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a b s t r a c t 

This paper systematically evaluates (in the one-dimensional setting) the performance of a new type of 

integral nonlocal averaging scheme, initially motivated by the idea of internal time that reflects the re- 

duction of the elastic wave speed in a damaged material. The formulation dealing with internal time is 

replaced by the equivalent concept of a modified spatial metric leading to a damage-dependent interac- 

tion distance. This modification has a favorable effect on the evolution of the active part of damage zone 

and leads to its gradual shrinking, which naturally describes the transition from a thin process zone to 

a fully localized crack. However, when a pure damage model (with no permanent strain) is considered, 

the resulting load-displacement diagrams exhibit dramatic snapbacks and excessively brittle behavior in 

the final stages of failure. The concept of damage-dependent interaction distances is therefore extended 

to damage-plastic models and damage models with inelastic (permanent) strain. It is shown that, for 

formulations that consider a part of the strain as irreversible, the overall stress-displacement response 

becomes realistic for quasi-brittle materials such as concrete, for which the diagram typically exhibits a 

long tail. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Integral-type nonlocal formulations of material models with

tress softening are usually based on weighted spatial averaging

ith a fixed weight function that depends on the standard ge-

metric distance between interacting material points ( Pijaudier-

abot and Bažant, 1987; Bažant and Jirásek, 2002 ). Arguments

xplaining the physical motivation for nonlocal averaging have

een advanced for instance in Bažant (1990, 1994) , Bažant and

irásek (1994) . These studies attempt homogenization of the de-

ormations caused by micro-cracks in an elastic solid and indicate

hat non-locality already occurs for dilute homogenization schemes

nd is enhanced by the interactions among microcracks. Differ-

nces in the approach to geometrical modeling of the material mi-

rostructure may lead to different implications for the evolution

f the internal length. Some theories suggest that, at small micro-

rack density, the internal length increases due to the porosity ef-

ect ( Pijaudier-Cabot et al., 2004 ) or due to the boundary effect

 Krayani et al., 2009 ). 
∗ Corresponding author. 
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The nonlocal formulations act as efficient localization limiters

nd provide an objective description of strain localization. They

ead to proper convergence of numerical solutions to meaning-

ul limits characterized by finite energy dissipation ( Pijaudier-

abot and Benallal, 1993 ). However, certain deficiencies of the non-

ocal formulations have been identified ( Geers et al., 1998; Jirásek

t al., 2004; Simone et al., 2004; Krayani et al., 2009; Bažant et al.,

010; Giry et al., 2011; Grégoire et al., 2013 ). 

Starting from the pioneering works ( Pijaudier-Cabot and Ba-

ant, 1987 ; Peerlings et al., 1996 ), the characteristic length has

sually been assumed as constant. In reality, it has to evolve

 Geers et al., 1998 ), which is a fact confirmed by micro-mechanics

nalyses ( Pijaudier-Cabot et al., 2004; Krayani et al., 2009; Sun

nd Poh, 2016 ). A related difficult point is proper modeling of the

oundary effect ( Bažant et al., 2010; Krayani et al., 2009; Giry

t al., 2011 ). The propagation of a crack modeled as a localized

amaged band may not start directly from an existing crack tip in

 pre-cracked structure but rather from a point located at a finite

istance from the tip ( Simone et al., 2004 ). Furthermore, size ef-

ects may be misrepresented ( Jirásek et al., 2004; Grégoire et al.,

013 ) and nonlocal integral weight functions may become non-

ymmetric due to boundary effects ( Borino et al., 2003 ). 

Another problematic aspect is that, physically, material points

ocated on the opposite sides of a stress-free crack should not

https://doi.org/10.1016/j.ijsolstr.2019.06.011
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interact even if their geometric distance is small. This natural

requirement can be taken into account for a pre-existing crack

(or notch), e.g., by defining the interaction distance based on the

shortest path that does not cross the crack (such as in the visibil-

ity check method ( Belytschko et al., 1995; 1996 )). However, such

an adjustment captures only pre-existing cracks and does not re-

flect the effects of a growing process zone that eventually develops

into a new stress-free segment. Another deficiency of the standard

averaging techniques is that, when applied to models with damage

driven by the nonlocal equivalent strain, they lead to a spurious

expansion of the damage profile at late stages of the failure pro-

cess ( Bažant and Pijaudier-Cabot, 1988 ). 

The nonlocal (or gradient/phase field) damage models with

an evolving internal length introduced by a number of authors

( Frémond and Nedjar, 1996; Geers et al., 1998; Simone et al., 2003;

Pijaudier-Cabot et al., 2004; Miehe et al., 2010; Pijaudier-Cabot and

Dufour, 2010; Desmorat et al., 2010; Nguyen, 2011; Saroukhani

et al., 2013 ) could potentially be useful for modeling of a pro-

gressive transition from diffuse damage to strain localization by

bridging Continuum Damage Mechanics and Fracture Mechanics,

reflecting the natural expectation that the nonlocal interactions get

weaker (up to vanishing) when the internal length decreases. The

works cited above are based on different physics; they include

pure phenomenological ( Geers et al., 1998; Simone et al., 2003;

Desmorat et al., 2010; Saroukhani et al., 2013 ) and thermodynam-

ically consistent ( Frémond and Nedjar, 1996; Miehe et al., 2010;

Nguyen, 2011 ) approaches as well as micro-mechanics based ones

( Pijaudier-Cabot et al., 2004; Pijaudier-Cabot and Dufour, 2010 ). 

The objective of this paper is to systematically compare and

evaluate the performance of a new type of nonlocal averaging

( Desmorat et al., 2015 ), initially motivated by the idea of internal

time that reflects the reduction of the elastic wave speed in a dam-

aged material ( Desmorat and Gatuingt, 2007; 2010 ). Instead of in-

ternal time, one can equivalently consider a modified spatial met-

ric leading, in a uniformly damaged body, to a damage-dependent

interaction distance (or effective distance) locally defined as the

standard geometric distance divided by the square root (in terms

of principal values) of the integrity tensor. In the one-dimensional

(1D) non-uniform case, the effective distance ˜ r (x 1 , x 2 ) = ̃  r (x 2 , x 1 )

between two points of abscissa x 1 and x 2 is defined by ( Desmorat

and Gatuingt, 2007 ) 

˜ r (x 1 , x 2 ) = 

∫ max (x 1 ,x 2 ) 

η= min (x 1 ,x 2 ) 

d η√ 

1 − D (η) 
, (1)

where D is the damage variable. Previous studies indicated that

this approach leads to a nice shrinking of the active part of damage

zone, which naturally describes the transition to a fully localized

crack ( Desmorat et al., 2015; Rastiello et al., 2018 ). However, the

resulting load-displacement diagrams exhibit dramatic snapbacks

and excessively brittle behavior in the final stages of failure. 

A known feature of concrete, not captured by the so-called

pure damage models, is that it exhibits permanent strains ( Terrien,

1980; Mazars et al., 1989; 1990; Ragueneau et al., 20 0 0 ), caused

partially by imperfect crack closure and by dissipative processes

related to crack friction. A first modeling framework is the theory

of plasticity, coupled with damage in the so-called Damage-Plastic

Models in the same way as in Govindjee et al. (1995) , Feenstra and

Borst (1996) , Meschke et al. (1998) , Burlion et al. (20 0 0) ,

Nechnech et al. (2002) , Grassl and Jirásek (2006) . A second mod-

eling possibility is to follow Hermann and Kestin (1988) and to

model permanent strains as caused by damage (either isotropic

( Borderie, 1991 ) or anisotropic ( Halm and Dragon, 1998; Desmorat,

2004; Lebon, 2011 ), see also Matallah and Borderie, 2009 ) in con-

stitutive models with damage-driven inelastic strain. In the present

contribution, the concept of damage-dependent interaction dis-

tances is extended from pure damage models (DM) to damage-
lastic models (DPM) and damage models with inelastic (perma-

ent) strain (DMIS). Localization behavior is studied here in 1D,

hich is sufficient for evaluation of the basic characteristics of the

rocess zone and load-displacement diagram. In multiple dimen-

ions, computation of effective distances will require much more

ffort, and only promising formulations that pass the basic 1D test

ill be selected for extension to a more general setting. 

. Local models—Basic equations 

.1. Common framework 

Nonlocal averaging with damage-dependent interaction dis-

ance is in general applicable to any type of continuum damage

odel, but for the present purpose it is sufficient to restrict at-

ention to isotropic models with a single scalar damage variable D .

uch models use the stress-strain law in the form ( Lemaitre and

haboche, 1985 ) 

= (1 − D ) E : ε (2)

here σ is the stress tensor, ε is the strain tensor, and E is the

lastic stiffness tensor. The damage variable D grows from 0 for the

nitially intact material to 1 for the fully damaged material and its

rowth is usually driven by a suitably defined scalar measure of

train called the equivalent strain. The choice of a specific expres-

ion for equivalent strain affects the shape of the elastic domain

n the strain space and thus indirectly also in the stress space. The

implest choices based on the tensorial strain norm or elastic en-

rgy density ( Marigo, 1981 ) would lead to a symmetric behavior in

ension and in compression and therefore are not suitable for qua-

ibrittle materials. Definitions that take into account easier dam-

ge growth under tension include the modified Mises definition

 de Vree et al., 1995 ), Mazars (1984) , standard or smooth Rankine

nd other specifically adjusted expressions. 

In the present paper, only one-dimensional tensile response is

onsidered, and so (2) simplifies to 

= (1 − D ) Eε (3)

here σ is the axial stress, ε is the axial strain, and E is Young’s

odulus. The equivalent strain is then equal to the axial strain.

nder monotonic tensile loading, the damage variable can be di-

ectly linked to the (equivalent) strain by a certain non-decreasing

unction g . The simplest form of the damage law is thus 

 = g(ε) (4)

he specific form of damage function g can be derived from the

niaxial stress-strain diagram. For instance, to obtain a stress-

train diagram with linear elasticity up to the peak stress f t , fol-

owed by exponential softening, one needs to set 

(ε) = 

⎧ ⎨ 

⎩ 

0 for ε ≤ ε 0 

1 − ε 0 
ε 

exp 

(
− ε − ε 0 

ε f − ε 0 

)
for ε > ε 0 

(5)

here ε 0 = f t /E is the limit elastic strain and εf is a parameter

hat controls the steepness of the softening branch. 

In previous studies it was found that, for a pure damage model

ith a local damage law that corresponds to exponential soften-

ng, the enhancement by a nonlocal formulation with interaction

istance proportional to 1 / 
√ 

1 − D (b y Eq. (1) ) leads t o an exces-

ively brittle global response, especially at late stages of the lo-

alization process ( Desmorat et al., 2015 ). One of the main objec-

ives of the present paper is to determine which particular models

nhanced by the nonlocal formulation with damage-dependent in-

eraction distance would lead to a global response characterized

y load-displacement diagrams with a relatively long tail, which is
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ypically found in experiments for concrete and similar quasi-

rittle materials; see Section 4.2 for a specific example and de-

ailed discussion. 

It can be expected that the global response is affected not only

y the local damage law but also by the nature of the underlying

odel. For instance, if the model is enriched by inelastic strains,

amage evolution is slowed down and this might have a favorable

ffect on the shape of the load-displacement diagram. Therefore, in

ur comparative study, we consider the uniaxial stress-strain law

n a more general form 

= (1 − D ) E(ε − ε p ) (6)

here εp is the inelastic (or plastic) strain. To describe the evo-

ution of damage in a general case (not restricted to monotonic

oading), a simple dependence of damage on strain is replaced by

uhn–Tucker loading-unloading conditions 

f d (κd , . . . ) ≤ 0 , ˙ κd ≥ 0 , f d (κd , . . . ) ˙ κd = 0 (7)

n which κd is the damage-driving variable, f d is the damage load-

ng function (which depends not only on κd but also on additional

ariables, to be specified later), and the superimposed dot denotes

he time derivative. The specific definition of f d and κd depends on

he considered type of model. 

.2. Damage model (DM) 

For a pure damage model, no inelastic strain is considered, and

he damage variable is driven by the maximum previously reached

train level. This model fits into the general framework (6)–(7) if

e set 

f d (κd , ε) = ε − κd (8) 

 = g d (κd ) (9) 

 p = 0 (10) 

unction g d controls the shape of the local stress-strain curve and

irectly corresponds to the function previously denoted as g ; see

q. (4) . 

.3. Damage-plastic model (DPM) 

A popular family of damage-plastic models is based on a yield

unction written in terms of the effective stress and on damage

riven by the cumulative plastic strain. Loading-unloading condi-

ions corresponding to the plastic part of the model read 

f p ( . . . , κp ) ≤ 0 , ˙ κp ≥ 0 , f p ( . . . , κp ) ˙ κp = 0 (11)

here f p is the yield function, and κp is the cumulative plastic

train. In the present one-dimensional context with tensile yield-

ng only, the yield function can be defined as 

f p ( ̃  σ , κp ) = ˜ σ − σY (κp ) (12)

here ( Lemaitre and Chaboche, 1985 ) 

˜ = 

σ

1 − D 

= E(ε − ε p ) (13)

s the effective stress and σ Y is a function that describes the de-

endence of the current yield stress on the cumulative plastic

train (isotropic hardening). 

In the present simple case (yielding under uniaxial tension),

here is no difference between the plastic strain and the cumula-

ive plastic strain, which is formally described by the rate equation

˙  p = ˙ κp (14) 
ith the initial values of both εp and κp set to zero. The cumula-

ive plastic strain at the same time plays the role of the damage-

riving variable, and so we set 

f d (κd , ε p ) = ε p − κd (15) 

 = g dp (κd ) (16) 

he shape of the stress-strain diagram is affected by functions σ Y 

nd g dp . 

.4. Model with damage-driven inelastic strain (DMIS) 

In contrast to the previous model with damage driven by plastic

train, here we use the opposite approach. A pure damage model

ith damage driven by the total strain is enhanced by inelastic

train that depends on the damage variable ( Hermann and Kestin,

988; Borderie, 1991; Halm and Dragon, 1998; Lebon, 2011 ). This

s described by 

f d (κd , ε) = ε − κd (17) 

 = g dis (κd ) (18) 

 p = αdis (D ) (19) 

he shape of the stress-strain diagram is affected by functions αdis 

nd g dis . 

.5. Correspondence between local models 

For a fair evaluation of the effects of nonlocality, we need to

ake sure that the local response of the considered models is

he same, or at least similar. The pure damage model (DM) from

ection 2.2 is used as the starting point, and the other two models

rom Sections 2.3–2.4 are adjusted (cross-identified) so that they

ive the same stress-strain curve under monotonic loading. 

According to the damage model (DM) described by (6)–(10) ,

e get 

= σd (ε) ≡ [1 − g d (ε)] Eε (20)

or a given stress-strain diagram described by function σ d , the cor-

esponding damage function is easily evaluated as 

 d (ε) = 1 − σd (ε) 

Eε 
(21) 

or the damage-plastic model (DPM) described by (6) - (7) and

11) –(16) , we first have to evaluate the dependence of the plastic

train on the total strain by solving equation 

(ε − ε p ) = σY (ε p ) (22)

hich can be derived by combining (12) –(14) with the assumption

f plastic yielding, characterized by f p = 0 . Once εp is known as a

unction of ε, we can express from (13) the effective stress 

˜ (ε) = E[ ε − ε p (ε)] (23)

nd then, from (6) combined with (16) , also the nominal stress 

= σdp (ε) ≡ [1 − g dp (ε p (ε))] ˜ σ (ε) 

= [1 − g dp (ε p (ε))] E [ ε − ε p (ε)] (24) 

f function σ dp describing the stress-strain diagram is known, the

bove equations are not sufficient to identify two independent

unctions of the damage-plastic model, g dp and σ Y . One can first

elect an arbitrary function σ Y and then determine 

 dp (ε p ) = 1 − σd (ε p + σY (ε p ) /E) 

σY (ε p ) 
(25)
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Table 1 

Three versions of the DMIS (and two subversions as special cases). 

Version Parameters g dis ( ε) αdis ( D ) 

1 ε 0 , ε f , E ep 1 − 1 

1 + (E ep /E)(ε/ε 0 − 1) 
exp 

(
− ε − ε 0 

ε f − ε 0 

)
g ∗

dis 
(D ) − σd (g ∗

dis 
(D )) 

E(1 − D ) 

1s ε 0 , ε f 1 − exp 

(
− ε − ε 0 

ε f − ε 0 

)
−(ε f − ε 0 ) ln (1 − D ) 

2 α, p implicitly given by (75) αD p 

2s α
ε + α −

√ 

(ε + α) 2 − 4 α[ ε − σd (ε) /E] 

2 α
αD 

3 α
ε − σd (ε) /E 

ε + α

αD 

1 − D 
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In this way, it is possible to construct pairs of functions g dp and

σ Y that correspond to exactly the same stress-strain curve under

monotonic loading but to different unloading branches. 

For the damage model with inelastic strain (DMIS) described

by Eqs. (6) - (7) and (17) –(19) , the stress under monotonic loading

is expressed as 

σ = σdis (ε) ≡ [1 − g dis (ε)] E [ ε − αdis (g dis (ε))] (26)

Again, we have two functions to determine, g dis and αdis . Suppose

that we want to match not only the monotonic stress-strain curve

but also the unloading branches of the diagram that correspond to

the damage-plastic model. These requirements lead to conditions

of equal stress values and equal damage values generated by both

models at each strain level: 

[1 − g dis (ε)] E [ ε − αdis (g dis (ε))] = σd (ε) (27)

g dis (ε) = g dp (ε p (ε)) (28)

The second condition gives directly function g dis , and then from the

first condition we get a formula for the composed function 

αdis (g dis (ε)) = ε − σd (ε) 

E[1 − g dis (ε)] 
(29)

To construct an explicit formula for αdis , we must invert g dis and

then set 

αdis (D ) = g ∗dis (D ) − σd (g ∗
dis 

(D )) 

E(1 − D ) 
(30)

where g ∗
dis 

denotes the inverse function of g dis . 

2.6. Example—Exponential softening 

To provide a specific example, consider a stress-strain diagram

with linear elasticity up to the peak, followed by exponential

softening. Under monotonic loading, the dependence of stress on

strain is described by 

σ (ε) = 

⎧ ⎨ 

⎩ 

Eε for ε ≤ ε 0 

f t exp 

(
− ε − ε 0 

ε f − ε 0 

)
for ε > ε 0 

(31)

where f t is the tensile strength, ε 0 = f t /E is the limit elastic strain,

and εf is a parameter that controls the steepness of the softening

branch. This is the model that was used in one-dimensional exam-

ples in Desmorat et al. (2015) . 

For the pure damage model (DM) , we need to get σd (ε) =
σ (ε) , and so the damage function has to be set to 

g d (ε) = 1 − σ (ε) 

Eε 
= 

⎧ ⎨ 

⎩ 

0 for ε ≤ ε 0 

1 − ε 0 
ε 

exp 

(
− ε − ε 0 

ε f − ε 0 

)
for ε > ε 0 

(32)

as already indicated in (5) , where the damage function was de-

noted simply as g . 
Since the monotonic stress-strain law does not uniquely define

he models with plastic or inelastic strains, we use an additional

ssumption that the damage-plastic model (DPM) is characterized

y linear hardening of its plastic part . The dependence of the ef-

ective yield stress on plastic strain is thus given by 

Y (ε p ) = f t + Hε p (33)

here f t is the initial yield stress (playing also the role of tensile

trength) and H ≥ 0 is the hardening modulus. To get the same ex-

onential softening law (31) as for the damage model, we need to

efine the damage function of the damage-plastic model according

o (25) as 

 dp (ε p ) = 1 − σd (ε p + σY (ε p ) /E) 

σY (ε p ) 

= 1 − f t 

f t + Hε p 
exp 

(
− (1 + H/E) ε p 

ε f − ε 0 

)
(34)

or the linear hardening law (33) , Eq. (22) has a linear form 

(ε − ε p ) = f t + Hε p (35)

nd can be solved analytically. The resulting dependence of plastic

train on total strain (during monotonic loading) is given by 

 p (ε) = 

Eε − f t 

E + H 

(36)

ow we can proceed to the damage model with inelastic strain

DMIS) and match it to the DPM model. Various versions of the

MIS model can be constructed, with the same monotonic stress-

train curve (exponential) but different rules for the slope of un-

oading branches. Three typical cases are analyzed in detail in

ppendix A and summarized in Table 1 . 

Version 1 is constructed such that the local stress-strain curve

including unloading) exactly matches that obtained with the DP

odel. Parameter H of the DP model, which represents the plastic

odulus, is transformed into the elastoplastic modulus 

 ep = 

EH 

E + H 

(37)

or a nonzero value of H , function g dis cannot be inverted in closed

orm and the inverse function g ∗
dis 

must be evaluated numerically.

n the special case of H = 0 , which is in Table 1 referred to as ver-

ion 1s, function g dis gets simpler and its inversion can be done

nalytically, which leads to a closed-form expression for function

dis . 

Instead of matching the unloading response to the DP model,

ne can match only the response during monotonic loading and

elect the specific form of function αdis as needed. If this function

s postulated as a power law with a general exponent p , the corre-

ponding function g dis cannot be obtained in closed form and must

e computed numerically; see version 2 in Table 1 . In the special

ase with exponent p = 1 (version 2s in Table 1 ), an analytical for-

ula for g dis can be derived. Also, for another simple form of αdis 

iven by αD/ (1 − D ) (which goes to infinity when D tends to 1),
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he corresponding function g dis can be constructed; see version 3

n Table 1 . A detailed analysis of the specific forms of functions

 dis and αdis for individual versions of the model is provided in

ppendix A . 

.7. Algorithmic treatment 

For the pure damage model, the evaluation of damage and

tress that correspond to a given strain increment is straightfor-

ard. For the damage-plastic model, it could be somewhat more

nvolved in a general multiaxial case—one would need to first com-

ute the effective stress and cumulative plastic strain using an

lastoplastic stress-return algorithm and then evaluate the result-

ng damage and nominal stress ( Grassl and Jirásek, 2006; Valen-

ini and Hofstetter, 2013 ). However, in the present uniaxial case,

he elastoplastic stress return algorithm can be replaced by simple

ules that compare the elastically evaluated trial stress with the

tress value that would correspond to the current total strain un-

er monotonic loading. 

More attention needs to be paid to the damage model with in-

lastic strain, which can be considered in several versions that dif-

er by the rules for unloading; see Table 1 . The stress evaluation

lgorithm for the DMIS can be summarized as follows: 

1. First, the value of κd is determined by updating the maxi-

mum strain reached so far. 

2. The next step depends on the particular version of the

model. 

(a) Version 1, including 1s: Based on Eqs. (18) and (66) , we

compute damage and inelastic strain: 

D = g dis (κd ) 

= 1 − 1 

1 + (E ep /E)(κd /ε 0 − 1) 
exp 

(
−κd − ε 0 

ε f − ε 0 

)
(38) 

ε p = βdis (κd ) = 

E 

E + H 

(κd − ε 0 ) (39) 

(b) Version 2: Based on Eq. (75) , with σ d ( ε) given by

(31) and αdis ( D ) by (78) , we compute damage iteratively

as the limit of D k given by 

D k = D k −1 −
F (D k −1 ) 

F ′ (D k −1 ) 
, k = 1 , 2 , . . . (40)

starting from D 0 = 0 and checking that the iterated val-

ues remain between 0 and 1. Function F and its derivative

F ′ are defined in (79) - (80) . Then we evaluate 

ε p = αdis (D ) (41) 

(c) Version 2s: Based on Eqs. (71) and (73) , with σ d ( κd )

given by (31) , we compute damage and inelastic strain: 

D = g dis (κd ) = 

κd + α

2 α

−
√ (

κd − α

2 α

)2 

+ 

ε 0 
α

exp 

(
− ε − ε 0 

ε f − ε 0 

)
(42) 

ε p = αdis (D ) = αD (43) 

(d) Version 3: Based on Eq. (74) , with σ d ( ε) given by

(31) and αdis ( D ) by (81) , we compute damage and inelas-

tic strain: 

D = g dis (κd ) = 

κd − σd (κd ) /E 

κd + α

= 

κd 

κd + α
− ε 0 

κd + α
exp 

(
− ε − ε 0 

ε f − ε 0 

)
(44) 

ε p = α (D ) = α
D 

(45) 
dis 1 − D 
3. Finally, the stress is obtained as 

σ = (1 − D ) E(ε − ε p ) (46)

. Nonlocal formulations 

.1. Fixed interaction distance 

In general, nonlocal formulations of the models described in

ections 2.1 –2.4 can be based on weighted spatial averaging of the

amage-driving variable. The standard nonlocal approach would

se a fixed weight function α( x, ξ ), defined for instance as 

(x, ξ ) = 

α0 (| x − ξ | ) ∫ 
L α0 ( | x − η| ) d η

, r = | x − ξ | (47)

here L is the one-dimensional domain of interest, usually taken

s the interval [0, L ] where L is the length of the analyzed bar, and

0 is a suitable function describing the decay of nonlocal interac-

ion effects with increasing distance r . This function can be taken

or instance as 

0 (r) = 

〈
1 −

(
r 

R 

)2 
〉2 

(48) 

here 〈 . . . 〉 are Macauley brackets (denoting the positive part, i.e.,

 x 〉 = max (0 , x ) ), and R is a model parameter with the dimension

f length, which reflects the internal length scale of the material

nd is referred to as the nonlocal interaction radius. Physically, R

hould be related to the size and spacing of major heterogeneities

n the material microstructure. Standard nonlocal models consider

he interaction radius R as a fixed parameter. Since the growth of

efects modifies the microstructure and affects mechanical interac-

ions on the scale of heterogeneities, it is more realistic to treat the

nteraction distance as evolving, which motivates the modifications

hat will be introduced in Section 4.3 . 

For the pure damage model (DM), damage is driven by

he maximum previously reached value of the equivalent strain,

hich, in the one-dimensional case, equals the total strain. In

isplacement-based versions of the finite element method, the

train at the end of an incremental computational step is itera-

ively updated, and in each iteration it is treated as a given quan-

ity. Therefore, evaluation of the nonlocal strain 

¯ (x ) = 

∫ 
L 
α(x, ξ ) ε(ξ ) d ξ (49)

s fully explicit. The same holds for the DMIS. In nonlocal versions

f these models (DM or DMIS), Eq. (8) or (17) is replaced by 

f d (κd , ε̄ ) = ε̄ − κd (50) 

he stress evaluation algorithm remains the same, just the mean-

ng of the damage-driving variable is different. If needed, one could

lso use an over-nonlocal formulation, with the loading function

efined as 

f d (κd , ε̄ , ε) = m ̄ε + (1 − m ) ε − κd (51)

here m is an additional dimensionless parameter. Values m = 0

nd m = 1 would correspond to the local model and standard

onlocal model, respectively. The so-called over-nonlocal formula-

ion uses m > 1. It was originally proposed for nonlocal plasticity

 Vermeer and Brinkgreve, 1994; Strömberg and Ristinmaa, 1996 ),

nd later adapted to nonlocal plasticity combined with damage

 Grassl and Jirásek, 2006 ), but it is in principle applicable to dam-

ge with inelastic strain as well. 

For the damage-plastic model, the damage-driving variable is

he maximum previously reached value of the cumulative plas-

ic strain. In the nonlocal version and one-dimensional setting,

q. (15) is replaced by 

f d (κd , ε̄ p ) = ε̄ p − κd (52) 
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where 

ε̄ p (x ) = 

∫ 
L 
α(x, ξ ) ε p (ξ ) d ξ (53)

is the nonlocal plastic strain. In a general multiaxial setting, the

nonlocal cumulative plastic strain would be used. Again, one can

envision an over-nonlocal formulation ( Grassl and Jirásek, 2006 ),

with 

f d (κd , ε̄ p , ε p ) = m ̄ε p + (1 − m ) ε p − κd (54)

3.2. Damage-dependent interaction distance 

The nonlocal formulations described in the previous subsection

consider the nonlocal weight function α0 ( r ) as fixed. The strength

of nonlocal interaction decays with increasing distance r between

points x and ξ . 

As mentioned in the Introduction, a constant internal length

(here the nonlocal interaction radius R ) associated with the stan-

dard definition r = | x − ξ | of the interaction distance between

points x and ξ provides regularization and removes pathological

sensitivity to the mesh, but also leads to a spurious expansion of

the damage profile at late stages of the failure process ( Bažant and

Pijaudier-Cabot, 1988 ). This is due to the fact that, in the averag-

ing of the damage-driving variable, points located on the oppo-

site sides of a highly damaged zone interact in the same man-

ner as in the zero- or low-damage case. A new form of nonlocal

integral averaging that makes a highly damaged zone (at D ≈ 1)

equivalent to a crack has been proposed in Desmorat and Gatu-

ingt (2007, 2010) and Desmorat et al. (2010) , following the idea

that elastic wave propagation is slowed down by a damage field,

possibly heterogeneous, in a so-called nonlocal integral formula-

tion with an internal time instead of an internal length (see also

Rojas-Solano et al., 2013 , in which the non-local interactions are

computed by means of thermal expansions of circular inclusions

centered at each material point). 

Analogy with formulations based on internal time motivates

nonlocal models with interaction distance modified by damage. In

1D, the effective distance ˜ r between points x and ξ is defined in

(1) , for easier reference rewritten here: 

˜ r (x, ξ ) = 

∫ max (x,ξ ) 

min (x,ξ ) 

d η√ 

1 − D (η) 
(55)

The effective distance is then used for evaluation of the modified

nonlocal weight function 

α(x, ξ ) = 

α0 ( ̃ r (x, ξ )) ∫ 
L α0 ( ̃ r (x, η)) d η

(56)

Evaluation of the effective distance is greatly facilitated by the fact

that, in the one-dimensional space, points x and ξ are connected

by one single path (straight segment) and the effective distance is

obtained simply by summing the effective lengths of all infinitesi-

mal segments into which this path is divided. In multiple dimen-

sions, a straight path does not always lead to the shortest effective

distance, and minimization over all possible continuous paths con-

necting x with ξ needs to be invoked ( Desmorat et al., 2015 ): the

effective distances are computed in a Riemannian space curved by

damage (see ( Rastiello et al., 2018 ) for 2D computations using Fast

Marching methods). The associated (general) computational proce-

dures are not studied in the present work. Here we focus on funda-

mental localization properties of models with damage-dependent

nonlocal interaction (55) , which can be assessed in one spatial di-

mension. 

3.3. Evaluation of effective distance by numerical integration 

In numerical simulations by finite elements, the integral in

(55) must be approximated by a finite sum, and it is natural and
onvenient to use the same set of Gauss integration points that are

sed for the evaluation of internal forces and stiffness coefficients.

ypically, linear two-node elements with one integration point per

lement are used. 
Suppose that the Gauss points are numbered consecutively and

rranged in ascending order according to their x -coordinate. In a
traightforward implementation, the numerical evaluation of the
ffective distance between points x i and x j (with j > i ) can be based

n the trapezoidal rule, which leads to 

˜  (x i , x j ) = 

∫ x j 

x i 

d x √ 

1 − D (x ) 

≈
j ∑ 

k = i +1 

1 

2 

( 

1 √ 

1 − D (x k −1 ) 
+ 

1 √ 

1 − D (x k ) 

) 

(x k − x k −1 ) (57)

his rule would be exact if the function 1 / 
√ 

1 − D (x ) were linear

etween the neighboring Gauss points. However, if D approaches 1

t the center of the damage zone, function 1 / 
√ 

1 − D (x ) becomes

ighly nonlinear and the integration error increases. Numerical re-

ults show that the distribution of damage between neighboring

auss points is close to linear, and so it is better to approximate

 ( x ) by a linear function and perform an analytical integration. The

ontribution of one typical subinterval is then evaluated as 
 x k 

x k −1 

d x √ 

1 − D (x ) 
≈

∫ x k 

x k −1 

d x √ 

1 − D (x k −1 ) 
x k −x 

x k −x k −1 
− D (x k ) 

x −x k −1 

x k −x k −1 

= 

2(x k − x k −1 ) √ 

1 − D (x k −1 ) + 

√ 

1 − D (x k ) 
(58)

nd the resulting modified distance is given by 

˜ 
 (x i , x j ) = 2 

j ∑ 

k = i +1 

x k − x k −1 √ 

1 − D (x k −1 ) + 

√ 

1 − D (x k ) 
(59)

n the next section, it will be demonstrated that numerical re-

ults obtained with this improved integration scheme are better,

ot only for the pure damage model ( Fig. 1 a), but also for the

amage-plastic model ( Fig. 3 ) and for the damage model with in-

lastic strain ( Fig. 6 ). 

. Numerical results for models with exponential softening 

.1. Setup of the uniaxial localization test 

Localization properties of nonlocal versions of the constitutive

odels DM, DPM and DMIS described in Section 2 will be stud-

ed via simulations of a prismatic bar fixed at its left end and

ubjected to an increasing displacement imposed at its right end.

ody forces, inertia effects and rate dependence of the material

esponse are neglected, which means that the equilibrium condi-

ion is reduced to the condition of uniform stress along the bar.

he bar length is set to L = 100 mm and the sectional area is sup-

osed to be constant along the bar (its precise value is irrelevant

ecause all the results will be presented in terms of stresses in-

tead of forces). The material is characterized by Young’s modulus

 = 30 GPa and uniaxial tensile strength f t = 3 MPa, which corre-

ponds to the limit elastic strain ε 0 = f t /E = 10 −4 . The local stress-

train curve under monotonic loading is supposed to be given by

31) , with ε f = 10 −3 . Objectivity of the model and finite energy

issipation are enforced by a nonlocal formulation. The bell-shaped

olynomial weight function (48) is used, with the radius of nonlo-

al interaction set to R = 20 mm. 

The present study is focused on the evolution of the dam-

ge zone inside the specimen and on the global post-peak re-

ponse. The meshes are graded such that the spatial resolution in
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Fig. 1. (a) Influence of the integration scheme on stress-displacement diagrams for nonlocal damage model with damage-dependent nonlocal interaction: “trapezoidal” = 

effective distance evaluated using (57) , “modified” = effective distance evaluated using (59) , (b) cohesive curve extracted by subtracting the elastic elongation. 
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he expected damage zone near the middle section is sufficient.

he number of elements is always odd and the axis of symmetry

asses through the center of an element (not through a node of

he finite element mesh). Localization is triggered by the reduc-

ion of the sectional area of the central element by 0.1%. The mesh

eferred to as “coarse” consists of 45 elements and the element

ize in the damage zone is equal to 2 mm. The mesh referred to

s “medium” consists of 121 elements and the element size in the

amage zone is equal to 0.95 mm. The mesh referred to as “fine”

onsists of 241 elements and the element size in the damage zone

s equal to 0.49 mm. 

Even though the weakened element is located in the middle of

he bar and damage is first initiated in this element, the subse-

uent evolution of the numerically resolved damage zone may lead

o a loss of symmetry, due to round-off error. In computations on

ery fine meshes, the damage process is sometimes attracted by

ne of the boundaries. The effect of a boundary on the nonlocal

veraging operator is a separate issue, not treated in the present

tudy. Since we deliberately restrict attention to localized solutions

naffected by the boundary, it is desirable to keep the center of the

rocess zone in the middle of the bar. This could be achieved by

sing a more dramatic weakening of the central element. In the

resent context, it is preferable to keep the imposed imperfection

s small as possible, in order to reduce its effect on the final stages

f localization, when damage grows in only a few elements around

he weakened one. 

It turns out that potential localization at the boundary can be

fficiently suppressed by imposing symmetry of the solution with

espect to the middle section of the bar (because then the damage

one cannot localize at one boundary only but it would have to

ocalize at both, which is energetically less favorable). In the nu-

erical model, symmetry is enforced by treating the nodal dis-

lacements in the left half of the bar as primary unknowns and

he nodal displacements in the right half of the bar as dependent

uantities (symmetrically mirrored), using the master-slave con-

ept. Of course, the boundary conditions need to be adjusted in

he sense that one half of the bar elongation is applied on the left

oundary in the negative direction and the other half on the right

oundary in the positive direction. To capture potential snapbacks

n a stable way, the simulation is run under indirect displacement

ontrol, with the elongation of the weakest element used as a

onotonically increasing control variable. 

.2. Damage model (DM) 

For the pure damage model with exponential softening, one-

imensional simulations of strain localization were performed in
esmorat et al. (2015) , with the conclusion that the global re-

ponse of the bar becomes increasingly brittle at later stages

f the localization process. The computed load-displacement dia-

rams (here actually stress-displacement diagrams) exhibit a dra-

atic snapback. To capture this behavior in a stable way, the sim-

lation is performed under indirect displacement control, with the

ontrol variable defined as the relative displacement of the nodes

f the element crossing the axis of symmetry. Equivalently, one

ould describe the loading process as being controlled by the max-

mum local strain. 

Despite the careful choice of the control variable, it turns out

hat a simulation with evaluation of the effective interaction dis-

ance based on the trapezoidal rule (57) leads to a solution which

oes not evolve in a continuous fashion until complete failure of

he specimen. At a certain stage of the degradation process, the

umerical solution (stress and total elongation of the bar) changes

y a jump within one incremental step, even if the step size is

rescribed as very small (see the dashed curve in Fig. 1 a). This

ump in global response is accompanied by a sudden localization of

amage increments into one single element (while before the jump

he zone of growing damage spans over five or more elements).

he dashed curve plotted in Fig. 1 has been obtained for the coarse

esh but the same problem arises even for finer meshes. 

A careful examination of the numerical solution reveals that

he problem originates from a poor performance of the trapezoidal

ule applied to the integral in (57) . If the integral is evaluated us-

ng formula (59) , which is better adapted to the highly nonlin-

ar character of the integrated function for damage values close

o 1, then the simulations lead to a continuous response; see the

olid curve in Fig. 1 a. However, the diagram still exhibits snapback

nd the behavior at late stages of localization can be characterized

s extremely brittle. This might be realistic for certain materials,

ut not for quasibrittle materials such as concrete, which are typi-

ally characterized by load-displacement diagrams with an initially

teep descent followed by a long tail. Of course, if the quasibrit-

le specimen is large, the load-displacement diagram may exhibit

napback, but this would happen just after the peak and the soft-

ning part of the diagram would be convex. 

Since the shape of the load-displacement diagram for a bar un-

er tension is strongly affected by the bar length, it is useful to

ubtract the contribution of the elastic deformation from the to-

al bar elongation and present the softening curve as the relation

etween stress and the inelastic part of elongation, which can be

nterpreted as the opening of an equivalent fictitious (cohesive)

rack. For the numerical results obtained with the nonlocal dam-

ge model using the modified integration scheme, this is done in

ig. 1 b. For each stress level between 0 and f t = 3 MPa, the inelas-
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tic elongation (i.e., the equivalent cohesive crack opening) is evalu-

ated as the difference between the displacements in the post-peak

part and in the pre-peak part of the complete diagram. In the pre-

peak part, the response is exclusively elastic and the corresponding

displacement is easily expressed as u el = Lσ/E. The resulting dia-

gram in Fig. 1 b is characterized by a gradual descent in the initial

part, followed by a dramatic drop to almost zero stress at nearly

constant crack opening. Such shape of softening curve is substan-

tially different from cohesive diagrams that are used in concrete

modeling (either directly as the law characterizing a fictitious crack

model, or after transformation to inelastic strain as one ingredient

of a smeared crack model). 

In the literature, various types of cohesive diagrams for con-

crete, masonry and rock have been recommended, but none of

them has a concave shape. The simplest one is a linear softening

diagram, which often leads to relatively poor fits of experimental

data. The agreement can be improved by using convex softening

diagrams of the bilinear or exponential type. The optimal shape of

the diagram for concrete was studied in detail by Hordijk (1991) ,

who suggested to use a rather complicated relation 

σ

f t 
= 

(
1 + 

(
c 1 w 

w c 

)3 
)

exp 

(
− c 2 w 

w c 

)
− w 

w c 

(
1 + c 3 1 

)
exp (−c 2 ) (60)

where w c is the critical crack opening at which the stress vanishes,

and c 1 and c 2 are additional dimensionless parameters that control

the shape of the curve. 

Convexity of softening curves for concrete has been confirmed

by many experiments. In principle, the softening curve can be di-

rectly extracted from tension tests ( Gopalaratnam and Shah, 1985;

Lee et al., 2008 ), which are rather scarce for concrete, because they

are not so easy to perform in a stable way in the post-peak range.

An alternative procedure is to identify the optimal softening curve

by inverse analysis of other tests that lead to tensile failure, e.g., of

bending or wedge-splitting tests. To provide an example, Fig. 2 b

shows data obtained from three-point bending tests on notched

concrete beams reported in Chen and Su (2013) . The figure con-

tains the characteristics of several different types of concrete with

compressive strength ranging from 40 to 90 MPa. To facilitate the

comparison, stresses on the vertical axis are normalized by the

tensile strength and crack openings on the horizontal axis by the

critical crack opening for each particular concrete. The solid curve

in Fig. 2 b corresponds to the Hordijk law (60) with c 1 = 3 and

c 2 = 6 . 93 . It is clear that the overall shape with initial steep soft-

ening followed by a longer tail is quite universal and is properly

captured by the Hordijk formula. Of course, the fit could further

be improved by adjusting the optimal values of parameters c 1 and

c 2 for each concrete type separately. 
Fig. 2. (a) Normalized load-displacement diagrams for concrete bars of length 100 mm, 

curves from Chen and Su (2013) and their fit by formula (60) . 
Using the analytically described cohesive curve with c 1 = 3 and

 2 = 6 . 93 as an example for demonstration purposes, it is now pos-

ible to show how the load-displacement curve under uniaxial ten-

ion would be affected by the bar length. Consider the same ma-

erial properties as in the previous computations, i.e., f t = 3 MPa

nd E = 30 GPa, and let us set the critical crack opening to w c =
00 μm, which is a typical value. For each value of crack open-

ng w between 0 and w c , it is easy to evaluate the corresponding

tress σ from (60) and then calculate the total elongation of a bar

f length L as u = w + Lσ/E. In this way, the softening branch of

he diagram is constructed, while the initial elastic branch is de-

cribed simply by u = Lσ/E. The resulting diagrams for bar length

 set respectively to 10 0 mm, 40 0 mm and 800 mm are shown in

ig. 2 a. For a very short bar, the contribution of elastic deforma-

ion is relatively small and the post-peak part of the diagram is

imilar to the initial cohesive curve, just rescaled from the normal-

zed variables to the physical variables. For longer bars, the elastic

ompliance plays a more important role and unloading of long bar

egments around the process zone may lead to a softening branch

ith snapback. As already mentioned, this snapback occurs at an

arly stage of softening and the shape of the softening branch re-

ains convex. 

The foregoing discussion shows that the global response of

 bar simulated by the nonlocal damage model with damage-

ependent interactions, characterized by the load-displacement

urve in Fig. 1 a, is not realistic for quasibrittle materials such as

oncrete. It is therefore interesting to check whether a more real-

stic shape of the softening branch could be obtained for damage

odels that combine stiffness degradation with irreversible strains,

n the form of either a damage-plastic formulation, or a damage

odel with inelastic strain. Modification of the function used in

he damage law could be an alternative remedy, to be examined

ater in Section 5 and in Appendix C . 

.3. Damage-plastic model (DPM) 

As the starting point, we consider a formulation based on the

lastic model with linear plastic hardening described by (33) , for

hich the dependence of plastic strain on total strain (during

onotonic loading) is given by (36) . The softening curve is consid-

red as exponential, which leads to function g dp defined by (34) . 

Localization behavior of the nonlocal version of the damage-

lastic model depends on the choice of the plastic modulus H .

n Grassl and Jirásek (2006) it was shown that, in the context of

 standard nonlocal formulation, H = 0 leads to a fully localized

lastic zone. This is similar to the so-called basic nonlocal plastic

odel, which was analyzed, e.g., in Jirásek and Rolshoven (2003) .
400 mm and 800 mm, (b) normalized plot of experimentally determined cohesive 
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Fig. 3. Influence of the element size and integration scheme on stress-displacement diagrams for DPM with parameters H = E/ 30 and m = 2 . 

Fig. 4. Stress-displacement diagrams for DPM with various combinations of parameters. 
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n numerical simulations, the local plastic strain always localizes

nto one finite element, but the dissipation tends to a nonzero limit

s the mesh is refined. The nonlocal plastic strain is nonzero in an

nterval of length 2 R where R is the nonlocal interaction radius.

ince the nonlocal plastic strain is the variable that drives damage,

he damage variable is also nonzero in this interval. A finite size of

he plastic zone is obtained if the plastic modulus H is set to a pos-

tive value, or if the damage is considered to be driven, according

o (54) , by the over-nonlocal plastic strain m ̄ε p + (1 − m ) ε p with

 > 1, or if both modifications are combined ( H > 0 and m > 1). 

The first simulation is performed with H = E/ 30 = 1 GPa and

 = 2 . All other parameters have the same values as in the previ-

us case of a pure damage model, presented in Section 4.2 . Nonlo-

al interaction weights are computed using the damage-dependent

ffective distance (55) . The resulting stress-displacement curve

lotted in Fig. 3 a has a slightly concave shape and, in contrast to

he curve obtained with the pure damage model ( Fig. 1 ), does not

xhibit a dramatic snapback. A closer examination of the terminal

art of the curve reveals a slight snapback at a stage very close

o complete failure, i.e., at a very low stress; see the close-up in

ig. 3 b. The active part of the plastic zone gradually shrinks and

he snapback occurs when the plastic strain increments become

oncentrated into one single element. This phenomenon is reduced

f the mesh is refined, and also if the damage-dependent effective

istance is evaluated using the modified scheme (59) instead of the

rapezoidal rule (57) . The quality of results obtained with the mod-

fied rule on the medium mesh is comparable to those obtained

ith the trapezoidal rule on the fine mesh. As the mesh is refined,

he results seem to converge to a reasonable limit curve which has

o snapback. 

Fig. 4 shows how the shape of the stress-displacement curve is

ffected by model parameters. For reference, the results obtained

ith H = E/ 30 and m = 2 are shown as the dashed curve. The
olid curve corresponds to an over-nonlocal model without hard-

ning ( H = 0 and m = 2 ); it has a slightly convex shape with a

hort tail. The dotted curve corresponds to a nonlocal (not over-

onlocal) model with hardening ( m = 1 , H = E/ 30 ). The shape is

lightly concave, quite close to a straight line. Reduction of param-

ter m leads to a more brittle response, with reduced area under

he stress-displacement curve. On the other hand, increasing m to

 would lead to a wider damage profile and lower post-peak slope

f the stress-displacement curve. We can compensate for that by

educing the nonlocal interaction radius R . The dash-dotted curve

n Fig. 4 corresponds to an over-nonlocal formulation with m = 3 ,

o hardening of the underlying plastic model ( H = 0 ) and nonlocal

nteraction radius set to R = 0 . 015 m instead of the value R = 0 . 02

, used in all the other simulations. The resulting shape of the

tress-displacement diagram is very similar to that obtained for

 = 2 and R = 0 . 02 m (solid curve). 

As shown in Fig. 5 a, the intermediate damage profiles obtained

ith H = 0 have a flat central part, but the final damage profile

s nicely localized and damage tends to 1 at one section only. The

at central part of the damage profile is a characteristic feature of

onlocal damage-plastic models with no plastic hardening, as al-

eady observed in Grassl and Jirásek (2006) . The zone of uniform

amage corresponds to the active plastic zone, i.e., to the inter-

al in which the local plastic strain is growing. In this interval,

he yield condition is satisfied and, since the stress must be uni-

orm along the whole bar (due to equilibrium), the product of the

ffective yield stress and the integrity factor 1 − D must be uni-

orm along the active part of the plastic zone. For the formula-

ion with a perfectly plastic model ( H = 0 ) extended by damage,

he effective yield stress remains equal to f t , which leads to a uni-

orm distribution of damage along the active part of the plastic

one. Damage is driven by the nonlocal plastic strain, and so the

one of growing damage is larger than the plastic zone, due to the
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Fig. 5. Evolution of the damage profiles for DPM with parameters (a) H = 0 and m = 2 , (b) H = E/ 30 and m = 1 . 

Fig. 6. Influence of the integration scheme on stress-displacement diagrams for 

DMIS (version 2, α = 10 −3 , p = 0 . 8 ). 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

o  

m  

S  

m  

t  

f  

a

 

a  

l  

m  

l  

m  

D  

l  

s  

p  

r  

(  

t  

o  

l

 

v  

d  

d  

e  
effect of nonlocal averaging. However, both zones gradually shrink

and damage tends to 1 exclusively in the central cross section. A

more usual shape of the damage profiles is obtained for nonlocal

damage-plastic models with a positive plastic modulus ( H > 0), ir-

respective of whether the formulation is standard nonlocal ( m = 1 )

or over-nonlocal ( m > 1); see Fig. 5 b. 

The results are encouraging—the damage-plastic model

with damage-dependent nonlocal interaction provides stress-

displacement curves that do not exhibit a dramatic snapback

and, for the over-nonlocal damage formulation combined with

a perfectly plastic backbone model, the curves can even have a

slightly convex shape with a short tail, while the active part of the

damage zone gradually shrinks (which would not be the case for

a nonlocal damage-plastic model with fixed interaction weights). 
Fig. 7. Stress-displacement diagrams for 
.4. Damage model with inelastic strain (DMIS) 

Let us now check whether a similar improvement of the shape

f load-displacement diagrams can be achieved if the damage

odel is enriched by inelastic strain, as described in Section 2.4 .

ame as for the previously discussed models (DM and DPM), the

odified integration scheme based on (59) leads to better results

han the trapezoidal rule (57) ; see an example in Fig. 6 , computed

or version 2 of DMIS. Therefore, all subsequently reported results

re computed using the modified scheme. 

For versions 1 and 2 of the model, the stress-displacement di-

grams exhibit snapback; see Fig. 7 . Version 1 would give in the

ocal 1D setting exactly the same response as the damage-plastic

odel introduced in Section 2.3 . However, the nonlocal formu-

ation leads to a different behavior, because the damage-plastic

odel evaluates damage from the nonlocal plastic strain while the

MIS evaluates plastic strain as well as damage from the non-

ocal total strain. The solid curve in Fig. 7 a corresponds to ver-

ion 1 of DMIS derived from a damage-plastic model with no

lastic hardening ( H = 0 ), and the dashed curve to the DMIS de-

ived from a damage-plastic model with linear plastic hardening

 H = E/ 30 ). The response is continuous (thanks to the modified in-

egration scheme) but the shape of the curves is similar to those

btained with the pure damage model, just the snapback occurs

ater. 

The overall shape of the curve remains the same even for

ersion 2s with inelastic strain proportional to damage; see the

ashed curve in Fig. 7 b. If the dependence of inelastic strain on

amage is described by the power law (78) , i.e., ε p = αD 

p , with

xponent p higher or smaller than 1, the shape is still the same;
DMIS: (a) version 1, (b) version 2. 
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Fig. 8. Stress-displacement diagrams for version 3 of DMIS. 
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ee the dotted and solid curves in Fig. 7 b. An increase of param-

ter α only extends the ductile part of the curve and shifts the

napback to a later stage; see the dash-dotted curve. 

Interestingly, quite an acceptable shape of the stress-

isplacement diagram is obtained with version 3 of the DPS

odel, which uses the hyperbolic law (45) . Fig. 8 shows the

iagrams obtained with various values of parameter α. The curves

ave a steep initial part followed by a very long tail. The tail is

ven somewhat too long, especially for the dashed curve that

orresponds to α = 10 −4 . A reasonable load-displacement diagram

as obtained with α = 0 . 5 · 10 −4 ; see the solid curve. 

The evolution of damage, strain and plastic strain in the sim-

lation with α = 0 . 5 · 10 −4 is plotted in Fig. 9 . Plastic strains are

ocalized in a narrow band ( Fig. 9 d) while damage is more spread

ut ( Fig. 9 a). In reality, the band in which plastic strain is nonzero

oincides with the band in which damage is nonzero, but the

lastic strain values that correspond to moderate damage levels

re very small. For instance, for D = 0 . 5 the corresponding plastic

train is equal to α, which is only 0 . 05 · 10 −3 and on the scale of
Fig. 9. Version 3 of DMIS with α = 0 . 5 · 10 −4 : evolution of the p
ig. 9 d such strains appear to be negligible. Plastic strains exceed-

ng 0 . 5 · 10 −3 are attained only at points where damage exceeds

0/11. The final shape of the damage profile seems to be rounded

ut the band in which damage grows at late stages of the process

s extremely narrow and eventually shrinks to one single integra-

ion point; see Fig. 9 b (in this graph, values computed at Gauss

ntegration points are connected by straight lines). 

. Damage-plastic model with double-exponential law 

So far the most promising results, presented in Section 4.3 ,

ave been obtained with the damage-plastic model and param-

ters H = 0 and m = 2 . However, the tail of the dashed stress-

isplacement curve in Fig. 4 may still be considered as too short

or concrete; see e.g. Gopalaratnam and Shah (1985) . For H = 0 ,

he damage function (34) has the form 

 dp (ε p ) = 1 − exp (−aε p ) (61)

here a = 1 / (ε f − ε 0 ) , and this type of law leads to an exponen-

ial shape of the local stress-strain diagram. To extend the tail, one

an first try out a modified damage function that combines two

xponentials: 

 dp (ε p ) = 1 − (1 − c 2 ) exp (−aε p ) − c 2 exp (−a 2 ε p ) (62)

ere, c 2 and a 2 are two additional parameters. For c 2 = 0 , the stan-

ard exponential law (61) is recovered. Parameters a and a 2 should

e sufficiently different, just like relaxation times in viscoelastic-

ty. The stress-displacement diagrams obtained with parameters

 = 0 and m = 2 and with two sets of parameters of the double-

xponential law (62) are shown in Fig. 10 . The dashed curve cor-

esponds to a = 10 0 0 , a 2 = 10 0 and c 2 = 0 . 1 , and the solid curve

o a = 1200 , a 2 = 120 and c 2 = 0 . 2 . For the second set of parame-

ers, the stress-displacement curve has a very reasonable shape for

oncrete. The profiles of damage, plastic strain and nonlocal plas-

ic strain obtained with these parameters are shown in Fig. 11 . The
rofiles of (a)–(b) damage, (c) total strain, (d) plastic strain. 
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Fig. 10. Stress-displacement diagrams for DPM with double-exponential law (62) and parameters H = 0 , m = 2 . 

Fig. 11. Evolution of the profiles of (a)–(b) damage, (c) local plastic strain and (d) nonlocal plastic strain for DPM with double-exponential law (62) and parameters H = 0 , 

m = 2 . 
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damage profiles in Fig. 11 a have a flat central part, for reasons ex-

plained in Section 4.3 . The size of the active damage zone gradu-

ally decreases and damage tends to 1 at the central section only, as

shown in Fig. 11 b. The profiles of local and nonlocal plastic strain

have the usual shape and are much more localized than the dam-

age profiles; see Fig. 11 c-d. On the scale of these graphs, the total

strain profiles would look very similar to the (local) plastic strain

profiles. 

Since the approach based on the double-exponential soften-

ing law turns out to be successful for the damage-plastic model

with no plastic hardening, we can also check its extension to the

damage-plastic model with a positive hardening modulus H . If we

used directly (62) for the damage-plastic model with H > 0, the re-

sulting curve would exhibit non-physical bumps; see the dashed

and dotted curves in Fig. 12 a. Therefore, we need to be more

careful. 
a  
The objective is to obtain a local softening curve described by

he double-exponential function: 

d (ε) = f t 

[
(1 − c 2 ) exp 

(
− ε − ε 0 

ε f − ε 0 

)
+ c 2 exp 

(
− ε − ε 0 

ε f 2 − ε 0 

)]
(63)

or the damage-plastic model, this is achieved with 

 dp (ε p ) = 1 − σd (ε p + σY (ε p ) /E) 

σY (ε p ) 

= 1 − f t 

f t + Hε p 

[
(1 − c 2 ) exp 

(
− (1 + H/E) ε p 

ε f − ε 0 

)

+ c 2 exp 

(
− (1 + H/E) ε p 

ε f 2 − ε 0 

)]
(64)

or H = 0 , formula (64) reduces to (62) with a = 1 / (ε f − ε 0 ) and

 2 = 1 / (ε f 2 − ε 0 ) , which means that ε f = ε 0 + 1 /a and ε f 2 = ε 0 +
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Fig. 12. Stress-displacement diagrams for DPM, obtained using (a) double-exponential law (62) with a = 1200 , a 2 = 120 and c 2 = 0 . 2 , and (b) double-exponential 

law (64) with ε f = 0 . 9333 · 10 −3 , ε f 2 = 8 . 4333 · 10 −3 and c 2 = 0 . 2 . 

Fig. 13. Evolution of damage profiles for DPM with double-exponential law (64) and parameters H = E/ 30 , m = 1 , ε f = 0 . 9333 · 10 −3 , ε f 2 = 8 . 4333 · 10 −3 and c 2 = 0 . 2 . 
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 /a 2 . If the modified formula (64) is used, the bumps become less

ramatic but do not completely disappear; see the dashed and dot-

ed curves in Fig. 12 b. A potential advantage of the formulation

ith H > 0 is that the damage profiles no longer have a central flat

art; see Fig. 13 a. The active part of the damage zone is shrinking

ut even at very advanced stages of the damage process contains

everal elements; see Fig. 13 b. 

Possible extensions to the pure damage model are analyzed in

ppendix C . It is shown that a modified damage law that corre-

ponds to a double-exponential local softening curve would lead

o wavy shapes of the stress-displacement diagrams, but a law

hat corresponds to a properly constructed power-exponential lo-

al softening curve can provide, for a specific choice of parameters,

 reasonably shaped stress-displacement diagram with a tail. 

. Summary and concluding remarks 

We have performed a one-dimensional localization analysis of

hree families of nonlocal softening models suitable for quasi-

rittle materials such as concrete, for which the resulting equiv-

lent cohesive curves are supposed to exhibit a long tail similar

o the experimental data plotted in Fig. 2 b. The three considered

amilies of constitutive models were: (i) pure damage models (DM)

ith no permanent strain, (ii) damage-plastic models (DPM) with

ermanent strain obtained from plasticity formulated in the effec-

ive stress space and with damage driven by the plastic flow, and

iii) models with damage-driven inelastic strains (DMIS), for which

he permanent strains are directly related to damage. 

A nonlocal integral (1D) formulation in which the nonlocal

nteractions are made damage-dependent by using the effective
istance defined in (1) has been considered. For this formulation,

he computations are found to be mesh-independent, both plas-

ic strain and damage remain localized in a narrow band, and the

ull damage ( D = 1 ) is localized at a single point. The computa-

ion of the effective distance ˜ r between interacting points is made

obust thanks to the proposed integration scheme (59) . An inter-

sting theoretical issue is the precise limiting shape of the damage

rofile in the uniaxial bar when the displacement tends to infinity

nd the stress to zero. This point is briefly discussed in Appendix B .

We have focused our attention on the role of permanent

trains and on localization properties of formulations that exploit

hem. We have shown that the dramatic snapback accompanied

y loss of convexity of the softening branch of the global stress-

isplacement diagram for a bar under uniaxial tension, which oc-

urs for pure damage models (with no permanent strain at all), can

e changed into a long tail by accounting for permanent strains.

ore promising results have been obtained for plasticity-driven

ermanent strains (DPM) than for damage-driven inelastic strains

DMIS). The present study identifies the formulations that are suit-

ble candidates for extensions of the model to multiple dimen-

ions, in which the evaluation of the effective distance is compu-

ationally more demanding. 

One could also envision an alternative remedy, based on an

djustment of the function used in the damage law. When prop-

rly formulated, such modification can extend the tail of the local

tress-strain diagram and a similar effect can be expected on the

lobal response, characterized by the load-displacement diagram

nder uniaxial tension. For the damage-plastic model, the replace-

ent of an exponential function by the sum of two exponential

unctions can lead to very promising results, as demonstrated in
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Section 5 . An attempt to design a similar modification for the pure

damage model is documented in Appendix C . In this case, using

a sum of two exponential function does not lead to very satisfac-

tory results, but an improvement is achieved with a specific form

of a power-exponential law. The robustness of such modifications

needs to be checked in multiple dimensions, which is the subject

of ongoing work. 

The class of pure damage models examined in this paper di-

rectly links damage to strain, which is fully sufficient in the one-

dimensional context. For general multi-axial stress, a variety of

damage formulations could be considered, e.g., models with mul-

tiple scalar damage variables and anisotropic models dealing with

damage tensors. In many cases, the damage law loses its explicit

character, either because it is written in the rate form, or be-

cause the loading-unloading conditions are postulated in terms of

stress. For instance, the so-called bi-dissipative model for concrete

proposed by Comi and Perego (2001) uses separate damage vari-

ables for tension and for compression and deals with stress-based

loading-unloading conditions. The damage evaluation algorithm is

then no longer explicit and requires iterations, similar to stress-

return algorithms in plasticity. However, since stress is uniquely

determined by strain and damage, the loading functions can be

rewritten as functions of strain and damage and the conditions

can be reformulated in the strain space. Under uniaxial stress,

this is fully equivalent to the strain-driven damage model consid-

ered in the present study. It is worth noting that when the bi-

dissipative model for concrete was extended to a nonlocal formu-

lation ( Comi, 2001 ), the loading functions were transformed to the

strain space and nonlocal averaging was applied to strain invari-

ants, which corresponds to the standard nonlocal damage frame-

work. 
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Appendix A. Functions g dis and αdis for Various Versions of 

DMIS 

In this appendix, we present a detailed derivation of the spe-

cific form of functions g dis and αdis used by the damage model

with inelastic strain. An overview of these functions was provided

in Table 1 . 

Version 1. It is assumed that the unloading slope is the same as for

the DPM with linear hardening of the plastic part. From (28) we

obtain 

g dis (ε) = g dp (ε p (ε)) = 1 − f t 

f t + Hε p (ε) 
exp 

(
− (1 + H/E) ε p (ε) 

ε f − ε 0 

)

= 1 − f t 

f t + H(Eε − f t ) / (E + H) 
exp 

(
− ε − ε 0 

ε f − ε 0 

)

= 1 − 1 

1 + (E ep /E)(ε/ε 0 − 1) 
exp 

(
− ε − ε 0 

ε f − ε 0 

)
(65)

where E ep = EH/ (E + H) is the elastoplastic modulus of the plastic

part of the model. 

For a nonzero plastic modulus H , function g dis given by (65) is

not invertible in closed form. In fact, this function is not re-

ally needed, because the inelastic strain can be evaluated from

the damage-driving variable κd instead of from the damage D .

Eqs. (18) –(19) can be combined into 

ε p = αdis (g dis (κd )) ≡ βdis (κd ) (66)
nd function βdis is in general given by the right-hand side of (28) ,

hich in the present case leads to 

dis (ε) = ε − σd (ε) 

E[1 − g dis (ε)] 

= ε −
f t exp 

(
− ε − ε 0 

ε f − ε 0 

)
E 

1 + (E ep /E)(ε/ε 0 − 1) 
exp 

(
− ε − ε 0 

ε f − ε 0 

)

= ε − [ ε 0 + (E ep /E)(ε − ε 0 )] = 

E 

E + H 

(ε − ε 0 ) (67)

ersion 1s. In the special case with H = 0 , formula (65) simplifies

o 

 dis (ε) = 1 − exp 

(
− ε − ε 0 

ε f − ε 0 

)
(68)

nd becomes invertible in an analytical form. The inverse function

s then 

 

−1 
dis 

(D ) = ε 0 − (ε f − ε 0 ) ln (1 − D ) (69)

n this case, we can apply formula (30) directly and construct an

xplicit expression for function αdis . After easy manipulations we

btain 

dis (D ) = g −1 
dis 

(D ) − σd (g −1 
dis 

(D )) 

E(1 − D ) 
= −(ε f − ε 0 ) ln (1 − D ) (70)

ersion 2s. Instead of matching the damage model with inelastic

train to the damage-plastic model, we can match the monotonic

tress-strain curve only and postulate the dependence of inelastic

train on damage separately. This approach gives a different type of

nloading behavior. Once we postulate the form of function αdis ,

e can identify function g dis from (27) . For instance, if it is as-

umed that the inelastic strain is proportional to damage, we set

dis (D ) = αD (71)

here α is a given constant. Eq. (27) then becomes 

1 − g dis (ε)] E [ ε − αg dis (ε)] = σd (ε) (72)

hich is a quadratic equation with two positive roots. It can be

erified that the correct root is the smaller one, 

 dis (ε) = 

ε + α −
√ 

(ε + α) 2 − 4 α[ ε − σd (ε) /E] 

2 α
(73)

ndeed, at the onset of damage we have ε = ε 0 and σd (ε ) = Eε ,
nd formula (73) gives g dis (ε 0 ) = 0 , i.e., zero damage. As ε tends

o infinity, σ d ( ε) tends to zero and g dis approaches 1 from below. 

ersion 2. For nonlinear functions αdis , the corresponding function

 dis usually cannot be constructed analytically, but its values can

lways be computed numerically. Denoting g dis ( ε) as D , we can

ewrite (27) as 

(1 − D )[ ε − αdis (D )] = 

σd (ε) 

E 
(74)

r, equivalently, as 

 (D ) ≡ Dαdis (D ) − αdis (D ) − Dε + ε − σd (ε) 

E 
= 0 (75)

his nonlinear equation is solved by the Newton method, start-

ng from the initial approximation D 0 = 0 , for which F (D 0 ) = ε −
d (ε) /E ≥ 0 . The derivative of F is given by 

 

′ (D ) = αdis (D ) + Dα′ (D ) − α′ (D ) − ε (76)
dis dis 

https://doi.org/10.13039/501100001824
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nd so F ′ (D 0 ) = −α′ 
dis 

(D ) − ε < 0 . The recursive algorithm 

 k = D k −1 −
F (D k −1 ) 

F ′ (D k −1 ) 
, k = 1 , 2 , . . . (77)

hould converge to a limit D which represents the value of g dis ( ε).

s a specific case, we consider 

dis (D ) = αD 

p (78) 

here p is a fixed exponent. Then we have 

 (D ) = αD 

p+1 − αD 

p − ε D + ε − σd (ε ) 

E 
(79) 

 

′ (D ) = (p + 1) αD 

p − pαD 

p−1 − ε (80) 

ersion 3. One special case in which function αdis is nonlinear but

he problem can still be treated analytically is the choice 

dis (D ) = α
D 

1 − D 

(81) 

q. (74) can then be rewritten as 

(1 − D ) 
[ 
ε − α

D 

1 − D 

] 
= 

σd (ε) 

E 
(82) 

hich is equivalent to the linear equation 

(1 − D ) ε − αD = 

σd (ε) 

E 
(83)

nd the solution can be written in closed form as 

 = 

ε − σd (ε) /E 

ε + α
≡ g dis (ε) (84) 

t is then easy to evaluate the inelastic strain 

 p = α
D 

1 − D 

= α
Eε − σd (ε) 

Eα + σd (ε) 
≡ βdis (ε) (85) 

ppendix B. Shape of Ultimate Damage Profile 

An interesting theoretical issue is the precise shape of the dam-

ge profile that is approached in the limit as the displacement

ends to infinity and the stress to zero. It is clear that damage at

he center of the process zone tends to 1, but is the spatial deriva-

ive of damage at this point equal to zero, or is it discontinuous? 

Let us place the center of the process zone to the origin ( x =
 ). If the limit damage profile is smooth, the leading term in the

xpansion of 1 − D (x ) around the origin is quadratic, and we have

 (x ) ≈ 1 + 

1 

D 

′′ (0) x 2 (86)

2 

ig. 14. Stress-displacement diagrams for the damage model with the double-exponential

b) parameter c 2 = 0 . 2 fixed, parameters εf and ε f 2 = 10 ε f varied. 
here D 

′′ (0) < 0. The integral of 1 / 
√ 

1 − D then becomes singular

t x = 0 , because 

 

d x √ 

1 − D (x ) 
≈

∫ 
d x √ 

−D 

′′ (0) x 2 / 2 

= 

√ 

2 

−D 

′′ (0) 

∫ 
d x 

| x | (87) 

he modified distance between the origin and any other point is

hen infinite and no interaction takes place across the center of

he damage zone. 

On the other hand, if the limit damage profile has a kink at the

rigin, it can be approximated by 

 (x ) ≈ 1 + D 

′ (0 

+ ) | x | (88)

here D 

′ (0 + ) < 0 , and function 1 / 
√ 

1 − D is then integrable: 

 

d x √ 

1 − D (x ) 
≈

∫ 
d x √ 

−D 

′ (0 

+ ) x 

= 

1 √ 

−D 

′ (0 

+ ) 

∫ 
d x √ | x | = 

2 sgn x 
√ | x | √ 

−D 

′ (0 

+ ) 
(89) 

n this case, the modified distance is increased but still finite, and

oints that are sufficiently close can interact even across the center

f the damage zone. 

ppendix C. Damage Model with Double-Exponential or 

ower-Exponential Law 

In Section 5 it was shown that the tail of the stress-

isplacement diagram obtained with the damage-plastic model can

e extended by reformulating the damage law. Modifications of the

xponential softening law can also improve the shape of the stress-

isplacement diagrams for the pure damage model. The double-

xponential stress-strain relation (63) corresponds to the damage

unction of the pure damage model defined as 

 d (κd ) = 1 − σd (κd ) 

Eκd 

= 1 − ε 0 
κd 

[
(1 − c 2 ) exp 

(
−κd − ε 0 

ε f − ε 0 

)

+ c 2 exp 

(
− κd − ε 0 

ε f 2 − ε 0 

)]
(90) 

he curves plotted in Fig. 14 a have been obtained with parameters

 f = 3 · 10 −4 and ε f 2 = 3 · 10 −3 and with c 2 ranging from 0 to 0.4.

s the value of c 2 is increased, the response becomes less brittle

ut the softening curves have a wavy shape, which is especially ap-

arent for fine meshes. When εf and εf 2 are increased, the curves

etain the wavy shape; see Fig. 14 b. 
 law (90) : (a) parameters ε f = 3 · 10 −4 and ε f 2 = 3 · 10 −3 fixed, parameter c 2 varied, 
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Fig. 15. Stress-displacement diagrams for the damage model with a power-exponential law (a) given by (91) , (b) given by (92) . 

Fig. 16. Ultimate damage profiles for the damage model with power-exponential law (91) . 

Fig. 17. Ultimate damage profiles for the damage model with power-exponential law (92) . 
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The response can be made more ductile not only by adding a

slowly decaying exponential, but also by raising the argument of

the exponential to a power. The power-exponential damage law 

g d (κd ) = 1 − ε 0 
κd 

exp 

(
−
(

κd − ε 0 
ε f − ε 0 

)m d 
)

(91)

uses an adjustable exponent m d , and for m d = 1 reduces to (90) . As

m d is decreased, the stress-displacement curve changes shape from

concave to convex; see Fig. 15 a. A tail is obtained for m d = 0 . 3 but

the response is very brittle right after the peak and the curve ex-

hibits a sharp snapback, only later changing into almost linear soft-

ening and a tail. The brittleness right after peak is certainly related

to the fact that, for m < 1, the local stress-strain curve starts at the
d 
eak with a vertical slope. This undesirable effect can be removed

y reformulating the power-exponential law such that the value of

he variable that is raised to m d is not 0 at the onset of damage. A

uitable formula is 

 d (κd ) = 1 − ε 0 
κd 

exp 

( 

−κm d 

d 
− ε m d 

0 

ε m d 

f 
− ε m d 

0 

) 

(92)

ith this damage law, quite a reasonable shape of the stress-

isplacement curve can be obtained if m d is set to 0.1; see the solid

urve in Fig. 15 b. 

Damage profiles corresponding to the last computed step are

lotted in Fig. 16 for the model with damage law (91) and

n Fig. 17 for the model with damage law (92) . In both cases,
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eduction of exponent m d leads to more narrow damage profiles

hat are more rounded around the center of the damage zone (than

n the standard case of m d = 1 ). 
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