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We investigate the complex band structure and forced response of flexural waves propagating in an elas-
tic metamaterial thick plate. Mindlin-Reissner thick plate theory is considered. We study the influence of
periodic arrays of spring-mass resonators attached to the surface of a homogeneous thick plate on the
formation of Bragg-type and locally resonant band gaps. The plane wave expansion and extended plane
wave expansion approaches are used to compute the complex band structure and wave shapes of the
metamaterial thick plate with attached spring-mass resonators. An experimental analysis is conducted
with a 3D-printed metamaterial plate with resonators. Modal shapes, forced response and band structure
are computed by finite element and wave finite element methods. Analytical, numerical and experimen-
tal results present good agreement.
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1. Introduction

Plate structures are widely used in aeronautical, mechanical
and civil engineering, aerospace, manufacturing etc. They are one
of the most commonly used structural components (Caliri et al.,
2016; Li et al., 2019). Because of their many resonances, plates
are mechanically soft and their suspending structures have consid-
erable effect on their vibration and sound radiation (Hannon,
1975). The properties of a plate structure facilitate the generation
of typically unwanted vibration radiation noise, which limits its
practical application (Li et al., 2019). The noise and vibration are
common phenomena in engineering and cause high-precision sys-
tem malfunctions and extensive sound environment pollution
(Huang et al., 2018). Thus, in order to control the vibration of plate
structures, the strategy of using periodic systems has been pro-
posed to create band gaps (Wang et al., 2019; He et al., 2017; Liu
et al., 2018; Li et al., 2020b; Carta et al., 2020; Dal Poggetto and
Arruda, 2021). These periodic structures are known as phononic
crystals (PnCs) (Sigalas and Economou, 1992; Kushwaha et al.,
1994; Liu and Gao, 2007; Pennec et al., 2010; Zhang and Gao,
2018; Dal Poggetto and Arruda, 2021) and mechanical metamate-
rials (MMs) (Liu et al., 2000; Bertoldi et al., 2017; Yu et al., 2018;
Surjadi et al., 2019).

PnCs and MMs have been applied to vibration control (Casadei
et al., 2012; Gao et al., 2016a; Gao et al., 2016b; Krushynska et al.,
2017a; Li et al., 2017; Chen et al., 2017a; Sugino et al., 2018; Jung
et al., 2019; Kamotski and Smyshlyaev, 2019; Zhang et al., 2020; Li
et al., 2020a; Dal Poggetto and Serpa, 2020), as acoustic barriers
(Ho et al., 2003; Yang et al., 2010; Liu et al., 2018), as noise sup-
pression devices (Casadei et al., 2010; Xiao et al., 2012a) and to
mechanical wave manipulation, e.g., guiding, focusing, imaging,
cloaking, and topological insulation (Lu et al., 2009; Maldovan,
2013; Hussein et al., 2014; Lee et al., 2016; Morvaridi et al.,
2018; Bao and Wang, 2019; Zhang et al., 2020). PnCs are typically
composed by periodic arrays of inclusions embedded in a matrix.
They have received renewed attention (Yu et al., 2013; Gao et al.,
2015; Miranda Jr. and Dos Santos, 2017; Chen et al., 2017b; Xie
et al., 2017; Qian and Shi, 2017; Bilal et al., 2017; Hedayatrasa
et al., 2018; Yu et al., 2017; Miranda Jr. and Dos Santos, 2018)
because they exhibit Bragg-type band gaps where there are no
mechanical propagating waves, only evanescent waves. This type
of band gap is opened up because of the Bragg scattering. However,
the Bragg scattering mechanism fails to open up band gaps in low
frequencies for periodic structures with a small lattice parameter.
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Difficulties to design PnCs with low frequency band gaps and small
size stimulated researchers to explore the local resonance mecha-
nism (Liu et al., 2000), i.e., creating the MMs, also known as locally
resonant PnCs.

According to Jung et al. (2019), focusing on noise and vibration
applications, MMs can be classified into locally resonant metama-
terial (Liu et al., 2000), acoustic black hole (Deng et al., 2019),
membrane-type acoustic metamaterial (Lu et al., 2020) and meta-
porous (Yang et al., 2015). There are also the laminate MMs (Qian
and Shi, 2016; He et al., 2017; Zuo et al., 2018). This investigation
focus on locally resonant metamaterial thick plates, named elastic
metamaterial (EM) thick plates, also known as platonic crystals
(McPhedran et al., 2018; Movchan et al., 2018).

EMs can produce both locally resonant and Bragg-type band
gaps. However, EMs just present Bragg-type band gaps if the sys-
tem is periodic. Locally resonant band gaps arise in the vicinity
of the natural frequency of the resonator while Bragg-type band
gaps typically occur at wave lengths of the order of unit cell size.
There are various types of EMs being investigated containing
arrays of spring-mass resonators, such as rods (Wang et al.,
2005a; Xiao et al., 2012b; Nobrega et al., 2016; Lou et al., 2018,
beams (Wang et al., 2005b; Yu et al., 2006a; Yu et al., 2006b; Liu
et al., 2007; Xiao et al., 2012c; Raghavan and Phani, 2013; Wang
and Wang, 2013; Wang et al., 2013; Xiao et al., 2013; Casadei
and Bertoldi, 2014; Wang et al., 2015; Wang et al., 2016; Sugino
et al., 2017; Cheng et al., 2018; Miranda Jr. and Dos Santos, 2019;
Wu et al., 2019; Li et al., 2020a, plates (Sun et al., 2010; Oudich
et al., 2011; Xiao et al., 2012d; Claeys et al., 2013; Torrent et al.,
2013; Oudich et al., 2014; Chen et al., 2014; Peng et al., 2015;
Song et al., 2015; Chen et al., 2017a; Lu et al., 2017; Pal and
Ruzzene, 2017; Haslinger et al., 2017; Sugino et al., 2017; He
et al., 2017; Sugino et al., 2018; Miranda Jr. et al., 2019; Wang
et al., 2019; Xiao et al., 2019; Li et al., 2020b; Carta et al., 2020)
and shells (Thorp et al., 2005). We consider an EM thick plate with
periodic arrays of spring-mass resonators. Mindlin-Reissner thick
plate theory (Mindlin, 1951) is regarded. We highlight that only
few studies used thick plate theory for EM plate modelling with
resonators (Hsu and Wu, 2010; Oudich et al., 2014; Assouar
et al., 2016; Beli et al., 2018a; Wu et al., 2018; Li et al., 2019), since
it is more complex mathematically.

Oudich and co-workers (Oudich et al., 2014) studied the sound
transmission loss performance through an EM thick plate made of
spring-mass resonators attached to the surface of a homogeneous
elastic plate. However, instead of considering flexural waves using
Mindlin-Reissner thick plate, they regarded a solid media (from
which all the Lamb modes are taken into consideration) using
the plane wave expansion (PWE) approach associated with the
supercell technique (Han and Zhang, 2019). They reported that
high sound transmission loss up to 72 dB at 2 kHz is reached with
an EM thick plate while only 23 dB can be obtained for a simple
homogeneous plate with the same thickness. Wu et al. (2018)
investigated the influence of thermal stresses on the band struc-
ture of EM thick plates by using the finite element (FE) based
method. The resonator was not modelled by spring-mass and they
regarded single and double inclusions of square plates. They
observed that thermal stresses have a nonlinear effect on the band
structures, which is significant and cannot be ignored when EM
thick plates are embedded in thermal environments. Li et al.
(2019) studied a complete low-frequency band gap in a thick elas-
tic steel metamaterial plate. The resonator-type structure consists
of periodic, double-sided, composite stepped resonators, which are
deposited on the EM thick plate. They used the FE method for band
structure, power-transmission spectra, and displacement fields of
the eigenmodes calculations. They showed that, for the proposed
structure, the opening of the first complete band gap is reduced
by a factor of 9.5 compared to a conventional thick elastic steel
metamaterial plate.

Since periodic resonator-type structures attached to thick plates
started recently to be studied in many engineering applications for
vibration management (Hsu and Wu, 2010; Oudich et al., 2014;
Assouar et al., 2016; Achaoui et al., 2013; Beli et al., 2018a; Li
et al., 2019), the main purpose of this study is to investigate the
complex band structure of flexural waves propagating in an EM
thick plate with multiple single degree of freedom (S-DOF) res-
onators. To the best of our knowledge, this is the first study to con-
sider an EM thick plate with attached multiple spring-mass
resonators using the Mindlin-Reissner (Mindlin, 1951) theory.
We think it is worth using thick plate theory, since the S-DOF res-
onators can be tuned at high frequencies (Qian, 2020), where the
traditional thin plate theory, i.e., Kirchhoff–Love plate theory
(Kirchhoff, 1850; Love, 1888), is not valid. Moreover, PWE
(Sigalas and Economou, 1992; Kushwaha et al., 1994) and
extended plane wave expansion (EPWE) (Hsue and Yang, 2004a;
Hsue and Yang, 2004b; Hsue and Freeman, 2005; Laude et al.,
2009; Romero-García et al., 2010a; Romero-García et al., 2010b;
Romero-García et al., 2010c) methods are used for the first time
to predict the complex band structure and wave shapes of an EM
thick plate with spring-mass resonators regarding Mindlin-
Reissner theory (Mindlin, 1951). These approaches can predict
more accurate results at higher frequencies than previous formula-
tions (Xiao et al., 2012d; Torrent et al., 2013; Xiao et al., 2014;
Sugino et al., 2017; Zuo et al., 2018; Miranda Jr. et al., 2019;
Wang et al., 2019; Sugino et al., 2020) based on Kirchhoff–Love
thin plate theory (Kirchhoff, 1850; Love, 1888).

By using a 3D-printed EM plate, an experimental test is per-
formed. An EM plate with square lattice is manufactured with a
polymer (Vero White Plus) in a 3D printer with UV curing technol-
ogy. Simulated results with FE, wave finite element (WFE), PWE
and EPWE are compared to the experimental data. Some mis-
matches between simulated and experimental results are found.
These differences are reduced after a trial-and-error model updat-
ing by varying material property parameters (Young’s modulus and
mass density). PWE and EPWE modelling with spring-mass S-DOF
resonators localize band gap position and width close to the exper-
imental results and also close to the FE and WFE results with the
3D resonators.

The paper is organized as follows. Section 2 presents fundamen-
tals of PWE and EPWE approaches for an EM thick plate with peri-
odic arrays of attached resonators based on Mindlin-Reissener
plate theory (Mindlin, 1951). In the following, i.e., Section 3, simu-
lated examples are carried out considering some test cases: (I) sin-
gle resonator and (II) multiple resonators in the unit cell. In
Section 4, an experimental validation of an EM plate and simulated
verification using FE, WFE, PWE and EPWE are performed. Conclu-
sions are presented in Section 5.

2. Elastic metamaterial thick plate modelling

This section presents the basic concepts of PWE and EPWE
approaches for an EM thick plate based on Mindlin-Reissner plate
theory (Mindlin, 1951). We consider two-dimensional periodicity,
i.e., 2D EM, isotropic elastic plate and wave propagation in the xy
plane.

PWE and EPWE are semi-analytical methods used to calculate
the band structure and wave shapes of PnCs and EMs. The advan-
tage of using EPWE over PWE is that evanescent modes are
obtained naturally, thus the complex band structure can be inves-
tigated. In PWE, it is assumed that the Bloch wave vector is real. In
addition, using the EPWE method, the Bloch wave vector is not
restricted to the first Brillouin (Brillouin, 1946) zone (FBZ) (Laude
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et al., 2009). Hsue and co-workers (Hsue and Freeman, 2005)
proved that the evanescent modes obtained by EPWE obey
Floquet-Bloch’s theorem (Floquet, 1883; Bloch, 1928).

There are some recent studies that have been developed for EM
thin plate modelling using PWE and EPWE methods (Xiao et al.,
2012d; Torrent et al., 2013; Xiao et al., 2014; Sugino et al., 2017;
Zuo et al., 2018; Miranda Jr. et al., 2019; Wang et al., 2019;
Sugino et al., 2020). Xiao and co-workers (Xiao et al., 2012d) pro-
posed PWE and EPWE methods to model a metamaterial Kirch-
hoff–Love (Kirchhoff, 1850; Love, 1888) plate with attached
resonators of S-DOF in the unit cell. Miranda Jr. et al. (2019) pre-
sented new formulations for PWE and EPWE approaches for an
EM thin plate with periodic arrays of attached multiple degrees
of freedom (M-DOF) resonators based on Kirchhoff–Love plate the-
ory (Kirchhoff, 1850; Love, 1888). Moreover, Torrent and co-
workers (Torrent et al., 2013) used the PWE method to study an
EM thin plate with attached S-DOF resonators, considering honey-
comb lattice. Here, we consider for the first time an EM thick plate
with attached multiple resonators of S-DOF in the unit cell.

Fig. 1 sketches the unit cell of an EM thick plate with attached
multiple resonators of S-DOF, considering square lattice. Fig. 1 also
illustrates the first irreducible Brillouin zone (FIBZ) (Brillouin,
1946) in shaded region for square lattice. The FIBZ points in
Fig. 1 are C ð0;0Þ;X ðp=a; 0Þ and M ðp=a;p=aÞ, where a is the lattice
parameter. Each resonator has a stiffness kj and a mass mj, where j
is the index related to the jth resonator.

2.1. Plane wave expansion

From Mindlin-Reissner plate theory (Mindlin, 1951), the gov-
erning equations for flexural vibration of a uniform thick plate
can be written as:

a
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Fig. 1. Unit cell of the elastic metamaterial thick plate with attached multiple resonato
square lattice.
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@ŵðr; tÞ

@x
¼ d

€̂Wxðr; tÞ; ð1bÞ

c
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where a ¼ j2lh; j2 ¼ p2=12;l is the shear modulus, h is the plate

thickness, s ¼ qh; q is the density, D ¼ Eh3
=12ð1� m2Þ is the bend-

ing stiffness, E is the Young’s modulus, m is the Poisson’s ratio,

b ¼ Dm; c ¼ Dð1� mÞ=2; d ¼ qh3
=12; ŵðr; tÞ is the transverse dis-

placement, Ŵxðr; tÞ is the rotation around the x direction, Ŵyðr; tÞ
is the rotation around the y direction, p̂ðr; tÞ is the external dis-
tributed load, r ¼ xe1 þ ye2 ðx; y 2 RÞ is the two-dimensional spatial
vector (the system has translational symmetry in z direction, i.e., r
depends only on the x and y coordinates) and eiði ¼ 1;2Þ are the
basis vectors in the real space.

Applying the temporal Fourier transform to Eqs. (1a)–(1c) and
omitting frequency dependence, they produce:
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rs of S-DOF for square lattice. First irreducible Brillouin zone in shaded region for a
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where wðrÞ;WxðrÞ and WyðrÞ are the Fourier transforms of

ŵðr; tÞ; Ŵxðr; tÞ and Ŵyðr; tÞ.
Considering an EM thick plate with attached multiple res-

onators in the unit cell (Fig. 1), Eq. (2a) can be rewritten as,

a
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where ~d½r� ðrj þ �rÞ� is the Dirac delta function, pjðrj þ �rÞ is the force
applied to the plate by the jth resonator and �r ¼ �pa1 þ �qa2 ð�p; �q 2 ZÞ
is the lattice vector, aiði ¼ 1;2Þ are its vectorial components (also
known as primitive vectors in real space). The primitive vectors
for square lattice are given by ai ¼ aeiði ¼ 1;2Þ.

For attached multiple resonators of S-DOF, the pjðrj þ �rÞ can be
expressed by:

pjðrj þ �rÞ ¼ kj½ujðrj þ �rÞ �wðrj þ �rÞ�; ð4Þ
�x2mjujðrj þ �rÞ ¼ �pjðrj þ �rÞ; ð5Þ
where ujðrj þ �rÞ and wðrj þ �rÞ are the resonator and plate flexural
displacements at position rj þ �r, respectively.

Due to the system periodicity, one can invoke the Floquet-
Bloch’s theorem (Floquet, 1883; Bloch, 1928):

HðrÞ ¼ eik�rHkðrÞ; ð6Þ
where H can be w; Wx orWy and HkðrÞ is the Bloch wave amplitude.
Note that HkðrÞ ¼ Hkðrþ �rÞ and Hðrþ �rÞ ¼ HðrÞeik��r, where the expo-
nential eik��r is called Floquet-Bloch periodic boundary condition and
k ¼ �ub1 þ �vb2 is the Bloch wave vector, where ð�u; �v 2 QÞ are the
symmetry points within the FIBZ in reciprocal space or we may
write k ¼ k1e1 þ k2e2, where ðk1; k2 2 RÞ are the point coordinates
within the FIBZ for the reciprocal space, considering square lattice,
i.e., Fig. 1. The primitive vectors in reciprocal space, i.e., biði ¼ 1;2Þ,
are defined as b1 ¼ 2p a2�a3

a1 �ða2�a3Þ and b2 ¼ 2p a3�a1
a2 �ða3�a1Þ. In addition, the

primitive vectors in real and reciprocal spaces are related by
ai � bj ¼ 2p~dij; ~dij ¼ 0 if i – j or ~dij ¼ 1 if i ¼ j is the Kronecker delta.

Expanding HkðrÞ in Fourier series in the reciprocal space, one
can rewrite Eq. (6) as:

HðrÞ ¼ eik�r
Xþ1

�g¼�1
Hð�gÞei�g�r ¼

Xþ1

�g¼�1
Hð�gÞeiðkþ�gÞ�r; ð7Þ

where �g ¼ �mb1 þ �nb2 is the reciprocal lattice vector and it is
regarded for square lattice, i.e., �g ¼ 2p

a ð �me1 þ �ne2Þ, with ð �m; �n 2 ZÞ.
Similarly, applying Floquet-Bloch’s theorem (Floquet, 1883;

Bloch, 1928) and expanding in Fourier series in the reciprocal
space, the variable wðrjÞ can be written as:

wðrjÞ ¼
Xþ1

~g¼�1
wð~gÞeiðkþ~gÞ�rj ; ð8Þ

where ~g has the same expressions of �g for square lattice, with
ð ~m; ~n 2 ZÞ. From Floquet-Bloch periodic boundary condition, we
can write wðrj þ �rÞ and ujðrj þ �rÞ as:
wðrj þ �rÞ ¼ wðrjÞeik��r; ð9Þ
ujðrj þ �rÞ ¼ ujðrjÞeik��r: ð10Þ
Substituting Eqs. (7)–(10) in Eq. (3) and after some mathemat-
ical manipulations, one may write:

ðK�x2MÞq ¼ 0: ð11Þ
The mathematical details to obtain Eq. (11) and the expressions

of matrices K; M and vector q will be derived in a future publica-
tion. However, the procedure to obtain Eq. (11) is similar to that
reported by (Xiao et al., 2012d; Miranda Jr. et al., 2019) for thin
plates.

Eq. (11) represents a generalized eigenvalue problem of xðkÞ.
This equation must be solved for each Bloch wave vector into the
FIBZ, considering square lattice.

2.2. Extended plane wave expansion

The equation of motion of the jth resonator in Fig. 1 can be writ-
ten as:

ðKj �x2MjÞuj ¼ pj; ð12Þ
with the stiffness matrix of the jth resonator given by:

Kj ¼
kj �kj
�kj kj

� �
: ð13Þ

Assuming zero mass at the attachment point between the jth
resonator and the EM thick plate, the mass matrix can be expressed
as:

Mj ¼
0 0
0 mj

� �
: ð14Þ

The displacement vector of the metamaterial system is given
by:

uj ¼
wðrj þ �rÞ

uj

� �
: ð15Þ

The force vector of the metamaterial system is given by:

pj ¼
�pjðrj þ �rÞ

pj

( )
; ð16Þ

where �pjðrj þ �rÞ is the plate reaction force at the attachment point.
Since there are no external forces acting on the resonator

masses, i.e., pj ¼ 0, the metamaterial displacement vector can be
condensed. Thus, Eq. (12) can be rewritten as:

pjðrj þ �rÞ ¼ �Djwðrj þ �rÞ; ð17Þ
where Dj is the dynamic stiffness of the jth resonator given by:

Dj ¼ �x2kjmj

kj �x2mj
: ð18Þ

In order to include damping in the resonator, a complex stiff-

ness is used, i.e., ~kj ¼ kjð1þ igjÞ, where gj is the damping of the
jth resonator, also known as loss factor.

To obtain the EPWE formulation, Eq. (17) is substituted into the
Eq. (3), producing:
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Inserting Eqs. (7)–(9) in Eqs. (19), (2b) and (2c) after some
mathematical manipulations, one may write a standard eigenvalue
problem:
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where �k ¼ ka and k ¼ kkk. The mathematical manipulations to pro-
duce Eq. (20) and the expressions of the sub-matrices B1;B2;B3 and
vector �q will be derived in a future publication. However, the pro-
cedure to obtain Eq. (20) is similar to that reported by Xiao et al.
(2012d) and Miranda Jr. et al. (2019) for thin plates.

Eq. (20) represents a generalized eigenvalue problem of kðxÞ.
The main advantage of EPWE as compared to PWE is to obtain
the complex values of k, which are related to the evanescent waves
and attenuation of the unit cell, defined as ~l ¼ Ifkga.

3. Simulated examples

Simulated examples are performed in order to verify the PWE
and EPWE methods with Mindlin-Reissner plate theory (Mindlin,
1951) and to demonstrate their capacity of calculating the complex
band structure and wave shapes of an EM thick plate with attached
multiple resonators of S-DOF.

For all examples, the EM thick plate geometry and material
properties are shown in Table 1. They are chosen to be the same
as used by Xiao et al. (2012d) and Miranda Jr. et al. (2019), in order
to facilitate comparison.

A complex Young’s modulus is regarded, i.e., ~E ¼ Eð1þ igÞ, with
the purpose of including a structural damping in the EM thick
plate.

We highlight that a criterion for tracking the frequency evolu-
tion of wave modes is used when EPWE is applied, similar to
Miranda Jr. and Dos Santos (2019). In EPWE method, the wave
modes are calculated at several discrete frequencies. Then, another
issue is to associate, among all modes defined at a given frequency
(xþ Dx), the one which matches a given mode defined at the pre-
vious frequency (x).

We choose the model assurance criterion (MAC) to estimate the
correlation among wave shapes. This criterion is based on the her-
mitian scalar product and it is useful for very low frequencies
(Mencik, 2010). Given a wave shape l defined at an specific fre-
quency x and for a sufficiently small Dx, the wave shape l defined
at frequency xþ Dx results in:

UH
l ðxÞ

kUlðxÞk
Ulðxþ DxÞ

kUlðxþ DxÞk
����

���� ¼ maxs
UH

l ðxÞ
kUlðxÞk

Usðxþ DxÞ
kUsðxþ DxÞk

����
����

� �
;

ð21Þ

where kUlk ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
UH

l Ul

q
denotes the hermitian norm of the eigenvec-

tors Ul, which can be related to Eq. (20) by:

Ul ¼
�q
�k�q

� �
l

; ð22Þ

with l; s ¼ 1; . . . ;6ð2M þ 1Þ2; ðM 2 ZÞ, and ð�ÞH indicates the conju-
gate transpose. The complex band structures calculated by EPWE
are ordered using MAC.
Table 1
Elastic metamaterial thick plate geometry and
material properties.

Geometry/Property Value

Lattice parameter (a) 0.1 m
Unit cell area (S ¼ a2) 0.01 m2

Thickness (h) 0.002 m
Young’s modulus (E) 70 � 109 Pa
Mass density (q) 2700 kg/m3

Structural damping (g) 0.01
Poisson’s ratio (m) 0.3
For all PWE and EPWE calculations, 81 plane waves are used for
Fourier series expansion. This resulted in a good convergence.
3.1. Single resonator of S-DOF – SRSD

We consider first an EM thick plate with an attached single res-
onator of S-DOF (SRSD) in the unit cell, as illustrated in Fig. 2. The
S-DOF resonator parameters are g1 ¼ 0:05; f 1 ¼ 300 Hz,
m1 ¼ c1qSh, where c1 ¼ 0:5 is the ratio of resonator mass to the
plate unit cell mass. The resonator stiffness is calculated by

k1 ¼ m1ð2pf 1Þ2ð1þ ig1Þ.
Fig. 3ðaÞ shows the band structure real part of the EM thick

plate proposed in this study calculated by PWE (blue asterisks).
We plot the band structure real parts in the three principal symme-
try directions of the FIBZ. The plots are given in terms of the real
part of the reduced Bloch wave vector defined as ka=2p versus fre-
quency in Hz. This band structure real part in Fig. 3ðaÞ (blue aster-
isks) agrees with the results of Xiao et al. (2012d) and Miranda Jr.
et al. (2019)(red circles), considering Kirchhoff–Love thin plate the-
ory, i.e., for lower frequencies, we observe a good agreement
between thin and thick plate theories. However, for higher fre-
quencies, Fig. 3ðbÞ, there is no agreement, since Kirchhoff–Love
thin plate theory is not valid for higher frequencies. Kirchhoff–Love
thin plate theory is only valid for kkkh � 1;h=a � 1 (Yao et al.,
2009) or h < k=6 (Fahy and Gardonio, 2007). We do not consider
a spring-mass S-DOF resonator with a high resonant frequency,
however, we think it is worth using thick plate theory, since the
resonators can be tuned at high frequencies (Qian, 2020), where
the thin plate theory is not valid.

Moreover, in Fig. 3ðaÞ, one complete locally resonant band gap
is found around the resonant frequency of 300 Hz (blue shaded
region). Bragg-type band gaps are predicted by Bragg’s law along
different directions, i.e., a ¼ nðk=2 cos/Þ; n 2 Z. The first Bragg fre-
quency along CX direction (/ ¼ 0�) is opened up around 484 Hz
and this directional (partial) band gap can be observed in Fig. 3ðaÞ.

Fig. 4 illustrates the band structure imaginary parts calculated
by EPWE for different directions inside FIBZ, regarding Kirchhoff–
Love (Xiao et al., 2012d; Miranda Jr. et al., 2019) ðaÞ and Mindlin-
Reissner ðbÞ plate theories. In Fig. 4ðcÞ, a good agreement is
observed between both theories at lower frequencies even at the
band gaps.

In Fig. 4, we consider only the smallest positive imaginary part
of the reduced Bloch wave vector (lowest component whose real
part of the reduced Bloch wave vector lies inside and around the
FIBZ is the most accurate (Miranda Jr. and Dos Santos, 2019)), since
it represents the least rapidly decaying wave (evanescent Bloch
wave (Romero-García et al., 2010a; Romero-García et al., 2010b;
Romero-García et al., 2010c)) that carries energy the farthest
(Xiao et al., 2012d). Hereafter, only the smallest positive imaginary
part of the reduced Bloch wave vector is considered in EPWE plots.
From Fig. 4, the Bragg-type band gaps in different directions can be
seen. Locally resonant band gaps vary slightly with /. Moreover,
the unit cell attenuation for locally resonant band gaps is higher
than for Bragg-type band gaps.

In Fig. 5, we compute the wave shapes (associated with the
locally resonant ða� bÞ and Bragg-type ðc � dÞ band gaps) by Eq.
(7), i.e., jwðrÞj, with f 1 ¼ 300 Hz and the data of Table 1. We high-
light that these wave shapes are associated only with the propagat-
ing modes of the band structure, since the values of wð�gÞ in Eq. (7)
are obtained from the eigenvectors of Eq. (11), q, using PWE
approach.

In Fig. 5ða� bÞ, we illustrate the wave shapes at the lower edge
frequency ðaÞ (f ¼ 270:3 Hz, XM direction, at M) and at the upper
edge frequency ðbÞ (f ¼ 354:6 Hz, MC direction, at C) of the locally
resonant band gap. These wave shapes are related to the flexural



Fig. 2. Unit cell of the elastic metamaterial thick plate with attached single resonator of S-DOF for square lattice. First irreducible Brillouin zone in shaded region for a square
lattice.

Fig. 3. Elastic band structure real parts of the EM plate considering thin plate theory (Kirchhoff–Love Xiao et al., 2012d; Miranda Jr. et al., 2019), red circles, and thick plate
theory (Mindlin-Reissner), blue asterisks, for ðaÞ lower and ðbÞ higher frequencies, with f 1 ¼ 300 Hz and the data of Table 1. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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modes of the EM thick plate whose vibrations are out-of-plane, i.e.,
particles vibrate in the z-direction (perpendicular to the wave
propagation). The wave shapes at lower and upper edge frequen-
cies of the locally resonant band gap present similar pattern. The
amplitudes of the displacement field in Fig. 5ða� bÞ are confined
in the unit cell and the interactions between displacement fields
and their neighbours in adjacent unit cells are weak. The higher
and lower amplitudes of jwðrÞj in Fig. 5ða� bÞ, respectively, are
localized in the middle of the unit cell, at the same position of
the attached resonator. We also highlight that a significant dis-
placement is observed in Fig. 5ðbÞ at the corners of the unit cell.

Fig. 5ðc � dÞ shows the wave shapes for jwðrÞj at the lower edge
frequency ðcÞ (f ¼ 483:7 Hz, CX direction, at X) and at the upper
edge frequency ðdÞ (f ¼ 589:6 Hz, CX direction, at X) of the first
Bragg-type band gap. The amplitudes of the displacement field
considering the first Bragg-type band gap (Fig. 5ðc � dÞ) are lower
than the amplitudes associated with the locally resonant band
gap (Fig. 5ða� bÞ).



Fig. 4. Elastic band structure imaginary parts of the EM plate considering ðaÞ thin plate theory (Kirchhoff–Love Xiao et al., 2012d; Miranda Jr. et al., 2019) and ðbÞ thick plate
theory (Mindlin-Reissner), with f 1 ¼ 300 Hz and the data of Table 1, for different directions inside FIBZ. ðcÞ Comparison of elastic band structure imaginary parts of the EM
plate considering ðaÞ thin plate theory (Kirchhoff–Love, KL, Xiao et al., 2012d; Miranda Jr. et al., 2019), dotted-line, and ðbÞ thick plate theory (Mindlin-Reissner, MR), circles.
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In Fig. 5ðc � dÞ, the displacement field interacts mainly with
their neighbours in adjacent unit cells at the two vertical bound-
aries with different intensities. The flexural waves could propagate
freely between adjacent unit cells.
3.2. Multiple resonators of S-DOF – MRSD

In this subsection, we consider an EM thick plate with
attached two resonators of S-DOF (MRSD) in the unit cell. The
S-DOF resonator parameters are f j ¼ f283;102g Hz,

cj ¼ 0:5� f0:6;0:4g; mj ¼ cjqSh; gj ¼ 0:05 and kj ¼ mjð2pf jÞ2
ð1þ igjÞ, where j ¼ 1;2. The sum of all ratio of resonator mass to
the plate unit cell mass is equal to 0.5, the same as SRSD
configuration.

Fig. 6 shows the band structure real part of the EM thick plate
with attached double resonators of S-DOF in the unit cell. It can
be seen the locally resonant band gaps near the natural frequencies
of the resonators (283 Hz and 102 Hz). The resonator with natural
frequency of 283 Hz opens up the broadest complete locally reso-
nant band gap.

Fig. 7 illustrates the band structure imaginary part of the EM
thick plate with attached double periodic arrays of S-DOF res-
onators. It can be seen the unit cell attenuation performance of
the two locally resonant and the Bragg-type band gaps for different
directions. The highest attenuation is associated with the natural



Fig. 5. Wave shapes (jwðrÞj) computed by Eq. (7) for the EM thick plate at the ðaÞ lower edge frequency (f ¼ 270:3Hz, XM direction, at M), ðbÞ upper edge frequency (f ¼ 354:6
Hz, MC direction, at C) of the locally resonant band gap, ðcÞ lower edge frequency (f ¼ 483:7 Hz, CX direction, at X) and ðdÞ upper edge frequency (f ¼ 589:6 Hz, CX direction,
at X) of the first Bragg-type band gap, considering f 1 ¼ 300 Hz and the data of Table 1.
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frequency of 283 Hz. One can note that the locally resonant and
Bragg-type band gaps for SRSD configuration (Fig. 4) presents
higher attenuation and are broader than the band gaps for MRSD
configuration (Fig. 7).

In Fig. 8, we compute the wave shapes (related to the first
ða� bÞ and second ðc � dÞ locally resonant band gaps) by Eq. (7),
i.e., jwðrÞj, with f j ¼ f283;102g Hz and the data of Table 1. These
wave shapes are associated only with the propagating modes of
the band structure. In Fig. 8ða� bÞ, we illustrate the wave shapes
at the lower edge frequency ðaÞ (f ¼ 101:3 Hz, XM direction, at
M) and at the upper edge frequency ðbÞ (f ¼ 109:1 Hz, MC direc-
tion, at C) of the first locally resonant band gap. Moreover,
Fig. 8ðc � dÞ show the wave shapes at the lower edge frequency
ðcÞ (f ¼ 267:2 Hz, XM direction, at M) and at the upper edge fre-
quency ðdÞ (f ¼ 317:2 Hz, MC direction, at C) of the second locally
resonant band gap.

The higher amplitudes in Fig. 8ða; cÞ and lower amplitudes in
Fig. 8ðb; dÞ of the displacement field are localized at the same posi-
tion of the attached resonators, since the resonators are theoreti-
cally attached in the middle of the unit cell. Note that a
significant displacement is observed in Fig. 8ðb; dÞ at the corners
of the unit cell, similar to the SRSD configuration (Fig. 5ðbÞ).

The pattern of the wave shapes for both first (Fig. 8ða� bÞ) and
second (Fig. 8ðc � dÞ) locally resonant band gaps is similar. How-
ever, the amplitudes are higher for the wave shapes associated
with the second locally resonant band gap (Fig. 8ðc � dÞ). More-
over, the wave shapes associated with the locally resonant band
gaps for MRSD (Fig. 8) present lower amplitudes than SRSD (Fig. 5).

Fig. 9 illustrates the wave shapes for jwðrÞj at the lower edge
frequency ðaÞ (f ¼ 483:7 Hz, CX direction, at X) and at the upper
edge frequency ðbÞ (f ¼ 548:7 Hz, CX direction, at X) of the first
Bragg-type band gap.

The amplitudes of the displacement field considering the first
Bragg-type band gap (Fig. 9) are lower than the amplitudes associ-
ated with the first and second locally resonant band gaps (Fig. 8),
except for the lower edge frequency of the first locally resonant
band gap (Fig. 8ðaÞ).

The pattern of the wave shapes regarding the first Bragg-type
band gap for MRSD (Fig. 9) is similar to the SRSD (Fig. 5). However,
the amplitudes of the displacement field are higher for the SRSD,



Fig. 6. Elastic band structure real part of EM thick plate with attached double
periodic arrays of S-DOF resonators considering f j ¼ f283;102g Hz and the data of
Table 1.

Fig. 7. Elastic band structure imaginary parts of the EM thick plate with attached
double periodic arrays of S-DOF resonators considering f j ¼ f283;102g Hz and the
data of Table 1, for different directions inside FIBZ.
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considering the upper edge frequency (Fig. 5ðdÞ), and for the MRSD,
regarding the lower edge frequency (Fig. 9ðaÞ).

4. Experimental validation and numerical verification

In this section, frequency response functions (FRFs) are com-
puted for an EM plate and a comparison with the complex band
structures is provided in order to identify the locally resonant band
gaps. This comparison between finite (FRF) and infinite (band
structure) metamaterials has been well addressed (Matlack et al.,
2016; Hu et al., 2017; Krushynska et al., 2017b; Sugino et al.,
2017; Ampatzidis et al., 2018; Zouari et al., 2018).

The EM plate was designed to be used as a metamaterial plate-
like (flexural waves) structure with spatial periodic distribution
and local resonators. Each unit cell contains one resonator consist-
ing of a mass (0.006 m � 0.006 m � 0.0038 m) and a beam
(0.001 m � 0.001 m � 0.002 m) on middle of unit cell that links
the mass to the plate. The models of the unit cell, slice (for WFE
modelling) and EM plate are shown in Fig. 10.

The EM plate (0.12 m � 0.096 m � 0.0028 m) was fabricated in
a 3D printer. For the manufacture of the EM plate, the material was
considered to be as isotropic as possible. However, this hypothesis
is not necessarily fulfilled for additive manufacturing (Wang et al.,
2017; Dizona et al., 2018; Ngo et al., 2018). Based on this require-
ment the EM plate was manufactured with plastic material (Vero
White Plus) in a 3D printer with UV curing technology. Fig. 11 illus-
trates the EM plate and the experimental setup. The EM plate con-
tains 10 � 8 resonators. An impact hammer excitation was used
and the acceleration was obtained by a piezoelectric
accelerometer.

The measurement instruments used in the experimental setup,
Fig. 11, are summarized in Table 2.

The EM plate geometric parameters and material properties are
summarized in Table 3. The material properties, i.e., E; q and m,
were taken from manufacturer and adjusted in order to numerical
results match the experimental results.

The modal analysis and forced response of the EM plate are
computed with a commercial finite element analysis software
ANSYS (Mechanical APDL Release 14.5). The EM plate is modelled
using a 3D solid element (SOLID187). The global system is mod-
elled using a free mesh with 12156 3D triangular elements. The
boundary conditions of the EM plate are free edges. Furthermore,
we also calculate the forced response using the WFE approach with
the data obtained by ANSYS, i.e., the same data of FE method.

Fig. 12 illustrates the mode shapes of the unit cell with a bound-
ary condition of clamped on all edges (CCCC) computed by FE. We
illustrate only the first three mode shapes of the unit cell at ðaÞ
915.222 Hz, ðbÞ 917.343 Hz and ðcÞ 1075.14 Hz. These resonant fre-
quencies are associated with the locally resonant band gap opened
up for the EM plate. However, only the first two symmetry modes
are the most important in this study, since only flexural waves are
being considered for forced response calculation of the EM plate.
Thus, for a hammer excitation as illustrated in Fig. 11, only the first
two modes in Fig. 12 are important for the locally resonant band
gap formation.

The numerical forced response of the EM plate is calculated
considering the FE and WFE modelling described before. We also
compute the experimental FRF of the 3D-printed EM plate with
the LMS SCADAS data acquisition system. Fig. 13 compares the
experimental (EXP) receptance FRF (i.e., displacement divided by
force) and receptance FRFs computed by FE and WFE approaches.

Fig. 13 illustrates that the locally resonant band gap calculated
by FE and WFE is opened up between 870 Hz and 986 Hz, whereas
for the experimental results the higher attenuation is observed
from 630 Hz to 924 Hz. The FE and WFE results are in a very good
agreement. We remark that numerical and experimental recep-
tances present good agreement, but there is some mismatch. This
issue should be associated with the uncertainty of the material
properties (E and q) specified by the plastic manufacturer, which
is not guaranteed in the addictive manufacturing process used to
print the EM plate. Additive manufacturing, like any other manu-
facturing process, can introduce material and geometrical variabil-
ities that affect the structural dynamic behaviour (Beli et al., 2019;



Fig. 8. Wave shapes (jwðrÞj) computed by Eq. (7) for the EM thick plate at the ðaÞ lower edge frequency (f ¼ 101:3Hz, XM direction, at M), ðbÞ upper edge frequency (f ¼ 109:1
Hz, MC direction, at C) of the first locally resonant band gap, at the ðcÞ lower edge frequency (f ¼ 267:2 Hz, XM direction, at M) and ðdÞ upper edge frequency (f ¼ 317:2 Hz,
MC direction, at C) of the second locally resonant band gap, considering f j ¼ f283;102g Hz and the data of Table 1.

Fig. 9. Wave shapes (jwðrÞj) computed by Eq. (7) for the EM thick plate at the ðaÞ lower edge frequency (f ¼ 483:7 Hz, CX direction, at X) and ðbÞ upper edge frequency
(f ¼ 548:7 Hz, CX direction, at X) of the first Bragg-type band gap, considering f j ¼ f283;102g Hz and the data of Table 1.
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Fig. 10. The models of unit cell, slice and EM plate for FE and WFE simulations.

Fig. 11. Experimental setup with the 3D-printed EM plate.

Table 3
3D-printed EM plate geometry and material properties.

Geometry/Property Value

Lattice parameter (a) 0.012 m
Total length of the EM plate (Lt) 0.12 m
Total length of the resonator mass (Lm) 0.006 m
Total length of the resonator beam (Lb) 0.001 m
Unit cell area (S ¼ a2) 0.012 � 0.012 m2

Cross section area of the EM plate (S ¼ b� h) 0.096 � 0.0028 m2

Cross section area of resonator mass (Sm ¼ bm � hm) 0.006 � 0.0038 m2

Cross section area of resonator beam (Sb ¼ bb � hb) 0.001 � 0.002 m2

Young’s modulus (E) 0.86 � 109 Pa
Mass density (q) 600 kg/m3

Structural damping (g) 0.02
Poisson’s ratio (m) 0.39

Table 2
Measurement instrument specifications.

Instrument Model Sensitivity Measure range

Hammer PCB 86E80 23.11 mV/N 222.0 N (peak)
Accelerometer KISTLER 3.86 mV/g 10 Hz–25 kHz
Data Acquisition LMS SCR05 – –
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Fabro et al., 2020). Another possible strategy is to perform a mate-
rial characterisation procedure to derive the mechanical proper-
ties, for instance using static tests (Ye et al., 2020).

We also highlight that the first two resonant frequencies
observed in Fig. 12, i.e., 915.222 Hz and 917.343 Hz, match with
the locally resonant band gap in Fig. 13 computed by FE and
WFE approaches.

Fig. 14 compares the complex band structure calculated by PWE
(real part of Bloch wave vector) and EPWE (for / ¼ 0�) (imaginary
part of Bloch wave vector), experimental (EXP) receptance and
receptances computed by FE and WFE.

The Bloch wave vectors are obtained from PWE and EPWE pre-
sented in Subsections 2.1 and 2.2 from 0 Hz up to 2000 Hz. We
consider an attached single resonator of S-DOF in the unit cell,
regarding f 1 ¼ 915:222 Hz (from modal analysis in Fig. 12ðaÞ),
material properties from Table 3 and 81 plane waves.

From PWE and EPWE results in Fig. 14, a locally resonant band
gap opened up between 910 Hz and 1060 Hz can be observed. This
result is in a good agreement with FE, WFE and experimental
results. We highlight that the difference of the band gap width cal-
culated by PWE/EPWE and FE/WFE is associated with PWE/EPWE
modelling which does not consider the 3D geometry of the res-
onator. Thus, the modelling of the EM thick plate with attached
spring-mass S-DOF resonators is capable to estimate the band
gap width of an EM thick plate with 3D resonators obtained
numerically and experimentally.

Fig. 15 shows the complex band structure computed by WFE for
the unit cell modelled in ANSYS, thus the 3D geometry of the res-
onator is regarded. We highlight that only the first seven modes
are plotted in Fig. 15.

Differently from the band structure calculated by PWE and
EPWE (both considering only flexural modes) in Fig. 14, it is diffi-
cult to identify exactly the locally resonant band gap width in
Fig. 15, since the band structure of a solid is more complex (Silva
et al., 2016; Beli et al., 2018b). Accordingly, in order to facilitate
the identification of the band gap width, we insert a rectangle in
Fig. 15 using the same range of frequency of the locally resonant
band gap width in the receptance of Fig. 13 for WFE, i.e., from
870 Hz to 986 Hz. Furthermore, one can observe that the propaga-
tion of waves is strongly attenuated in these range of frequency.
5. Conclusions

An EM thick plate containing periodic resonators has been
investigated in order to open up locally resonant and Bragg-type
band gaps. We use PWE and EPWE methods to deal with the EM
thick plate containing multiple resonators of S-DOF in the unit cell.

Complex band structures are calculated by PWE and EPWE
using the Mindlin-Reissner plate theory in order to evaluate the
EM thick plate performance in terms of band gap width and unit



Fig. 12. Modal analysis of the unit cell using FE for a boundary condition of clamped on all edges (CCCC): ðaÞ 915.222 Hz, ðbÞ 917.343 Hz and ðcÞ 1075.14 Hz.

Fig. 13. Comparison of experimental (EXP) receptance and receptances computed
by FE and WFE. Fig. 14. Comparison of complex band structure calculated by PWE and EPWE (for

/ ¼ 0�), experimental (EXP) receptance and receptances computed by FE and WFE.
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cell attenuation. A good agreement, at low frequencies, is observed
between the complex band structures calculated by both Kirch-
hoff–Love and Mindlin-Reissner plate theories. The wave shapes
are computed by using PWE. Depending on the type of band gap
(Bragg-type or locally resonant) at the lower or upper edge fre-
quency and on the configuration of the periodic arrays of attached



Fig. 15. Complex band structure computed by WFE.
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resonators, the amplitude, symmetry and pattern of wave shapes
are affected.

An experimental analysis was conducted with a 3D-printed EM
plate with resonators. Modal analysis and forced response are
computed by FE method. The WFE is used in order to obtain the
complex band structure and the forced response. The PWE and
EPWE approaches with spring-mass S-DOF resonators present a
good agreement between FE and WFE modelling with 3D res-
onators and experimental results, in terms of band gap width.

The configuration of periodic arrays of attached resonators in
thick plates enhances the possibility of using mechanical metama-
terial plates for vibration attenuation.
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