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Abstract

We report the full analytical solution of the large deformations of a cantilevered elastica loaded by a uniformly
distributed follower pressure. We consider an unshearable, inextensible and linear elastic rod. We obtain
a spatial nonlinear differential equation in the curvatures, analogous to the undamped Duffing oscillator
with a constant driving force. We solve such differential equation, obtaining the curvature, although in
implicit form, for arbitrarily large values of the load. We are then able to obtain the rotations owing to a
change of variables from the curvilinear abscissa to the curvature. This step is somewhat mandatory due
to the implicit nature of the solution. Finally, with the same change of variables, it is possible to obtain a
closed-form solution for the deformation in Cartesian coordinates. The solutions show that the rod deforms
into drop-like shapes. The number of drops is equal to the number of spatial periods of the solution, which

113 with ¢* a dimensionless load normalised to the bending stiffness. Interestingly, we find that

goes with ¢
for ¢g* > 3094.2, the number of drop-like shapes does not increase, but remains three.
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1. Introduction

The cantilevered beam is arguably the most common and iconic structure in the mechanics of solids.
Euler’s Elastica theory, an equally famous and well-studied set of differential equations, describes the large
deformations of the beam. A collection of solutions of the elastica under terminal loads (shear or axial forces)
and distributed loads with a fixed direction can be found in several monographs Bigoni (2012); Frisch-Fay
(1962); Antman (1995); Manning (2014).

In contrast to loads with a fixed direction, follower loads change their direction according to the deforma-

tion. For example, normal follower loads like hydrostatic pressure remain perpendicular to the deformation.
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Farly theoretical research on follower forces focused instead on tangential follower forces. The most famous
works include the Pfliiger column Pfliiger (1950, 1955); Tommasini et al. (2016); Bigoni et al. (2018b),
the Ziegler paradox Ziegler (1952, 1956); Bottema (1956); Ziegler (1977); Bigoni et al. (2018a), the Beck’s
column Beck (1952), the Reut’s column problem Reut (1939); Bigoni and Misseroni (2020), and the first
monograph on the stability of non-conservative forces due to Bolotin (1963).

Other researchers attempted to realise follower forces experimentally. Herrmann et al. (1966) and Wood
et al. (1969) used water and air flowing from a nozzle; Sugiyama et al. (1995, 1999, 2000) used a solid
motor rocket instead. However, as Elishakoff pointed out in 2005 Elishakoff (2005), none of these methods
correctly realised a tangential follower force because of hydrodynamical effects influencing the motion of the
rod and in non-negligible and variable mass of the rocket. A significant breakthrough was achieved in 2011
by Bigoni and Noselli Bigoni and Noselli (2011), who designed and tested a device capable of realising a
follower tangential force emerging at the contact with the friction of a wheel constrained to slide against a
moving surface.

Theoretical studies regarding normal follower forces include Batista (2014), where he obtained an ana-
lytical solution of the elastica under a terminal shear follower force. For distributed normal follower loads,
a considerable body of literature exists on the elasticity of closed curves under hydrostatic pressure. Such
problem attracted the curiosity of numerous theoreticians since 1884 Lévy (1884); Greenhill (1899). In
a more modern perspective, numerous researchers Djondjorov et al. (2011); Giomi (2013); Vassilev et al.
(2008); Giomi and Mahadevan (2012); Mora et al. (2012) interested in the equilibrium shapes of films under
surface tension revisited the problem of a ring under hydrostatic pressure.

Recently, Salussolia et al. (2020) studied the liquid-phase exfoliation of graphite sheets as a scalable man-
ufacturing method for the mass production of graphene. The fluid exerts resultant loads on a delaminated
sheet that, in addition to a terminal follower force, include a follower distributed load. In this case, as in
most peeling problems, the cantilevered beam is an idealisation of the graphite. Therefore, there seems to
be a renewed interest in the cantilevered elastica under a distributed uniform follower load, fostered by the
need of manufacturing advanced materials.

However, it is a problem that seems to have been overlooked in the literature. The elastica with terminal
loads usually admits a closed-form solution in terms of Jacobi elliptic functions. Distributed loads, either
fixed or follower, complicate the governing equations considerably. Of course, numerical solutions exist for
this problem. Fujii et al. (1990) used a field transfer matrix to obtain the force-displacement curve of a
cantilever beam subjected to water pressure. Faulkner et al. (1993) used the segmental shooting technique,
which divides the elastica in a sequence of segments, each subjected to small deformations. They obtained
the deformation for normal loaded cantilevers.

Regarding analytical treatments, Truesdell (1953) derived a polar inertia method for the free shape
problem of a given deformation of the elastica under a normal and uniform follower pressure. He was able
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to obtain an expression between the curvature of the free shape and the curvature and the chord of the
assigned shape. For the rotation, this relation turns out to involve the integral of the square of the chord.
This integral is then the polar moment of inertia of the bar with respect to an axis perpendicular to the
plane of the deformation and passing through the free end.

Mitchell (1959) obtained an implicit solution in polar coordinates for the cantilevered elastica under
uniform follower load. The starting point of the solution appears to be the moment-curvature relation, rather
than the equilibrium equations. Contrarily to Mitchell (1959), we start from the equations of equilibrium
of axial and normal forces and moments. Conversely from Mitchell (1959), it turns out that the differential
equation for the curvatures is solvable independently from the rotation and the deformation.

We show in this paper that the follower elastica with a uniform load leads to a famous and approachable
second-order nonlinear differential equation. Indeed, the curvatures follow a variant of the well-known
Duffing equation. Such differential equation emerged mutatis mutandis also in Djondjorov et al. (2011) and
Giomi (2013). However, differently from Djondjorov et al. (2011); Giomi (2013), in this paper, we do not
consider closed curves; we study, instead, an open curve, cantilevered at one end and free at the opposite
end as in figure 1. This difference brings some obstacles in obtaining the solution, starting from the fact
that the Jacobi elliptic functions do not help. In fact, we will see that instead hypergeometric functions
are more apt in describing the curvatures. Such special functions (or their modifications) were used for the
elastica with dead loads also in Scarpello and Ritelli (2011) and Iandiorio and Salvini (2020).

We proceed as follows. We first solve the Duffing equation for the curvatures: we will see that the
solution is periodic (in space) and given in an implicit form. For this reason, to integrate the curvature, we
apply a crucial change of variables. Once the rotations are known, we integrate the cosine and sine of the
rotation to obtain the deformations in Cartesian coordinates. Once again, the critical step is the change
in the integration variables. Finally, we analyse the obtained shapes, and we find that with increasing
amplitude of the load, the rod deforms into drop-like shapes. The maximum number of drops, however, is
three. Beyond a specific load, that we quantify, the deformation appears to remain the same and rotate
around the origin, although this is an optical illusion due to the self-contact that we do not enforce. The

radius of the drops decreases with a power law with exponent —1/3 of the load.

2. Governing equations: the elastica with a follower load

The equations of equilibrium of forces and moments of a bent, elastic, unshearable and inextensible rod

with a follower normal load ¢, as in figure 2, are Frisch-Fay (1962) , Antman (1968):
M'—-kN-gq=0 (1)

kM +N' =0 (2)
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Figure 1: Cantilevered elastica loaded by a uniform follower load.
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Figure 2: Free body diagram and sign convention.



where (1) = d/dS, with S being the arc length, M is the bending moment and N is the axial force. The

kinematics of the rod is given by

k=6
with k the curvature, 6 the rotation of the beam and
X' =cosf
y =siné

with x and y the Cartesian components of the deformation.

(3)

(4)

In addition, we assume a homogeneous material and uniform cross-section along the whole beam with

bending stiffness EI and moment-curvature relation
M =FEI«k
Substituting the constitutive model (5) into equation (2), we get

K2\
N =-ElkK =_(EIE)

Integration of equation (6) between 0 and S gives

El EI 1 EI
N(S) - Ny = TKOZ - TKZ =3 Mo ko — TKZ
which can also be re-written as
N Bl o L4 n
—k" = = My«
2 5 Moko 0

where Nj is the axial force applied to the free end, My the applied moment and o the curvature.

Substituting equation (7) and using the constitutive model (5) into equation (1), we get

1" 1 E13
ETk" —«k N()+§M()K0 +7K —q=0

We now pass to the dimensionless form using

¢ =qL?|EI $* =

=l @

* *
S max Kmax

with L the length of the undeformed beam and

S’ =2aq™'"P, K =2¢"7,  a=F ( 1) ~ 1214

6’5;6;

(5)

(10)

(11)

where ,F| (gl), %; %; ) is the hypergeometric function of parameters (1/6,1/2) and 7/6. The variables S "

and kmax* are rescaling variables, so that «* < 1.



Indeed, despite the seemingly odd choice of scaling, equation (9) becomes
K +8a°K* -2a* =0 (12)

where we have removed the * for ease of reading and used the boundary conditions Ny = My = ko = 0. If we

set the origin of the curvilinear abscissa at the free end, the remaining boundary conditions become
K0)=0 no applied shear force

k(0)=0 no applied moment

0(1/S 1) =0 cantilevered beam
X(1/8 pa) = 1/S max cantilevered beam
y(1/85.) =0 cantilevered beam (13)

3. Analytical Solution

3.1. Phase portrait analysis

Let us multiply both sides of equation (12) by «” and integrate between 0 and S. We obtain the following
equation:

K2 =42 k(1-«) (14)

which represents a closed path in the phase space k’ — k; therefore, the solution is a periodic function (figure
3). Also, ¥ =0 when « =0 and « = 1, and the curvatures 0 <k < 1.

Differentiating the implicit function in equation (14), we also find that

K € [Koner Koaxdy Ko =277732 @~ 1.6694  when k=277 ~0.63 (15)

max

The solution proceeds anticlockwise from the initial condition x(0) = 0 with initial slope ' = 0 (figure
4). The solution then reaches a maximum for § = 1 where ' = 0 and « = 1; then, since x > 0, the curvature

decreases to k = 0 and « = 0 and afterwards it repeats periodically with period equal to 2.

3.2. Solution for the curvatures

The equation (14) can be written as

K signk’ =2a Vk V1 - &3 (16)
or
1 d
X signk’ = dS (17)

@2 \k V1 =3

6
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Figure 3: Phase portrait of equation (14).
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Figure 4: Solution «(S) for S € [0, 1/S ]

Let us introduce the following primitive (figure 5)

S P T e
K) = — =
2a¢ Jo kV1-#2 2F1(é,

that satisfies I(0) = 0 for § = 0 and I(1) = 1 at the half-period § = 1. We can integrate equation (16) by

(18)

o=
| S
—

SN—

parts

() sign’ — f 1o 3512K (19)
0 dK

The derivative of the sign of " with respect to « is a sum of Dirac delta functions, centred at x = 0 and
k = 1. There is a discontinuity for " at x = 1 (sign changes from positive to negative) and at x = 0 (sign

changes from negative to positive).

d sign(x”)

= =2 D=6k = 1)+ 60 (20)

Considering that 7(0) = 0 and I(1) = 1, and that sign(x) = 1/ sign(x), we get
I(k) = S sign(x’) —2n, sign(k") (21)

where n; is the number of times «" changes sign from positive to negative between 0 and S.
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Let us write equation (21) for the first intervals of S:

0<S<l1: sign(k’) = +1, ny =0, Ik)=S (22a
1<S<2: sigmw)=-1, =1, IK=-S+2 (22b
2<S5<3:  signW)=+1, m=1, IK=5-2 (22¢
3<8<4: sign(k’) = -1, ny =2, I(k)y=-S +4 (22d
All the intervals in equation (22) can be summarised into a single equation

I(x) = T(S) (23)

where T(S) is the triangle wave shown in figure 6. The function T(S) provides periodicity to the solution
k(S) and takes into account the changes in sign of «’. Many expressions exist for the triangle wave: we

suggest the following surrogate expression:

2
TES)=-— arcsin(
bis

Fid
of25)) ’
sin (2 (24)
and using the differentiation rule for implicit functions
sign (k") = sign (sin (7 S)) (25)

In addition, an expression for n(S) is

ny(S)=1 +{S ; 1J (26)

where |-] is the floor function.

3.3. Solution for the rotations

With boundary condition (1) = 0, the rotation is

6(S) = B(S) - B (27)
where s
1
B(S):4a/j(; k($)ds, ﬂlZB(S *) (28)
We now use equation (17) to get
S K
ﬁ(S):4af0 K(S)dS :2[0 Vf_/ﬁ signk’ dk (29)

We can now integrate by parts with the same procedure used for equation (19), that is writing d sign«’/d«
as a series of Dirac delta functions,
B(S) = ;—‘ arcsin k*/? sign &’ + gﬂnl(S) (30)
10
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Figure 6: Function 7(S) (thick blue line) for the implicit solution of the nonlinear ODE is I(k) = T(S).
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ny(S)

0 1
0 1 3
S

Figure 7: Function n|(S) in equation (26)

3.4. Solution for the deformation

With boundary condition (13), the dimensionless coordinates of the deformed configuration are given by

s 1 s
x(§) = ! " —f cosO(S)dS = Sl p —f cosO(S)dS +f cosO(S)dS
1 0 0

max max

S 1 s
y(S):—f sin6(S) dS =—f sin6(S) dS +f sin6(S)dS
1 0 0

We notice that

cos 8 = cos B cos B + sin B sin 8
sin@ = sin B cos S — cos B sinfB

where B; is the angle at the free tip. Therefore, let us shift the focus on the two integrals

S 1 “ cosBk) .,
L COSﬁ(S)dS = Ejo‘ m s1gn K dk

S L sinp) L,
jo‘ sm,B(S)dS = E]O‘ m s1gn K dk

12
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In addition,

4 4
cosB(S) = cos (§ arcsin >/ sign &’ + 3 ﬂnl(S)) (35a)
. . (4 Y , 4
sinfB(S) = sin 3 arcsink™'“ signk’ + 3 any(S) (35b)
(35¢)

Considering that cos(x signx) = cosx and sin(x signx) = sinx signx, we obtain the following integrand

functions in (34a) and (34b):

cos(% arcsin1<3/2) s sin(% arcsin;<3/2) (36)
C. + S, 36
Vi V1 -3 Vi V1 -3
s cos(% arcsin K3/2) sin(‘% arcsin K3/2) (37)
s +Cy - 37
Vi V1 -3 Vi V1 =3
where C., S., S and C, are piece-wise constant functions, with jumps at i S, i =1,3,5,...,2n— 1.
4
C. = cos (5 nnl(S)) sign«’ (38)
. (4
S, = —sin §nni(S) (39)
4
S, =sin (§ mny(S )) sign &’ (40)
4
C, = cos 3 an(S) (41)
Therefore, let us focus, on the following integral, which we can integrate by parts:
< COS (§ arcsin K3/2)
Co—2 L dk=C,Ck)—C(1) Y AC. (42)
j; Ve V1 =3 ;

where AC, are the values of the jumps every time «’ changes sign from positive to negative and

K COS (% arcsinK3/2) 1
(C(K) = j(; W de =2 \/I_( COS (Z'B(K)) (43)

where the integral in equation (43) can be solved by the change of variables Z = 4/3 arcsin«*/2. Similarly,

« sin(%‘ arcsinK3/2) (1
0= | V-l s 360) <44>

In summary

x(?) = 5= = L, (k) + L, () (45)
WS) = =1, (k1) + Iy, (6)

13



with
IL'H(K) = COSBI Icp (K) + Sinﬂl Is/; (K) (46)
Iy, (k) = sin By I, (k) — cos B I, () (47)

with k1 = k(1/S max*) and

1

oy = 5 |Ce C) + e 8) — (1) Z AC, - S(1) Z AS, (48)
1

Iy =52 [Ss C(x) — Cs S(w) — C(1) 2 AS, +S(1) Z AC, (49)

4. Results

We have compared the analytical derivation with the numerical solution of the ODE in equation (12).
The analytical solution is obtained through solving the nonlinear equation (23) with the function fzero in

s

Matlab. In figures 8, we consider dimensionless loads ¢,* such that 1/S " is an integer

117

3
R/ 3. 3
6’2’6’1)) n’ ~14.325n (50)

@ =qn :(2 2F1(

where ¢;* is the load such that 1/S " = 1. The analytical and numerical curves overlap, reassuring us of
the exactness of the analytical solutions. Figures 8a-f display intriguing features of the deformation. When
n = 2 (figure 8b), §* = 2 is equal to a full period of the solution. For such load, the rod deforms into a
drop-like loop. This shape is akin to the one obtained numerically by Faulkner et al. (1993). Also, this
occurrence is similar to the self-encapsulating of the elastica as reported experimentally in Bosi et al. (2015).
The number of drops increases to 2 when n = 4 (figure 8d) and to 3 when n = 6 (figure 8f). This trefoil
shape appears to be a Kiepert curve (Wegner, 2019). Such curve is a buckled ring solution identified by
Greenhill (1899). Interestingly, we find this solution when the initial configuration is a straight rod; Greenhill
(1899) obtained the Kiepert curve as a buckling solution when the initial configuration is a circumference.
One would then wonder if the loops increase to 4 when n = 8. Interestingly, they do not. Figures 9a-e
show that for loads greater than g¢*, the loops remain three, with the rod overlapping onto itself. The radius

of the loops decreases, since x/L,y/L ~ (¢*)"'/3, while rotating around the origin.

5. Conclusion

We presented the analytical solution of the cantilevered elastica under a uniformly distributed follower
load. We derive curvature, rotation and deformation in Cartesian coordinates. The curvature is the solution
of an autonomous undamped Duffing equation with a constant forcing term. For this case, the solution is
a periodic function given in implicit form. A change of variables allows the integration of the curvature, to
obtain rotation and deformations.

14
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(f) n=6, g¢* =3094.2

Figure 8: Deformation of the elastica, with x and y being the dimensional Cartesian coordinates. Black line: ¢* = 0, blue

continuous lines are the analytical solutions, red dashed lines are the numerical solutions. ¢,* as in equation (50). No self-

contact constraint is imposed.
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Figure 9: Deformation of the elastica, with x and y being the dimensional Cartesian coordinates. Black line: ¢* = 0, blue

continuous lines are the analytical solutions. No self-contact constraint is imposed.
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