtained allow us to better describe a compositional variation

of the elastic properties near the holes in the thickness of the annular ring; compositional

variations that, if optimized, can lead to increase the load bearing capacity in the plate (see,

for example Götzen and al.(2003), Venkataraman et al. (2003)).
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8 Appendix

We write the coefficient and constant values for the FGM ring case.

M11 =

(
m2 + 2 (1− α) m− α(2− α)

)
ν

2(m + α)
− m− α− 6

m + α

M12 =

(
m2 + 2 (α + 1) m + α(2 + α)

)
ν

2(m− α)
− m + α− 6

m− α

M13 =

(
m2 + 2 (1− β) m− β(2− β)

)
ν

2(m + β)
− m− β − 6

m + β

M14 =

(
m2 + (2 β + 2) m + β(2 + β)

)
ν

2(m− β)
− m + β − 6

m− β

M21 =
1
96

(
m2 (4 ν − 28) + m

(
β2 − α2 + 28 β − 4 β ν − 24 ν − 88

))

+
1
96

(−β3 − 6 β2 + 6 α2 + α2β + 64 β − 192 ν − 192
)

M22 =
1
96

(
m2 (4 ν − 28) + m

(
α2 − β2 − 28 α + 4 α ν − 24 ν − 88

))

+
1
96

(
α3 − 6 α2 + 6 β2 − β2α− 64 α− 192 ν − 192

)

M23 =
1
96

(
m2 (4 ν − 28)−m

(
α2 − β2 + 28 β − 4 β ν + 24 ν + 88

))

− 1
96

(−β3 + 6 β2 − 6 α2 + α2β + 64 β + 192 ν + 192
)

M24 =
1
96

(
m2 (4 ν − 28)−m

(
β2 − α2 − 28 α + 4 α ν + 24 ν + 88

))

− 1
96

(
α3 − 6 β2 + 6 α2 − β2α− 64 α + 192 ν + 192

)

(8.1)

Furthermore, we have

z1 = −b2

2
+

b2 (m− ρ + 2)
(
bρ/2 − b−ρ/2aρ

)
(m + 2 + ρ)

2 m (1 + ν)
(
(m + ρ + 2) bρ/2 − (m− ρ + 2) aρ b−ρ/2

) (8.2)

z23 = −b4

4
− bm+3 (m + β + 2) B2 (b)

4
D4 − bm+3 (m− α + 2) A1 (b)

4
D1

+
bm+3 ((m− β + 2) (α− β)A2 (a)B1 (b) + 2 β (m + α + 2) A2 (b)B1 (a)) B2 (a)

4 (α + β) B1 (a)A2 (a)
D4

+
bm+3 (− (m + α + 2) (α− β) A2 (b)B1 (a) + 2 α (m− β + 2) A2 (a) B1 (b))A1 (a)

4 (α + β)B1 (a) A2 (a)
D1

(8.3)
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z24 =
b2

2
+ bm+1 (m− α + 6) A1 (b)

4
D1 + bm+1 (m + β + 6) B2 (b)

4
D4

+ bm+1

(
(α− β) (m + α + 6) A1 (a) A2 (b)

4 (α + β)A2 (a)
− α (m− β + 6) A1 (a)B1 (b)

2 (α + β) B1 (a)

)
D1

− bm+1

(
(α− β) (m− β + 6) B1 (b)B2 (a)

4 (α + β)B1 (a)
+

β (m + α + 6) A2 (b)B2 (a)
2 (α + β)A2 (a)

)
D4 (8.4)

and

C1 =
(m− ρ + 2) a−ρ b1−m/2

(1 + ν)m
(
(m + ρ + 2) a−ρ b ρ/2 − (m− ρ + 2) b−ρ/2

)

C2 = − (m + 2 + ρ) b1−m/2

(1 + ν)m
(
(m + ρ + 2) a−ρ b ρ/2 − (m− ρ + 2) b−ρ/2

)
(8.5)

Finally we get

D2 = − 2 βB2 (a)
(α + β)A2 (a)

D4 +
(α− β)A1 (a)
(α + β)A2 (a)

D1, D1 =
D11

Λ
,

D3 = − (α− β)B2 (a)
(α + β)B1 (a)

D4 − 2 αA1 (a)
(α + β) B1 (a)

D1 D4 =
D44

Λ
,

(8.6)

where

D11 = 4 b bmβ (α + β) ((m + α− 2) (1 + ν) + 2M12 − 2M22) A2 (a) A2 (b)2 B2 (b) B2 (a)

+2 amb
(
α2 − β2

)
((m− β − 2) (1 + ν) + 2M13 − 2M21)A2 (b)A2 (a)2 B2 (a)2

−2 b bm (α + β)2 ((m + β − 2) (1 + ν) + 2M14 − 2M23)A2 (b) A2 (a)2 B2 (b)2

D44 = −4 b α (α + β) ((m− β − 2) (1 + ν) + 2M13 − 2M21)A2 (a)A2 (b)B2 (a)

+2 a−m b bm
(
α2 − β2

)
((m + α− 2) (1 + ν) + 2M12 − 2M22)A2 (b)2 B2 (b)

+2 b (α + β)2 ((m− α− 2) (1 + ν) + 2M11 − 2M24) A2 (a)2 B2 (b)
(8.7)

Λ = λ1 b2m a−mA2 (b)2 B2 (b)2 + λ2 bmA2 (b)2 B2 (a)2 + λ3 bmA2 (a) A2 (b) B2 (a)B2 (b)

+λ4 bmA2 (a)2 B2 (b)2 + λ5 amA2 (a)2 B2 (a)2 ,

(8.8)
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and the coefficients λi are in terms of m and ν in the following form

λ1 = 2
(
α2 − β2

)
((m + α + 4− 2 ν −M22)M14 − (m + β + 4− 2 ν −M23)M12)

+
(
α2 − β2

)
(((m + α + 2) ν −m− α− 10)M23 − ((m + β + 2) ν −m− β − 10) M22)

+2 (α− β)2 (α + β) (1 + ν) (ν − 3) ,

λ2 = (α + β)2 (((m− β + 2) ν −m + β − 10 + 2 M13) M22 − 2 (m + α + 4− 2 ν)M13)

+ (α + β)2 (2 (m− β + 4− 2 ν −M21)M12 − ((m + α + 2) ν −m− α− 10)M21)

−2 (α + β)3 (1 + ν) (ν − 3) ,

λ3 = 2 α (α + β) (2 (m + β + 4− 2 ν −M23)M13 − ((m− β + 2) ν −m + β − 10) M23)

+2β (α + β) (2 (m + α + 4− 2 ν −M22)M11 − ((m− α + 2) ν −m + α− 10)M22)

+2 (α + β)β ((m + α + 2) ν −m− α− 10 + 2 M12) M24

+2α (α + β) ((m + β + 2) ν −m− β − 10 + 2 M14) M21

−4 (α + β) ((m− β + 4− 2 ν) α M14 + (m− α + 4− 2 ν)β M12 − 4α β (1 + ν) (ν − 3)) ,

λ4 = 2 (α + β)2 ((m− α + 4− 2 ν −M24)M14 − (m + β + 4− 2 ν −M23)M11)

+ (α + β)2 (((m− α + 2) ν + α−m− 10)M23 − ((m + β + 2) ν −m− β − 10)M24)

−2 (α + β)3 (1 + ν) (ν − 3) ,

λ5 =
(
α2 − β2

)
(2 (m− β + 4− 2 ν −M21)M11 − ((m− α + 2) ν −m + α− 10) M21)

+
(
α2 − β2

)
(2 (−m + α− 4 + 2 ν + M24) M13 + ((m− β + 2) ν −m + β − 10)M24)

+2 (α− β)2 (α + β) (1 + ν) (ν − 3) .

(8.9)
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Figure 1. Homogeneous infinite medium with an FGM ring around the hole subjected to

a far-field uniaxial load.

Figure 2. Normalized radial stress in the radial direction for θ = π/2 (ν = 0.3).

Figure 3. Angular variation of the normalized radial stress for r = 2a.

Figure 4. Normalized hoop stress in the radial direction for θ = π/2 (ν = 0.3).

Figure 5. Angular variation of the normalized hoop stress on the rim of the circular hole.

Figure 6. Normalized tangential stress in the radial direction for θ = π/4 (ν = 0.3).

Figure 7. Angular variation of the normalized tangential stress for r = 2a.

Figure 8. Normalized hoop stress in radial direction for different inhomogeneity parame-

ter m in plate with FGM ring (b = 3a, θ = π/2, ν = 0.3).

Figure 9. Normalized hoop stress in radial direction for different m values in plate with

HM ring (b = 3a, θ = π/2, ν = 0.3).
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Figure 1: Homogeneous medium subjected to a far-field uniaxial load with an FGM

ring around the hole.
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Figure 2: Normalized radial stress in the radial direction for θ = π/2 (ν = 0.3).
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Figure 3: Angular variation of the normalized radial stress for r = 2a.
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Figure 4: Normalized hoop stress in the radial direction for θ = π/2 (ν = 0.3).
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Figure 5: Angular variation of the normalized hoop stress on the rim of the circular

hole.
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Figure 6: Normalized tangential stress in the radial direction for θ = π/4 (ν = 0.3).
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Figure 7: Angular variation of the normalized tangential stress for r = 2a.
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Figure 8: Normalized hoop stress in radial direction for different inhomogeneity pa-

rameter m in plate with FGM ring (b = 3a, θ = π/2, ν = 0.3).
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Figure 9: Normalized hoop stress in radial direction for different m values in plate

with HM ring (b = 3a, θ = π/2, ν = 0.3).
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