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a b s t r a c t 

Aiming for the modeling of localized failure in quasi-brittle solids, this paper addresses a thermodynam- 

ically consistent plastic-damage framework and the corresponding strain localization analysis. A unified 

elastoplastic damage model is first presented based on two alternative kinematic decompositions assum- 

ing infinitesimal deformations, with the evolution laws of involved internal variables characterized by a 

dissipative flow tensor. For the strong (or regularized) discontinuity to form in such inelastic quasi-brittle 

solids and to evolve eventually into a fully softened one, a novel strain localization analysis is then sug- 

gested. A kinematic constraint more demanding than the classical discontinuous bifurcation condition is 

derived by accounting for the traction continuity and the loading/unloading states consistent with the 

kinematics of a strong (or regularized) discontinuity. More specifically, the strain jumps characterized 

by Maxwell’s kinematic condition have to be completely inelastic (energy dissipative). Reproduction of 

this kinematics implies vanishing of the aforesaid dissipative flow tensorial components in the direc- 

tions orthogonal to the discontinuity orientation. This property allows naturally developing a localized 

plastic-damage model for the discontinuity (band), with its orientation and the traction-based failure 

criterion consistently determined a posteriori from the given stress-based counterpart. The general re- 

sults are then particularized to the 2D conditions of plane stress and plane strain. It is found that in 

the case of plane stress, strain localization into a strong (or regularized) discontinuity can occur at the 

onset of strain softening. Contrariwise, owing to an extra kinematic constraint, in the condition of plane 

strain some continuous inelastic deformations and substantial re-orientation of principal strain directions 

in general have to take place in the softening regime prior to strain localization. The classical Rankine, 

Mohr–Coulomb, von Mises ( J 2 ) and Drucker–Prager criteria are analyzed as illustrative examples. In par- 

ticular, both the closed-form solutions for the discontinuity angles validated by numerical simulations 

and the corresponding traction-based failure criteria are obtained. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The onset of macroscopic failure in solids and structures is of-

en signified by highly localized deformations (i.e., strain localiza-

ion) within bands of small (or even fracture surfaces of negligible)

idth compared to the length scale of the structure in consider-

tion. Typical examples of the manifestation of strain localization

nclude cracks in concrete, joints in rocks, shear bands in soils, dis-

ocations and slip lines in metals, etc., owing to the overall soften-

ng responses of these solids. It is of utmost significance to resolve
∗ Corresponding author. Tel.: +86 20 87112787. 
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train localization and the resulting localized failure while evaluat-

ng the residual capacity and preventing the potential catastrophic

ollapse of structures. 

Ever since the pioneering work of Ngo and Scordelis (1967) and

ashid (1968) a large number of different approaches have been

eveloped for the modeling of localized failure in quasi-brittle

olids. These approaches range from the classical discrete and

meared crack models ( Rots, 1988 ), to the more advanced strong

iscontinuity approaches ( Hansbo and Hansbo, 2004; Oliver, 1996;

imó et al., 1993; Wells and Sluys, 2001; Wu and Li, 2015; Wu

t al., 2015 ). Restricting the focus to the continuum context, exist-

ng formulations can be classified into stress-based (generalized)

ontinuum models or traction-based nonlinear fracture models.

n the stress-based family the strain/displacement discontinuities

http://dx.doi.org/10.1016/j.ijsolstr.2016.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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upon strain localization are smoothed or smeared. Accordingly, the

overall nonlinear behavior of the weakened solid can be described

by tensorial constitutive relations in terms of stress versus strain

equipped with internal variables. Plasticity ( Chaboche, 2008; Chen,

1994 ) and damage mechanics ( Krajcinovic, 2003; Lemaitre, 1996 )

or their combination ( Armero and Oller, 20 0 0; Ibrahimbegovic,

2009; Ju, 1989; Ortiz., 1985; Voyiadjis and Dorgan, 2007; Voyiadjis

and Kattan, 1992; Wu et al., 2006; Zhu et al., 2010 ) are frequently

employed to develop appropriate inelastic constitutive laws; see

Abu Al-Rub and Darabi (2012) and Ibrahimbegovic et al. (2008) and

the references therein. To guarantee objectivity of the energy dis-

sipation during the failure process, the softening regime is in gen-

eral regularized by introducing the fracture energy and an appro-

priately identified length scale ( Bažant and Oh, 1983 ). Compara-

tively, in the traction-based approaches strain/displacement jumps

are explicitly accounted for by embedding the discontinuities into

a solid matrix along preferred orientations. It is in general assumed

that energy dissipation is localized into the discontinuities while

the bulk remains elastic, between which the traction continuity

condition is imposed. Depending on the recoverable/irreversible

properties of the discontinuities, vectorial traction-based cohesive

zone models of either plastic ( Carol et al., 1997 ), damage ( Armero,

1999; Jirásek and Zimmermann, 2001 ) or combined plastic-damage

( Wu, 2011; Wu and Xu, 2011 ) type can be established. Similarly,

the softening law for the discontinuities is also characterized by

the fracture energy. 

In the traction-based modeling of localized failure in solids, a

crucial step is to determine the discontinuity orientation consis-

tently and fix it appropriately, if required. This is a non-trivial

task for a new or propagating discontinuity whose orientation is

not pre-defined or known a priori . For strain or weak disconti-

nuities, the discontinuous bifurcation analysis, pioneered by Hill

(1958 ; 1962 ), Thomas (1961) and Rice ( Borré and Maier, 1989;

Rice and Rudnicki, 1980; Rudnicki and Rice, 1975 ), nowadays be-

comes the standard tool. Based on the assumption of linear com-

parison solid (inelastic loading state in both the bulk and local-

ization band) and the traction continuity condition, necessary con-

ditions for the discontinuous bifurcation were identified and the

orientation of shear bands can be determined for plastic materials;

see the monograph ( Lubarda, 2002 ) and the papers ( Jirásek and

Rolshoven, 2009; Runesson et al., 1991; Svedberg and Runesson,

1997; Voyiadjis et al., 2005; Vrech and Etse, 2005 ) among many

others. Recently, Sánchez et al. (2008) and Huespe et al. (2009) ;

2012 ) successfully applied this strategy to the modeling of ductile

fracture in presence of the stress triaxiality ( Besson et al., 2003;

Remmers et al., 2013 ). 

For strong (displacement) discontinuities, similar arguments

were also followed. For instance, Simó et al. (1993) and Oliver

(1996) suggested using the discontinuous bifurcation condition to-

gether with null softening modulus to determine the discontinuity

orientation. However, its application to quasi-brittle solids might

be questionable, since the actual deformation states upon strain lo-

calization, i.e., inelastic loading inside the discontinuity (band) and

unloading elastically outside it, are inconsistent with the assump-

tion of linear comparison solids. Consequently, except for some

particular cases (e.g., the Rankine and plane strain von Mises mod-

els), the strong discontinuity condition ( Oliver, 20 0 0; Oliver et al.,

1998; 1999 ) cannot be satisfied in general cases ( Oliver et al.,

1999 ). Some kinematic mismatches are observed ( Oliver et al.,

2012; 2006a ) due to mis-prediction of the discontinuity orienta-

tion, inevitably resulting in stress locking ( Cervera et al., 2012;

Mosler, 2005 ). This fact partially explains the overwhelming pop-

ularity of the maximum tensile stress criterion or linear fracture

mechanics based ones ( Dumstorff and Meschke, 2006 ) in the nu-

merical modeling of localized failure in brittle and quasi-brittle

solids ( Wu and Li, 2015; Wu et al., 2015 ). 
Provided the discontinuity orientation is determined, a cohe-

ive zone model is generally introduced to characterize the dis-

ontinuity, resulting in either the strong/regularized or embed-

ed/smeared discontinuity models; see Cervera and Wu (2015) for

he conformity between these traction-based approaches. However,

n the one hand, it is difficult to identify the traction-based fail-

re criterion and involved parameters from available experimen-

al data. On the other hand, the questions whether and when the

raction-based cohesive zone model should be introduced cannot

e easily identified. Therefore, it would be rather advantageous, if

he traction-based failure criterion is derived consistently from a

tress-based one and the right instant for introducing the cohe-

ive zone model can be also identified. In this aspect, Oliver and

oworkers ( Oliver, 20 0 0; Oliver et al., 1998; 1999; 2006a; 2002 )

ade great contributions and derived cohesive zone models by

rojecting inelastic material laws onto the discontinuity. However,

nly the classical isotropic damage model ( Oliver, 20 0 0; Oliver

t al., 20 06a; 20 02 ), the Rankine and plane strain von Mises plas-

icity models ( Oliver et al., 1998; 1999 ) are considered. More gen-

ral material constitutive laws cannot be sufficiently accounted for

s declared in Oliver et al. (1999) : “Obtaining such explicit forms of

he discrete constitutive equations is not so straight-forward for other

amilies of elastoplastic models ”. 

Noticing the above facts, Cervera et al. (2012) proposed di-

ectly using the strong discontinuity condition ( Oliver, 20 0 0; Oliver

t al., 1998; 1999 ) to determine the discontinuity orientation, so

hat the stress locking-free property can be guaranteed for a fully

oftened discontinuity. The discontinuity orientation for von Mises

 J 2 ) plasticity model so obtained were validated by numerical sim-

lations in the cases of plane stress and plane strain. Recently,

he authors Wu and Cervera (2013 ; 2014a , 2014b ; 2015 ) suc-

essfully extended this method to a stress-based plastic-damage

odel with general failure criteria. Not only the discontinuity

rientation but also the traction-based cohesive zone model are

etermined consistently from a given stress-based inelastic ma-

erial model. Furthermore, the bi-directional connections and in

articular, the equivalence conditions, between two complemen-

ary methodologies for the modeling of localized failure in quasi-

rittle solids, i.e., traction-based discontinuities localized in an elas-

ic bulk and strain localization of a stress-based inelastic softening

olid , have also been established. However, all our previous work

ssumes implicitly or explicitly that only relative rigid body mo-

ions occur at both sides of the discontinuity (band) upon strain

ocalization. This restrictive kinematics implies continuous bulk

trains across the discontinuity ( Wu, 2011 ). Though the discon-

inuous bulk strains seldom dominate strain localization in quasi-

rittle solids ( Oliver et al., 2006b; Wu et al., 2015 ), the resulting

tress continuity might be too restrictive in some cases. More-

ver, the aforementioned analyses were mainly intended for the

lane stress condition, and the exceptional cases which preclude

ccurrence of a strong (or regularized) discontinuity were not

onsidered. 

The aim of this paper is to make further contributions to the

bove topics. The novelties are threefold: ( i ) Maxwell’s kinematic

ondition for guaranteeing the occurrence of a strong discontinuity

s derived from the traction continuity condition together with the

onsistent loading/unloading deformation states upon strain local-

zation in quasi-brittle solids; in particular, the assumption of con-

inuous stresses across the discontinuity is disregarded; ( ii ) Closed-

orm results in both plane stress and plane strain conditions, coin-

ident with those given by numerical simulations ( Cervera et al.,

015 ), are obtained, and the consequences of an additional out-of-

lane constraint in the latter case are identified; ( iii ) The afore-

aid exceptional case in which the strong discontinuity is pre-

luded for a given stress-based failure criterion is solved by intro-

ucing necessary modifications based on the equivalence between
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raction- and stress-based approaches established before ( Wu and

ervera, 2015 ). For simplicity only infinitesimal deformations are

onsidered and the possible extension to the finite deformation

etting is to be explored later. 

This paper is organized as follows. After this introduc-

ion, a unified elastoplastic damage framework is presented in

ection 2 based on the irreversible thermodynamics with internal

ariables. Section 3 addresses Maxwell’s kinematic constraint upon

train localization in quasi-brittle solids and its application to the

bove elastoplastic damage model. Closed-form results in 2D con-

itions of plane stress and plane strain are given in Section 4 , to-

ether with several classical failure criteria analyzed as illustrative

xamples. The most relevant conclusions are drawn in Section 5 .

or the sake of completeness, three appendices are attached to

lose this paper. 

Notation . Compact tensor notation is used in this paper as far as

ossible. As a general rule, scalars are denoted by italic light-face

reek or Latin letters (e.g. a or λ); vectors and second-order ten-

ors are signified by italic boldface minuscule and majuscule let-

ers like a and A , respectively. Fourth-order tensors are identified

y blackboard-bold majuscule characters (e.g. A ). Symbols I and

 represent the second-order and symmetric fourth-order identity

ensors, respectively. Superscripts ‘ T ’ and ‘ sym ’ indicate the transpo-

ition and symmetrization operations, respectively. The inner prod-

cts with single and double contractions are denoted by ‘ ·’ and

:’, respectively. The dyadic product ‘ �’ and the symmetrized Kro-

ecker product � are defined as 

A � B 

)
i jkl 

= A i j B kl , 
(
A � B 

)
i jkl 

= 

1 

2 

(
A ik B jl + A il B jk 

)
. A unified elastoplastic damage framework 

Coupled plastic-damage models have been widely adopted to

escribe stiffness degradation and plastic strains of materials;

ee Ortiz. (1985) , Ju (1989) , Voyiadjis and Kattan (1992) , Armero

nd Oller (20 0 0) , Ibrahimbegovic et al. (2008) and Zhu et al.

2010) among many others and the large volume of references in

he texts ( Ibrahimbegovic, 2009; Krajcinovic, 2003 ). In this section

 unified elastoplastic damage framework ( Meschke et al., 1998;

u and Xu, 2011 ) is presented based on the irreversible thermody-

amics with internal variables ( Horstemeyer and Bammann, 2010 ).

oth stress- and traction-based elastoplastic damage models can

e developed within this framework. 

.1. Stress–strain relations 

Confining the discussion to a purely mechanical theory, the sec-

nd law of thermodynamics (local form) requires that for any ad-

issible deformation process, the energy dissipation rate ˙ D has to

e non-negative, i.e., 

˙ 
 := σ : ˙ ε − ˙ ψ ≥ 0 (2.1) 

here σ and ε denote the second-order stress and strain tensors,

espectively; ˙ () represents the rate with respect to the (pseudo-)

ime; ψ is the Helmholtz free energy density function of the ma-

erial, which is an important concept for deriving a thermodynam-

cally consistent constitutive model ( Lemaitre, 1996 ). 

As usual in the case of isothermal and infinitesimal deforma-

ions, it is assumed that the Helmholtz free energy density func-

ion ψ admits an uncoupled form ( Armero and Oller, 20 0 0; Ju,

989 ). To account for both stiffness degradation and irreversible

eformations, the free energy density function ψ is postulated as

 = ψ 

e d ( ε − εp , E ) + χ(κ) (2.2)
here the stored energy function ψ 

e d ( ε − εp , E ) characterizes the

lastic and damage responses of the solid in terms of the recover-

ble strain tensor ε − εp and the variable stiffness tensor E , with
p being the irreversible plastic strain tensor; the potential func-

ion χ ( κ) models the inelastic (damage and plastic) responses in

erms of a generic internal variable κ . For the material with lin-

ar unloading/reloading responses, the stored strain energy density

unction ψ 

ed ( ·, ·) is expressed as a quadratic form, i.e., 

 

e d = 

1 

2 

(
ε − εp 

)
: E : 

(
ε − εp 

)
(2.3)

ote that the stiffness tensor E (or, equivalently, the compliance

 = E 

−1 ), the plastic strain tensor εp and the strain-like variable κ
re all internal variables. Therefore, their evolution laws have to be

ostulated. 

Substitution of the definitions (2.2) and (2.3) into the energy

issipation inequality (2.1) yields 

˙ 
 = 

[ 
σ − E : 

(
ε − εp 

)] 
: 
(

˙ ε − ˙ εp 
)

+ σ : ˙ εp 

− 1 

2 

(
ε − εp 

)
: ˙ E : 

(
ε − εp 

)
− ∂χ

∂κ
˙ κ ≥ 0 (2.4) 

alling for the recoverable (arbitrary) property of the elastic and

amage strains ε − εp , it follows that 

= 

∂ψ 

e d 

∂ 
(
ε − εp 

) = E : 
(
ε − εp 

)
, ε = C : σ + εp (2.5) 

r the rate form 

˙ = E : 
(

˙ ε − ˙ εp 
)

+ 

˙ E : 
(
ε − εp 

)
= E : 

(
˙ ε − ˙ εp 

)
− E : ˙ C : E : 

(
ε − εp 

)
= E : 

(
˙ ε − ˙ εdis 

)
(2.6a) 

˙ = C : ˙ σ + 

˙ C : σ + 

˙ εp = C : ˙ σ + 

˙ εdis 
(2.6b) 

here the relation 

˙ E = −E : ˙ C : E resulting from the identity E :

 = I has been considered; the dissipative strain tensor rate ˙ εdis 
,

hown in Fig. 1 , consists of the so-called “degradation strain rate”
˙ 
 : σ and the plastic one ˙ εp 

˙ 
dis 

:= 

˙ C : σ + 

˙ εp 
(2.7) 

s will be clear later from Eq. (2.13) , the dissipative strain tensor

ate ˙ εdis 
, closely related to the energy dissipation rate ˙ D , does not

orrespond to an actual “strain”; it is only defined in rate form

hen the involved dissipative mechanisms, i.e., damage evolution

nd plastic flows, are active. 

As shown in Fig. 2 , the strain tensor ε and the rate ˙ ε can also be

ewritten as the same kinematic decomposition as that in the clas-

ical smeared crack model ( Armero and Oller, 20 0 0; Rots, 1988 ) 

= εe + εin = C 

0 : σ + εin , ˙ ε = 

˙ εe + 

˙ εin = C 

0 : ˙ σ + 

˙ εin 
(2.8) 

ccordingly, the stress σ and the rate ˙ σ are given by 

= E 

0 : εe = E 

0 : 
(
ε − εin 

)
, ˙ σ = E 

0 : ˙ εe = E 

0 : 
(

˙ ε − ˙ εin 
)

(2.9) 

or the elastic stiffness E 

0 and compliance C 

0 of the material, re-

pectively. In the above constitutive relations, the elastic and in-

lastic strains ( εe , εin ) are expressed as 

e = C 

0 : σ, εin = εd + εp = C 

d : σ + εp (2.10) 

here the damage strain tensor εd := C 

d : σ represents the recov-

rable inelastic strain, with C 

d := C − C 

0 being the fourth-order

amage compliance which is of identical evolution law as the total

ne C , i.e., ˙ C 

d = 

˙ C . 

Either of the above two alternative kinematics can be employed

o develop elastoplastic damage models. The equivalence between
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Fig. 1. 1-D definition of the dissipative strain rate tensor and its damage/plastic components. 

Fig. 2. Different kinematic decompositions adopted in the unified elastoplastic damage model. 
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ergy density ψ are recoverable upon unloading. 
the resulting models has been proved recently in Wu and Cervera

(2015) and Cervera and Wu (2015) . 

Remark 2.1. Similarly to the kinematic decomposition (2.8) , the

stored strain energy density (equal in magnitude to the com-

plementary energy density for the material with linear un-

loading/reloading behavior) ψ 

ed defined in Eq. (2.3) can be

decomposed as 

ψ 

e d = 

1 

2 

σ : C : σ = ψ 

e + ψ 

d (2.11)

where the elastic and damage strain energy densities (also equal

in magnitude to their complementary counterparts) ( ψ 

e , ψ 

d ) are
iven by 

 

e = 

1 

2 

σ : C 

0 : σ = 

1 

2 

σ : εe = 

1 

2 

εe : E 

0 : εe (2.12a)

 

d = 

1 

2 

σ : C 

d : σ = 

1 

2 

σ : εd = 

1 

2 

εe : E 

0 : εd (2.12b)

Note again that the damage strain εd and the corresponding en-
d 
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.2. Evolution laws and rate constitutive relations 

Besides the above constitutive relations, the energy dissipation

nequality (2.4) becomes 

˙ 
 = 

1 

2 

σ : ˙ C : σ + σ : ˙ εp − ˙ χ

= 

1 

2 

σ : ˙ C : σ + σ : ˙ εp + 

(
q 0 − q 

)
· ˙ κ ≥ 0 (2.13) 

here q 0 − q := −∂ χ/∂ κ denotes the stress-like internal variable

onjugate to the strain-like one κ , with q 0 being the initial value

f the residual material strength q ( κ), i.e., q 0 := q (κ = 0) . 

Let us consider a rate-independent softening solid character-

zed by the failure criterion F( σ, q ) ≤ 0 , where the loading func-

ion F( σ, q ) is a convex, smooth and differentiable homogeneous

unction of degree M ≥ 1 

( σ, q ) = 

1 

M 

(
∂ σF : σ + ∂ q F · q 

)
= 

1 

M 

(
� : σ − h · q 

)
(2.14) 

or the derivatives � := ∂ F/∂ σ and h := −∂ F/∂ q . As will be

hown, either stress- or traction-based loading function F( σ, q )

an be employed in the modeling of localized failure in solids. 

Accordingly, the postulate of maximum energy dissipation gives

he following associated evolution laws ( Meschke et al., 1998; Wu

nd Xu, 2011 ) 

˙ 
dis = 

˙ C : σ + 

˙ εp = λ�, ˙ κ = λh (2.15)

here the dissipative flow tensor � := ∂ F/∂ σ characterizes the dis-

ipative strain rate ˙ εdis 
; the Lagrangian multiplier λ satisfies the

lassical Kuhn–Tucker loading/unloading conditions 

≥ 0 , F( σ, q ) ≤ 0 , λF( σ, q ) = 0 (2.16) 

ote that the convex loading function (2.14) and the associated

volution laws (2.15) automatically guarantees the energy dissi-

ation inequality (2.13) for any softening law q ( κ); see Wu and

ervera (2014b ). 

As a single failure criterion is employed in this work to charac-

erize the inelastic behavior, it is impossible to derive the evolution

aws for both the compliance C and the plastic strain εp with no

xtra assumption. Though other alternatives can be considered, the

implest strategy to overcome this difficulty is to differentiate the

amage and plastic contributions to the dissipative strain rate ˙ εdis 

ith a model parameter ξ ∈ [0, 1]. This results in the following

elations ( Meschke et al., 1998; Ortiz., 1985; Wu and Xu, 2011 ) 

˙ 
p = 

(
1 − ξ

)
˙ εdis = 

(
1 − ξ

)
λ� (2.17a) 

˙ 
 : σ = ξ ˙ εdis = ξ λ� (2.17b) 

For the homogeneous loading function (2.14) , the evolution law

or the compliance C satisfying Eq. (2.17b) is given by Meschke

t al. (1998) ; Wu and Xu (2011) 

˙ 
 = 

˙ C 

d = ξ λ
� � �

� : σ
(2.18) 

he cases ξ = 0 and ξ = 1 correspond to the classical plasticity

odel ( Chen, 1994 ) and the elastic damage (degradation) model

 Carol et al., 1994; Wu and Xu, 2013 ), respectively. For the inter-

ediate parameter ξ ∈ (0, 1), both the material compliance C (or

he damage one C 

d ) and the plastic strain εp are internal variables,

esulting in a combined plastic-damage model. 

When the material is unloading, i.e., F( σ, q ) < 0 , it follows that

= 0 ; for the loading case, λ > 0 is solved from the consistency

ondition 

˙ F ( σ, q ) = 0 , i.e., 

˙ 
 = � : ˙ σ − λh · H · h = � : E : 

(
˙ ε − λ�

)
− λh · H · h = 0 (2.19) 
2  
r, equivalently, 

= 

� : E : ˙ ε

� : E : � + h · H · h 

= 

� : ˙ σ

h · H · h 

(2.20) 

or the softening modulus H := ∂ q / ∂ κ < 0. Therefore, the rate con-

titutive relations are given by 

˙ = E tan : ˙ ε, ˙ ε = C tan : ˙ σ (2.21) 

here the material tangents E tan and C tan for the loading state

i.e., λ > 0) are expressed as 

 tan = E −
E : 

(
� � �

)
: E 

� : E : � + h · H · h 

(2.22a) 

 tan = C + 

� � �

h · H · h 

(2.22b) 

oth being symmetric due to the associated evolution laws

onsidered. 

.3. Fracture energy 

For the above elastoplastic-damage model the external energy

ensity supplied to the solid during the failure process, or the so-

alled specific fracture energy (i.e., energy dissipation per unit vol-

me) g f , can be evaluated as ( Wu and Cervera, 2014b; 2015 ) 

 f = 

∫ ∞ 

0 

σ : d ε = 

(
1 − 1 

2 

ξ
)∫ ∞ 

0 

q (κ) d κ = 

G f 

b 
(2.23) 

here G f is the fracture energy (i.e., energy dissipation per unit

urface area), assumed as a material property; b is a regulariza-

ion width (see the discussion in next section) where the energy

issipation is lumped. Therefore, the softening law q ( κ) has to be

egularized with respect to the regularization band width b in such

 way that the energy dissipation during the whole failure process

oes not depend on it. 

The above regularization procedure was advocated in the crack

and theory ( Bažant and Oh, 1983 ). It is equivalent to the cohesive

fictitious) crack model ( Barenblatt, 1959; Dugdale, 1960; Hiller-

org et al., 1976 ). In this latter context, Eq. (2.23) is rewritten as 

 f = bg f = 

(
1 − 1 

2 

ξ
)∫ ∞ 

0 

q (κ) b d κ = 

(
1 − 1 

2 

ξ
)∫ ∞ 

0 

q ( ̃  κ) d ̃  κ

(2.24) 

t then allows introducing an equivalent softening law q ( ̃  κ) ex-

ressed in terms of an alternative displacement-like internal vari-

ble ˜ κ

˜ := bκ, ˙ ˜ κ = 

˜ λh �⇒ 

˜ H = 

1 

b 
H, λ = 

1 

b 
˜ λ (2.25) 

or the displacement-driven softening modulus ˜ H := ∂ q/∂ ̃  κ and

he corresponding Lagrangian multiplier ˜ λ ≥ 0 . 

emark 2.2. It is concluded from Eq. (2.25) that the kinematic in-

ernal variables characterizing the inelastic behavior of the mate-

ial, e.g., the damage compliance C 

d , the plastic strain εp and the

nelastic strain εin , etc., are all inversely proportional to the band

idth b . 

. Strain localization analysis 

In this section, strain localization in an inelastic solid charac-

erized by the above elastoplastic damage model is analyzed. Com-

ared to the classical discontinuous bifurcation analysis ( Hill, 1958;

962; Rice and Rudnicki, 1980; Rudnicki and Rice, 1975; Runes-

on et al., 1991; Thomas, 1961 ), the traction continuity and stress

oundedness are guaranteed ( Cervera et al., 2012; Wu and Cervera,

013; 2014a ) by reproducing Maxwell’s discontinuity kinematics.
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Fig. 3. Problem setting in an elastic solid medium with an internal discontinuity. 
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More specifically, upon strain localization the dissipative flow ten-

sor characterizing the inelastic evolution laws evolves into a par-

ticular structure in terms of a dissipative flow vector and the dis-

continuity orientation. Accordingly, the tensorial flow components

in the directions orthogonal to the discontinuity orientation have

to vanish so that the consistent loading/unloading deformation

states upon strain localization are correctly represented and a fully

stress-free discontinuity (band) can eventually form. This property

allows developing a traction-based plastic-damage model for the

discontinuity (band). Both the orientation and the traction-based

failure criterion can be determined a posteriori from the given

stress-based counterpart. 

3.1. Discontinuity kinematics 

Let us consider the domain 	 ⊂ R 

n dim (n dim 

= 1 , 2 , 3) shown

in Fig. 3 . It is occupied by a solid with reference position vec-

tor x ∈ R 

n dim . The boundary is denoted by 
 ⊂ R 

n dim 

−1 , with an

external unit normal vector n 

∗. Deformations of the solid are

characterized by the displacement field u : 	 → R 

n dim and the

infinitesimal strain field ε := ∇ 

sym u , with ∇( ·) being the spatial

gradient operator. The solid is subjected to a distributed body force

b ∗ : 	 → R 

n dim per unit volume. Surface tractions t ∗ : 
t → R 

n dim 

and displacements u 

∗ : 
u → R 

n dim are imposed on the disjoint

and complementary parts 
t ⊂
 and 
u ⊂
 of the boundary 
,

respectively. 

At the early stage of the deformation process, the standard

kinematics of a continuum medium apply. In particular, both

the displacement and strain fields are continuous and regular

(bounded). Upon satisfaction of a specific criterion, strain local-

ization occurs, inevitably inducing strain/displacement jumps. To

approximate these jumps, a strong (or regularized) discontinuity

may be introduced. In either case, the standard kinematics no

longer applies. 

Displacement jumps can be described by a strong discontinuity.

As depicted in Fig. 4 (a), the interface S splits the solid 	 into two

parts 	+ and 	−, located “ahead of” and “behind” S, respectively,

in such a way that 	+ ∪ 	− ∪ S = 	. The discontinuity orientation

is characterized by a unit normal vector n , pointing from 	− to 	+ 

and fixed along time (i.e., ˙ n = 0 ). The strong discontinuity S causes

displacement jumps w := u ( x ∈ 	+ ∩ S) − u ( x ∈ 	− ∩ S) across it.

In this case, the displacement field u ( x ) is expressed as 

u ( x ) = u 

−( x ) + H S ( x ) ˆ u ( x ) , ˆ u ( x ) := u 

+ ( x ) − u 

−( x ) (3.1a)

so that the strain field ε( x ) is given by 
( x ) : = ∇ 

sym u ( x ) = ∇ 

sym u 

−( x ) + H S ( x ) ∇ 

sym ˆ u ( x ) 

+ 

(
w � n 

)sym 

δS ( x ) (3.1b)

here u 

−( x ) and u 

+ ( x ) denote the displacement fields in the parts
− and 	+ , respectively, with the former also representing the

ontinuous displacement field in the solid 	; ˆ u ( x ) : 	 → R 

n dim sig-

ifies the relative displacement field of one part 	+ with respect

o the other one 	−, satisfying the property ˆ u ( x ∈ S) = w ; H S ( x )

s the Heaviside function defined at the interface S, i.e., H S ( x ) = 0

f x ∈ 	− ∪ S and H S ( x ) = 1 otherwise; δS ( x ) denotes the Dirac-

elta at the discontinuity S . 

The unbounded strain field (3.1b) resulting from the discontinu-

us displacement field (3.1a) can be regularized over a discontinu-

ty band B of finite width b . Note that the width b is not a physical

ength but a regularization parameter which can be made as small

s desired. As shown in Fig. 4 (b), the regularized discontinuity (or

iscontinuity band) B is delimited by two surfaces S + and S − par-

llel to the discontinuity S, i.e., 	+ ∪ 	− ∪ B = 	. In this case,

he displacement field u ( x ) is continuous, with an apparent dis-

lacement jump w := u ( x ∈ 	+ ∩ S + ) − u ( x ∈ 	− ∩ S −) across the

iscontinuity band B. Accordingly, the C 0 -continuous displacement

eld u ( x ) is expressed as ( Wu and Li, 2015; Wu et al., 2015 ) 

 ( x ) = u 

−( x ) + H B ( x ) ˆ u ( x ) (3.2a)

nd the singular strain field (3.1b) is regularized as 

( x ) = ∇ 

sym u 

−( x ) + H B ( x ) ∇ 

sym ˆ u ( x ) + 

(
e � n 

)sym 

�B ( x ) (3.2b)

here the inelastic deformation vector e := w / b is defined as the

pparent displacement jump w normalized with respect to the

and width b ; H B ( x ) is a regularized ramp function defined as

 B ( x ) = 0 if x ∈ 	−, H B ( x ) = 

1 
b 

(
x − x ∗

)
· n if x ∈ B, and H B ( x ) = 1

therwise, with x ∗ being the spatial coordinates of point x pro-

ected along the direction −n to the surface S −; �B ( x ) denotes the

ollocation function within the discontinuity band B, i.e., �B ( x ) =
 if x ∈ B and �B ( x ) = 0 otherwise. 

For either the strong or regularized discontinuity, the strain

eld ε( x ) may be discontinuous across it, i.e., 

+ 
S 

− ε−
S 

= ∇ 

sym ˆ u ( x ∈ S) (3.3)

here ε+ 
S := ε( x ∈ 	+ ∩ S + ) and ε−

S := ε( x ∈ 	− ∩ S −) represent

he strains “ahead of” the surface S + and “behind” the surface S −,

espectively. Furthermore, once the discontinuity (band) forms, the

train εS := ε( x ∈ S) at the discontinuity (band) always exhibits

 jump with respect to the strain ε+ 
S outside it, which verifies

axwell’s compatibility condition 

[ ε]] := εS − ε+ 
S 

= 

(
e � n 

)sym = 

1 

b 

(
w � n 

)sym 

(3.4)

here the symbol [[ ·]] := (·) S − (·) + S represents the jump of a spe-

ific variable ( ·). Note that the strain jump [[ ε]] is inversely pro-

ortional to b for a regularized discontinuity (or unbounded for a

trong one). 

In summary, the strong discontinuity S induces a discontinu-

us displacement field u ( x ) and a singular (unbounded) strain field

( x ); see Fig. 5 (b). Contrariwise, as shown in Fig. 5 (a), the kine-

atic of a regularized discontinuity is characterized by a contin-

ous displacement field u ( x ) and a regular (bounded) strain field

( x ). 

emark 3.1. As the discontinuity band width b tends to zero, it

ollows that 

lim 

b→ 0 
H B ( x ) = H S ( x ) , lim 

b→ 0 

1 

b 
�B ( x ) = δS ( x ) , 

lim 

b→ 0 
e �B ( x ) = w δS ( x ) (3.5)

hat is, the strong discontinuity can be regarded as the limit of a

egularized one, with a vanishing band width b → 0. Reciprocally,
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Fig. 4. Strong and regularized discontinuities in a solid. 

Fig. 5. Kinematics of strong/regularized discontinuities. 
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 discontinuity band can be regarded as the convenient regulariza-

ion of a strong discontinuity. 

emark 3.2. In our previous work ( Cervera and Wu, 2015; Wu and

ervera, 2014b; 2015 ), it is assumed that the relative displacement

eld 

ˆ u ( x ) is induced only by relative rigid body motions (e.g. trans-

ations and rotations) of one part 	+ with respect to the other one
− ( Wu, 2011 ). That is, its contribution to the strain field van-

shes, i.e., ∇ 

sym ˆ u ( x ) = 0 and ε+ 
S = ε−

S . Accordingly, the strains at
oth sides of the discontinuity are continuous, though the relative

isplacement field 

ˆ u ( x ) is not necessarily constant. This restrictive

ssumption is disregarded in this work. 

.2. Strain localization of softening solids 

For strain localization to occur in a softening solid and to

volve eventually into a fully softened discontinuity at the fi-

al stage of the deformation process, material points inside the
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discontinuity (band) undergo inelastic loading while those outside

it unload elastically ( Cervera et al., 2012; Oliver et al., 1999 ). That

is, all the energy dissipative mechanisms (i.e., damage evolution

and plastic flows of interest) are restricted to the discontinuity

(band) during the subsequent failure process and do not de-

velop in the bulk. Owing to this fact, though the continuous

inelastic strains prior to strain localization can be included as in

Remark 3.3 , they are neglected for the sake of simplicity and only

linear elastic bulk materials are considered in this work. 

Upon strain localization, the following traction continuity con-

dition has also to be fulfilled in addition to the classical equilib-

rium equations 

σ+ 
S 

· n = σ−
S 

· n = t S (3.6)

where the vector t S := σS · n represents cohesive tractions at

the discontinuity; σ+ 
S := σ( x ∈ 	+ ∩ S) , σ−

S := σ( x ∈ 	− ∩ S) and

σS := σ( x ∈ S) denote the stresses “ahead of”, “behind” and “right”

at the discontinuity (band), respectively. In accordance with the

generic constitutive relations (2.9) , they are determined as 

σ+ 
S 

= E 

0 : ε+ 
S 
, σ−

S 
= E 

0 : ε−
S 

(3.7a)

and 

σS = E 

0 : 
(
εS − εin 

S 

)
(3.7b)

As the bulk strains ε+ 
S and ε−

S at either side of the discontinuity

S may be discontinuous, the resulting stresses, σ+ 
S and σ−

S , may

also be so. 

Let us first consider the continuity between the tractions at

both sides of the discontinuity, i.e., (
σ+ 

S 
− σ−

S 

)
· n = n · E 

0 : 
(
ε+ 

S 
− ε−

S 

)
= 0 (3.8)

The general expression for the strain difference satisfying Eq.

(3.8) is given by ( Armero and Kim, 2012; Wu et al., 2015 ) 

ε+ 
S 

− ε−
S 

= αmm 

�mm 

+ αpp �pp + αmp �mp (3.9)

where a local orthogonal coordinate system ( n , m , p ) is introduced

at the discontinuity S, with the tangential vectors m and p per-

pendicular to n ; the second-order tensors ( �mm 

, �pp , �mp ), with

the coefficients ( αmm 

, αpp , αmp ), characterize the in-plane discon-

tinuity modes (two relative stretching ones and a shear one) ( Wu

et al., 2015 ) 

�mm 

:= m � m − ν0 

(
n � n + p � p 

)
(3.10a)

�pp := p � p − ν0 

(
n � n + m � m 

)
(3.10b)

�mp := 

(
m � p 

)sym 

(3.10c)

with ν0 being Poisson’s ratio of the material. Note that the result-

ing stress field is not necessarily continuous, i.e., σ+ 
S � = σ−

S , unless

the condition αmm 

= αpp = αmp = 0 holds (or, equivalently, the rel-

ative displacement field 

ˆ u ( x ) is caused only by the rigid body mo-

tions of the part 	+ with respect to the other one 	−). That is,

the restrictive stress continuity assumed in our previous work ( Wu

and Cervera, 2013; 2014a; 2015 ) is disregarded. 

Similarly, the continuity between the tractions across the dis-

continuity can be expressed as 

[[ t ]] := 

(
σS − σ+ 

S 

)
· n = n · E 

0 : 

[ (
e � n 

)sym − εin 
S 

] 
= 0 (3.11)

It then follows that (
e � n 

)sym = εin 
S 

+ 

(
ᾱmm 

�mm 

+ ᾱpp �pp + ᾱmp �mp 

)
(3.12)

where the coefficients ( ̄αmm 

, ᾱpp , ᾱmp ) are not necessarily coinci-

dent with ( αmm 

, αpp , αmp ) in Eq. (3.9) . 

In the kinematic relation (3.12) , on the one hand, the sec-

ond term of the right hand side is elastic , and the coefficients
( ̄αmm 

, ᾱpp , ᾱmp ) are all independent of the band width b (other-

ise, boundedness of the resulting stress field cannot be guaran-

eed). On the other hand, the remaining two terms are both in-

ersely proportional to the bandwidth b for the regularized discon-

inuity (or even singular for the strong one); see Remark 2.2 and

q. (3.4) . Therefore, the kinematic relation (3.12) holds if and only

f the elastic item is canceled , leading to 

[[ ε]] = εin 
S 

= 

(
e � n 

)sym = 

1 

b 

(
w � n 

)sym 

(3.13)

hat is, upon strain localization in softening solids, traction conti-

uity along with stress boundedness requires that the strain jump,

efined as the difference in the strain fields between the inte-

ior/exterior points of the discontinuity (band) and characterized by

axwell’s compatibility condition, has to be completely inelastic . 

emark 3.3. Inelastic deformations prior to strain localization

aused by, e.g., damage and plasticity, can also be incorporated. In

his context, the above problem can be regarded as inelastic dis-

ontinuities localized in an equivalent elastic medium with a dam-

ged stiffness and some irreversible plastic strains, say Ē and ε̄p 
,

espectively, which are both frozen once strain localization occurs;

ee Fig. 6 . Namely, one only needs to replace the linear elasticity

ensor E 

0 by the fixed damaged bulk one Ē , and subtract the fixed

ulk plastic strain ε̄p from the total one, while all the other proce-

ures remain unchanged. 

emark 3.4. Note that the above novel strain localization, and in

articular, the kinematic constraint (3.13) , can also be written in

ate form, but no additional insight in the problem is gained. 

.3. Application to the elastoplastic damage model 

For the inelastic strain (2.10) of the elastoplastic damage model,

pon strain localization the kinematic condition (3.13) is particu-

arized as 

in = 

(
e � n 

)sym = εd + εp (3.14)

ecalling the recoverable/irreversible nature of the damage strain
d and the plastic one εp , it follows that ( Wu and Cervera, 2014b;

015 ) 

e p � n 

)sym = εp (3.15a)

e d � n 

)sym = εd = C 

d : σ (3.15b)

here the damage/plastic deformation vectors, e d := w 

d / b and e p 

= w 

p / b , are defined as the recoverable and irreversible displace-

ent jumps ( w 

d , w 

p ) normalized with respect to the band width b .

ote that the subscript ‘ S ’ associated with the stress σS of the dis-

ontinuity (band) is dropped here and subsequently for notational

implicity. 

Eqs. (2.17a) and (3.15a) imply the existence of a dissipative flow

ector γ satisfying 

� = 

(
γ � n 

)sym 

(3.16)

r, equivalently ( Oliver, 20 0 0 ), 

= 2 n · � − n �nn = γn n + γm 

m + γp p (3.17)

here the components ( γ n , γ m 

, γ p ) of the dissipative flow vector

in the local orthogonal system ( n , m , p ) are expressed as 

n := γ · n = �nn , γm 

:= γ · m = 2�nm 

, γp := γ · p = 2�np 

(3.18)
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Fig. 6. Nonlinear behavior caused by continuous deformations prior to strain localization and the equivalent linear elastic bulk material. 
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ubstitution of the above dissipative flow vector γ into the relation

3.16) yields 

mm 

( θ
cr 
) = 0 , �pp ( θ

cr 
) = 0 , �mp ( θ

cr 
) = 0 (3.19) 

here θcr denote the characteristic discontinuity angles

pon which the kinematic constraint (3.16) is satisfied; see

emark 3.5 for general 3D cases. That is, all the dissipative flow

omponents ( �mm 

, �pp , �mp ) in the directions normal to the

iscontinuity (band) have to vanish. 

emark 3.5. To characterize the discontinuity angles θcr in gen-

ral 3D cases, let us first consider the spectral decomposition of

he stress σ and the coaxial dissipative flow tensor � := ∂ F/∂ σ
 Itskov, 2007 ) 

= 

3 ∑ 

i =1 

σi v i � v i , � = 

3 ∑ 

i =1 

�i v i � v i (3.20) 

here σ i and �i denote the i th principal values, with v i being the

orresponding principal vector. In the coordinate system of princi-

al stresses, the base vectors ( n , m , p ) can be expressed in terms

f a set of characteristic angles θ := { θ1 , θ2 , θ1 , θ2 } 
T 

 ( θ) = 

{
sin θ1 cos θ1 , sin θ1 sin θ1 , cos θ1 

}T 
(3.21a) 

 ( θ) = 

{
sin θ2 cos θ2 , sin θ2 sin θ2 , cos θ2 

}T 
(3.21b) 

p ( θ) = n ( θ) × m ( θ) (3.21c) 

supplemented with the orthogonal condition 

C( θ) := n ( θ) · m ( θ) = sin θ1 sin θ2 cos 
(
θ1 − θ2 

)
+ cos θ1 cos θ2 = 0 (3.21d) 

here ( θ1 , θ2 ) and ( θ1 , θ2 ) denote the spherical azimuth and po-

ar angles, respectively; the operator “×” denotes the Gibbs’ vector

roduct (the right hand rule is followed). It then follows that 

mm 

( θ) = 

(
m � m 

)
: �, �pp ( θ) = 

(
p � p 

)
: �, �mp ( θ) 

= 

(
m � p 

)sym 

: � (3.22) 
ith the extra condition (3.21d) handled by the Lagrangian mul-

iplier method, the kinematic constraints (3.19) yield a system of

onlinear equations so that the discontinuity angles θcr can be

olved. 

.4. Traction-based failure criterion 

It follows from the constraints (3.19) that, upon strain localiza-

ion the failure criterion F( σ, q ) ≤ 0 does not depend on the stress

omponents ( σ mm 

, σ pp , σ mp ), but is only a function of the trac-

ions t = 

{
σnn , σnm 

, σnp 

}T 
acting on the discontinuity (band). Ac-

ordingly, provided the characteristic angles θcr satisfying the kine-

atic constraint (3.16) or (3.19) exist, it is always possible to derive

 traction-based failure criterion consistent with the given stress-

ased counterpart F( σ, q ) ≤ 0 . 

Let us consider the following stress-based failure function 

( σ, q ) := 

ˆ F ( I , q ) ≤ 0 (3.23) 

ith the dissipative flow tensor � given by 

= 

ˆ � := 

∂ ̂  F 

∂ σ
= 

∂ ̂  F 

∂σ1 

v 1 � v 1 + 

∂ ̂  F 

∂ I 1 
I + 

∂ ̂  F 

∂ J 2 
s (3.24) 

here I := 

{
σ1 , I 1 , J 2 

}
collects the invariants of the stress tensor

; σ 1 := v 1 · σ · v 1 denotes the major principal stress, with v 1 
eing the corresponding principal vector; I 1 := tr( σ) is the first

nvariant of the stress σ , and J 2 := 

1 
2 s : s represents the second in-

ariant of the deviatoric stress s := σ − 1 
3 tr ( σ) I , respectively. 

Accordingly, the relation (3.16) becomes (
γ � n 

)sym = �, � = 

ˆ � := 

∂ ̂  F 

∂ σ
(3.25) 

n this case, the orientation n ( θcr ) cannot be assumed arbitrarily.

ut rather, it has to be determined from the kinematic constraints

3.19) for the given stress-based dissipative flow tensor � = 

ˆ �. On

he one hand, as the set of equations is nonlinear, the solution may

ot exist at all. If and only if the discontinuity orientation n ( θcr )

nd the associated dissipative flow vector γ satisfying the kine-

atic constraint (3.25) exist for the given dissipative flow tensor
ˆ , can the strong (or regularized) discontinuity forms upon strain
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Fig. 7. 1-D definition of the dissipative deformation vector rate and its dam- 

age/plastic components. 
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localization, and vice versa. On the other hand, provided the solu-

tion exists, it depends only on the given failure criterion and the

stress state, but not on the elastic properties (i.e., Poisson’s ratio

ν0 ). 

Once the discontinuity orientation n ( θcr ) is so determined, the

corresponding dissipative flow vector γ can be obtained from Eqs.

(3.17) and (3.18) . The projected traction-based failure criterion f ( t ,

q ) ≤ 0 is then determined as 

f ( t , q ) : = 

ˆ F ( σ, q ) = 

1 

M 

(
ˆ � : σ − ˆ h · q ) 

= 

1 

M 

(
γ · t − ˆ h · q ) ≤ 0 (3.26)

where the following identity 

� : σ = γ ·
(
σ · n 

)
= γ · t (3.27)

between the dissipative flow tensor � and the localized counter-

part γ has been considered. 

Remark 3.6. An alternative strategy is to introduce explicitly the

traction-based failure criterion 

ˆ f ( t , q ) ≤ 0 , not necessarily coinci-

dent with the projected one (3.26) , in an ad hoc manner. In such

approaches ( Cervera and Wu, 2015 ), it is assumed a priori that

the strong (or regularized) discontinuity can always form once

strain localization occurs. Accordingly, the discontinuity orienta-

tion cannot be determined uniquely from the kinematic constraints

(3.19) for the given traction-based failure criterion 

ˆ f ( t , q ) ≤ 0 , un-

less extra auxiliary conditions are introduced. In our previous work

( Cervera and Wu, 2015 ), the classical Mohr’s maximization postu-

late ( Mohr, 1900 ) is adopted; see Appendix A for its relations to

the kinematic constraints (3.19) . The bi-directional connections and

in particular, the equivalence conditions between these two strate-

gies are referred to in Wu and Cervera (2014b ; 2015 ). 

3.5. Localized plastic-damage model 

Provided the characteristic angles θcr satisfying the kinematic

constraint (3.16) exist, the damage evolution law (2.18) becomes 

˙ C = 

˙ C 

d = 

(
˙ C 

d 
� N 

)sym �⇒ C 

d = 

(
C d � N 

)sym 

(3.28)

for a second-order geometric tensor N := n �n . In other words,

upon strain localization the material damage behavior is suffi-

ciently characterized by a second-order compliance tensor C d with

the following evolution law 

˙ 
 

d = ξ λ
γ � γ

γ · t 
(3.29)

where the identity (3.27) has been considered. 

Accordingly, the damage strain tensor (3.15b) is given by 

εd = 

(
e d � n 

)sym = 

[ (
C d · t 

)
� n 

] sym 

(3.30)

That is, the discontinuity (band) can be described by the following

localized plastic-damage relations 

e d = e − e p = C d · t , t = E 

d · e d = E 

d ·
(
e − e p 

)
(3.31a)

˙ e 
p = 

(
1 − ξ

)
λγ (3.31b)

for the second-order stiffness tensor E 

d := 

(
C d 

)−1 
. 

By time differentiation, the rate constitutive relations are ex-

pressed as 

˙ 
 = E 

d ·
(

˙ e − ˙ e 
dis 

)
, ˙ e = C d · ˙ t + 

˙ e 
dis 

(3.32)

where the dissipative deformation rate ˙ e 
dis 

is defined as 

˙ e 
dis 

:= 

˙ C 
d · t + 

˙ e 
p = λγ �⇒ 

(
˙ e 
dis 

� n 

)sym = 

˙ εdis = λ�

(3.33)
ith 

˙ C 
d · t and 

˙ e 
p 

being its damage and plastic components, re-

pectively; see Fig. 7 . 

Owing to the relation (3.27) , upon strain localization the multi-

lier λ > 0 for an active discontinuity band can be determined in

erms of the inelastic deformation vector e , rather than the strain

ensor ε as in Eq. (2.20) , i.e., 

= 

γ · E 

d · ˙ e 

γ · E 

d · γ + h · H · h 

= 

γ · ˙ t 

h · H · h 

(3.34)

t then follows the rate constitutive relations 

˙ 
 = E 

d ·
(

˙ e − λγ
)

= E 

d 
tan · ˙ e , ˙ e = C d · ˙ t + λγ = C d tan · ˙ t (3.35)

here the tangent stiffness E 

d 
tan and compliance C d tan are expressed

s 

 

d 
tan = E 

d −
E 

d ·
(
γ � γ

)
· E 

d 

γ · E 

d · γ + h · H · h 

(3.36a)

 

d 
tan = C d + 

γ � γ

h · H · h 

(3.36b)

or the active discontinuity (band). 

Therefore, provided the kinematic constraint resulting from the

raction continuity along with stress boundedness is fulfilled, con-

istent traction-based constitutive laws for the discontinuity (band)

aturally emerge from the strain localization analysis of stress-

ased models with regularized softening regime. 

emark 3.7. For the damage compliance tensor C 

d in Eq. (3.28) 2 ,

he (complementary) damage free energy density function ψ 

d in-

roduced in Eq. (2.12b) is lumped within the discontinuity (band),

.e., 

 

d = 

1 

2 

σ : C 

d : σ = 

1 

2 

t · C d · t = 

1 

2 

e d · E 

d · e d (3.37)

imilarly, the energy dissipation rate (2.13) becomes 

˙ 
 = 

1 

2 

t · ˙ C 
d · t + t · ˙ e 

p + 

(
q 0 − q 

)
· ˙ κ ≥ 0 (3.38)

ccordingly, the above localized plastic-damage model can also be

erived by an alternative derivation ( Wu and Cervera, 2014b ). 

emark 3.8. In the above localized plastic-damage model, the

train-like internal variable κ is employed in the softening law q ( κ).



J.-Y. Wu, M. Cervera / International Journal of Solids and Structures 88–89 (2016) 227–247 237 

Fig. 8. Definition of the discontinuity angle. 
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demanding than, the classical ones. 
ccordingly, the resulting localized constitutive laws are expressed

n terms of the traction t and the inelastic deformation vector e .

ecalling the relations (2.25) , the equivalent localized model in

erms of tractions t versus displacement jumps w can also be de-

eloped. The details are omitted here. 

. Plane stress and plane strain cases 

In this section let us consider strain localization of a 2D soft-

ning solid 	 ⊂ R 

2 in plane stress and plane strain shown in

ig. 8 . The in-plane principal stresses are denoted by σ 1 and

2 ( σ 1 ≥ σ 2 ), respectively, while the third one σ 3 is orthogo-

al to that plane. In such 2D cases the discontinuity orientation

an be characterized by the inclination angle (counterclockwise)

∈ [ −π/ 2 , π/ 2] between the normal vector n and the principal

ector v 1 of the stress tensor. The tangential vectors m and p of the

iscontinuity S are located on and perpendicular to the plane of

nterest, respectively. The task is to derive explicitly the discontinu-

ty angle θ cr and the traction-based failure criterion f ( t , q ) ≤ 0 from

he given stress-based one ˆ F ( σ, q ) ≤ 0 . Several classical failure cri-

eria, i.e., Rankine, Mohr–Coulomb, von Mises and Drucker–Prager

odels, are considered; see Wu and Cervera (2014b ) for more gen-

ral examples. 

.1. Discontinuity angle 

For a given stress-based failure criterion 

ˆ F ( σ, q ) ≤ 0 , the dis-

ontinuity angle θ cr can be determined explicitly through the pro-

ection relation (3.25) or more specifically, through the kinematic

onstraints (3.19) , i.e., 

ˆ 
mm 

(θ cr ) = 0 , ˆ �pp (θ
cr ) = 0 (4.1) 

ote that in 2D cases the other constraint ˆ �mp (θ cr ) = 0 is auto-

atically satisfied. 

It follows from the Mohr’s circle and the constraint ˆ �mm 

(θ cr ) =
 that ( Wu and Cervera, 2014b; 2015 ) 

in 

2 θ cr = −
ˆ �2 

ˆ �1 − ˆ �2 

, cos 2 θ cr = 

ˆ �1 

ˆ �1 − ˆ �2 

(4.2) 

here ˆ �1 and 

ˆ �2 (assuming ˆ �1 ≥ ˆ �2 as usual) denote the

rincipal values of the dissipative flow tensor �. Note that the

bove results apply upon the conditions ˆ �1 ≥ 0 and 

ˆ �2 ≤ 0 ; see

ppendix B for the exceptional cases. 

Obviously, the discontinuity angle θ cr depends on the ratio
ˆ / ̂  � or the stress state upon strain localization. In particular,
2 1 
he states of plane stress and plane strain have to be discriminated

egarding the remaining condition, ˆ �pp = 0 . 

.1.1. Plane stress 

In the case of plane stress, the component σpp = σ3 = 0 van-

shes so that it is not necessary to consider the vanishing dissi-

ative flow component ˆ �pp = 

ˆ �3 = 0 . Therefore, once the initial

ailure surface is reached, i.e., ˆ F ( σ, q 0 ) = 0 , the strong (or regular-

zed) discontinuity forms at the same instant, with the orientation

etermined from Eq. (4.2) . 

.1.2. Plane strain 

In the case of plane strain (i.e. ε3 = 0 ), on the one hand, the

lastic out-of-plane stress σ 3 is given by 

3 = ν0 

(
σ1 + σ2 

)
(4.3) 

n the other hand, for the homogeneous loading function 

ˆ F ( σ, q )

f degree M ≤ 2, the condition 

ˆ �pp = 0 gives 

ˆ 
pp = 

ˆ �3 = 0 �⇒ σ3 = η1 

(
σ1 + σ2 

)
+ η2 q (4.4) 

here η1 and η2 are related to the model parameters involved in

he specified stress-based failure criterion 

ˆ F ( σ, q ) ≤ 0 ; see the ex-

mples presented later. As the in-plane principal values ˆ �1 and 

ˆ �2 

epend on the out-of-plane stress σ 3 � = 0, the discontinuity angle
cr , still determined from Eq. (4.2) , is affected by this extra plane

train localization condition. 

The out-of-plane stress (4.4) , necessary for plane strain local-

zation, is in general different from the elastic value (4.3) . Further-

ore, the initial limit surface ˆ F ( σ, q 0 ) = 0 will be reached ear-

ier with the elastic out-of-plane stress (4.3) than with the lo-

alized one (4.4) . Accordingly, except for very particular cases,

train localization cannot occur at the onset of softening. Rather,

ome (continuous) inelastic deformations and substantial rotation

f the principal strain directions have to occur at the beginning of

he softening regime, until the plane strain localization condition

4.4) is fulfilled. From that moment on, the (continuous) inelas-

ic deformations in the bulk material are frozen (unloading), and

he discontinuous inelastic deformations within the discontinuity

band) continue growing due to strain localization. That is, the

ulk material is considered as linear elastic after strain localiza-

ion occurs, however, with degraded (unloading) stiffness and plas-

ic deformations corresponding to those at the time when strain

ocalization is initiated. The above delayed strain localization in

he plane strain condition, similarly to the transited continuous–

iscontinuous failure ( Jirásek and Zimmermann, 2001 ) illustrated

n Fig. 9 , was numerically observed in Cervera et al. (2012) for von

ises ( J 2 ) model. As shown in Section 4.6 , it also occurs for other

ailure criteria like the classical Drucker–Prager model. 

emark 4.1. In the case of plane stress, the discontinuity angle θ cr 

etermined from Eq. (4.2) coincides with that obtained from the

lassical discontinuous bifurcation analysis ( Runesson et al., 1991 )

or the material model with associated evolution laws. Compara-

ively, in the plane strain state the discontinuous bifurcation anal-

sis gives ( Runesson et al., 1991 ) 

in 

2 θ cr = −
ˆ �2 + ν0 ̂

 �3 

ˆ �1 − ˆ �2 

, cos 2 θ cr = 

ˆ �1 + ν0 ̂
 �3 

ˆ �1 − ˆ �2 

(4.5) 

he above results coincide with Eq. (4.2) if ν0 = 0 or ˆ �3 = 0 . The

ater condition, ˆ �3 = 0 , necessary for the strong or regularized dis-

ontinuity to form and to develop eventually into a fully softened

ne, is not accounted for in the classical discontinuous bifurcation

nalysis. An exception is the so-called zero-extension line theory

or Mohr–Coulomb materials; see Ottosen and Runesson (1991) ;

oscoe (1970) for the details. Therefore, the results derived from

axwell’s compatibility condition are consistent with, but more
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Fig. 9. Delayed strain localization in the condition of plane strain. Here, κ denotes the strain-like internal variable, and κ̄ represents the corresponding value at the onset of 

strain localization. 
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0 as in Mohr’s maximization postulate. 
4.2. Traction-based failure criterion 

With the discontinuity angle θ cr determined from Eq. (4.2) , the

normal and tangential components ( γ n , γ m 

) of the dissipative flow

vector γ are given by 

γn = 

ˆ �nn (θ
cr ) = 

(
ˆ �1 − ˆ �2 

)
cos (2 θ cr ) = 

ˆ �1 + 

ˆ �2 (4.6a)

γm 

= 2 ̂

 �nm 

(θ cr ) = 

(
ˆ �1 − ˆ �2 

)
sin (2 θ cr ) = 2 sign (σnm 

) 
√ 

− ˆ �1 ̂
 �2 

(4.6b)

for the sign function sign( ·). 
In accordance with Eq. (3.26) , the stress-based failure criterion

ˆ F ( σ, q ) ≤ 0 is projected to the orientation n ( θ cr ), leading to the fol-

lowing traction-based counterpart 

f ( t , q ) = 

1 

M 

[ (
ˆ �1 + 

ˆ �2 

)
t n + 2 

√ 

− ˆ �1 ̂
 �2 

∣∣t m 

∣∣ − ˆ h · q 

] 
≤ 0 (4.7)

Similarly, the projected traction-based failure criterion (4.7) holds

for the cases ˆ �1 ≥ 0 and 

ˆ �2 ≤ 0 ; the exceptional cases are also

dealt with in Appendix B . 
emark 4.2. For the projected traction-based failure criterion (4.7) ,

t follows that 

∂ f 

∂θ
= −1 

2 

(
σ1 − σ2 

)[(
ˆ �1 + 

ˆ �2 

)
−

(
ˆ �1 − ˆ �2 

)
cos (2 θ ) 

]
sin (2 θ ) 

(4.8a)

∂ 2 f 

∂θ2 
= −

(
σ1 − σ2 

)[(
ˆ �1 + 

ˆ �2 

)
cos (2 θ ) −

(
ˆ �1 − ˆ �2 

)
cos (4 θ ) 

]
(4.8b)

It can be verified for the discontinuity angle θ cr given from

q. (4.2) that 

∂ f 

∂θ

∣∣∣
θ cr 

= 0 , 
∂ 2 f 

∂θ2 

∣∣∣
θ cr 

< 0 (4.9)

herefore, provided strain localization occurs, the tractions ( t n , t m 

)

o maximize the projected traction-based failure criterion f ( t , q ) ≤



J.-Y. Wu, M. Cervera / International Journal of Solids and Structures 88–89 (2016) 227–247 239 

4

 

s  

m

F

w

 

E

s

A  

m  

a

w  

m

4

 

l

F

 

w

s

f  

s

 

θ  

g  

m

s

T  

m

 

b

σ  

(

 

t

o

t

i  

c

R  

ϕ
≥

f

4

F

i  

s

s

f  

t

4

s

i  

i  

s

 

a

t

s

J

S

T  

t  

s  

r

R  

i  

a  

(

F

 

4

 

t

�

T  

(

 

E

s

.3. Example: Rankine criterion 

The Rankine criterion, widely adopted for the modeling of ten-

ile failure in quasi-brittle materials, is expressed in terms of the

ajor principal stress σ1 = v 1 · σ · v 1 > 0 as 

ˆ 
 ( σ, q ) = 〈 σ1 〉 − q = H (σ1 ) σ1 − q ≤ 0 (4.10) 

here the Macaulay brackets 〈·〉 is defined as 〈 x 〉 = max (x, 0) . 

In both plane stress and plane strain conditions, it follows from

q. (4.2) that 

in 

2 θ cr = 0 �⇒ θ cr = 0 (4.11) 

s expected, only a mode I discontinuity (in the context of fracture

echanics) can be initiated. Furthermore, with the discontinuity

ngle (4.11) , the traction-based failure criterion (4.7) becomes 

f ( t , q ) = 〈 t n 〉 − q ≤ 0 (4.12) 

here the relation σ1 = n · σ · n = t n has been considered for

ode-I failure. 

.4. Example: Mohr–Coulomb criterion 

Let us then consider the Mohr–Coulomb criterion, with the fol-

owing failure function 

ˆ 
 ( σ, q ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 
2 

[ (
σ1 + σ3 

)
sin ϕ + 

(
σ1 − σ3 

)] 
− q cos ϕ Region 1 : σ1 ≥ σ2 ≥ σ3 

1 
2 

[ (
σ1 + σ2 

)
sin ϕ + 

(
σ1 − σ2 

)] 
− q cos ϕ Region 2 : σ1 ≥ σ3 ≥ σ2 

1 
2 

[ (
σ3 + σ2 

)
sin ϕ + 

(
σ3 − σ2 

)] 
− q cos ϕ Region 3 : σ3 ≥ σ1 ≥ σ2 

(4.13)

here the internal friction angle ϕ ∈ [0, π /2] is 

in ϕ = 

ρ − 1 

ρ + 1 

⇐⇒ ρ = 

1 + sin ϕ 

1 − sin ϕ 

(4.14) 

or the ratio ρ := f c / f t ≥ 1 between the uniaxial compressive

trength f c and the tensile one f t . 

In the case of plane stress ( σ3 = 0 ), it follows from Eq. (4.2) that
cr = 0 in Region 1 and θ cr = π/ 2 in Region 3, respectively; in Re-

ion 2 (i.e., σ 1 ≥ σ 3 ≥ σ 2 ), the discontinuity angle θ cr is deter-

ined as 

in 

2 θ cr = 

1 

2 

(
1 − sin ϕ 

)
�⇒ θ cr = ±

(
π

4 

− ϕ 

2 

)
(4.15) 

he above results coincide with those obtained from Mohr’s maxi-

ization postulate. 

In the case of plane strain, the extra constraint ˆ �3 = 0 cannot

e satisfied in Regions 1 and 3; only in Region 2 (i.e., σ 1 ≥ σ 3 ≥
2 ) can strain localization occur, with the same discontinuity angle

4.15) . 

For the discontinuity angle (4.15) , in Region 2 ( σ 1 ≥ σ 3 ≥ σ 2 )

he traction-based failure criterion (4.6) reads 

f ( t , q ) = cos ϕ 

(
t n tan ϕ + 

∣∣t m 

∣∣ − q 

)
≤ 0 (4.16a) 

r, equivalently, 

an ϕ · t n + 

∣∣t m 

∣∣ − q ≤ 0 (4.16b) 

n both cases of plane stress and plane strain. This is exactly the

lassical traction-based Mohr–Coulomb criterion. 

emark 4.3. Tresca’s criterion is recovered for the friction angle

 = 0 in the Mohr–Coulomb criterion (4.13) . In Region 2 ( σ 1 ≥ σ 3 

σ 2 ), the discontinuity angle is then θ cr = π/ 4 so that 

f ( t , q ) = 

∣∣t m 

∣∣ − q ≤ 0 (4.17) 
or both cases of plane stress and plane strain. 
.5. Example: von Mises ( J 2 ) criterion 

The von Mises ( J 2 ) criterion is now considered 

ˆ 
 ( σ, q ) = 

√ 

3 J 2 − q = 

√ 

3 

2 

∥∥s 
∥∥ − q ≤ 0 (4.18) 

n terms of the second invariant J 2 := 

1 
2 s : s or the norm ‖ s ‖ := s :

 of the deviatoric stress tensor s . 

The discontinuity angle θ cr is given from Eq. (4.2) as 

in 

2 θ cr = − s 2 
s 1 − s 2 

, cos 2 θ cr = 

s 1 
s 1 − s 2 

(4.19) 

or the in-plane principal values s i (i = 1 , 2) of the deviatoric stress

ensor s . 

.5.1. Plane stress 

In the case of plane stress ( σ3 = 0 ), it follows that 

in 

2 θ cr = 

σ1 − 2 σ2 

3 

(
σ1 − σ2 

) , cos 2 θ cr = 

2 σ1 − σ2 

3 

(
σ1 − σ2 

) (4.20) 

f the conditions σ1 ≥ 1 
2 σ2 and σ 1 ≥ 2 σ 2 are satisfied. The result-

ng discontinuity angles θ cr for different stress ratios σ 1 / σ 2 are

ummarized in Table 1 and depicted in Fig. 10 . 

With the discontinuity angle (4.20) , the corresponding normal

nd tangential tractions ( t n , t m 

) are evaluated as 

 n = σnn = 

2 

3 

(
σ1 + σ2 

)
, t 2 m 

= σ 2 
nm 

= −s 1 s 2 (4.21) 

o that 

 2 = 

1 

3 

(
σ 2 

1 + σ 2 
2 − σ1 σ2 

)
= 

1 

4 

t 2 n + t 2 m 

(4.22) 

ubstitution of the result (4.22) into Eq. (4.18) yields 

f ( t , q ) = 

√ 

3 

(
1 

4 

t 2 n + t 2 m 

)
− q ≤ 0 (4.23) 

he above traction-based failure criterion can also be derived from

he definition (4.7) . For the equi-biaxial tension/compression stress

tate, i.e., σ2 = −σ1 and t n = 0 , the expected mode II failure crite-

ion is recovered. 

emark 4.4. For the cases σ1 ≤ 1 
2 σ2 or σ 1 ≤ 2 σ 2 , the discontinu-

ty angles θ cr in Eq. (B.1) apply. Accordingly, the modified stress-

nd traction-based failure criteria are given from Eqs. (B.2) and

B.3) , respectively, i.e., 

ˆ 
 ( σ, q ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

√ 

3 

2 

σ1 − q 0 < σ2 < σ1 < 2 σ2 

−
√ 

3 

2 

σ2 − q 2 σ1 < σ2 < σ1 < 0 

(4.24a) 

f ( t , q ) = 

√ 

3 

2 

∣∣t n ∣∣ − q ≤ 0 (4.24b) 

The above modified failure criteria are also illustrated in Fig. 10 .

.5.2. Plane strain 

In the case of plane strain, the extra condition (4.4) requires

hat 

ˆ 
3 = 0 �⇒ s 3 = 0 , σ3 = 

1 

2 

(
σ1 + σ2 

)
(4.25) 

hat is, η1 = 1 / 2 and η2 = 0 in the out-of-plane principal stress

4.4) . 

Upon the above stress state, it follows that s 1 = −s 2 such that

q. (4.19) gives 

in 

2 θ cr = − s 2 
s 1 − s 2 

= 

1 

2 

�⇒ θ cr = 45 

◦ (4.26) 
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Table 1 

Discontinuity angles θ cr for the von Mises criterion in the condition of plane stress. 

Stress ratio σ 1 / σ 2 

−1: −2 −1: −5 0: −1 1: −5 1: −1 1: 0 1: 0.25 1: 0.5 

θ cr 90.00 ° 60.00 ° 54.74 ° 51.42 ° 45.00 ° 35.26 ° 28.12 ° 0.00 °

Fig. 10. Discontinuity angles of the von Mises criterion in the condition of plane stress. 
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ure criterion f ( t , q ) ≤ 0. 
As can be seen, in the condition of plane strain the discontinuity

angle is fixed as θ cr = 45 ◦ independently of the stress ratio σ 1 / σ 2 .

This result, different from that given from the discontinuous bifur-

cation analysis ( Runesson et al., 1991 ), was recently confirmed by

the numerical simulations ( Cervera et al., 2012 ). 

For the discontinuity angle (4.26) , the traction-based failure

function (4.7) is expressed as 

f ( t , q ) = 

√ 

3 

∣∣t m 

∣∣ − q ≤ 0 (4.27)

As expected, for the von Mises criterion in the plane strain con-

dition a pure mode II discontinuity forms upon strain localization,

whatever the stress state is. 

Remark 4.5. In the case of plane strain, with the elastic out-of-

plane stress (4.3) the initial elastic limit surface ˆ F ( σ, q 0 ) = 0 is ex-

pressed as √ (
1 − ν0 + ν2 

0 

)(
σ 2 

1 
+ σ 2 

2 

)
−

(
1 + 2 ν0 − 2 ν2 

0 

)
σ1 σ2 = q 0 (4.28)

Contrariwise, with the out-of-plane stress (4.25) upon plane strain

localization, the failure criterion 

ˆ F ( σ, q ) ≤ 0 becomes two parallel

straight lines, i.e., 

ˆ F ( σ, q ) = 

√ 

3 

2 

∣∣σ1 − σ2 

∣∣ − q ≤ 0 (4.29)

As depicted in Fig. 11 , only for the particular case ν0 = 0 . 5 or

σ2 = −σ1 , can strain localization occur at the onset of strain soft-

ening. For all other cases, the elastic limit surface (4.28) will be

reached first and strain softening occurs accompanied with (con-

tinuous) inelastic deformations. Only when sufficient re-orientation

of the principal strain directions is completed and the plane strain
ocalization condition (4.25) is fulfilled, strain localization sets in

otion and a strong (regularized) discontinuity forms. 

.6. Example: Drucker–Prager criterion 

Finally, let us consider the Drucker–Prager criterion expressed

s 

ˆ 
 ( σ, q ) = 

1 

1 + α

(
αI 1 + 

√ 

3 J 2 

)
− q ≤ 0 (4.30)

here the parameter α = (ρ − 1) / (ρ + 1) ∈ [0 , 1) is related to the

atio ρ := f c / f t ≥ 1 between the uniaxial compressive strength f c 
nd the tensile one f t . 

The discontinuity angle θ cr is computed from Eq. (4.2) as 

in 

2 θ cr = −
√ 

2 / 3 α
∥∥s 

∥∥ + s 2 

s 1 − s 2 
, cos 2 θ cr = 

√ 

2 / 3 α
∥∥s 

∥∥ + s 1 

s 1 − s 2 
(4.31)

here s 1 and s 2 denote the in-plane principal values of the devia-

oric stress tensor s . 

emark 4.6. For an activated discontinuity, it follows from the fact
ˆ 
 ( σ, q ) = 0 that 

 

2 

3 

∥∥s 
∥∥ = 

2 

3 

[ (
1 + α

)
q − αI 1 

] 
≥ 0 (4.32)

his relation is useful for later derivation of the traction-based fail-
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Table 2 

Discontinuity angles θ cr for the Drucker–Prager criterion in the condition of plane stress. 

f c / f t Stress ratio σ 1 / σ 2 

−1: −1.24 −1: −2 −1: −5 0: −1 1: −5 1: −1 1: −0.5 1: −0.25 1: −0.15 1: 0 1 : 0.19 

2.00 90.00 ° 51.65 ° 44.74 ° 41.81 ° 39.52 ° 33.68 ° 29.90 ° 26.30 ° 24.15 ° 19.47 ° 0.00 °
3.00 43.48 ° 40.55 ° 37.35 ° 35.26 ° 33.32 ° 27.37 ° 22.82 ° 17.90 ° 14.51 ° 0.00 ° 0.00 °
4.00 – 33.66 ° 32.69 ° 31.09 ° 29.33 ° 23.07 ° 17.62 ° 10.53 ° 0.00 ° 0.00 ° 0.00 °

Fig. 11. Elastic limit surface and initial failure surface of the von Mises criterion in 

the condition of plane strain. 
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ρ = 4 . 0 (or, equivalently, α = 0 . 6 ). 
.6.1. Plane stress 

In the case of plane stress ( σ3 = 0 ), the results (4.31) become 

in 

2 θ cr = −
(
2 σ2 − σ1 

)
+ 2 α

√ 

σ 2 
1 

+ σ 2 
2 

− σ1 σ2 

3 

(
σ1 − σ2 

) (4.33a) 

os 2 θ cr = 

(
2 σ1 − σ2 

)
+ 2 α

√ 

σ 2 
1 

+ σ 2 
2 

− σ1 σ2 

3 

(
σ1 − σ2 

) (4.33b) 

f the conditions σ1 ≥ ˜ α1 σ2 and σ1 ≥ σ2 / ̃  α2 are satisfied, with the

arameters ˜ α1 and ˜ α2 expressed as ˜ α1 , 2 := 

1 
2 [1 ± α

√ 

3 / 
(
1 − α2 

)
] .

imilarly, the exceptional cases are obtained from the arguments

n Appendix B . 

The above discontinuity angle θ cr is summarized in Table 2 for

ifferent values of the stress ratio σ 1 / σ 2 and model parameter α. 

With the discontinuity angle (4.33) , the traction-based failure

riterion can be determined as (see Appendix C for the deriva-

ion) 

 

2 
m 

− 4 α2 − 1 

4 

(
1 − α2 

) t 2 n + 

α

1 − α
qt n − 1 + α

3 

(
1 − α

)q 2 ≤ 0 (4.34) 

s depicted in Fig. 12 , the following three cases can be identi-

ed for the stress-based failure criterion (4.30) and its projected

raction-based counterpart (4.34) regarding the model parameter

∈ [0, 1) (or, equivalently, ρ ≥ 1): 

• 0 ≤ α < 1/2 or 1 ≤ ρ < 3: The stress-based failure criterion

(4.30) is an ellipse on the σ − σ plane and the traction-based
1 2 
counterpart (4.34) also defines an ellipse on the t n − t m 

plane 

t 2 m 

+ 

1 − 4 α2 

4 

(
1 − α2 

)[ 

t n + 

2 α
(
1 + α

)
1 − 4 α2 

q 

] 2 

−
(
1 + α

)2 

3 

(
1 − 4 α2 

)q 2 ≤ 0 

(4.35) 

The classical von Mises criterion belongs to this type (i.e., α =
0 ). 

• α = 1 / 2 or ρ = 3 : The stress-based failure criterion (4.30) de-

fines a parabola on the σ1 − σ2 plane, while the traction-based

counterpart (4.34) becomes 

t 2 m 

+ qt n − q 2 ≤ 0 (4.36) 

which is a parabola on the t n − t m 

plane. 

• 1/2 < α < 1 or ρ > 3: The stress-based failure criterion

(4.30) defines a hyperbola on the σ1 − σ2 plane. Similarly, the

traction-based counterpart (4.34) is a hyperbola on the t n − t m 

plane, with the left branch of interest given by 

tan ϕ · t n + 

√ 

t 2 m 

+ ω 

2 q 2 − c ≤ 0 (4.37) 

where the parameters tan ϕ, ω and c are expressed as 

tan ϕ = 

√ 

4 α2 − 1 

4 

(
1 − α2 

) , ω = 

1 + α√ 

3 

(
4 α2 − 1 

) , 

c = 

α
(
1 + α

)√ (
4 α2 − 1 

)(
1 − α2 

)q (4.38) 

This hyperbolic failure criterion asymptotically approaching to a

Mohr–Coulomb one has been widely adopted in the modeling

of mixed-mode failure in quasi-brittle solids ( Carol et al., 1997;

Most and Bucher, 2007 ). 

emark 4.7. For the parameter α ∈ [1/2, 1), the Drucker–Prager

ailure criterion (4.30) defines an open surface in the principle

1 − σ2 space. Accordingly, there exists a limit value for the dis-

ontinuity angle θ cr . For the parabolic failure criterion (i.e., α =
 / 2 ), it follows that 

lim 

2 → σ1 < 0 
sin 

2 θ cr = lim 

σ2 → σ1 < 0 
−

(
2 σ2 − σ1 

)
+ 

√ 

σ 2 
1 

+ σ 2 
2 

− σ1 σ2 

3 

(
σ1 − σ2 

) = 

1 

2 

(4.39) 

amely, the limit discontinuity angle is lim σ2 → σ1 < 0 
θ cr = 45 ◦. For

he hyperbolic one with α ∈ (1/2, 1), the admissible stress ratio

1 / σ 2 in the compression-compression quadrant (i.e., σ 1 < 0 and

2 < 0) is constrained by the parameter α, and so is the disconti-

uity angle θ cr , i.e., 

in θ cr ≤
√ (

1 + 2 α2 
)
σ1 /σ2 − 2 

(
1 − α2 

)
3 

(
σ1 /σ2 − 1 

) with 

σ1 

σ2 

≤
1 + 2 α2 −

√ 

3 

(
4 α2 − 1 

)
2 

(
1 − α2 

) (4.40) 

or instance, it follows that 0 ° ≤ θ cr ≤ 33.74 ° for the parameter
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Fig. 12. The Drucker–Prager criteria of different types in the condition of plane stress. 
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4.6.2. Plane strain 

In the case of plane strain, the extra condition (4.4) gives the

following out-of-plane stress σ 3 � = 0, i.e., 

α + 

√ 

3 

2 

1 ∥∥s 
∥∥ s 3 = 0 �⇒ σ3 = 

2 α2 + 1 

2 

(
1 − α2 

)(
σ1 + σ2 

)
− α

1 − α
q 

(4.41)

As the trace tr s vanishes, it follows that 

s 1 + s 2 = −s 3 = 

√ 

2 

3 

α
∥∥s 

∥∥ ≥ 0 or s 2 1 + 

6 − 4 α2 

3 − 4 α2 
s 1 s 2 + s 2 2 = 0 

(4.42)
ccordingly, the discontinuity angle (4.33) is determined from 

sin 

2 θ cr = − s 1 + 2 s 2 
s 1 − s 2 

= −αs + 2 

αs − 1 

, 

os 2 θ cr = 

2 s 1 + s 2 
s 1 − s 2 

= 

2 αs + 1 

αs − 1 

(4.43)

or the ratio αs := s 1 / s 2 given from the relation (4.42) 

s := 

s 1 
s 2 

= 

2 α2 − 3 − 2 α
√ 

3 

(
1 − α2 

)
3 − 4 α2 

∈ 

[
− 2 , −1 

]
(4.44)

he above result holds if the following condition 

 s 1 + s 2 ≥ 0 , s 1 + 2 s 2 ≤ 0 ⇐⇒ 0 ≤ α ≤ 1 

(4.45)

2 
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Table 3 

Discontinuity angles θ cr for the Drucker–Prager criterion in the condition of 

plane strain. 

Strength ratio f c / f t 1.0 1.50 2.00 2.50 3.00 

Discontinuity angle θ cr 45.00 ° 34.65 ° 26.12 ° 17.38 ° 0.00 °
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s satisfied. Compared to the result (4.33) for the case of plane

tress, the discontinuity angle θ cr determined from Eqs. (4.43) and

4.44) depends only on the model parameter α ∈ [0, 1/2]; see

able 3 . Note that the result for the von Mises criterion is recov-

red for the parameter α = 0 . 

Again, the above analytical results, different from those ob-

ained from the discontinuous bifurcation analysis ( Runesson et al.,

991 ), were numerically confirmed by Cervera et al. (2015) . 

With the discontinuity angle (4.43) , the traction-based failure

riterion (4.7) can be derived as (see Appendix C ) 

 

2 
m 

− 3 α2 

1 − 4 α2 

(
t n − 1 + α

3 

q 

)2 

≤ 0 (4.46) 

ith the left branch of interest expressed as 

 n · tan ϕ + 

∣∣t m 

| − c ≤ 0 (4.47) 

here the friction angle ϕ and the cohesion c are given by 

an ϕ = α

√ 

3 

1 − 4 α2 
, c = 

1 + α√ 

3 

(
1 − 4 α2 

)q (4.48a) 

r, equivalently, 

= 

tan ϕ √ 

3 + 4 tan 

2 ϕ 

, 
(
1 + α

)
q = 

3 c √ 

3 + 4 tan 

2 ϕ 

(4.48b) 

That is, in the case of plane strain, the material characterized by

he Drucker–Prager model localizes into a Mohr–Coulomb discon-

inuity. The above relations (4.48) are exactly the matching condi-

ions under which the Drucker–Prager and Mohr–Coulomb models

ive identical limit load for perfectly-plastic materials in the case of

lane strain. Furthermore, upon satisfaction of these plane strain

atching conditions, both models produce identical energy dissi-

ation ( Chen, 1994 ). 

emark 4.8. In the case of plane strain, on the one hand, calling

or the out-of-plane stress (4.3) the elastic limit surface ˆ F ( σ, q 0 ) =
 of the Drucker–Prager criterion (4.30) is given by 

1 

1 + α

[ 
α
(
1 + ν0 

)(
σ1 + σ2 

)
+ 

√ (
1 − ν0 + ν2 

0 

)(
σ 2 

1 
+ σ 2 

2 

)
−

(
1 + 2 ν0 − 2 ν2 

0 

)
σ1 σ2 

] 
= q 0 

(4.49) 

he above elastic limit surface can be either an ellipse for α <

(1 / 2 − ν0 ) / (1 + ν0 ) , a parabola for α = (1 / 2 − ν0 ) / (1 + ν0 ) , or a

yperbola for α > (1 / 2 − ν0 ) / (1 + ν0 ) on the σ1 − σ2 plane, re-

pectively. On the other hand, for the plane strain localization con-

ition (4.41) , the Drucker–Prager criterion (4.30) becomes 

σ1 − σ2 

∣∣ = 

√ 

3 

1 − α2 

[ 
2 

3 

(
1 + α

)
q − α

(
σ1 + σ2 

)] 
≥ 0 (4.50) 

t follows from Eqs. (4.3) and (4.44) that only for the particular

tress state 

σ1 

σ2 

= 

2 − ν0 + αs 

(
1 + ν0 

)
1 + ν0 + αs 

(
2 − ν0 

) (4.51) 
i

an strain localization occur at the onset of softening; see Fig. 13 .

or all other cases, continuous inelastic deformations and re-

rientation of the principal strain directions have to take place un-

il the condition (4.41) or (4.44) is reached, after which strain lo-

alization occurs with a strong discontinuity. 

. Conclusions 

Aiming for the modeling of localized failure in quasi-brittle

olids, this paper presents a unified elastoplastic-damage frame-

ork based on the framework of irreversible thermodynamics.

oth concepts of degradation strain rate and damage strain are in-

orporated to develop an elastoplastic damage model, with evolu-

ion laws for the involved internal variables characterized by a dis-

ipative flow tensor. To explore its use in the modeling of strong

r regularized discontinuities, a novel strain localization analysis

s proposed to prognosticate their occurrence based on continu-

ty of tractions on and across the discontinuity (band). The result-

ng kinematic localization condition is in general more demand-

ng than the classical discontinuous bifurcation one. The kinematic

onstraint, on the one hand, is sufficient to guarantee the traction

ontinuity and stress boundedness; on the other hand, it is nec-

ssary to reproduce the consistent loading/unloading deformation

tates upon strain localization in quasi-brittle solids and to guar-

ntee formation of a fully softened discontinuity. 

For such strain localization to occur with a strong (or regular-

zed) discontinuity, it is necessary that Maxwell’s kinematics of the

iscontinuity (band) be reproduced in an appropriate manner. Re-

arding the elastoplastic damage model considered in this work,

he components of the dissipative flow tensor in the directions

rthogonal to the discontinuity orientation have to vanish upon

train localization. Satisfaction of this kinematic constraint allows

eveloping a localized plastic-damage model for the inelastic dis-

ontinuity (band), with both its orientation and the correspond-

ng traction-based failure criterion determined consistently from

he given stress-based counterpart. The projected discontinuity ap-

roach so derived avoids introducing the cohesive zone model in

n ad hoc manner. In particular, the involved model parameters

an be calibrated from available macroscopic material test data as

emonstrated in our previous work ( Cervera and Wu, 2015; Wu

nd Cervera, 2015 ). Furthermore, the right instant for the occur-

ence of strong (or regularized) discontinuities and the introduc-

ion of localized models can also be identified. 

The aforementioned general results are particularized to 2D

onditions of plane stress and plane strain. The discontinuity ori-

ntation and the corresponding traction-based failure criterion are

btained in closed-form for a given stress-based counterpart. Fi-

ally, the Rankine, Mohr–Coulomb, von Mises ( J 2 ) and Drucker–

rager criteria are analyzed as illustrative examples, with the an-

lytical discontinuity angles coincident with those obtained from

umerical simulations. It is found that in the case of plane stress,

train localization with a strong (regularized) discontinuity can oc-

ur at the onset of strain softening. Contrariwise, owing to the

xtra out-of-plane kinematic constraint, in the condition of plane

train some continuous inelastic deformations and substantial re-

rientation of principal strain directions have to take place prior to

train localization. 

So far only homogeneous materials with a single discontinuity

ave been considered. In heterogeneous materials like reinforced

oncrete or other composites, multiple discontinuities may be ini-

iated, possibly with branching. In such complex situations, orien-

ation and spacing of the discontinuities are affected strongly by

he reinforcing phases. It would be instructive to investigate the

pplication and extension of the current method to more challeng-

ng issues. 
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Fig. 13. Elastic limit surface and initial failure surface of the Drucker–Prager criterion in the condition of plane strain. 
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ppendix A. Mohr’s maximization postulate 

Mohr’s maximization postulate ( Mohr, 1900 ) assumes that a

iscontinuity (band) is initiated on the orientation n ( ̂ θ
cr 

) upon

hich the tractions maximize the failure function 

ˆ f 
[
t ( θ) , q 

]
, i.e., 

ˆ 
cr = arg max ˆ f 

[
t ( θ) , q 

]
= arg max ˆ f 

[
σ · n ( θ) , q 

]
(A.1) 

or the characteristic angles ˆ θ
cr 

. Mathematically, the following sta-

ionarity condition holds 

∂ ˆ f 

∂ θ

∣∣∣
ˆ θ

cr 
= 

(
ˆ γ · ∂ t 

∂ θ

)
ˆ θ

cr 

= 

(
ˆ γn 

∂t n 

∂ θ
+ ˆ γm 

∂t m 

∂ θ
+ ˆ γp 

∂t p 

∂ θ

)
ˆ θ

cr 

= 0 (A.2) 

ogether with a negative-definite Hessian matrix ∂ 2 ˆ f /∂ θ
2 

at the

iscontinuity angles ˆ θ
cr 

. 

As the dissipative flow tensor � := ∂ ̂  f /∂ σ is co-axial to the

tress σ ( Itskov, 2007 ), it follows that 

: 
∂ σ

∂ θ
= 2 

3 ∑ 

i =1 

�i σi 

(
v i ·

∂ v i 
∂ θ

)
= 0 (A.3) 

here the identity v i ·
(
∂ v i /∂ θ

)
= 0 , resulting from the relation

 i · v i = 1 , has been considered. Recalling the relations (3.18) , the

tationarity condition (A.2) becomes ( Wu and Cervera, 2015 ) 

∂ ˆ f 

∂ θ

∣∣∣
ˆ θ

cr 
= −

(
�mm 

∂σmm 

∂ θ
+ 2�mp 

∂σmp 

∂ θ
+ �pp 

∂σpp 

∂ θ

)
ˆ θ

cr 

= 0 (A.4) 

s the failure function 

ˆ f ( t , q ) ≤ 0 depends only on the tractions

 := { σ nn , σ nm 

, σ np } 
T , the condition (A.4) is fulfilled for arbitrary

alues of the remaining stress components ( σ mm 

, σ mp , σ pp ), i.e., 

mm 

( ̂  θ
cr 
) = 0 , �pp ( ̂  θ

cr 
) = 0 , �mp ( ̂  θ

cr 
) = 0 (A.5) 

he above relations correspond exactly to the kinematic con-

traints (3.19) . 

If the solution to Eq. (A.5) does not exist, the discontinuity an-

les ˆ θ
cr 

should be determined from another set of solution to Eq.

A.4) 

∂σmm 

∂ θ

∣∣∣
ˆ θ

cr 
= 0 , 

∂σmp 

∂ θ

∣∣∣
ˆ θ

cr 
= 0 , 

∂σpp 

∂ θ

∣∣∣
ˆ θ

cr 
= 0 (A.6) 

ontrariwise, if the solution to the kinematic constraints

3.19) does not exist for the stress-based material model, strain lo-

alization into a strong (regularized) discontinuity cannot occur. In

his exceptional situation, the given stress-based failure criterion

an be modified based on the solution to Eq. (A.6) so that both

amilies of approaches are completely equivalent as shown in Wu

nd Cervera (2014b ; 2015 ); see Appendix B for the 2D cases. 

ppendix B. Exceptional 2D cases 

For 2D cases in which 

ˆ �2 > 0 or ˆ �1 < 0 , the discontinuity an-

le θ cr cannot be determined from Eq. (4.2) . It implies that strain

ocalization into a strong (regularized) discontinuity cannot occur

or the given stress-based failure criterion 

ˆ F ( σ, q ) ≤ 0 . 

In this exceptional situation, some necessary modifications

hould be made in such a way that strain localization into a strong

regularized) discontinuity may still occur in the stress-based in-

lastic solid and the resulting projected discontinuity approach is

ompletely equivalent to a traction-based strong/regularized one.

hat is, the discontinuity angle is given from the solution to Eq.

A.6) , i.e., 

sin ( 2 θ cr ) = 0 θ cr = 

{
0 

̂ �1 > 

̂ �2 > 0 

π/ 2 

̂ �2 < 

̂ �1 < 0 

(B.1) 
hich corresponds to the limit values ˆ �2 = 0 and 

ˆ �1 = 0 in Eq.

4.2) , respectively. 

Accordingly, the given stress-based failure function 

ˆ F ( σ, q ) is

odified as 

ˆ 
 ( σ, q ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 

M 

[ (
ˆ �1 

∣∣∣
ˆ �2 =0 

)
σ1 − ˆ h · q 

] 
ˆ �1 > 

ˆ �2 > 0 

1 

M 

[ (
ˆ �2 

∣∣∣
ˆ �1 =0 

)
σ2 − ˆ h · q 

] 
ˆ �2 < 

ˆ �1 < 0 

(B.2) 

s depicted in Figs. 10 (a) and 12 , this strategy introduces tension-

nd compression-extensions into the original stress-based failure

riterion 

ˆ F ( σ, q ) ≤ 0 . Similarly, the projected traction-based failure

unction f ( t , q ) is given by 

f ( t , q ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 

M 

[ (
ˆ �1 

∣∣
ˆ �2 =0 

)
t n − ˆ h · q 

] 
ˆ �1 > 

ˆ �2 > 0 

1 

M 

[ (
ˆ �2 

∣∣
ˆ �1 =0 

)
t n − ˆ h · q 

] 
ˆ �2 < 

ˆ �2 < 0 

(B.3) 

here the tangential traction is removed from the failure criterion

4.7) . With the above modifications, the stress- and traction-based

odels are completely equivalent to each other as shown in Wu

nd Cervera (2014b ; 2015 ). 

ppendix C. Traction-based failure criteria for the 

rucker–Prager model 

In the case of plane stress, for the discontinuity angle (4.33) it

ollows that 

 n = 

2 

3 

[ 
α
(
1 + α

)
q + 

(
1 − α2 

)(
σ1 + σ2 

)] 
(C.1a) 

 

2 
m 

= −
(√ 

2 / 3 α
∥∥s 

∥∥ + s 1 

)(√ 

2 / 3 α
∥∥s 

∥∥ + s 2 

)
(C.1b) 

Accordingly, the normal and tangential components ( γ n , γ m 

) in

q. (4.6) become 

n = 

1 (
1 + α

)√ 

2 / 3 

∥∥s 
∥∥

(
1 − 4 α2 

)
t n + 2 α

(
1 + α

)
q 

2 

(
1 − α2 

) (C.2a) 

m 

= 

1 (
1 + α

)√ 

2 / 3 

∥∥s 
∥∥ 2 t m 

(C.2b) 

here the norm ‖ s ‖ is evaluated from Eq. (4.32) as 
 

2 

3 

∥∥s 
∥∥ = 

1 

1 − α2 

[ 
2 

3 

(
1 + α

)
q − αt n 

] 
≥ 0 (C.3) 

herefore, the definition (4.7) gives the following traction-based

ailure function 

2 (
1 + α

)√ 

2 / 3 

∥∥s 
∥∥[ 

t 2 m 

− 4 α2 − 1 

4 

(
1 − α2 

) t 2 n + 

α

1 − α
qt n − 1 + α

3 

(
1 − α

)q 2 
] 

≤ 0 (C.4) 

hich can be transformed into the homogeneous failure function

4.34) of degree M = 2 . 

In the case of plane strain, the discontinuity angle (4.43) leads

o the following normal traction t n 

 n = σ1 + σ2 − σ3 = 

(
1 − 4 α2 

)(
σ1 + σ2 

)
+ 2 α

(
1 + α

)
q 

2 

(
1 − α2 

) (C.5) 

hich yields the following relations 

1 + σ2 = 

2 

(
1 − α2 ) t n − 2 α

(
1 + α

)
q 

1 − 4 α2 
(C.6a) 
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σ3 = 

(
1 + 2 α2 

)
t n − 2 α

(
1 + α

)
q 

1 − 4 α2 
(C.6b)

Similarly, the square of the tangential traction t 2 m 

is given by 

 

2 
m 

= −
(
2 s 1 + s 2 

)(
s 1 + 2 s 2 

)
(C.7)

Accordingly, the normal and tangential components ( γ n , γ m 

) are

evaluated from Eq. (4.6) as 

γn = 

3 α

1 + α
, γm 

= 

2 α

1 + α
· t m 

s 1 + s 2 
(C.8)

where the following relation applies 

s 1 + s 2 = 

σ1 + σ2 − 2 σ3 

3 

= 

2 α

3 

(
1 − 4 α2 

)[ 
− 3 αt n + 

(
1 + α

)
q 

] 
≥ 0 

(C.9)

owing to the relation (4.42) . It then follows from Eq. (4.7) that 

f ( t , q ) = 

1 

1 + α

[ 

3 

(
1 − 4 α2 

)(
1 + α

)
q − 3 αt n 

t 2 m 

− 3 αt n + 

(
1 + α

)
q 

] 

≤ 0 

(C.10)

which can be transformed into the form (4.46) . 
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