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Abstract  

Liposomal nanoparticles are the most commonly used drug nano-delivery platforms. However, recent 

reports show that certain pegylated liposomal nanoparticles (PLNs) and polymeric nanoparticles have 

the potential to enhance tumor growth and inhibit antitumor immunity in murine cancer models. We 

sought herein to identify the mechanisms and determine whether PLN-associated immunosuppression 

and tumor growth can be reversed using alendronate, an immune modulatory drug. By conducting in 

vivo and ex vivo experiments with the immunocompetent TC-1 murine tumor model, we found that 

macrophages were the primary cells that internalized PLN in the tumor microenvironment and that 

PLN-induced tumor growth was dependent on macrophages. Treatment with PLN increased 

immunosuppression as evidenced by increased expression of arginase-1 in CD11b+Gr1+ cells, 

diminished M1 functionality in macrophages, and globally suppressed T-cell cytokine production. 

Encapsulating alendronate in PLN reversed these effects on myeloid cells and shifted the profile of 

multi-cytokine producing T-cells towards an IFNγ+ perforin+ response, suggesting increased cytotoxic 

functionality. Importantly, we also found that PLN-encapsulated alendronate (PLN-alen), but not free 

alendronate, abrogated PLN-induced tumor growth and increased progression-free survival. In 

summary, we have identified a novel mechanism of PLN-induced tumor growth through macrophage 

polarization and immunosuppression that can be targeted and inactivated to improve the anticancer 

efficacy of PLN-delivered drugs. Importantly, we also determined that PLN-alen not only reversed 

protumoral effects of the PLN carrier, but also had moderate antitumor activity. Our findings strongly 

support the inclusion of immune-responsive tumor models and in-depth immune functional studies in 

the preclinical drug development paradigm for cancer nanomedicines, and the further development of 

chemo-immunotherapy strategies to co-deliver alendronate and chemotherapy for the treatment of 

cancer.  
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1.0 Introduction 

Nanoparticle-based drugs are a heterogeneous class of pharmaceuticals, also referred as 

nanomedicines, characterized by the co-formulation of one or more active drug entities with a carrier 

system [1, 2]. The resulting nanomedicines are within the nanometer scale, usually in the range of 10 to 

200 nm in diameter. Nanoparticles are used as drug carriers for cancer therapies since they have 

pharmacological advantages such as increased tumor drug delivery through the enhanced permeability 

and retention (EPR) effect, protection of the drug cargo from degradation, and in most cases improved 

tolerability of cytotoxic drugs [3-5]. There are now nine nanoparticle drugs approved for the treatment of 

cancer (Supplemental Table S1), and most utilize liposomal nanoparticles because the lipid 

components are considered biocompatible and safe materials and liposomes have been manufactured 

in bulk and met regulatory criteria. However, many liposomal drugs and other nanoparticle-based drug 

formulations have failed to meet regulatory criteria for approval or have shown only modest anticancer 

efficacy in phase 3 clinical studies [6-11]. A recent meta-analysis of 14 randomized clinical trials that 

directly compared the anticancer efficacy of liposomal formulations of cytotoxic chemotherapy to their 

conventional “free” drug formulation found that liposome encapsulation of drugs did not improve 

objective response rates, progression-free survival, or overall survival in patients with solid tumors [9]. 

Currently the only liposomal drug to significantly prolong cancer patient survival in a head-to-head trial 

with the equivalent conventional formulation is CPX-351 (Vyxeos; liposomal daunarubicin and 

cytarabine). This was achieved via co-delivery of two cytotoxic drugs in patients with acute 

myelogenous leukemia [12] where the EPR effect would not be expected to play a role. This implies 

that there are critical knowledge gaps in the current understanding of the pharmacology of liposomal 

drugs in the treatment of cancer that need to be addressed in order to make major advances in the 

field.  

Although the reasons for the lack of translation between preclinical anticancer efficacy and clinical 

findings are not fully understood, it is likely that the immune system is a key player since nanoparticles 

are known to activate or inhibit components of the immune system. The tumor microenvironment is 

infiltrated by a multitude of antitumor effector immune cells and immunosuppressive cells recruited by 

the tumor. Tumor evasion of CD8+ T-cell cytolytic activity is associated with disease progression [13] 

and there are several mechanisms by which the tumor evades CD8
+
 T-cell mediated destruction such 

as downregulation of MHC Class I and mutation of antigenic proteins [14]. While liposomes are unlikely 

to manipulate the mechanisms involved in immune-mediated recognition of tumors, there is evidence 

suggesting they contribute to the recruitment or induction of immunosuppressive cell types into the 

tumor microenvironment [15]. Myeloid-derived suppressor cells (MDSCs), that highly express arginase-

1 and produce anti-inflammatory cytokines infiltrate tumors and secondary lymphoid organs in tumor-

bearing mice and inhibit T-cell antitumor responses and enhance tumor angiogenesis leading to tumor 

progression [16, 17]. Beyond MDSCs, other myeloid cells such as tumor-associated macrophage 

(TAMs) also regulate antitumor immunity. While classically activated inflammatory macrophage, known 

as M1 macrophage, can inhibit tumor growth through inducible nitric oxide synthase (iNOS)-mediated 

production of reactive nitrogen species (RNS), many TAMs are instead polarized as alternatively 

activated anti-inflammatory M2 macrophage.  M2 macrophages do not express iNOS but have elevated 

expression of arginase that prevents nitric oxide production, and secrete anti-inflammatory cytokines 

such as IL-10 and TGF.  

The clinical implications of interactions between nanomedicines and the immune system have been 

previously reviewed in detail [18]. Briefly, these interactions with the immune system can affect drug 

tolerability, immunogenicity, and pharmacokinetics in patients. However, their impact on tumors is only 
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beginning to be elucidated. It was reported that polystyrene nanoparticles enhanced tumor growth in 

murine cancer models through mechanisms involving complement C5a receptors and MDSCs, 

suggesting that interactions between nanoparticles and the immune system can have protumoral 

effects [19]. In addition, we have previously reported that a poly-ethylene glycol (PEG)-coated 

(pegylated) liposomal nanoparticle (PLN) carrier, similar to that used in patients, significantly enhanced 

tumor growth in mice bearing TC-1 tumors, a mouse model of human papilloma virus (HPV)-induced 

cancer [20]. In these studies, PLNs were administered as weekly intravenous injections at clinically 

relevant lipid doses (four doses of 47 nmoles/g or two doses of 85 nmoles/g). Treatment with PLN was 

associated with suppression of antitumor immunity as indicated by decreased interferon-γ (IFNγ) 

production by tumor-associated macrophages (TAMs) and cytotoxic T-cells, diminished tumor 

infiltration of HPV E7-tumor antigen-specific T-cells, and decreased number of dendritic cells in tumor 

draining lymph nodes. These data suggest that PLN-induced immunosuppression and tumor 

enhancement may mitigate the benefits of carrier-mediated drug delivery (Figure 1) and could partially 

explain why there is often an insufficient improvement in the clinical efficacy of liposomal drugs over 

free drugs [7, 8, 10, 21]. The mechanisms underlying the observed PLN-associated tumor promotion 

are currently not known but it is likely that immunosuppressive cells such as TAMs are mediators since 

they have been implicated as players in both the pharmacology of liposome-mediated therapies [22, 23] 

and in cancer progression [17, 24]. In theory, the tumor promoting effects of the PLN may diminish the 

antitumor effects of the drug cargo. However, it is also possible that cytotoxic cargo may kill not only 

tumor cells but also immune cells responsible for the tumor promoting effects of the carrier, thus 

mitigating the PLN impact on cancer progression. 

 

Figure 1. A proposed model of how interactions between the nanoparticle 

carrier, drug cargo, and immune system impact overall therapeutic efficacy of 

nanoparticle-delivered drugs. EPR, enhanced permeability and retention effect; 

MPS, mononuclear phagocyte system 

 

The imperative question that must be answered then is how the drug cargo alters the tumor-promoting 

and immune modulatory effects of the carrier. Nanoparticles are increasingly used as carriers for 

targeted therapies and immunotherapies that have significantly less direct cytotoxic effects on immune 

cells than traditional chemotherapy. In this scenario, the interactions between the carrier and the 

immune system can be of paramount importance to the overall anticancer efficacy of the carrier-
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mediated drug. The primary purpose of this study was to identify the subpopulation of immune cells 

which mediate the tumor promoting effects of particulate carrier systems, and to determine whether the 

tumor promoting and immunosuppressive effects of the carrier can be reversed with an immune 

modulatory and non-cytotoxic drug cargo. We chose PLN as the model carrier since we previously 

observed enhanced tumor growth with this nanoparticle [20]. We chose alendronate, an 

aminobisphosphonate, as the model drug cargo because PLN-encapsulated alendronate (PLN-alen) is 

not cytotoxic to leukocytes [25] and our formulation did not deplete tissue macrophages (Supplemental 

Figure S1). Moreover, alendronate has been found to have antitumor activity through its effects on T-

cells [26] which we theorized would mitigate the immunosuppressive effects of the PLN carrier.  

2.0 Materials and Methods 

2.1 Cells 

TC-1 tumorigenic cells were cultured under standard conditions similar to previously described methods 

[27]. TC-1 cells are derived from primary epithelial cells of C57BL/6 mice that have been co-

transformed with HPV-16 E6 and E7 and c-Ha-ras oncogenes. TC-1 is an established tumor model 

utilized for the development of cancer immunotherapy since it is responsive to immune modulation and 

is characterized by immune cell infiltrates [28].   

2.2 Formulations  

Placebo (i.e., no drug loaded within) PLN similar in size and composition to the Doxil® (pegylated 

liposomal doxorubicin; PLD) drug carrier, were synthesized using standard extrusion methods as 

previously described [29]. The PLNs were unilamellar and composed of hydrogenated 

phosphatidylcholine, cholesterol, and methoxy-polyethylene glycol-distearoyl phosphatidylethanolamine 

at a molar ratio of 55:40:5, respectively, with an average diameter of 80 nm and poly dispersity index 

(PDI) <0.10 as determined by dynamic light scattering. Similar PLNs were also loaded with ammonium 

alendronate (PLN-alen) at the maximum loadable concentration, 4 to 5 mg/ml, depending on the batch. 

Unencapsulated alendronate was removed by dialysis along with anion exchange resin 

chromatography, as described previously [25, 30]. The PLN-alen particles were typically 70-90 nm in 

mean diameter with PDI approximately 0.05. The alendronate concentration was verified post synthesis 

and drug release profiles in buffer and plasma determined as previously detailed [30]. In buffer, PLN-

alen is very stable with negligible leakage of alendronate for at least 1 year storage at 4C. In plasma, it 

is also very stable for several hours incubation at 37C. All formulations were endotoxin-free and sterile.  

2.3 Animals and treatments 

Six to twelve weeks old male and female wildtype C57BL/6 mice (Jackson Laboratories, Bar Harbor, 

ME), macrophage FAS-induced apoptosis (MaFIA) transgenic mice on C57BL/6 background (Jackson 

Laboratories), and OT1 transgenic mice on C57BL/6 background (Jackson Laboratories) were housed 

and cared for at the Texas Tech University Health Sciences Center (TTUHSC) animal care facility 

(Abilene, Texas) according to the Institutional Animal Care and Use Committee guidelines and all 

procedures were conducted under an approved protocol. To evaluate the effect on tumors, 0.5 x 106 

TC-1 tumorigenic cells were implanted subcutaneously on the hind flank and tumor volume was 

monitored at least twice weekly using digital calipers. Tumor volume was estimated using the formula 

Volume = A*B2/2, where A = largest diameter and B = smaller diameter.  
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To identify the cell types which internalized intravenously administered PLN, wildtype mice (n=8 total) 

bearing TC-1 implanted tumors were randomized to be treated with fluorescent nitrobenzoxadiazole 

(NBD)-labelled PLN or vehicle control. The mice were sacrificed 48 hours later, tumors were resected 

and enzymatically processed to obtain single cell suspensions which were then stained with antibodies 

against CD45, CD11b, F4/80 and Gr-1, and liposome uptake by different cell populations was 

visualized using imaging flow cytometry (ImageStreamX, EMD Millipore) and quantified using 

conventional flow cytometry (BD LSR Fortessa) (details are in supplemental materials). 

MaFIA mice (n=24 total) were used to determine the role of macrophages in PLN-induced tumor 

growth. In MaFIA mice, colony stimulating factor receptor 1 (Csf1r) drives expression of FK506 binding 

protein 1A (Fas), an inducible “suicide” gene. Since Csf1r is expressed in macrophages and not 

lymphocytes, this allows selective elimination of up to 90% of systemic macrophages after 

administration of the Fas receptor ligand, AP20187 (Clontech) [31]. Depletion of macrophages was 

achieved by intraperitoneal administration of AP20187 as described previously [31]. Mice were 

randomized to receive AP20187 or vehicle control (4% ethanol, 1% PEG, 1.7% Tween in water) and 

mice in each group were further randomized to receive PLN at 85 nmoles of phospholipids per gram 

body weight or equivalent volume of the vehicle (5% dextrose solution) administered via tail vein 

injections for two weekly doses.  

To assess the impact of PLN and PLN-alen on immune functionality, wildtype mice (n=12) were 

randomly allocated into treatment groups to receive PLN at 85 nmoles of phospholipids per gram body 

weight, PLN-alen at equivalent phospholipid concentration (alendronate at 7 g/g), or equivalent 

volume of vehicle (5% dextrose solution) via tail vein injections. Animals were sacrificed 7 days later for 

collection of splenocytes since prior experiments indicated that this was the time when PLN-alen 

induced effects on splenocytes peaked. The alendronate dose is compatible with the maximum 

tolerated dose of PLN-alen determined in prior experiments (unpublished). 

To determine the impact on tumor growth, mice (n=28) were subcutaneously implanted with 0.5 x 106 

TC-1 tumorigenic cells on the hind flank and randomized 72 hours later to receive PLN, PLN-alen, PLN 

+ free alendronate (at equivalent phospholipid and alendronate concentrations), or equivalent volume 

of vehicle control (5% dextrose solution) via tail vein injections as described above. Tumor size was 

measured twice weekly with digital calipers. To evaluate the acute changes in tumor immune cell 

infiltration, mice bearing TC-1 tumors (n=24) were sacrificed 48 hours after dosing with PLN, PLN-alen, 

or vehicle and tumor tissue collected for analysis since this is the time of peak PLN-alen accumulation 

in tumor tissue [30].  

2.4 Cell isolation and tissue processing 

Spleens and tumors were excised and processed to obtain single cell suspensions as previously 

described [20]. Briefly, spleens were dissociated and passed through a 40 m cell strainer, and red 

blood cells were lysed with ACK solution (K.D Medical, Columbia, Maryland). Tumors were minced then 

enzymatically digested and further purified using 30% Percoll density gradient. Single cell suspensions 

were counted and viability assessed using trypan blue exclusion assay (Vi-Cell XR, Beckman Coulter 

Inc. California, USA). Cells were then aliquoted out for staining and flow cytometric analyses, or ex vivo 

functional studies as detailed below. In some experiments, tumor tissue was immediately stored in 

RNALater at -20oC. RNA-stabilized tumor tissue was subsequently processed with the RNeasy RNA 

extraction kit (Qiagen) in order to obtain total RNA (500 ng) that was then converted to cDNA using the 

High Capacity Reverse Transcriptase Kit (Thermo Fisher/Applied Biosystems). The cDNA was 
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analysed by quantitative polymerase chain reaction (qPCR) using a StepOnePlus Real Time PCR 

System (Thermo Fisher) with primers specific for iNOS, TNF, IFN, and expression was normalized to 

18S rRNA. 

2.5 Immunophenotyping  

Two million cells from each sample were stained for CD45 and myeloid cell markers (CD11b, Gr1, 

F4/80, CD11c) or T-cell markers (TCR-β, CD8b, CD4). After surface staining, cells in the myeloid panel 

were fixed, permeabilized, and stained for expression of iNOS and arginase-1 (Arg1). Details of the 

staining panel are in supplemental materials (Supplemental Tables S2 and S3). Samples were 

analyzed with a BDLSR Fortessa flow cytometer (BD Biosciences, San Jose, CA) and results analyzed 

using FlowJo software (Tree Star Inc., Ashland, Oregon, USA). One million events were acquired and 

single cells were gated using the forward scatter and side scatter parameters, followed by dead cell 

exclusion via a fixable viability dye (eBioscience, cat. 65-0866-14). Splenic myeloid cells 

(macrophages, resident monocytes, inflammatory monocytes, granulocytes, and dendritic cells) and 

tumor myeloid cells (TAM and MDSC) were identified and enumerated. Expression of iNOS and Arg1 

was used to define M1 (iNOS+Arg1-), M2 (iNOS-Arg1+), and mixed M1/M2 (iNOS+Arg1+) phenotypes 

[32, 33]. T-cells (TCRβ
+
CD8b

+
 or TCRβ

+
CD4

+
) were enumerated in a similar manner. Details of the 

gating strategy are in supplemental materials (Supplemental Figure S2). 

2.6 Ex vivo functional studies  

In some experiments, an aliquot of each single cell suspension was also used for evaluation of ex vivo 

T-cell cytokine production studies. Myeloid cells expressing CD11b were removed using a magnetic 

bead-based assay (Dynabeads FlowComp Flexi kit, ThermoFisher Scientific) according to the product 

instructions. The remaining splenocytes were stimulated in complete RPMI media with 10% FBS, with 

cell activation cocktail containing PMA:Ionomycin:Brefeldin A  (0.08uM:1.3uM:5 ug/ml) (Biolegend, San 

Diego, CA)  at 37°C for 6 hrs in order to activate intracellular signaling cascades that mimic activation 

through T-cell receptor, then stained for intracellular cytokines (IFNγ, TNFα, IL-2) and perforin. 

Samples were analyzed similar to the method described above (staining panels are in supplemental 

materials). 

2.7 Statistical analysis 

Statistical analyses were performed using SAS software (version 9.4, SAS Institute Inc., Cary, NC), and 

all data are expressed as mean + standard error of the mean (SEM), unless otherwise specified. For 

longitudinal observations of tumor growth, a two-factor (time vs. treatments) repeated measures model 

with interaction between time and the treatments was considered and tumor volume at endpoint were 

compared using the Holm-Tukey simultaneous multiple comparisons of the treatment effects in order to 

control the familywise (overall) Type I error rate. To compare two treatments based on small sample 

sizes, the exact Wilcoxon rank-sum test was used for each comparison since this method produces the 

most reliable analysis for small data sets. If data sets involving pairwise comparisons of more than two 

treatments were observed to be heteroscedastic, rank transformation was used to alleviate 

heteroscedasticity and then simultaneous pairwise comparisons of treatment effects were conducted 

based on the rank-transformed data for the one-way analysis of variance model [34, 35]. For analysis of 

progression-free survival, tumor-free survival was defined as a tumor volume <100 mm3, and Kaplan-

Meier survival curves were used to compare across treatment groups using the Log-Rank test. Tumor 

growth to >100 mm3 volume was considered a tumor progression event. An adjusted P-value (the 
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smallest familywise error rate at which the hypothesis can be rejected) of less than 0.05 was 

considered statistically significant. 

3.0 Results 

3.1 Macrophages mediate protumoral effects of pegylated liposomes 

It was recently reported that PLN significantly enhanced tumor growth in a murine model of cancer and 

this was associated with diminished T-cell functionality and tumor infiltration [20], suggesting inhibition 

of antitumor immunity. We theorized that mechanisms of PLN-induced tumor growth involve 

immunosuppressive leukocytes such as tumor-associated macrophages (TAM) since macrophages 

have been implicated as key players in both the pharmacology of carrier-mediated therapies [22, 23] 

and in cancer progression [17, 24]. To test this hypothesis, we first sought to identify the cells within 

tumor tissue that engulf systemically administered PLN. We found that there was significant 

internalization of PLN by TAM and CD11b
+
Gr1

+
 myeloid progenitor cells (P = 0.029) but not by tumor-

infiltrating lymphocytes (Figure 2A-C) or non-leukocytes (data not shown), suggesting that 

macrophages mediating protumoral effects of PLN. To verify this, we next conducted tumor growth 

studies in MaFIA mice treated with PLN or vehicle control, with and without in vivo macrophage 

depletion. We found that depletion of macrophages abrogated PLN-induced tumor growth (Figure 2D; P 

< 0.0001), indicating that they are the primary mediators of the protumoral effects of the carrier.  

 

Figure 2. PLN-induced tumor growth is mediated by macrophages. (A-C) PLNs are 

internalized by macrophages and CD11b+Gr1+ cells in the tumor microenvironment but not 

by other leukocytes. Mice (n= 8 total) bearing TC-1 tumors were treated intravenously with 

fluorescent NBD-labelled PLN (NBD-PLN) or vehicle control, tumors were harvested 24 

hours later and dissociated to obtain cells for FACS analysis. Representative images of 

macrophages (CD11b+F4/80+) (A) with and (B) without internalized NBD-PLN. (C) NBD 

fluorescence was determined in each cell population. (D) In vivo depletion of systemic 

macrophages abolished PLN-induced tumor growth. MaFIA transgenic mice (n= 24 total) 

bearing TC-1 tumors were treated with PLN or vehicle control, with macrophage depletion 

(AP20187) or mock depletion (vehicle). Data are mean+SEM, P-value based on (C) 

Wilcoxon two-sample rank-sum test, and (D) Holm-Tukey simultaneous multiple 

comparisons for two-factor analysis of variance with repeated measures; n.s., not 

significant. 
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3.2 PLN-alendronate mitigates carrier-induced splenic myeloid cell infiltration and polarization 

Given that PLNs are increasingly used as carriers for targeted therapies and immunotherapies, we 

aimed to determine whether the tumor promoting effects of the carrier can be reversed with an immune 

modulatory and non-cytotoxic drug cargo. Since alendronate inhibits the activity of osteoclasts, a 

specialized population of bone macrophages and has been found to have antitumor activity through its 

effects on T-cells [26], we theorize that formulating PLN with alendronate will mitigate the 

immunosuppressive effects of the carrier that are mediated by macrophages. To test this strategy, we 

treated tumor-bearing mice with PLN-alen, PLN, or vehicle control and determined the impact on 

splenocytes. We chose to inspect splenocytes, (consisting of myeloid and lymphoid immune cells 

including macrophages, MDSCs, and T cells) because the spleen is a secondary lymphoid organ and 

this collection of splenic cells plays an important role in the immune response to cancer [36].  

Paradoxically, the spleen may even serve as site that helps orchestrate tumor immune tolerance [37].  

We found that PLN significantly increased the splenic population of CD11b
+
Gr1

+
 cells as compared to 

vehicle control (P = 0.021) (Figure 3A-B).  In contrast, PLN-alen resulted in a reduction of the splenic 

population of CD11b+Gr1+ cells compared to PLN, and did not result in significant accumulation in 

comparison to vehicle control (Figure 3A-B). Since the splenic CD11b+Gr1+ cell population consists of 

numerous subpopulations of granulocytic and monocytic cells with the potential to impede T-cell 

mediated immunity during cancer and infection [38-40], we further characterized the splenic 

CD11b+Gr1+ cell subpopulations in each treatment group. This revealed significant accumulation of 

granulocytes, consisting of neutrophils, basophils and eosinophils in the PLN treated group (P = 0.034) 

that was not observed with PLN-alen (Figure 3C). Moreover, significant accumulation of both 

inflammatory and resident monocytes was also observed after PLN treatment (P = 0.021 and P = 

0.040, respectively) but not with PLN-alen (Figure 3C), suggesting that loading alendronate mitigated 

these effects of the PLN.  

Figure 3. PLN-associated accumulation of splenic macrophages, monocytes, and 

granulocytes is mitigated by the alendronate cargo. Mice were treated with PLN, 

PLN-alen, or vehicle control and splenocytes were harvested 7 days post dose for 

immunophenotyping. (A-B) PLN increase splenic accumulation of CD11b+ Gr1+ cells 

while PLN-alen did not. (C)The CD11b+Gr1+ subpopulations that increased were 

inflammatory monocytes and granulocytes, but an increase in resident monocytes was 
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also observed. Total n = 11; data are mean+SEM (rank-transformed data in 

Supplemental Tables S4-S9); one-way analysis of variance based on ranks; n.s., not 

significant.  

 
 

In addition to these effects on splenic myeloid cell accumulation, we observed that PLN increased 

expression of arginase-1 in CD11b+Gr+ cells as compared to vehicle control (P = 0.032), suggesting 

immunosuppressive functionality in this population, whereas PLN-alen did not (Figure 4A). Moreover, 

splenic macrophages were predominantly M1-like in control mice while PLN treatment diminished M1-

macrophages (P = 0.034) and increased M2-macrophages, and PLN-alen moderately alleviated this 

effect of the carrier on M2-macrophages (Figure 4B).  

Figure 4. PLN-associated polarization of splenic macrophages and immature myeloid 

cells towards an M2-like phenotype is differentially affected by the alendronate 

cargo. (A) PLN treatment increased arginase-1 in the non-macrophage CD11b+Gr1+ cells 

although this effect was reversed when alendronate was loaded into the carrier. (B) 

Intracellular iNOS and arginase-1 expression was used to define M1 (iNOS+ arg1-), M2 

(iNOS- arg1+), and mixed M1/M2 (iNOS+ arg1+) phenotypes in macrophages. Both PLN 

and PLN-alen increased M2 macrophages and decreased M1 macrophages. Total n = 11; 

data are mean+SEM (rank-transformed data in Supplemental Table S10); (A) one-way 

analysis of variance based on ranks and (B) multiple comparisons based on observations.  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

To further probe the impact of treatment on immune functionality, we assessed T-cell cytokine and 

perforin production in response to ex vivo stimulation with PMA/ionomycin. We observed that both PLN 

and PLN-alen diminished overall cytokine production in CD8+ T-cells (Figure 5), consistent with an 

immunomodulatory effect by the PLN carrier and its drug cargo. Interestingly, loading alendronate into 

PLN resulted in a shift in the profile of multi-cytokine producing T-cells, with increased proportions of 

IFNγ+perforin+ multi-cytokine producing CD8+ T-cells (Supplemental Figure S4), suggesting increased 

cytolytic potential. Taken together, these immunological changes indicate that the PLN carrier may 

increase accumulation of myeloid cells with immunosuppressive functionality and globally suppress 

CD8+ T-cell cytokine production. Loading alendronate into PLN appeared to alleviate the effects of the 

carrier on myeloid cell accumulation and functional polarization, with moderate potentiation of T-cell 

IFNγ+perforin+ responses.  

Figure 5.  PLN inhibit global cytokine production in CD8+ T-cells. Both PLN and 

PLN-alen inhibited global cytokine production in CD8
+
 T-cells. Cytokine production was 

determined by ex vivo stimulation with PMA/ionomycin in the presence of brefeldin A 

and analyzed by FACS. Total n = 10; data are group means.  

 

3.3 PLN-alendronate abrogates carrier-induced tumor growth  

We next determined the extent to which loading alendronate into PLN would abolish the tumor 

promoting effects previously reported to be associated with the PLN carrier. We found that PLN 

significantly accelerated tumor progression compared to vehicle control; the mean tumor volumes at 

endpoint were 886 mm3 and 374 mm3, respectively (P < 0.0001) (Figure 6A) and tumor-free survival 

was significantly diminished in PLN treated mice (P = 0.0046) (Figure 6B). Importantly PLN-alen not 

only abolished this effect but also appeared to have moderate antitumor effects with mean tumor 
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volume in PLN-alen treated mice of 289 mm3 (Figure 6A) and significantly longer tumor-free survival 

compared to vehicle treated mice (P = 0.028) (Figure 6B). This appeared to require carrier-mediated 

delivery of alendronate since co-administration of PLN with conventional “free” alendronate only 

minimally diminished the tumor-promoting potential of the lipid carrier (Figure 6A). 

Figure 6. PLN-associated tumor progression is abolished by encapsulated 

alendronate but not free alendronate. Mice implanted with TC-1 tumorigenic cells were 

treated intravenously with PLN, PLN + free alendronate (PLN + alen), PLN-alen, or 

vehicle control. Data are from two independent experiments (total n=28), (A) tumor 

volumes are expressed as mean+SEM; Holm-Tukey simultaneous multiple comparisons 

for two-factor analysis of variance with repeated measures, and (B) Kaplan-Meier survival 

curves of time to tumor growth to >100 mm3 volume with Log-Rank test comparing the 

groups.  

 

3.4 PLN-alen diminished carrier-induced tumor immunosuppression 

We examined the tumor-associated leukocyte populations since prior reports suggest that PLN may 

alter TAM functionality. Similar to previously published findings [20], we also observed that PLN 

increased the number of TAMs, and this effect was prevented by PLN-alen, although these findings did 

not reach statistical significance probably due to the small sample size (Supplemental Figure S5). To 

determine the impact on activation and polarization of TAMs, expression of iNOS (typical of classically 

activated inflammatory M1 macrophages) and Arg1 (typical of alternatively-activated anti-inflammatory 

M2 macrophages) [32, 33], were assessed by flow cytometry. We found that PLN, but not PLN-alen, 

increased numbers of a mixed M1/M2 TAM population, characterized by production of both iNOS and 

Arg1, as compared to vehicle control (P = 0.045) (Figure 7A). In addition to TAMs, CD11b+Gr1+ myeloid 

cells have also been shown to play a role in promoting cancer progression. While not statistically 

significant, we observed that PLN increased Arg1 expression in MDSC, whereas PLN-alen diminished 

this effect of the carrier (Figure 7B). Together, these results indicate that PLN enhances 

immunosuppressive potential of myeloid cells in the tumor microenvironment and suggest that 

encapsulating alendronate counteracts these effects. Further, tumor gene expression analysis of M1 
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macrophage marker (iNOS) and cytokines (TNF and IFN) supports these flow cytometry data 

(Supplemental Figure S6). Vehicle-treated and PLN-treated mice had low tumor-associated expression 

of iNOS suggesting a tolerogenic TAM profile.  However, co-administration of alendronate, either free 

or encapsulated, along with PLN resulted in elevated expression of iNOS within the tumor. These data 

suggest that alendronate may induce skewing of the TAM phenotype from M2 to M1 or mixed M1/M2 

phenotypes. In addition, PLN suppressed IFN and TNF gene expression in tumors, consistent with 

previously published findings supporting an immunosuppressed state. 

Figure 7. PLN-alen mitigates carrier-associated effects on tumor-associated leukocytes. Mice 

bearing implanted TC-1 tumors were treated intravenously with PLN, PLN-alen, free alendronate 

(alen), or vehicle and sacrificed 48 hrs later to obtain tumor-derived single cell suspensions for 

immunophenotyping. Intracellular inducible nitric oxide synthase (iNOS) and arginase-1 (Arg1) 

expression was used to define M1 (iNOS+Arg1-), M2 (iNOS-Arg1+), and mixed M1/M2 (iNOS+Arg1+) 

TAMs; unactivated (iNOS
-
Arg1

-
) are not shown. (A) PLN polarized TAMs towards a mixed M1/M2 

phenotype, whereas this was abolished by PLN-alen. (B) PLN, but not PLN-alen, increased Arg1 

expression in myeloid-derived suppressor cells (MDSC). Total n=24, expressed as mean+SEM (rank-

transformed data in Supplemental Table S11); one-way analysis of variance based on ranks for 

vehicle, PLN, and PLN-alen.  

 

4.0 Discussion 

Drug delivery using nanoparticle carriers drastically alters the pharmacokinetics and 

pharmacodynamics of the drug cargo as compared to the conventional non-carrier mediated 

formulation due to changes in tissue and cellular distribution dictated by the carrier [41]. This has been 

exploited to improve drug pharmacokinetic parameters (e.g., half-life, clearance, systemic exposure), 

enable passive tumor targeting through the EPR effect and active targeting through functionalization 

with targeting moieties such as antibodies, and to considerably improve tolerability by limiting normal 

tissue exposure. However, carrier-mediated formulations also significantly increase interactions with the 

immune system and these interactions have the potential to lead to detrimental effects [18, 42].  

In patients, the acute infusion reactions associated with administration of liposomal drugs has been 

linked to carrier-induced complement activation [43, 44] and production of complement anaphylotoxins 

C3a, C4a, and C5a [45]. Nanoparticles are also internalized by cells of the MPS such as hepatic 

Kupffer cells and splenic macrophages [46, 47]. This interaction with the MPS may have important 
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clinical significance as low MPS function or cell count has been shown to correlate with decreased 

nanoparticle clearance in patients and in several preclinical animal models [22, 23]. Although carrier 

interactions with the immune system have been shown to affect drug pharmacokinetics and toxicity, 

their impact on the anticancer efficacy of the carrier-mediated drug is unclear. Macrophages play a 

central role in clearance of nanoparticles from the circulation but the impact of the nanoparticles on the 

functionality of macrophages remains to be fully elucidated.  

Our findings reveal that macrophages mediate the protumoral effects of PLN through 

immunosuppressive mechanisms as indicated by polarization of tumor macrophages towards a mixed 

M1/M2-phenotype and increased arginase-expressing immature myeloid-derived cells. Mechanistically, 

PLNs that are phagocytosed by myeloid cells may activate an anti-inflammatory program much like that 

associated with uptake of apoptotic cells [48, 49] that would spur TGF production by macrophages. In 

fact, uptake of liposomes by peritoneal macrophage can induce a tolerogenic M2-like phenotype [50].  

The production of TGF by these tolerogenic myeloid cells can lead to secondary release of C-C motif 

chemokine ligand 2 (CCL2, also known as monocyte chemotactic protein 1 [MCP-1]) and emigration of 

immature myeloid cells from the bone marrow into circulation and organs of the MPS such as spleen 

[51, 52] (Figure 8). Consistent with this hypothesis, we found increased splenic infiltration of immature 

myeloid cell populations such as inflammatory monocytes that have the potential to differentiate into 

both M1 and M2 macrophages [53, 54]. Based on the inflammatory state of an organ, immature 

myeloid cells may then take on anti-inflammatory properties associated with M2 activation that impair T-

cell mediated immunity [55], increase neoangiogenesis [56, 57], and spur tumor growth (Figure 8). 

Indeed, our results show that PLN treatment was associated with global suppression of cytokine 

production in tumor infiltrating T-cells. Moreover, recent evidence in patients with ovarian cancer 

showed that circulating monocyte numbers and plasma CCL2 levels correlated with PLD clearance [23] 

and plasma PLD levels [58], respectively. In addition, CCL2 knockout mice bearing ovarian tumor 

xenografts were found to have altered clearance of PLD as compared to control mice [58, 59]. These 

data further support a link between PLN uptake by myeloid cells of the monocyte-macrophage lineage 

and their immune functionality.   

Figure 8. Proposed mechanisms of PLN-induced tumor growth and 

immunosuppression. A: Liposomes penetrate and deposit in the tumor via enhanced 

permeability and retention (EPR) effect; B: Tumor-associated macrophages 

phagocytose liposomes, and respond with increased arginase production, decrease 

iNOS, and shift toward an M2 phenotype; C: An autocrine/paracrine loop of TGFβ 

ensues and leads to secretion of CCL2 (MCP-1); D: CCL2 attracts peripheral migration 

of immature myeloid cells which increase arginase production and turn into suppressive 

cells; E: TAM and myeloid-derived suppressor cells (MDSC) impair T-cell immunity; F: 

Cytotoxic T lymphocyte (CTL) antitumor effects are inhibited.  
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The extent to which our findings are broadly applicable to other nanoparticles remains to be 

determined. There is substantial heterogeneity in physical (e.g., size, shape, charge) and chemical 

(e.g., composition) properties among different types of nanomedicines, and these physicochemical 

parameters are known to affect their in vivo pharmacokinetics and pharmacodynamics. Hence, it should 

not be assumed that our observations will be generalizable beyond the PLN that we tested. Further 

studies are also warranted to identify the PLN component that is responsible for immunomodulation 

and elucidate the precise molecular mechanisms. There is strong evidence in the literature for PEG as 

an agent in reducing immunogenicity and as an immunosuppressive-camouflage agent [60, 61]. In 

cancer drug delivery, PEG-lipid nanoemulsions (mean particle size 125 nm) induced immunologic 

tolerance that was mediated by macrophages [62]. In protein therapeutics, PEG suppressed antibody 

responses against conjugated antigens thereby inducing a tolerogenic state [63] and this approach has 

been utilized to optimize pharmacokinetics of therapeutic proteins (e.g. PEG-asparaginase) [64]. In 

organ transplantation, the addition of PEG to organ preservation solutions significantly improved organ 

function and decreased inflammation and fibrosis through suppression of the host immune responses 

against the transplanted organ [65, 66]. The immune modulatory effects of PEG are increasingly 

recognized, and the use of PEG in cancer drug delivery has become a controversy [67] that is unlikely 

to be resolved until the precise mechanisms, and its impact on anticancer efficacy of the payload drug, 

are clarified.  

Even if PEG is the moiety responsible for immunosuppression, it may not be possible to forgo the use 

of PEG in all nanomedicines. Pegylation has been a successful strategy to prolong the circulating half-

life of liposome-delivered drugs and this has directly correlated with enhanced tumor drug 

accumulation. Moreover, given that there are several PLN-drugs already approved for use in patients, it 

would be imperative to identify strategies to mitigate the undesired immunosuppression induced by the 

PLN carrier [68, 69]. Importantly, we demonstrated here that PLN-alen, but not free alendronate, 

mitigated the tumor-promoting effects of the PLN carrier. Encapsulating alendronate into PLN reversed 

carrier-associated effects on myeloid cell functionality and accumulation in tumor and spleen. Given 

that PLN-alen hardly interacts with tumor cells in vitro and has not been found to have direct cytotoxicity 

on numerous tumorigenic cell lines (IC50 values greater than 50 µM, unpublished data from the Gabizon 

laboratory and from the National Cancer Institute’s Nanotechnology Characterization Laboratory), the 

observed inhibition of tumor growth is likely due to the immune modulatory effects of PLN-alen.  
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Aminobisphosphonates, such as alendronate, are potent inhibitors of the mevalonate pathway which is 

being targeted as a strategy to promote immunogenic destruction of cancer cells [26]. 

Aminobisphosphonates have been shown to have immune stimulatory effects such as induction of 

proinflammatory cytokines, sensitization of macrophages to inflammatory stimuli, and activation of 

gamma-delta T-cells [70]. In contrast, non-aminobisphosphonates such as clodronate, primarily act via 

production of toxic ATP analogues and have been shown to inhibit production of inflammatory 

mediators and cause overall macrophage suppression and toxicity [70, 71]. Encapsulation of 

alendronate into liposomes is likely to modify the immune modulatory effects of the drug, as the carrier 

will dictate the pharmacokinetic profile and may drastically alter cellular and molecular interactions. The 

fact that PLN-alen potentiated IFNγ+perforin+ responses in multi-cytokine producing T-cells 

(Supplemental Figure S4) suggests increased T-cell cytolytic potential that may partially explain the 

moderate antitumor activity we observed with PLN-alen treatment. It is likely that there are additional 

immunomodulatory effects of PLN-alen on other cell types such as gamma-delta T-cells [25] that will 

need to be fully elucidated and may be relevant particularly in humans. Together, these data suggest 

the co-encapsulation of aminobisphosphonates with other immunotherapies or chemotherapies as one 

possible strategy to significantly enhance the anticancer efficacy of liposome-mediated drugs. This 

approach is strongly supported by a recent report by Shmeeda, et al. that co-encapsulating alendronate 

with doxorubicin in a PLN resulted in synergistic anticancer activity in an immunocompetent mouse 

model of cancer [30]. Interestingly, there was no synergy observed in an immunodeficient tumor model 

[30], which is consistent with the immunomodulatory mechanisms of action of alendronate that we and 

others [25] have observed.  

The extent to which our findings are generalizable to other types of tumors remains to be determined. 

While we observed in the TC-1 tumor model that the impact of PLN and PLN-alen was greatest for 

mixed M1/M2 TAMs, others have reported that liposomal aminobisphosphonates increased M1 

polarization of J774 murine macrophages when co-cultured with 4T1 breast cancer cells ([72]. There 

are several factors that may explain these disparate observations including differences in tumor 

biology, differences in functionality of primary TAMs versus immortal macrophage cell lines, and 

differences between in vitro versus in vivo exposure to liposomes. Given that there is significant 

heterogeneity in tumor immunogenicity and response to therapeutic interventions between different 

types of malignancies, additional studies are warranted to identify the tumor parameters that determine 

responses to nanomedicines and to delineate the mechanisms involved.  

Our findings challenge the current dogma that PLNs are inert drug carriers, and we theorize that the 

immunosuppressive properties of PLN have previously been overlooked for several reasons. First, the 

doses of PLN anticancer drugs used in animal models is typically much larger than that used in 

patients, which may allow the drug cargo effects to override the immunosuppressive effect of the 

carrier. This may explain why nanomedicines clearly outperform the free drug comparator in preclinical 

studies while the differences are very small in clinical trials. In addition, preclinical drug development 

strategies have historically focused on antiproliferative effects of the drug payload, and not on 

evaluating immune modulatory or protumoral effects of the PLN carrier. Hence, tumor models were 

selected that are highly sensitive to cytotoxic effects of PLN-drugs, but these models were not sensitive 

to protumoral effects and their immune-responsiveness is not well characterized. Moreover, the desire 

to evaluate tumoricidal effects in human cancer cells also led to the prevalent use of immune deficient 

mouse models that likely contributed to the masking of immunosuppressive effects of PLNs. Even 

among the immunocompetent mouse models, there are major differences in global immune status 

(e.g., balance of Th1-Th2 cytokines or M1-M2 macrophages) [73] that affect nanoparticle disposition. 
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The Th1-dominant strains such as C57BL/6 were reported to have slower rates of clearance of 

pegylated 300-nm cylindrical hydrogel nanoparticles than the Th2-dominant strains such as BALB/c 

[74]. These differences in clearance were correlated with M1 macrophage polarization and lower 

particle uptake in Th1 strains, and M2 macrophage polarization and higher nanoparticle uptake in the 

Th2 strains. Likewise, when silica nanoparticles were tested in vitro with THP1 cells, an immortalized 

human monocytic cell line, alternatively activated (M2-like) THP1 cells demonstrated higher 

nanoparticle uptake than classically activated (M1-like) THP1 cells [75].  

We believe that the dearth of in vivo and long-term immunological studies during the preclinical 

development of nanoparticle drugs [76] contributed to missing the immunosuppressive properties of 

some nanoparticles such as PLN. The preclinical evaluation of the immunological effects of 

nanoparticles have historically relied on in vitro studies and short-term studies in animal models which 

are best suited for evaluating acute effects such as induction of blood complement activation and 

cytokine release syndromes. Whereas, immunosuppressive effects, especially those that affect the 

adaptive immune system, tend to manifest after longer periods and require more complex in vivo 

immunological assessments such as the ones that we conducted in this study. Given the pivotal roles 

of the immune system in both cancer progression and regression, we propose that immune-responsive 

tumor models and in-depth immune functional studies should be incorporated in the current preclinical 

drug development paradigm for cancer nanomedicines. 

5.0 Conclusion  

Liposomes will likely continue to be heavily utilized for cancer drug delivery since they have been the 

most successful clinically and are proven to improve drug tolerability in cancer patients. While 

nanoparticle drug delivery has the potential to also significantly improve anticancer efficacy, these 

expectations remain to be broadly realized in the clinic for the treatment of solid tumors. We have 

begun to identify some of the barriers to clinical translation and unravel the mechanisms of interactions 

between PLNs and the immune system. We anticipate that this work will lay the foundation for the 

development of new preclinical models with increased clinical relevance and new therapeutic 

approaches targeting macrophage functional polarization to enhance the anticancer efficacy of PLN 

drugs. Importantly, we show that PLN-alendronate can reverse the effects of the PLN carrier on 

macrophages, supporting combination therapy with liposomal alendronate as a rapidly translatable 

strategy to increase the anticancer efficacy of liposomal drugs since alendronate is already approved 

for treatment of osteoporosis. As with traditional cytotoxic chemotherapy, the next generation of 

immunotherapies will also likely strive to exploit nanoparticle drug delivery as a strategy to increase 

tumor specificity and improve pharmacokinetic parameters. It is therefore imperative that the complex 

interactions between the drug cargo, carrier, and tumor immunologic milieu are well understood and 

utilized to achieve the full anticancer potential of carrier-mediated therapies [11].  
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